1
|
Garcia MR, Andrade PB, Lefranc F, Gomes NGM. Marine-Derived Leads as Anticancer Candidates by Disrupting Hypoxic Signaling through Hypoxia-Inducible Factors Inhibition. Mar Drugs 2024; 22:143. [PMID: 38667760 PMCID: PMC11051506 DOI: 10.3390/md22040143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
The inadequate vascularization seen in fast-growing solid tumors gives rise to hypoxic areas, fostering specific changes in gene expression that bolster tumor cell survival and metastasis, ultimately leading to unfavorable clinical prognoses across different cancer types. Hypoxia-inducible factors (HIF-1 and HIF-2) emerge as druggable pivotal players orchestrating tumor metastasis and angiogenesis, thus positioning them as prime targets for cancer treatment. A range of HIF inhibitors, notably natural compounds originating from marine organisms, exhibit encouraging anticancer properties, underscoring their significance as promising therapeutic options. Bioprospection of the marine environment is now a well-settled approach to the discovery and development of anticancer agents that might have their medicinal chemistry developed into clinical candidates. However, despite the massive increase in the number of marine natural products classified as 'anticancer leads,' most of which correspond to general cytotoxic agents, and only a few have been characterized regarding their molecular targets and mechanisms of action. The current review presents a critical analysis of inhibitors of HIF-1 and HIF-2 and hypoxia-selective compounds that have been sourced from marine organisms and that might act as new chemotherapeutic candidates or serve as templates for the development of structurally similar derivatives with improved anticancer efficacy.
Collapse
Affiliation(s)
- Maria Rita Garcia
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (M.R.G.); (P.B.A.)
- 1H-TOXRUN-Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paula B. Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (M.R.G.); (P.B.A.)
| | - Florence Lefranc
- Department of Neurosurgery, Hôpital Universitaire de Bruxelles (H.U.B), CUB Hôpital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium;
| | - Nelson G. M. Gomes
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (M.R.G.); (P.B.A.)
| |
Collapse
|
2
|
Aggarwal V, Sahoo S, Donnenberg VS, Chakraborty P, Jolly MK, Sant S. P4HA2: A link between tumor-intrinsic hypoxia, partial EMT and collective migration. ADVANCES IN CANCER BIOLOGY - METASTASIS 2022; 5:100057. [PMID: 36187341 PMCID: PMC9517480 DOI: 10.1016/j.adcanc.2022.100057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT), a well-established phenomenon studied across pan-cancer types, has long been known to be a major player in driving tumor invasion and metastasis. Recent studies have highlighted the importance of partial EMT phenotypes in metastasis. Initially thought as a transitional state between epithelial and mesenchymal phenotypic states, partial EMT state is now widely recognized as a key driver of intra-tumoral heterogeneity and phenotypic plasticity, further accelerating tumor metastasis and therapeutic resistance. However, how tumor microenvironment regulates partial EMT phenotypes remains unclear. We have developed unique size-controlled three-dimensional microtumor models that recapitulate tumor-intrinsic hypoxia and the emergence of collectively migrating cells. In this study, we further interrogate these microtumor models to understand how tumor-intrinsic hypoxia regulates partial EMT and collective migration in hypoxic large microtumors fabricated from T47D breast cancer cells. We compared global gene expression profiles of hypoxic, migratory microtumors to that of non-hypoxic, non-migratory microtumors at early and late time-points. Using our microtumor models, we identified unique gene signatures for tumor-intrinsic hypoxia (early versus late), partial EMT and migration (pre-migratory versus migratory phenotype). Through differential gene expression analysis between the microtumor models with an overlap of hypoxia, partial EMT and migration signatures, we identified prolyl 4-hydroxylase subunit 2 (P4HA2), a hypoxia responsive gene, as a central regulator common to hypoxia, partial EMT and collective migration. Further, the inhibition of P4HA2 significantly blocked collective migration in hypoxic microtumors. Thus, using the integrated computational-experimental analysis, we identify the key role of P4HA2 in tumor-intrinsic hypoxia-driven partial EMT and collective migration.
Collapse
Affiliation(s)
- Vaishali Aggarwal
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarthak Sahoo
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Vera S. Donnenberg
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Cardiothoracic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- UPMC-Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Priyanka Chakraborty
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Shilpa Sant
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Cardiothoracic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- UPMC-Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
- Corresponding author. University of Pittsburgh School of Pharmacy Department of Pharmaceutical Sciences Department of Bioengineering UPMC-Hillman Cancer Center McGowan Institute for Regenerative Medicine, 7408 Salk Hall, 3501 Terrace Street, Pittsburgh, PA, 15261, USA. (S. Sant)
| |
Collapse
|
3
|
Konishi I, Abiko K, Hayashi T, Yamanoi K, Murakami R, Yamaguchi K, Hamanishi J, Baba T, Matsumura N, Mandai M. Peritoneal dissemination of high-grade serous ovarian cancer: pivotal roles of chromosomal instability and epigenetic dynamics. J Gynecol Oncol 2022; 33:e83. [PMID: 36032027 PMCID: PMC9428305 DOI: 10.3802/jgo.2022.33.e83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/02/2022] Open
Abstract
Epithelial ovarian cancer remains the lethal gynecological malignancy in women. The representative histotype is high-grade serous carcinoma (HGSC), and most patients with HGSC present at advanced stages with peritoneal dissemination. Since the peritoneal dissemination is the most important factor for poor prognosis of the patients, complete exploration for its molecular mechanisms is mandatory. In this narrative review, being based on the clinical, pathologic, and genomic findings of HGSC, chromosomal instability and epigenetic dynamics have been discussed as the potential drivers for cancer development in the fallopian tube, acquisition of cancer stem cell (CSC)-like properties, and peritoneal metastasis of HGSC. The natural history of carcinogenesis with clonal evolution, and adaptation to microenvironment of peritoneal dissemination of HGSC should be targeted in the novel development of strategies for prevention, early detection, and precision treatment for patients with HGSC.
Collapse
Affiliation(s)
- Ikuo Konishi
- Department of Obstetrics and Gynecology, National Hospital Organization Kyoto Medical Center, Kyoto, Japan.,Clinical Research Center, National Hospital Organization Kyoto Medical Center, Kyoto, Japan.,Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Kaoru Abiko
- Department of Obstetrics and Gynecology, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Takuma Hayashi
- Clinical Research Center, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Koji Yamanoi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryusuke Murakami
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ken Yamaguchi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Junzo Hamanishi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tsukasa Baba
- Department of Obstetrics and Gynecology, Iwate Medical University School of Medicine, Morioka, Japan
| | - Noriomi Matsumura
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | |
Collapse
|
4
|
Zhang F, Luo H, Peng W, Wang L, Wang T, Xie Z, Zhang J, Dong W, Zheng X, Liu G, Zhu X, Kang Q, Tian X. Hypoxic condition induced H3K27me3 modification of the LncRNA Tmem235 promoter thus supporting apoptosis of BMSCs. Apoptosis 2022; 27:762-777. [PMID: 35779185 PMCID: PMC9482900 DOI: 10.1007/s10495-022-01747-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2022] [Indexed: 02/06/2023]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) have strong regenerative potential and show good application prospects for treating clinical diseases. However, in the process of BMSC transplantation for treating ischemic and hypoxic diseases, BMSCs have high rates of apoptosis in the hypoxic microenvironment of transplantation, which significantly affects the transplantation efficacy. Our previous studies have confirmed the key role of long non-coding RNA Tmem235 (LncRNA Tmem235) in the process of hypoxia-induced BMSC apoptosis and its downstream regulatory mechanism, but the upstream mechanism by which hypoxia regulates LncRNA Tmem235 expression to induce BMSC apoptosis is still unclear. Under hypoxic conditions, we found that the level of LncRNA Tmem235 promoter histone H3 lysine 27 trimethylation modification (H3K27me3) was significantly increased by CHIP-qPCR. Moreover, H3K27me3 cooperated with LncRNA Tmem235 promoter DNA methylation to inhibit the expression of LncRNA Tmem235 and promote apoptosis of BMSCs. To study the mechanism of hypoxia-induced modification of LncRNA Tmem235 promoter H3K27me3 in the hypoxia model of BMSCs, we detected the expression of H3K27 methylase and histone demethylase and found that only histone methylase enhancer of zeste homolog 2 (EZH2) expression was significantly upregulated. Knockdown of EZH2 significantly decreased the level of H3K27me3 modification in the LncRNA Tmem235 promoter. The EZH2 promoter region contains a hypoxia-responsive element (HRE) that interacts with hypoxia-inducible factor-1alpha (HIF-1α), which is overexpressed under hypoxic conditions, thereby promoting its overexpression. In summary, hypoxia promotes the modification of the LncRNA Tmem235 promoter H3K27me3 through the HIF-1α/EZH2 signaling axis, inhibits the expression of LncRNA Tmem235, and leads to hypoxic apoptosis of BMSCs. Our findings improve the regulatory mechanism of LncRNA Tmem235 during hypoxic apoptosis of BMSCs and provide a more complete theoretical pathway for targeting LncRNA to inhibit hypoxic apoptosis of BMSCs.
Collapse
Affiliation(s)
- Fei Zhang
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China.,School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Hong Luo
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Wuxun Peng
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China. .,School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China.
| | - Lei Wang
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China.,School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Tao Wang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Zhihong Xie
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Jian Zhang
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China.,School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Wentao Dong
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China.,School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Xiaohan Zheng
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China.,School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Gang Liu
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China.,School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Xuesong Zhu
- Department of Orthopedics, The First Affliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Qinglin Kang
- Department of Orthopedics, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, 200233, China
| | - Xiaobin Tian
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China.,School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| |
Collapse
|
5
|
Yan J, Huang YJ, Huang QY, Liu PX, Wang CS. Comprehensive analysis of the correlations of S100B with hypoxia response and immune infiltration in hepatocellular carcinoma. PeerJ 2022; 10:e13201. [PMID: 35368338 PMCID: PMC8973469 DOI: 10.7717/peerj.13201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/09/2022] [Indexed: 01/12/2023] Open
Abstract
S100B has been found to be dysregulated in many cancers including hepatocellular carcinoma (HCC). However, the functions of S100B and its underlying mechanisms in HCC remain poorly understood, especially in the tumor microenvironment. In this study, functions enrichment analysis indicated that S100B expression was correlated with hypoxia and immune responses. We found that hypoxia could induce S100B expression in an HIF-1α-dependent manner in HepG2 cells. Luciferase reporter and ChIP-qRCR assays demonstrated that HIF-1α regulates S100B transcription by directly binding to hypoxia-response elements (HREs) of the S100B promoter. Functionally, knockdown of S100B reduces hypoxia-induced HepG2 cell invasion and migration. Furthermore, GSVA enrichment results displayed that S100B and its co-expressed genes were positively correlated with EMT pathway in HCC. Additionally, GO/KEGG cluster analysis results indicated that co-expressed genes of S100B were involved in biological processes of immune response and multiple tumor immune-related signaling pathways in HCC. S100B expression was positively correlated with multiple immune cells tumor infiltration and associated with chemokines/chemokine receptors and immune checkpoint genes. Moreover, S100B is predominantly expressed in immune cells, especially NK (Natural Killer) cell. In addition, the hub genes of S100B co-expression and hypoxia response in HepG2 cell were also associated with immune cells infiltration in HCC. Taken together, these findings provide a new insight into the complex networks between hypoxia response and immune cells infiltration in tumor microenvironment of liver cancer. S100B maybe serve as a novel target for future HCC therapies.
Collapse
Affiliation(s)
- Jia Yan
- Department of Bioscience, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China,Department of Bioscience, Inner Mongolia University, Hohhot, China
| | - Ya jun Huang
- Department of Bioscience, Inner Mongolia University, Hohhot, China
| | - Qing yu Huang
- Department of Bioscience, Inner Mongolia University, Hohhot, China
| | - Peng Xia Liu
- Department of Bioscience, Inner Mongolia University, Hohhot, China
| | - Chang Shan Wang
- Department of Bioscience, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China,Department of Bioscience, Inner Mongolia University, Hohhot, China
| |
Collapse
|
6
|
Yan J, Huang YJ, Huang QY, Liu PX, Wang CS. Transcriptional activation of S100A2 expression by HIF-1α via binding to the hypomethylated hypoxia response elements in HCC cells. Mol Carcinog 2022; 61:494-507. [PMID: 35107180 DOI: 10.1002/mc.23393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/05/2022] [Accepted: 01/13/2022] [Indexed: 12/16/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent and lethal cancers. Dysregulation of S100A2 has recently been found in many cancers including HCC. However, its regulatory mechanism in HCC remains poorly understood, especially in hypoxia. In this study, we found that S100A2 is upregulated and correlated with the clinicopathological features of HCC patients. Moreover, the elevated S100A2 showed worse overall survival. Functionally, S100A2 inhibition decreased the proliferation and migration of HepG2 cells. Interestingly, we found that HIF-1α directly binds to hypoxia response elements (HREs) of the S100A2 promoter region. S100A2 expression could be induced in an HIF-1α-dependent manner under hypoxia. Furthermore, S100A2 silencing significantly suppressed HCC cell proliferation and invasion under hypoxia. Mechanistically, pyrosequencing results showed that the hypomethylation status of CpG located in the HRE at the S100A2 promoter was correlated with S100A2 induction. Additionally, HIF-1α- mediated S100A2 activation was associated with TET2-related epigenetic inactivation. TET2 was enriched in the HRE of the S100A2 promoter in HepG2 cells. Finally, S100A2 methylation-related genes and pathways were analyzed. We found that the methylation of S100A2 is correlated with ANXA2, PPP1R15A, and FOS, which include in a hypoxia-related gene set from the GSEA database. Moreover, some EMT-related genes are associated with the methylation of S100A2 in HCC. Conclusively, our study thus uncovered a novel mechanism showing that hypoxia/HIF-1α signaling associated with DNA methylation enhances S100A2 expression in HCC. S100A2 may be useful as a target for facilitating novel diagnostic and therapeutic strategies in liver cancer.
Collapse
Affiliation(s)
- Jia Yan
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, China.,College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Ya Jun Huang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Qing Yu Huang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Peng Xia Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, China.,College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Chang Shan Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, China.,College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, China
| |
Collapse
|
7
|
Possibility of SARS-CoV-2 Infection in the Metastatic Microenvironment of Cancer. Curr Issues Mol Biol 2022; 44:233-241. [PMID: 35723396 PMCID: PMC8929006 DOI: 10.3390/cimb44010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/21/2021] [Accepted: 01/04/2022] [Indexed: 11/17/2022] Open
Abstract
According to a report from the World Health Organization (WHO), the mortality and disease severity induced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are significantly higher in cancer patients than those of individuals with no known condition. Common and cancer-specific risk factors might be involved in the mortality and severity rates observed in the coronavirus disease 2019 (COVID-19). Similarly, various factors might contribute to the aggravation of COVID-19 in patients with cancer. However, the factors involved in the aggravation of COVID-19 in cancer patients have not been fully investigated so far. The formation of metastases in other organs is common in cancer patients. Therefore, the present study investigated the association between lung metastatic lesion formation and SARS-CoV-2 infectivity. In the pulmonary micrometastatic niche of patients with ovarian cancer, alveolar epithelial stem-like cells were found adjacent to ovarian cancer. Moreover, angiotensin-converting enzyme 2, a host-side receptor for SARS-CoV-2, was expressed in these alveolar epithelial stem-like cells. Furthermore, the spike glycoprotein receptor-binding domain (RBD) of SARS-CoV-2 was bound to alveolar epithelial stem-like cells. Altogether, these data suggested that patients with cancer and pulmonary micrometastases are more susceptible to SARS-CoV-2. The prevention of de novo niche formation in metastatic diseases might constitute a new strategy for the clinical treatment of COVID-19 for patients with cancer.
Collapse
|
8
|
Shih HJ, Chang HF, Chen CL, Torng PL. Differential expression of hypoxia-inducible factors related to the invasiveness of epithelial ovarian cancer. Sci Rep 2021; 11:22925. [PMID: 34824343 PMCID: PMC8616920 DOI: 10.1038/s41598-021-02400-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/16/2021] [Indexed: 12/22/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological cancer, and it is frequently diagnosed at advanced stages, with recurrences after treatments. Treatment failure and resistance are due to hypoxia-inducible factors (HIFs) activated by cancer cells adapt to hypoxia. IGFBP3, which was previously identified as a growth/invasion/metastasis suppressor of ovarian cancer, plays a key role in inhibiting tumor angiogenesis. Although IGFBP3 can effectively downregulate tumor proliferation and vasculogenesis, its effects are only transient. Tumors enter a hypoxic state when they grow large and without blood vessels; then, the tumor cells activate HIFs to regulate cell metabolism, proliferation, and induce vasculogenesis to adapt to hypoxic stress. After IGFBP3 was transiently expressed in highly invasive ovarian cancer cell line and heterotransplant on mice, the xenograft tumors demonstrated a transient growth arrest with de-vascularization, causing tumor cell hypoxia. Tumor re-proliferation was associated with early HIF-1α and later HIF-2α activations. Both HIF-1α and HIF-2α were related to IGFBP3 expressions. In the down-expression of IGFBP3 in xenograft tumors and transfectants, HIF-2α was the major activated protein. This study suggests that HIF-2α presentation is crucial in the switching of epithelial ovarian cancer from dormancy to proliferation states. In highly invasive cells, the cancer hallmarks associated with aggressiveness could be activated to escape from the growth restriction state.
Collapse
Affiliation(s)
- Ho-Jun Shih
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Fang Chang
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chi-Ling Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Pao-Ling Torng
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan.
- Department of Obstetrics and Gynecology, Hsin-Chu Branch, National Taiwan University Hospital, Hsin-Chu, Taiwan.
| |
Collapse
|
9
|
Hypoxia and the Receptor for Advanced Glycation End Products (RAGE) Signaling in Cancer. Int J Mol Sci 2021; 22:ijms22158153. [PMID: 34360919 PMCID: PMC8348933 DOI: 10.3390/ijms22158153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
Hypoxia is characterized by an inadequate supply of oxygen to tissues, and hypoxic regions are commonly found in solid tumors. The cellular response to hypoxic conditions is mediated through the activation of hypoxia-inducible factors (HIFs) that control the expression of a large number of target genes. Recent studies have shown that the receptor for advanced glycation end products (RAGE) participates in hypoxia-dependent cellular adaptation. We review recent evidence on the role of RAGE signaling in tumor biology under hypoxic conditions.
Collapse
|
10
|
Liu S, Zhang H, Li Y, Zhang Y, Bian Y, Zeng Y, Yao X, Wan J, Chen X, Li J, Wang Z, Qin Z. S100A4 enhances protumor macrophage polarization by control of PPAR-γ-dependent induction of fatty acid oxidation. J Immunother Cancer 2021; 9:jitc-2021-002548. [PMID: 34145030 PMCID: PMC8215236 DOI: 10.1136/jitc-2021-002548] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2021] [Indexed: 11/07/2022] Open
Abstract
Background The peroxisome proliferator-activated receptor γ (PPAR-γ)-dependent upregulation of fatty acid oxidation (FAO) mediates protumor (also known as M2-like) polarization of tumor-associated macrophages (TAMs). However, upstream factors determining PPAR-γ upregulation in TAM protumor polarization are not fully identified. S100A4 plays crucial roles in promotion of cancer malignancy and mitochondrial metabolism. The fact that macrophage-derived S100A4 is major source of extracellular S100A4 suggests that macrophages contain a high abundance of intracellular S100A4. However, whether intracellular S100A4 in macrophages also contributes to cancer malignancy by enabling TAMs to acquire M2-like protumor activity remains unknown. Methods Growth of tumor cells was evaluated in murine tumor models. TAMs were isolated from the tumor grafts in whole-body S100A4-knockout (KO), macrophage-specific S100A4-KO and transgenic S100A4WT−EGFP mice (expressing enhanced green fluorescent protein (EGFP) under the control of the S100A4 promoter). In vitro induction of macrophage M2 polarization was conducted by interleukin 4 (IL-4) stimulation. RNA-sequencing, real-time quantitative PCR, flow cytometry, western blotting, immunofluorescence staining and mass spectrometry were used to determine macrophage phenotype. Exogenous and endogenous FAO, FA uptake and measurement of lipid content were used to analyze macrophage metabolism. Results TAMs contain two subsets based on whether they express S100A4 or not and that S100A4+ subsets display protumor phenotypes. S100A4 can be induced by IL-4, an M2 activator of macrophage polarization. Mechanistically, S100A4 controls the upregulation of PPAR-γ, a transcription factor required for FAO induction during TAM protumor polarization. In S100A4+ TAMs, PPAR-γ mainly upregulates CD36, a FA transporter, to enhance FA absorption as well as FAO. In contrast, S100A4-deficient TAMs exhibited decreased protumor activity because of failure in PPAR-γ upregulation-dependent FAO induction. Conclusions We find that macrophagic S100A4 enhances protumor macrophage polarization as a determinant of PPAR-γ-dependent FAO induction. Accordingly, our findings provide an insight into the general mechanisms of TAM polarization toward protumor phenotypes. Therefore, our results strongly suggest that targeting macrophagic S100A4 may be a potential strategy to prevent TAMs from re-differentiation toward a protumor phenotype.
Collapse
Affiliation(s)
- Shuangqing Liu
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huilei Zhang
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yanan Li
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yana Zhang
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yangyang Bian
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanqiong Zeng
- School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Xiaohan Yao
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiajia Wan
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xu Chen
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jianru Li
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhaoqing Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China .,University of Chinese Academy of Sciences, Beijing, China
| | - Zhihai Qin
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China .,University of Chinese Academy of Sciences, Beijing, China.,Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,School of Basic Medical, Southwest Medical University, Luzhou, China
| |
Collapse
|
11
|
Ding Y, Zhuang S, Li Y, Yu X, Lu M, Ding N. Hypoxia-induced HIF1α dependent COX2 promotes ovarian cancer progress. J Bioenerg Biomembr 2021; 53:441-448. [PMID: 33973103 DOI: 10.1007/s10863-021-09900-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/26/2021] [Indexed: 01/13/2023]
Abstract
Hypoxia can promote the progression and metastasis of ovarian cancer, while the underlying mechanisms are still unclear. Hypoxia culture or CoCl2 induced-oxygen deprivation condition could promote SKOV3 cells to express cyclooxygenase-2 (COX2). Luciferase assay indicates that hypoxia-inducible factor 1α (HIF1α) could bind directly with the promoter region of COX2 to promote the transcription. COX2 over-expressed SKOV3 cells show up-regulated stemness-related markers expression, proinflammatory gene expression, and increased tumor sphere formation. The inflammatory molecules (interleukin-6, C-X-C motif chemokine ligand 12, interleukin-1B, interleukin-10, and C-C motif chemokine ligand 2) and COX2 expression show positive correlations in the Cancer Genome Atlas data. COX2 over-expression could promote SKOV3 cell proliferation in the subcutaneous tumor model and metastasis in the transfer model. In conclusion, hypoxia-induced HIF-1α mediated COX2 expression could promote the proliferation, inflammation, and metastasis of ovarian cancer.
Collapse
Affiliation(s)
- Yumei Ding
- Department of Gynaecology, ZIBO Central Hospital, No. 54 Gongqingtuan West Road, Zhangdian District, Zibo, 255036, Shandong, China
| | - Shichao Zhuang
- Department of Gynaecology, ZIBO Central Hospital, No. 54 Gongqingtuan West Road, Zhangdian District, Zibo, 255036, Shandong, China
| | - Yujiao Li
- Department of Gynaecology, ZIBO Central Hospital, No. 54 Gongqingtuan West Road, Zhangdian District, Zibo, 255036, Shandong, China
| | - Xiaohui Yu
- Department of Gynaecology, ZIBO Central Hospital, No. 54 Gongqingtuan West Road, Zhangdian District, Zibo, 255036, Shandong, China
| | - Ming Lu
- Department of Gynaecology, ZIBO Central Hospital, No. 54 Gongqingtuan West Road, Zhangdian District, Zibo, 255036, Shandong, China
| | - Ning Ding
- Department of Gynaecology, ZIBO Central Hospital, No. 54 Gongqingtuan West Road, Zhangdian District, Zibo, 255036, Shandong, China.
| |
Collapse
|
12
|
Santolla MF, Talia M, Maggiolini M. S100A4 Is Involved in Stimulatory Effects Elicited by the FGF2/FGFR1 Signaling Pathway in Triple-Negative Breast Cancer (TNBC) Cells. Int J Mol Sci 2021; 22:ijms22094720. [PMID: 33946884 PMCID: PMC8124532 DOI: 10.3390/ijms22094720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 12/11/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive breast tumor subtype characterized by poor clinical outcome. In recent years, numerous advancements have been made to better understand the biological landscape of TNBC, though appropriate targets still remain to be determined. In the present study, we have determined that the expression levels of FGF2 and S100A4 are higher in TNBC with respect to non-TNBC patients when analyzing “The Invasive Breast Cancer Cohort of The Cancer Genome Atlas” (TCGA) dataset. In addition, we have found that the gene expression of FGF2 is positively correlated with S100A4 in TNBC samples. Performing quantitative PCR, Western blot, CRISPR/Cas9 genome editing, promoter studies, immunofluorescence analysis, subcellular fractionation studies, and ChIP assays, we have also demonstrated that FGF2 induces in TNBC cells the upregulation and secretion of S100A4 via FGFR1, along with the ERK1/2–AKT–c-Rel transduction signaling. Using conditioned medium from TNBC cells stimulated with FGF2, we have also ascertained that the paracrine activation of the S100A4/RAGE pathway triggers angiogenic effects in vascular endothelial cells (HUVECs) and promotes the migration of cancer-associated fibroblasts (CAFs). Collectively, our data provide novel insights into the action of the FGF2/FGFR1 axis through S100A4 toward stimulatory effects elicited in TNBC cells.
Collapse
MESH Headings
- Antigens, Neoplasm/physiology
- Cell Movement/drug effects
- Culture Media, Conditioned/pharmacology
- Female
- Fibroblast Growth Factor 2/pharmacology
- Fibroblast Growth Factor 2/physiology
- Fibroblasts/pathology
- Gene Expression Regulation, Neoplastic/physiology
- Human Umbilical Vein Endothelial Cells
- Humans
- Mitogen-Activated Protein Kinases/physiology
- Neoplasm Proteins/physiology
- Neovascularization, Pathologic/physiopathology
- Paracrine Communication
- Protein Kinase Inhibitors/pharmacology
- Proto-Oncogene Proteins c-rel/physiology
- Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/physiology
- S100 Calcium-Binding Protein A4/physiology
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Triple Negative Breast Neoplasms/blood supply
- Triple Negative Breast Neoplasms/physiopathology
- Tumor Cells, Cultured
Collapse
|
13
|
Hayashi T, Konishi I. Correlation of anti-tumour drug resistance with epigenetic regulation. Br J Cancer 2020; 124:681-682. [PMID: 33268818 PMCID: PMC7884424 DOI: 10.1038/s41416-020-01183-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 12/25/2022] Open
Abstract
During treatment, the development of drug-resistant tumours remains an important challenge in cancer treatment. Epigenetic changes have been reported as one of the mechanisms for anti-tumour drug resistance. In clinical practice, a combination of epigenetic-related drugs can be considered as a future selection of cancer therapeutic drugs.
Collapse
Affiliation(s)
- Takuma Hayashi
- National Hospital Organization, Kyoto Medical Center, Kyoto, Japan. .,START-program, Japan Science and Technology Agency (JST), Tokyo, Japan.
| | - Ikuo Konishi
- National Hospital Organization, Kyoto Medical Center, Kyoto, Japan.,Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
14
|
Simko V, Belvoncikova P, Csaderova L, Labudova M, Grossmannova K, Zatovicova M, Kajanova I, Skultety L, Barathova M, Pastorek J. PIMT Binding to C-Terminal Ala459 of CAIX Is Involved in Inside-Out Signaling Necessary for Its Catalytic Activity. Int J Mol Sci 2020; 21:ijms21228545. [PMID: 33198416 PMCID: PMC7696048 DOI: 10.3390/ijms21228545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 01/10/2023] Open
Abstract
Human carbonic anhydrase IX (CAIX), a unique member of the α carbonic anhydrase family, is a transmembrane glycoprotein with high enzymatic activity by which CAIX contributes to tumorigenesis through pH regulation. Due to its aberrant expression, CAIX is considered to be a marker of tumor hypoxia and a poor prognostic factor of several human cancers. Hypoxia-activated catalytic function of CAIX is dependent on posttranslational modification of its short intracellular domain. In this work, we have identified that C-terminal Ala459 residue, which is common across CAIX of various species as well as additional transmembrane isoforms, plays an important role in CAIX activation and in pH regulation. Moreover, structure prediction I-TASSER analysis revealed involvement of Ala459 in potential ligand binding. Using tandem mass spectrometry, Protein-L-isoaspartyl methyltransferase (PIMT) was identified as a novel interacting partner, further confirmed by an in vitro pulldown assay and an in situ proximity ligation assay. Indeed, suppression of PIMT led to increased alkalinization of culture media of C33a cells constitutively expressing CAIX in hypoxia. We suggest that binding of PIMT represents a novel intracellular signal required for enzymatic activity of CAIX with a potential unidentified downstream function.
Collapse
Affiliation(s)
- Veronika Simko
- Department of Tumor Biology, Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (V.S.); (P.B.); (L.C.); (M.L.); (K.G.); (M.Z.); (I.K.); (J.P.)
| | - Petra Belvoncikova
- Department of Tumor Biology, Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (V.S.); (P.B.); (L.C.); (M.L.); (K.G.); (M.Z.); (I.K.); (J.P.)
| | - Lucia Csaderova
- Department of Tumor Biology, Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (V.S.); (P.B.); (L.C.); (M.L.); (K.G.); (M.Z.); (I.K.); (J.P.)
| | - Martina Labudova
- Department of Tumor Biology, Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (V.S.); (P.B.); (L.C.); (M.L.); (K.G.); (M.Z.); (I.K.); (J.P.)
| | - Katarina Grossmannova
- Department of Tumor Biology, Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (V.S.); (P.B.); (L.C.); (M.L.); (K.G.); (M.Z.); (I.K.); (J.P.)
| | - Miriam Zatovicova
- Department of Tumor Biology, Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (V.S.); (P.B.); (L.C.); (M.L.); (K.G.); (M.Z.); (I.K.); (J.P.)
| | - Ivana Kajanova
- Department of Tumor Biology, Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (V.S.); (P.B.); (L.C.); (M.L.); (K.G.); (M.Z.); (I.K.); (J.P.)
| | - Ludovit Skultety
- Department of Rickettsiology, Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia;
| | - Monika Barathova
- Department of Tumor Biology, Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (V.S.); (P.B.); (L.C.); (M.L.); (K.G.); (M.Z.); (I.K.); (J.P.)
- Correspondence: ; Tel.: +421-2-5930-2461
| | - Jaromir Pastorek
- Department of Tumor Biology, Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (V.S.); (P.B.); (L.C.); (M.L.); (K.G.); (M.Z.); (I.K.); (J.P.)
- Faculty of Medicine, Slovak Medical University, Limbová 12, 833 03 Bratislava, Slovakia
| |
Collapse
|
15
|
Wei C, Wang JY, Xiong F, Wu BH, Luo MH, Yu ZC, Liu TT, Li DF, Tang Q, Li YX, Zhang DG, Xu ZL, Jin HT, Wang LS, Yao J. Curcumin ameliorates DSS‑induced colitis in mice by regulating the Treg/Th17 signaling pathway. Mol Med Rep 2020; 23:34. [PMID: 33179078 PMCID: PMC7684861 DOI: 10.3892/mmr.2020.11672] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 09/19/2019] [Indexed: 12/26/2022] Open
Abstract
Curcumin has a therapeutic effect on ulcerative colitis, but the underlying mechanism has yet to be elucidated. The aim of the present study was to clarify the possible mechanisms. Dextran sulfate sodium-induced colitis mice were treated with curcumin via gavage for 7 days. The effects of curcumin on disease activity index (DAI) and pathological changes of colonic tissue in mice were determined. Interleukin (IL)-6, IL-10, IL-17 and IL-23 expression levels were measured by ELISA. Flow cytometry was used to detect the ratio of mouse spleen regulatory T cells (Treg)/Th17 cells, and western blotting was used to measure the nuclear protein hypoxia inducible factor (HIF)-1α level. The results demonstrated that curcumin can significantly reduce DAI and spleen index scores and improve mucosal inflammation. Curcumin could also regulate the re-equilibration of Treg/Th17. IL-10 level in the colon was significantly increased, while inflammatory cytokines IL-6, IL-17 and IL-23 were significantly reduced following curcumin treatment. No significant difference in HIF-1α was observed between the colitis and the curcumin group. It was concluded that oral administration of curcumin can effectively treat experimental colitis by regulating the re-equilibration of Treg/Th17 and that the regulatory mechanism may be closely related to the IL-23/Th17 pathway. The results of the present study provided molecular insight into the mechanism by which curcumin treats ulcerative colitis.
Collapse
Affiliation(s)
- Cheng Wei
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Jian-Yao Wang
- Department of General Surgery, Shenzhen Children's Hospital, Shenzhen, Guangdong 518026, P.R. China
| | - Feng Xiong
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Ben-Hua Wu
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Ming-Han Luo
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Zhi-Chao Yu
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Ting-Ting Liu
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - De-Feng Li
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Qi Tang
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Ying-Xue Li
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Ding-Guo Zhang
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Zheng-Lei Xu
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Hong-Tao Jin
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Li-Sheng Wang
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Jun Yao
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| |
Collapse
|
16
|
Initialization of epithelial cells by tumor cells in a metastatic microenvironment. Oncogene 2020; 39:2638-2640. [PMID: 32015485 DOI: 10.1038/s41388-020-1171-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/09/2019] [Accepted: 01/20/2020] [Indexed: 11/09/2022]
|
17
|
De A, De A, Sharma R, Suo W, Sharma M. Sensitization of Carboplatinum- and Taxol-Resistant High-Grade Serous Ovarian Cancer Cells Carrying p53, BRCA1/2 Mutations by Emblica officinalis (Amla) via Multiple Targets. J Cancer 2020; 11:1927-1939. [PMID: 32194804 PMCID: PMC7052860 DOI: 10.7150/jca.36919] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 12/01/2019] [Indexed: 12/15/2022] Open
Abstract
Background: Ovarian cancer (OC), the most lethal gynecologic malignancy, is highly resistant to current treatment strategies. High-grade serous epithelial ovarian cancer (HGSOC) cells with increased somatic mutations and genomic instability and the resulting heterogeneous mutant phenotypes are highly resistant to therapy. Plant-derived natural products, including Amla (Emblica officinalis) extract (AE), have demonstrated potent anti-neoplastic properties. Recently we demonstrated that AE inhibits cell growth and the expression of angiogenic factors in OVCAR3 and SKOV3 OC cells in vitro as well as in xenografts in vivo. The goal of this study was to determine the anti-proliferative, anti-angiogenic and anti-metastatic effects of AE on carboplatinum- and taxol-resistant HGSOC cells carrying p53, BRCA1/2 mutations. Methods: Anti-proliferative and anti-metastatic effects of AE on recently characterized carboplatinum- and taxol-resistant HGSOC cells (TOV3041G, OV866(2), OV4453 and, OV4485) was determined using the MTT, migration, invasion and spheroid assays in vitro. To understand the mechanism of AE-induced changes in angiogenesis-related hypoxia-inducible factor 1α (HIF-1α) and insulin growth factor receptor 1 (IGF1R), and EMT-associated SNAIL1 and E-cadherin proteins were studied using immunostaining and Western blotting. In vivo effects of AE were determined using mouse xenograft tumor model of OC developed by subcutaneous injection of OV4485 cells that carry mutant p53 and BRCA1, most aggressive and resistant among HGSOC cell lines used in this study. Tumor growth was measured using morphometry. Immunostaining and Western blotting were used to determine changes in Ki67 (proliferation marker), CD31 (angiogenesis marker) as well as changes in HIF-1α, IGF1R, SNAIL1 and E-cadherin proteins. Results: AE significantly attenuated migration and invasiveness properties of all tested HGSOC cell phenotypes (P≤0.001), significantly reduced the expression of HIF-1α, IGF1R, and SNAIL1 and increased the expression of E-cadherin in all tested HGSOC cell lines (P=<0.05). Oral administration of AE for 4 weeks caused a significant regression of mouse xenograft tumor (>60%) that derived from OV4855 cells and decreased the expression of endothelial cell antigen-CD31, HIF-1α, IGF1R and SNAIL1 and increased the expression of E-cadherin in tumor tissues. Conclusions: AE sensitizes platinum- and taxol-resistant heterogenous HGSOC cells carrying mutations in p53, BRCA1/2 genes, and attenuates their malignant characteristics through targeting key signaling mechanisms of angiogenesis and metastasis. AE is a potential adjunct therapeutic agent for treating resistant, mutant, heterogenous OC.
Collapse
Affiliation(s)
- Alok De
- Kansas City VA Medical Center and Midwest Veterans Biomedical Research Foundation, Kansas City, MO 64128, USA
| | - Archana De
- Kansas City VA Medical Center and Midwest Veterans Biomedical Research Foundation, Kansas City, MO 64128, USA
| | - Ramratan Sharma
- Kansas City VA Medical Center and Midwest Veterans Biomedical Research Foundation, Kansas City, MO 64128, USA
| | - William Suo
- Kansas City VA Medical Center and Midwest Veterans Biomedical Research Foundation, Kansas City, MO 64128, USA
| | - Mukut Sharma
- Kansas City VA Medical Center and Midwest Veterans Biomedical Research Foundation, Kansas City, MO 64128, USA
| |
Collapse
|
18
|
Yang Y, Wei Q, Tang Y, Yuanyuan Wang, Luo Q, Zhao H, He M, Wang H, Zeng Q, Lu W, Xu J, Liu T, Yi P. Loss of hnRNPA2B1 inhibits malignant capability and promotes apoptosis via down-regulating Lin28B expression in ovarian cancer. Cancer Lett 2020; 475:43-52. [PMID: 32006618 DOI: 10.1016/j.canlet.2020.01.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/26/2022]
Abstract
Ovarian cancer has the highest mortality rate among all gynecological cancers with its pathogenic mechanisms largely unknown. Here, we uncovered that ovarian cancer tissues exhibit higher heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) expression than normal ovarian epithelium tissues. Increased hnRNPA2B1 level matches along with poor prognosis of ovarian cancer patients. Importantly, hnRNPA2B1 inhibition hampers growth, reduces mobility of ovarian cancer cells in vitro and hinders xenograft tumor formation in vivo. Transcriptome profiling analysis reveals that hnRNPA2B1 dictates the expression of various important genes involved in tumorigenesis and Lin-28 Homolog B (Lin28B) is down-regulated upon hnRNPA2B1 loss. hnRNPA2B1 regulates expression of Lin28B via binding to Lin28B mRNA and enhancing its stability. Furthermore, knockdown of Lin28B reduces proliferation and mobility of ovarian cancer cells and impairs tumorigenesis in vivo, whereas Lin28B overexpression promotes xenograft tumor formation. Finally, re-expression of Lin28B in hnRNPA2B1 knockdown cells results in rescued phenotypes. Collectively, our results demonstrate that hnRNPA2B1 facilitates the malignant phenotype of ovarian cancer through activating Lin28B expression.
Collapse
Affiliation(s)
- Yu Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Qinglv Wei
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Yuling Tang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Yuanyuan Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Qingya Luo
- Department of Obstetrics and Gynecology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 401120, China
| | - Hongyan Zhao
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Min He
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Haocheng Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Qi Zeng
- Department of Obstetrics and Gynecology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 401120, China
| | - Weiliang Lu
- Department of Obstetrics and Gynecology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 401120, China
| | - Jing Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China.
| | - Tao Liu
- Department of Obstetrics and Gynecology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 401120, China.
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China.
| |
Collapse
|
19
|
Gomes NGM, Pereira RB, Andrade PB, Valentão P. Double the Chemistry, Double the Fun: Structural Diversity and Biological Activity of Marine-Derived Diketopiperazine Dimers. Mar Drugs 2019; 17:md17100551. [PMID: 31569621 PMCID: PMC6835637 DOI: 10.3390/md17100551] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/22/2019] [Accepted: 09/25/2019] [Indexed: 12/14/2022] Open
Abstract
While several marine natural products bearing the 2,5-diketopiperazine ring have been reported to date, the unique chemistry of dimeric frameworks appears to remain neglected. Frequently reported from marine-derived strains of fungi, many naturally occurring diketopiperazine dimers have been shown to display a wide spectrum of pharmacological properties, particularly within the field of cancer and antimicrobial therapy. While their structures illustrate the unmatched power of marine biosynthetic machinery, often exhibiting unsymmetrical connections with rare linkage frameworks, enhanced binding ability to a variety of pharmacologically relevant receptors has been also witnessed. The existence of a bifunctional linker to anchor two substrates, resulting in a higher concentration of pharmacophores in proximity to recognition sites of several receptors involved in human diseases, portrays this group of metabolites as privileged lead structures for advanced pre-clinical and clinical studies. Despite the structural novelty of various marine diketopiperazine dimers and their relevant bioactive properties in several models of disease, to our knowledge, this attractive subclass of compounds is reviewed here for the first time.
Collapse
Affiliation(s)
- Nelson G M Gomes
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, Porto 4050-313, Portugal.
| | - Renato B Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, Porto 4050-313, Portugal.
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, Porto 4050-313, Portugal.
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, Porto 4050-313, Portugal.
| |
Collapse
|
20
|
Dual-drug loaded micelle for combinatorial therapy targeting HIF and mTOR signaling pathways for ovarian cancer treatment. J Control Release 2019; 307:272-281. [PMID: 31260753 DOI: 10.1016/j.jconrel.2019.06.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/20/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022]
Abstract
Mutations in the tumor protein (TP53) and the mammalian target of rapamycin (mTOR) pathway have been elucidated as driver mutations in ovarian carcinomas that transform into an invasive phenotype under hypoxic conditions. Chetomin (CHE) targets the hypoxic pathway while Everolimus (EVR) acts on the mTOR pathway. Poor aqueous solubilities of both compounds limit their clinical applications. Diblock copolymer nanoplatforms of methoxy poly(ethylene glycol)2000-block-poly (lactic acid)1800 (mPEG2000-b-PLA1800) and (mPEG4000-b-PLA2200) were used to formulate individual and dual drug loaded micelles (DDM) using the solvent evaporation method. The CHE micelles (CHE-M) had a size of 21 nm with CHE loading of 0.5 mg/mL while the EVR micelles (EVR-M) and the DDM had a size around 35 and 39 nm, respectively, with EVR loading up to 2.3 mg/mL. The anti-proliferative effects of these micelles have been tested in vitro in three ovarian cell lines (ES2, OVCAR3 and TOV21G) with the DDM exhibiting a strong synergistic anti-proliferative effect in the ES2 and the TOV21G cells. The DDM were able to significantly induce tumor regression in ES2 ovarian xenograft mouse models by inhibiting angiogenesis and inducing apoptosis when compared to the individual micelles. The inhibition of hypoxia inducible factor (HIF) and the mTOR pathways has been elucidated using immunohistochemistry studies. In conclusion, we have developed a mPEG-b-PLA based micellar nanoplatform that could prevent drug resistance by delivering multiple drugs at therapeutically relevant concentrations for effectively treating ovarian carcinomas.
Collapse
|
21
|
Apicella C, Ruano CSM, Méhats C, Miralles F, Vaiman D. The Role of Epigenetics in Placental Development and the Etiology of Preeclampsia. Int J Mol Sci 2019; 20:ijms20112837. [PMID: 31212604 PMCID: PMC6600551 DOI: 10.3390/ijms20112837] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 12/12/2022] Open
Abstract
In this review, we comprehensively present the function of epigenetic regulations in normal placental development as well as in a prominent disease of placental origin, preeclampsia (PE). We describe current progress concerning the impact of DNA methylation, non-coding RNA (with a special emphasis on long non-coding RNA (lncRNA) and microRNA (miRNA)) and more marginally histone post-translational modifications, in the processes leading to normal and abnormal placental function. We also explore the potential use of epigenetic marks circulating in the maternal blood flow as putative biomarkers able to prognosticate the onset of PE, as well as classifying it according to its severity. The correlation between epigenetic marks and impacts on gene expression is systematically evaluated for the different epigenetic marks analyzed.
Collapse
Affiliation(s)
- Clara Apicella
- Institut Cochin, U1016 INSERM, UMR8104 CNRS, Université Paris Descartes, 24 rue du faubourg St Jacques, 75014 Paris, France.
| | - Camino S M Ruano
- Institut Cochin, U1016 INSERM, UMR8104 CNRS, Université Paris Descartes, 24 rue du faubourg St Jacques, 75014 Paris, France.
| | - Céline Méhats
- Institut Cochin, U1016 INSERM, UMR8104 CNRS, Université Paris Descartes, 24 rue du faubourg St Jacques, 75014 Paris, France.
| | - Francisco Miralles
- Institut Cochin, U1016 INSERM, UMR8104 CNRS, Université Paris Descartes, 24 rue du faubourg St Jacques, 75014 Paris, France.
| | - Daniel Vaiman
- Institut Cochin, U1016 INSERM, UMR8104 CNRS, Université Paris Descartes, 24 rue du faubourg St Jacques, 75014 Paris, France.
| |
Collapse
|
22
|
Chen YL, Zhang Y, Wang J, Chen N, Fang W, Zhong J, Liu Y, Qin R, Yu X, Sun Z, Gao F. A 17 gene panel for non-small-cell lung cancer prognosis identified through integrative epigenomic-transcriptomic analyses of hypoxia-induced epithelial-mesenchymal transition. Mol Oncol 2019; 13:1490-1502. [PMID: 30973670 PMCID: PMC6599842 DOI: 10.1002/1878-0261.12491] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 03/01/2019] [Accepted: 04/09/2019] [Indexed: 12/19/2022] Open
Abstract
As a critical feature of the tumor microenvironment, hypoxia is known to be a potent inducer of tumor metastasis, and it has been proposed that the initial steps in metastasis involve epithelial–mesenchymal transition (EMT). The strong correlation among hypoxia, EMT, and metastasis suggests that integrative assessment of gene expression and the DNA modification program of hypoxia‐induced EMT via high‐throughput sequencing technologies may increase our understanding of the molecular basis of tumor invasion and metastasis. Here, we present the genomewide transcriptional and epigenetic profiles of non‐small‐cell lung cancer (NSCLC) cells under normoxic and hypoxic conditions. We demonstrate that hypoxia induces EMT along with dynamic alterations of transcriptional expression and epigenetic modifications in both A549 and HCC827 cells. After training using a dataset from patients with invasive and noninvasive lung adenocarcinomas with an artificial neural network algorithm, a characteristic 17‐gene panel was identified, consisting of genes involved in EMT, hypoxia response, glycometabolism, and epigenetic modifications. This 17‐gene signature clearly stratified NSCLC patients with significant differences in overall survival across three independent datasets. Our study may be suitable as a basis for further selection of gene signatures to potentially guide prognostic stratification in patients with NSCLC.
Collapse
Affiliation(s)
- Yue-Lei Chen
- Stem Cell Bank/Stem Cell Core Facility, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yihe Zhang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | | | - Na Chen
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Weiying Fang
- Stem Cell Bank/Stem Cell Core Facility, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jianing Zhong
- Institute of Genomic Medicine, Wenzhou Medical University, China
| | - Yi Liu
- Stem Cell Bank/Stem Cell Core Facility, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rui Qin
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xinxin Yu
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhongsheng Sun
- Institute of Genomic Medicine, Wenzhou Medical University, China.,Beijing Institutes of Life Sciences, Chinese Academy of Sciences, Beijing, China
| | - Fei Gao
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Institute of Genomic Medicine, Wenzhou Medical University, China
| |
Collapse
|
23
|
Singh SK, Mishra MK, Singh R. Hypoxia-inducible factor-1α induces CX3CR1 expression and promotes the epithelial to mesenchymal transition (EMT) in ovarian cancer cells. J Ovarian Res 2019; 12:42. [PMID: 31077234 PMCID: PMC6511167 DOI: 10.1186/s13048-019-0517-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023] Open
Abstract
Background Chemokines are involved in the homing of various cancer cells, including those of ovarian cancer (OvCa), to distant organs. They may also promote or inhibit cancer progression and metastasis. Hypoxia, a common phenomenon in malignant tumors, promotes cell proliferation regulated by HIF-1α. Hypoxia-induced genes are involved in metastasis-associated functions and in the epithelial-to-mesenchymal transition (EMT). Results Tissue microarrays of human OvCa showed elevated expression of CX3CR1 and HIF-1α compared to normal cells, and their levels were higher in adenocarcinoma stages II and III. To substantiate these observations, we performed studies using OvCa cells. Following exposure to hypoxia, OVCAR-3, SW 626, and TOV-112D cells showed high expression of CX3CR1, a transmembrane protein involved in the adhesion and migration of leukocytes, causing an increased chemotactic response to CX3CL1, the ligand for CX3CR1. As determined by flow cytometry, immunofluorescence, RT-PCR, and western blots, there were higher expressions of CX3CR1 and HIF-1α in OvCa cell lines exposed to hypoxia. Further, OvCa cells expressing CX3CR1 were sensitive to the CX3CL1 ligand. Chemotaxis based on chemokine receptors was influential in elevating the expression of EMT markers and matrix metalloproteinases, which are involved in the progression and metastasis of cancer cells. Conclusions In OvCa cells, CX3CR1 was upregulated in a process involving hypoxia-mediated regulation of HIF-1α. The elevated levels of CX3CR1, which were sensitive to CX3CL1, increased EMT markers that led to the progression and metastasis of OvCa. Thus, CX3CR1 and HIF-1α are suitable targets for treatment of OvCa.
Collapse
Affiliation(s)
- Santosh Kumar Singh
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA, USA
| | - Manoj Kumar Mishra
- Department of Biological Sciences, Alabama State University, 915 S Jackson Street, Montgomery, AL, USA
| | - Rajesh Singh
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA, USA.
| |
Collapse
|
24
|
Ando Y, Siegler E, Ta HP, Cinay GE, Zhou H, Gorrell KA, Au H, Jarvis BM, Wang P, Shen K. Evaluating CAR-T Cell Therapy in a Hypoxic 3D Tumor Model. Adv Healthc Mater 2019; 8:e1900001. [PMID: 30734529 PMCID: PMC6448565 DOI: 10.1002/adhm.201900001] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 01/18/2019] [Indexed: 12/31/2022]
Abstract
Despite its revolutionary success in hematological malignancies, chimeric antigen receptor T (CAR-T) cell therapy faces disappointing clinical results in solid tumors. The poor efficacy has been partially attributed to the lack of understanding in how CAR-T cells function in a solid tumor microenvironment. Hypoxia plays a critical role in cancer progression and immune editing, which potentially results in solid tumors escaping immunosurveillance and CAR-T cell-mediated cytotoxicity. Mechanistic studies of CAR-T cell biology in a physiological environment has been limited by the complexity of tumor-immune interactions in clinical and animal models, as well as by a lack of reliable in vitro models. A microdevice platform that recapitulates a 3D tumor section with a gradient of oxygen and integrates fluidic channels surrounding the tumor for CAR-T cell delivery is engineered. The design allows for the evaluation of CAR-T cell cytotoxicity and infiltration in the heterogeneous oxygen landscape of in vivo solid tumors at a previously unachievable scale in vitro.
Collapse
Affiliation(s)
- Yuta Ando
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089
| | - Elizabeth Siegler
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089
| | - Hoang P. Ta
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089
| | - Gunce E. Cinay
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089
| | - Hao Zhou
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089
| | - Kimberly A. Gorrell
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089
| | - Hannah Au
- Department of Immunology and Pathogenesis, College of Letters and Science, University of California, Berkeley, CA 94720
| | - Bethany M. Jarvis
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089
| | - Pin Wang
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089
- Mork Family Department of Chemical Engineering and Materials Science, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Keyue Shen
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| |
Collapse
|
25
|
CIRBP is a novel oncogene in human bladder cancer inducing expression of HIF-1α. Cell Death Dis 2018; 9:1046. [PMID: 30315244 PMCID: PMC6185914 DOI: 10.1038/s41419-018-1109-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/14/2018] [Accepted: 09/26/2018] [Indexed: 12/29/2022]
Abstract
Cold-inducible RNA binding protein (CIRBP) has been reported to be associated with distinct tumorigenesis. In this study, we investigated the role of CIRBP in human bladder cancer (BCa), indicating that CIRBP is overexpressed in BCa tissues and cell lines to promote proliferation and migration. Moreover, CIRBP could induce expression of HIF-1α via binding to the 3′-UTR of its mRNA to increase the mRNA stability in BCa cells. Furthermore, we demonstrated that PTGIS is a HIF-1α targeted gene, a major regulator in hypoxic cancer progression by activating transcription of various oncogenes. Our results also suggested that overexpression of HIF-1α may suppress the expression of PTGIS in BCa cells, by binding to HRE sequence at the promoter region of PTGIS. In addition, we found a strongly downregulation of PTGIS in BCa tissue and transcriptionally inhibited by HIF-1α in BCa cells, which could be triggered by its DNA methylation. Further result suggested that knockdown of CIRBP could promote the expression of PTGIS, meanwhile knockdown of PTGIS could partially rescue CIRBP-deficiency induced inhibition of migration and proliferation in BCa cells. Taken together, our study indicated that CIRBP could be a novel oncogene in human bladder cancer inducing transcription of HIF-1α, which could inhibit expression of methylated PTGIS.
Collapse
|
26
|
El-Kady NM, Mohamed AENS, Aiad HA, Abd El-Wahed MM, Asaad NY, Allam DM. Evaluation of the role of HIF-1α and GLUT-1 in the pathogenesis of ovarian surface epithelial tumors and their prognostic impact. EGYPTIAN JOURNAL OF PATHOLOGY 2018; 38:110-119. [DOI: 10.1097/01.xej.0000542233.99011.a6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
27
|
Liu C, Shui CL, Wang Q, Luo H, Gu CG. Mechanism of hif-1α mediated hypoxia-induced permeability changes in bladder endothelial cells. ACTA ACUST UNITED AC 2017; 51:e6768. [PMID: 29267502 PMCID: PMC5734185 DOI: 10.1590/1414-431x20176768] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 09/22/2017] [Indexed: 02/02/2023]
Abstract
This study aimed to investigate the mechanism of hypoxia-inducible factor-1 alpha (HIF-1α) mediated hypoxia-induced permeability changes in bladder endothelial cells. Models of in vitro hypoxic cell culture of bladder cancer, bladder cancer cells with low HIF-1α expression and HIF-1α RNA interference (RNAi) expression vector were established. Western blot and reverse transcription polymerase chain reaction (RT-PCR) were used to detect the expression of HIF-1α and vascular endothelial growth factor (VEGF) in each group. Bladder cell permeability was determined. Results showed that protein and mRNA expression of HIF-1α and VEGF at 3 and 12 h of hypoxia were significantly higher than normal control (P<0.05), and peaked at 12 h. HIF-1α and VEGF expression in the hypoxic group and hypoxic+3-(5′-hydroxymethyl-2′-furyl)-1-benzyl indazole (YC-1) group were significantly higher than normal control (P<0.05), while expression in the hypoxic+YC-1 group was significantly lower than the hypoxic group (P<0.05). Bladder cell permeability in the hypoxic and hypoxic+YC-1 group were significantly increased compared to normal control (P<0.05), while in the hypoxic+YC-1 group was significantly decreased compared to the hypoxic group (P<0.05). Most of the cells in the stably transfected HIF-1α RNAi expression vector pcDNA6.2-GW/EmGFP-miR-siHIF-1α expressed green fluorescence protein (GFP) under fluorescence microscope. pcDNA6.2-GW/EmGFP-miR-siHIF-1α could significantly inhibit HIF-1α gene expression (P<0.05). HIF-1α and VEGF expression in the hypoxic group and siHIF-1α hypoxic group were significantly higher than normal group (P<0.05), while expression in the siHIF-1α hypoxic group was significantly lower than the hypoxic group (P<0.05). Findings suggest that HIF-1α is an important factor in the increase of bladder cancer cell permeability.
Collapse
Affiliation(s)
- C Liu
- Department of Urology, The Second People's Hospital of Deyang City, Deyang, Sichuan Province, China
| | - C L Shui
- Department of Anesthesiology, Affiliated Yongchuan Hospital of Chongqing Medical University, Yongchuan, Chongqing, China
| | - Q Wang
- Department of Pathology, Cancer Center of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - H Luo
- Department of Urology, The Second People's Hospital of Deyang City, Deyang, Sichuan Province, China
| | - C G Gu
- Department of Laboratory Medicine, The Fifth People's Hospital of Chengdu, Chengdu, Sichuan Province, China
| |
Collapse
|
28
|
Idelchik MDPS, Begley U, Begley TJ, Melendez JA. Mitochondrial ROS control of cancer. Semin Cancer Biol 2017; 47:57-66. [PMID: 28445781 PMCID: PMC5653465 DOI: 10.1016/j.semcancer.2017.04.005] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 04/07/2017] [Accepted: 04/14/2017] [Indexed: 02/06/2023]
Abstract
Mitochondria serves a primary role in energy maintenance but also function to govern levels of mitochondria-derived reactive oxygen species (mROS). ROS have long been established to play a critical role in tumorigenesis and are now considered to be integral to the regulation of diverse signaling networks that drive proliferation, tumor cell survival and malignant progression. mROS can damage DNA, activate oncogenes, block the function of tumor suppressors and drive migratory signaling. The mitochondrion's oxidant scavenging systems including SOD2, Grx2, GPrx, Trx and TrxR are key of the cellular redox tone. These mitochondrial antioxidant systems serve to tightly control the levels of the primary ROS signaling species, H2O2. The coordinated control of mROS levels is also coupled to the activity of the primary H2O2 consuming enzymes of the mitochondria which are reliant on the epitranscriptomic control of selenocysteine incorporation. This review highlights the interplay between these many oncogenic signaling networks, mROS and the H2O2 emitting and consuming capacity of the mitochondria.
Collapse
Affiliation(s)
- María Del Pilar Sosa Idelchik
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, 257 Fuller Road, NFE-4313, Albany, NY 12203, United States
| | - Ulrike Begley
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, 257 Fuller Road, NFE-4313, Albany, NY 12203, United States
| | - Thomas J Begley
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, 257 Fuller Road, NFE-4313, Albany, NY 12203, United States
| | - J Andrés Melendez
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, 257 Fuller Road, NFE-4313, Albany, NY 12203, United States.
| |
Collapse
|
29
|
Tiberio P, Lozneanu L, Angeloni V, Cavadini E, Pinciroli P, Callari M, Carcangiu ML, Lorusso D, Raspagliesi F, Pala V, Daidone MG, Appierto V. Involvement of AF1q/MLLT11 in the progression of ovarian cancer. Oncotarget 2017; 8:23246-23264. [PMID: 28423573 PMCID: PMC5410301 DOI: 10.18632/oncotarget.15574] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 02/12/2017] [Indexed: 12/15/2022] Open
Abstract
The functional role of AF1q/MLLT11, an oncogenic factor involved in a translocation t(1;11)(q21;q23) responsible for acute myeloid leukaemia, has been investigated in hematological and solid malignancies and its expression was found to be linked to tumor progression and poor clinical outcome. In addition to its oncogenic function, AF1q has been shown to play a role in the onset of basal and drug-induced apoptosis in cancer cells of different histotypes, including ovarian cancer. Through in vitro, ex vivo, and in silico approaches, we demonstrated here that AF1q is also endowed with protumorigenic potential in ovarian cancer. In ovarian cancer cell lines, stable AF1q overexpression caused activation of epithelial-to-mesenchymal transition and increased motility/migratory/invasive abilities accompanied by gene expression changes mainly related to Wnt signaling and to signaling pathways involving in ERK/p38 activation. The potential role of AF1q in ovarian cancer progression was confirmed by immunohistochemical and in silico analyses performed in ovarian tumor specimens which revealed that the protein was absent in normal ovarian epithelium and became detectable when atypical proliferation was present. Moreover, AF1q was significantly lower in borderline ovarian tumors (i.e., tumors of low malignant potential without stromal invasion) than in invasive tumors, thus corroborating the association between high AF1q expression and increased migratory/invasive cell behavior and confirming its potential role in ovarian cancer progression. Our findings demonstrated, for the first time, that AF1q is endowed with protumorigenic activity in ovarian cancer, thus highlighting a dual behavior (i.e., protumorigenic and proapoptotic functions) of the protein in the malignancy.
Collapse
Affiliation(s)
- Paola Tiberio
- Department of Experimental Oncology and Molecular Medicine, Biomarkers Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ludmila Lozneanu
- Department of Experimental Oncology and Molecular Medicine, Biomarkers Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Department of Morphofunctional Sciences-Histology, Patology, "Grigore T. Popa" University of Medicine and Pharmacy, Iassy, Romania
| | - Valentina Angeloni
- Department of Experimental Oncology and Molecular Medicine, Biomarkers Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elena Cavadini
- Department of Experimental Oncology and Molecular Medicine, Biomarkers Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Patrizia Pinciroli
- Department of Experimental Oncology and Molecular Medicine, Functional Genomics Facility, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maurizio Callari
- Department of Experimental Oncology and Molecular Medicine, Biomarkers Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Present address: Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Maria Luisa Carcangiu
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Domenica Lorusso
- Department of Surgery, Gynecologic Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesco Raspagliesi
- Department of Surgery, Gynecologic Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Valentina Pala
- Department of Experimental Oncology and Molecular Medicine, Biomarkers Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maria Grazia Daidone
- Department of Experimental Oncology and Molecular Medicine, Biomarkers Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Valentina Appierto
- Department of Experimental Oncology and Molecular Medicine, Biomarkers Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
30
|
Fei F, Qu J, Zhang M, Li Y, Zhang S. S100A4 in cancer progression and metastasis: A systematic review. Oncotarget 2017; 8:73219-73239. [PMID: 29069865 PMCID: PMC5641208 DOI: 10.18632/oncotarget.18016] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 05/08/2017] [Indexed: 12/11/2022] Open
Abstract
Metastasis is the leading cause of cancer-related death and directly associates with cancer progression, resistance to anticancer therapy, and poor patient survival. Current efforts focusing on the underlying molecular mechanisms of cancer metastasis attract a special attention to cancer researchers. The epithelial-mesenchymal transition is a complex of molecular program during embryogenesis, inflammation, tissue fibrosis, and cancer progression and metastasis. S100A4, an important member of S100 family proteins, functions to increase the tumor progression and metastasis. The molecular mechanisms of S100A4 involving in the progression and metastasis are diverse in various malignant tumors. Detection of S100A4 expression becomes a promising candidate biomarker in cancer early diagnosis and prediction of cancer metastasis and therefore, S100A4 may be a therapeutic target. This review summarized up to date advancement on the role of S100A4 in human cancer development, progression, and metastasis and the underlying molecular events and then strategies to target S100A4 expression experimentally.
Collapse
Affiliation(s)
- Fei Fei
- Nankai University School of Medicine, Nankai University, Tianjin, 300071, P.R.China.,Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121, P.R. China
| | - Jie Qu
- Nankai University School of Medicine, Nankai University, Tianjin, 300071, P.R.China.,Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121, P.R. China
| | - Mingqing Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, P.R. China
| | - Yuwei Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, P.R. China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121, P.R. China
| |
Collapse
|
31
|
Yaghi L, Poras I, Simoes RT, Donadi EA, Tost J, Daunay A, de Almeida BS, Carosella ED, Moreau P. Hypoxia inducible factor-1 mediates the expression of the immune checkpoint HLA-G in glioma cells through hypoxia response element located in exon 2. Oncotarget 2016; 7:63690-63707. [PMID: 27577073 PMCID: PMC5325396 DOI: 10.18632/oncotarget.11628] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 08/20/2016] [Indexed: 12/31/2022] Open
Abstract
HLA-G is an immune checkpoint molecule with specific relevance in cancer immunotherapy. It was first identified in cytotrophoblasts, protecting the fetus from maternal rejection. HLA-G tissue expression is very restricted but induced in numerous malignant tumors such as glioblastoma, contributing to their immune escape. Hypoxia occurs during placenta and tumor development and was shown to activate HLA-G. We aimed to elucidate the mechanisms of HLA-G activation under conditions combining hypoxia-mimicking treatment and 5-aza-2'deoxycytidine, a DNA demethylating agent used in anti-cancer therapy which also induces HLA-G. Both treatments enhanced the amount of HLA-G mRNA and protein in HLA-G negative U251MG glioma cells. Electrophoretic Mobility Shift Assays and luciferase reporter gene assays revealed that HLA-G upregulation depends on Hypoxia Inducible Factor-1 (HIF-1) and a hypoxia responsive element (HRE) located in exon 2. A polymorphic HRE at -966 bp in the 5'UT region may modulate the magnitude of the response mediated by the exon 2 HRE. We suggest that therapeutic strategies should take into account that HLA-G expression in response to hypoxic tumor environment is dependent on HLA-G gene polymorphism and DNA methylation state at the HLA-G locus.
Collapse
Affiliation(s)
- Layale Yaghi
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut des Maladies Emergentes et des Thérapies Innovantes, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, Paris, France
- Université Paris-Diderot, Sorbonne Paris-Cité, UMR E5, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France
- Lebanese University, School of Medicine, Hadath, Lebanon
| | - Isabelle Poras
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut des Maladies Emergentes et des Thérapies Innovantes, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, Paris, France
- Université Paris-Diderot, Sorbonne Paris-Cité, UMR E5, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France
| | - Renata T. Simoes
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut des Maladies Emergentes et des Thérapies Innovantes, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, Paris, France
- Université Paris-Diderot, Sorbonne Paris-Cité, UMR E5, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France
- Instituto de Ensino e Pesquisa da Santa Casa de Belo Horizonte, IEP/SCBH, Belo Horizonte, Minas Gerais, Brasil
| | - Eduardo A. Donadi
- Divisão de Imunologia Clínica, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Jörg Tost
- Centre d'Etude du Polymorphisme Humain, Fondation Jean-Dausset, Laboratory for Functional Genomics, Paris, France
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de Genotypage, Laboratory for Epigenetics and Environment, Evry, France
| | - Antoine Daunay
- Centre d'Etude du Polymorphisme Humain, Fondation Jean-Dausset, Laboratory for Functional Genomics, Paris, France
| | - Bibiana Sgorla de Almeida
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut des Maladies Emergentes et des Thérapies Innovantes, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, Paris, France
- Université Paris-Diderot, Sorbonne Paris-Cité, UMR E5, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France
- Divisão de Imunologia Clínica, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Edgardo D. Carosella
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut des Maladies Emergentes et des Thérapies Innovantes, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, Paris, France
- Université Paris-Diderot, Sorbonne Paris-Cité, UMR E5, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France
| | - Philippe Moreau
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut des Maladies Emergentes et des Thérapies Innovantes, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, Paris, France
- Université Paris-Diderot, Sorbonne Paris-Cité, UMR E5, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France
| |
Collapse
|
32
|
Zhao X, Fang Y, Yang Y, Qin Y, Wu P, Wang T, Lai H, Meng L, Wang D, Zheng Z, Lu X, Zhang H, Gao Q, Zhou J, Ma D. Elaiophylin, a novel autophagy inhibitor, exerts antitumor activity as a single agent in ovarian cancer cells. Autophagy 2016; 11:1849-63. [PMID: 25893854 DOI: 10.1080/15548627.2015.1017185] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Currently, targeting the autophagic pathway is regarded as a promising new strategy for cancer drug discovery. Here, we screened the North China Pharmaceutical Group Corporation's pure compound library of microbial origin using GFP-LC3B-SKOV3 cells and identified elaiophylin as a novel autophagy inhibitor. Elaiophylin promotes autophagosome accumulation but blocks autophagic flux by attenuating lysosomal cathepsin activity, resulting in the accumulation of SQSTM1/p62 in various cell lines. Moreover, elaiophylin destabilizes lysosomes as indicated by LysoTracker Red staining and CTSB/cathepsin B and CTSD/ cathepsin D release from lysosomes into the cytoplasm. Elaiophylin eventually decreases cell viability, especially in combination with cisplatin or under hypoxic conditions. Furthermore, administration of a lower dose (2 mg/kg) of elaiophylin as a single agent achieves a significant antitumor effect without toxicity in an orthotopic ovarian cancer model with metastasis; however, high doses (8 mg/kg) of elaiophylin lead to dysfunction of Paneth cells, which resembles the intestinal phenotype of ATG16L1-deficient mice. Together, these results provide a safe therapeutic window for potential clinical applications of this compound. Our results demonstrate, for the first time, that elaiophylin is a novel autophagy inhibitor, with significant antitumor efficacy as a single agent or in combination in human ovarian cancer cells, establishing the potential treatment of ovarian cancer by this compound.
Collapse
Affiliation(s)
- Xuejiao Zhao
- a Cancer Biology Research Center; Tongji Hospital; Tongji Medical College, Huazhong University of Science and Technology ; Wuhan , Hubei , China
| | - Yong Fang
- a Cancer Biology Research Center; Tongji Hospital; Tongji Medical College, Huazhong University of Science and Technology ; Wuhan , Hubei , China
| | - Yang Yang
- a Cancer Biology Research Center; Tongji Hospital; Tongji Medical College, Huazhong University of Science and Technology ; Wuhan , Hubei , China
| | - Yu Qin
- a Cancer Biology Research Center; Tongji Hospital; Tongji Medical College, Huazhong University of Science and Technology ; Wuhan , Hubei , China
| | - Peng Wu
- a Cancer Biology Research Center; Tongji Hospital; Tongji Medical College, Huazhong University of Science and Technology ; Wuhan , Hubei , China
| | - Ting Wang
- a Cancer Biology Research Center; Tongji Hospital; Tongji Medical College, Huazhong University of Science and Technology ; Wuhan , Hubei , China
| | - Huiling Lai
- a Cancer Biology Research Center; Tongji Hospital; Tongji Medical College, Huazhong University of Science and Technology ; Wuhan , Hubei , China
| | - Li Meng
- a Cancer Biology Research Center; Tongji Hospital; Tongji Medical College, Huazhong University of Science and Technology ; Wuhan , Hubei , China
| | - Daowen Wang
- a Cancer Biology Research Center; Tongji Hospital; Tongji Medical College, Huazhong University of Science and Technology ; Wuhan , Hubei , China
| | - Zhihui Zheng
- b NCPC New Drug Research and Development Co.Ltd, North China Pharmaceutical Group Corporation ; Shijiazhuang , China
| | - Xinhua Lu
- b NCPC New Drug Research and Development Co.Ltd, North China Pharmaceutical Group Corporation ; Shijiazhuang , China
| | - Hua Zhang
- c Shanghai Biomabs Pharmaceutical Co. Ltd ; Shanghai , China
| | - Qinglei Gao
- a Cancer Biology Research Center; Tongji Hospital; Tongji Medical College, Huazhong University of Science and Technology ; Wuhan , Hubei , China
| | - Jianfeng Zhou
- a Cancer Biology Research Center; Tongji Hospital; Tongji Medical College, Huazhong University of Science and Technology ; Wuhan , Hubei , China
| | - Ding Ma
- a Cancer Biology Research Center; Tongji Hospital; Tongji Medical College, Huazhong University of Science and Technology ; Wuhan , Hubei , China
| |
Collapse
|
33
|
Dou C, Liu Z, Xu M, Jia Y, Wang Y, Li Q, Yang W, Zheng X, Tu K, Liu Q. miR-187-3p inhibits the metastasis and epithelial-mesenchymal transition of hepatocellular carcinoma by targeting S100A4. Cancer Lett 2016; 381:380-90. [PMID: 27544906 DOI: 10.1016/j.canlet.2016.08.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/29/2016] [Accepted: 08/12/2016] [Indexed: 02/07/2023]
Abstract
miR-187-3p, a novel cancer-related microRNA, was previously reported to play promoting or suppressive roles in different malignancies. However, the expression level, biological function, and underlying mechanisms of miR-187-3p in hepatocellular carcinoma (HCC) remain unknown. This study demonstrated that miR-187-3p was significantly down-regulated in HCC tissues and cell lines, and was associated with advanced TNM stage and metastasis in HCC. Functional studies confirmed that miR-187-3p could inhibit the metastasis of HCC both in vitro and in vivo. Moreover, we proved that miR-187-3p could prevent the epithelial-mesenchymal transition (EMT) of HCC cells. Mechanically, S100A4 was a direct downstream target of miR-187-3p, and mediated the functional influence of miR-187-3p in HCC. Furthermore, miR-187-3p and S100A4 expression was evidently correlated with adverse clinical features and poor prognosis of HCC. Lastly, we showed that hypoxia was responsible for the significantly decreased level of miR-187-3p in HCC, and miR-187-3p was involved in the promoting effects of hypoxia on the metastasis and EMT of HCC cells. Taken together, miR-187-3p inhibits the metastasis and EMT in HCC by targeting S100A4. miR-187-3p can serve as a prognostic indicator and a promising therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Changwei Dou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zhikui Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Meng Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yuli Jia
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yufeng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Qing Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Wei Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xin Zheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Qingguang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
34
|
Koussounadis A, Langdon SP, Um I, Kay C, Francis KE, Harrison DJ, Smith VA. Dynamic modulation of phosphoprotein expression in ovarian cancer xenograft models. BMC Cancer 2016; 16:205. [PMID: 26964739 PMCID: PMC4787009 DOI: 10.1186/s12885-016-2212-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 02/24/2016] [Indexed: 11/10/2022] Open
Abstract
Background The dynamic changes that occur in protein expression after treatment of a cancer in vivo are poorly described. In this study we measure the effect of chemotherapy over time on the expression of a panel of proteins in ovarian cancer xenograft models. The objective was to identify phosphoprotein and other protein changes indicative of pathway activation that might link with drug response. Methods Two xenograft models, platinum-responsive OV1002 and platinum-unresponsive HOX424, were used. Treatments were carboplatin and carboplatin-paclitaxel. Expression of 49 proteins over 14 days post treatment was measured by quantitative immunofluorescence and analysed by AQUA. Results Carboplatin treatment in the platinum-sensitive OV1002 model triggered up-regulation of cell cycle, mTOR and DDR pathways, while at late time points WNT, invasion, EMT and MAPK pathways were modulated. Estrogen receptor-alpha (ESR1) and ERBB pathways were down-regulated early, within 24 h from treatment administration. Combined carboplatin-paclitaxel treatment triggered a more extensive response in the OV1002 model modulating expression of 23 of 49 proteins. Therefore the cell cycle and DDR pathways showed similar or more pronounced changes than with carboplatin alone. In addition to expression of pS6 and pERK increasing, components of the AKT pathway were modulated with pAKT increasing while its regulator PTEN was down-regulated early. WNT signaling, EMT and invasion markers were modulated at later time points. Additional pathways were also observed with the NFκB and JAK/STAT pathways being up-regulated. ESR1 was down-regulated as was HER4, while further protein members of the ERBB pathway were upregulated late. By contrast, in the carboplatin-unresponsive HOX 424 xenograft, carboplatin only modulated expression of MLH1 while carboplatin-paclitaxel treatment modulated ESR1 and pMET. Conclusions Thirteen proteins were modulated by carboplatin and a more robust set of changes by carboplatin-paclitaxel. Early changes included DDR and cell cycle regulatory proteins associating with tumor volume changes, as expected. Changes in ESR1 and ERBB signaling were also observed. Late changes included components of MAPK signaling, EMT and invasion markers and coincided in time with reversal in tumor volume reduction. These results suggest potential therapeutic roles for inhibitors of such pathways that may prolong chemotherapeutic effects. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2212-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Antonis Koussounadis
- School of Biology, Sir Harold Mitchell Building, University of St Andrews, St Andrews, Fife, KY16 9TH, UK
| | - Simon P Langdon
- Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Inhwa Um
- Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.,School of Medicine, University of St Andrews, St Andrews, UK
| | - Charlene Kay
- Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Kyle E Francis
- Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | | | - V Anne Smith
- School of Biology, Sir Harold Mitchell Building, University of St Andrews, St Andrews, Fife, KY16 9TH, UK.
| |
Collapse
|
35
|
Jin T, Zhang Z, Yang XF, Luo JS. S100A4 expression is closely linked to genesis and progression of glioma by regulating proliferation, apoptosis, migration and invasion. Asian Pac J Cancer Prev 2015; 16:2883-7. [PMID: 25854377 DOI: 10.7314/apjcp.2015.16.7.2883] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The calcium-binding S100A4 protein is involved in epithelial to mesenchymal transition, oncogenic transformation, angiogenesis, cytoskeletal integrity, mobility and metastasis of cancer cells. This study aimed to clarify the roles of S100A4 in genesis and progression of glioma. MATERIALS AND METHODS S100A4 expression was examined by real-time RT-CPR and Western blot in glioma and paired normal brain tissue (n=69), and compared with clinicopathological parameters of tumors. In addition, glioma U251 cells transfected with an S100A4-expressing plasmid were examined for proliferation by MTT, apoptosis by Annexin V-FITC, and migration and invasion with Transwell chambers. RESULTS Increased S100A4 mRNA expression was found in gliomas, compared with paired non-tumor tissue (p<0.001). Gradual elevation of overexpression of S100A4 was observed with increasing glioma grade (p<0.001). Astrocytoma showed lower S100A4 mRNA expression than oligodendrogliomas, with glioblastomas having highest values (p<0.001). Similar results were obtained for S100A4 protein, a positive link being found between mRNA and protein expression in gliomas (p<0.001). There was higher growth, lower apoptosis, stronger migration and invasion of S100A4 transfectants than control and mock transfected cells (p<0.001). CONCLUSIONS These findings indicate that up-regulated S100A4 expression is positively linked to pathogenesis, progression and histogenesis of glioma by modulating proliferation, apoptosis, migration and invasion.
Collapse
Affiliation(s)
- Ting Jin
- Department of Neurosurgery, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, China E-mail :
| | | | | | | |
Collapse
|
36
|
Xu Z, Wei C, Zhang RU, Yao J, Zhang D, Wang L. Epigallocatechin-3-gallate-induced inhibition of interleukin-6 release and adjustment of the regulatory T/T helper 17 cell balance in the treatment of colitis in mice. Exp Ther Med 2015; 10:2231-2238. [PMID: 26668622 DOI: 10.3892/etm.2015.2824] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 01/05/2015] [Indexed: 12/13/2022] Open
Abstract
Epigallocatechin-3-gallate (EGCG) has a promising therapeutic effect for ulcerative colitis (UC), but the treatment mechanism has yet to be fully elucidated. The aim of the present study was to investigate the mechanism of EGCG in the treatment of UC. Experimental colitis mouse models were prepared. The mice were randomly divided into four groups: Normal control, model (MD), 50 mg/kg/day EGCG treatment and 100 mg/kg/day EGCG treatment. The daily disease activity index (DAI) of the mice was recorded, changes in the organizational structure of the colon were observed and the spleen index (SI) was measured. In addition, levels of interleukin (IL)-6, IL-10, IL-17 and transforming growth factor (TGF)-β1 in the plasma and hypoxia-inducible factor (HIF)-1α and signal transducer and activator of transcription (STAT) 3 protein expression in colon tissues were evaluated. Compared with the MD group, the mice in the two EGCG treatment groups exhibited decreased DAIs and SIs and an attenuation in the colonic tissue erosion. EGCG could reduce the release of IL-6 and IL-17 and regulate the mouse splenic regulatory T-cell (Treg)/T helper 17 cell (Th17) ratio, while increasing the plasma levels of IL-10 and TGF-β1 and decreasing the HIF-1α and STAT3 protein expression in the colon. The experiments confirmed that EGCG treated mice with experimental colitis by inhibiting the release of IL-6 and regulating the body Treg/Th17 balance.
Collapse
Affiliation(s)
- Zhenglei Xu
- Department of Gastroenterology, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Cheng Wei
- Department of Gastroenterology, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - R U Zhang
- Department of Gastroenterology, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Jun Yao
- Department of Gastroenterology, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Dinguo Zhang
- Department of Gastroenterology, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Lisheng Wang
- Department of Gastroenterology, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518000, P.R. China
| |
Collapse
|
37
|
Reimann S, Fink L, Wilhelm J, Hoffmann J, Bednorz M, Seimetz M, Dessureault I, Troesser R, Ghanim B, Klepetko W, Seeger W, Weissmann N, Kwapiszewska G. Increased S100A4 expression in the vasculature of human COPD lungs and murine model of smoke-induced emphysema. Respir Res 2015; 16:127. [PMID: 26483185 PMCID: PMC4612429 DOI: 10.1186/s12931-015-0284-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 10/01/2015] [Indexed: 12/16/2022] Open
Abstract
Background Chronic obstructive lung disease (COPD) is a common cause of death in industrialized countries often induced by exposure to tobacco smoke. A substantial number of patients with COPD also suffer from pulmonary hypertension that may be caused by hypoxia or other hypoxia-independent stimuli - inducing pulmonary vascular remodeling. The Ca2+ binding protein, S100A4 is known to play a role in non-COPD-driven vascular remodeling of intrapulmonary arteries. Therefore, we have investigated the potential involvement of S100A4 in COPD induced vascular remodeling. Methods Lung tissue was obtained from explanted lungs of five COPD patients and five non-transplanted donor lungs. Additionally, mice lungs of a tobacco-smoke-induced lung emphysema model (exposure for 3 and 8 month) and controls were investigated. Real-time RT-PCR analysis of S100A4 and RAGE mRNA was performed from laser-microdissected intrapulmonary arteries. S100A4 immunohistochemistry was semi-quantitatively evaluated. Mobility shift assay and siRNA knock-down were used to prove hypoxia responsive elements (HRE) and HIF binding within the S100A4 promoter. Results Laser-microdissection in combination with real-time PCR analysis revealed higher expression of S100A4 mRNA in intrapulmonary arteries of COPD patients compared to donors. These findings were mirrored by semi-quantitative analysis of S100A4 immunostaining. Analogous to human lungs, in mice with tobacco-smoke-induced emphysema an up-regulation of S100A4 mRNA and protein was observed in intrapulmonary arteries. Putative HREs could be identified in the promoter region of the human S100A4 gene and their functionality was confirmed by mobility shift assay. Knock-down of HIF1/2 by siRNA attenuated hypoxia-dependent increase in S100A4 mRNA levels in human primary pulmonary artery smooth muscle cells. Interestingly, RAGE mRNA expression was enhanced in pulmonary arteries of tobacco-smoke exposed mice but not in pulmonary arteries of COPD patients. Conclusions As enhanced S100A4 expression was observed in remodeled intrapulmonary arteries of COPD patients, targeting S100A4 could serve as potential therapeutic option for prevention of vascular remodeling in COPD patients. Electronic supplementary material The online version of this article (doi:10.1186/s12931-015-0284-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sebastian Reimann
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany.
| | - Ludger Fink
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany. .,Institute of Pathology and Cytology, UEGP, Forsthausstrasse 1, 35578, Wetzlar, Germany.
| | - Jochen Wilhelm
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany.
| | - Julia Hoffmann
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.
| | - Mariola Bednorz
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany.
| | - Michael Seimetz
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany.
| | - Isabel Dessureault
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany.
| | - Roger Troesser
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany.
| | - Bahil Ghanim
- Department of Thoracic Surgery, Division of Surgery, Medical University Vienna, Vienna, Austria.
| | - Walter Klepetko
- Department of Thoracic Surgery, Division of Surgery, Medical University Vienna, Vienna, Austria.
| | - Werner Seeger
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany.
| | - Norbert Weissmann
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany.
| | - Grazyna Kwapiszewska
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany. .,Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.
| |
Collapse
|
38
|
Bcl-2 silencing attenuates hypoxia-induced apoptosis resistance in pulmonary microvascular endothelial cells. Apoptosis 2015; 21:69-84. [DOI: 10.1007/s10495-015-1184-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
39
|
Pastorek M, Simko V, Takacova M, Barathova M, Bartosova M, Hunakova L, Sedlakova O, Hudecova S, Krizanova O, Dequiedt F, Pastorekova S, Sedlak J. Sulforaphane reduces molecular response to hypoxia in ovarian tumor cells independently of their resistance to chemotherapy. Int J Oncol 2015; 47:51-60. [PMID: 25955133 PMCID: PMC4485648 DOI: 10.3892/ijo.2015.2987] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/12/2015] [Indexed: 12/11/2022] Open
Abstract
One of the recently emerging anticancer strategies is the use of natural dietary compounds, such as sulforaphane, a cancer-chemopreventive isothiocyanate found in broccoli. Based on the growing evidence, sulforaphane acts through molecular mechanisms that interfere with multiple oncogenic pathways in diverse tumor cell types. Herein, we investigated the anticancer effects of bioavailable concentrations of sulforaphane in ovarian carcinoma cell line A2780 and its two derivatives, adriamycin-resistant A2780/ADR and cisplatin-resistant A2780/CP cell lines. Since tumor microenvironment is characterized by reduced oxygenation that induces aggressive tumor phenotype (such as increased invasiveness and resistance to chemotherapy), we evaluated the effects of sulforaphane in ovarian cancer cells exposed to hypoxia (2% O2). Using the cell-based reporter assay, we identified several oncogenic pathways modulated by sulforaphane in hypoxia by activating anticancer responses (p53, ARE, IRF-1, Pax-6 and XRE) and suppressing responses supporting tumor progression (AP-1 and HIF-1). We further showed that sulforaphane decreases the level of HIF-1α protein without affecting its transcription and stability. It can also diminish transcription and protein level of the HIF-1 target, CA IX, which protects tumor cells from hypoxia-induced pH imbalance and facilitates their migration/invasion. Accordingly, sulforaphane treatment leads to diminished pH regulation and reduced migration of ovarian carcinoma cells. These effects occur in all three ovarian cell lines suggesting that sulforaphane can overcome the chemoresistance of cancer cells. This offers a path potentially exploitable in sensitizing resistant cancer cells to therapy, and opens a window for the combined treatments of sulforaphane either with conventional chemotherapy, natural compounds, or with other small molecules.
Collapse
Affiliation(s)
- Michal Pastorek
- Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Veronika Simko
- Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Martina Takacova
- Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Monika Barathova
- Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Maria Bartosova
- Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Luba Hunakova
- Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Olga Sedlakova
- Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Sona Hudecova
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Olga Krizanova
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Franck Dequiedt
- Laboratory of Protein Signaling and Interactions, Interdisciplinary Cluster for Applied Genoproteomics, University of Liège, Sart-Tilman, Belgium
| | - Silvia Pastorekova
- Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Jan Sedlak
- Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Slovak Republic
| |
Collapse
|
40
|
Knockdown of S100A4 impairs arecoline-induced invasiveness of oral squamous cell carcinomas. Oral Oncol 2015; 51:690-7. [PMID: 25912158 DOI: 10.1016/j.oraloncology.2015.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 02/02/2015] [Accepted: 04/04/2015] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Metastasis is the most common cause of oral squamous cell carcinoma (OSCC)-related death. The physiological function of S100A4 in the pathogenesis of areca quid chewing-associated OSCC has not been uncovered. METHOD OSCC tissues from areca quid chewers were analyzed by immunohistochemistry for S100A4 expression. The functions of S100A4 in invasiveness of arecoline-treated oral epithelial (OE) cells were determined by loss function approaches. RESULTS Expression of S100A4 was positively correlated with clinical grading and lymph node metastasis of OSCC. Upregulated S100A4 is correlated with poor survival outcome of OSCC patients. Arecoline led to dose-dependent elevation of S100A4 expression in oral epithelial (OE) cells. Down-regulation of S100A4 significantly reversed arecoline-induced oncogenecity in OE cells. The additions of pharmacological agents LY294002, SP600125, and CAY10585 were found to inhibit arecoline-induced S100A4 expression in OE cells. CONCLUSION Arecoline-induced S100A4 expression was down-regulated by LY294002, SP600125, or CAY10585 treatment. Targeting S100A4 might offer a new strategy for the treatment of OSCC patients with metastasis.
Collapse
|
41
|
Denizot J, Desrichard A, Agus A, Uhrhammer N, Dreux N, Vouret-Craviari V, Hofman P, Darfeuille-Michaud A, Barnich N. Diet-induced hypoxia responsive element demethylation increases CEACAM6 expression, favouring Crohn's disease-associated Escherichia coli colonisation. Gut 2015; 64:428-37. [PMID: 24898815 DOI: 10.1136/gutjnl-2014-306944] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Adherent-invasive Escherichia coli (AIEC) are abnormally predominant on Crohn's disease (CD) ileal mucosa. AIEC strains adhere to enterocytes via interaction between type 1 pili and CEACAM6 receptors abnormally expressed on CD ileal mucosa, leading to gut inflammation. We analysed whether epigenetic mechanisms are involved in the upregulation of CEACAM6 expression in intestinal epithelial cells (IECs). DESIGN Methylation of CEACAM6 promoter was analysed using bisulfite sequencing and site-specific methylation by SnapShot. pCpGfree reporter system was used to analyse CEACAM6 promoter activity. Transgenic mice expressing human CEACAM6 fed either standard food or a low-methyl diet (LMD) were orally challenged with 10(9) AIEC LF82. After 3 days, gut-associated AIEC and proinflammatory cytokines were quantified. RESULTS Analysis of CEACAM6 gene promoter revealed potentially methylated dinucleotide CpGs within HIF-1-responsive elements (HREs). Methylation levels of CpG within CEACAM6 promoter were inversely correlated with CEACAM6 expression in IEC expressing various levels of CEACAM6. We show the critical role of HRE methylation and transcription factor HIF-1 in the regulation of CEACAM6 gene in IEC. This was confirmed in transgenic mice expressing human CEACAM6 fed a LMD. LMD-dependent HRE demethylation led to abnormal gut expression of CEACAM6, favouring AIEC colonisation and subsequent inflammation. CONCLUSIONS HRE hypomethylation in CEACAM6 promoter correlates with high expression in IEC. Our findings suggest that abnormal DNA methylation leading to CEACAM6 increased expression and AIEC-mediated gut inflammation can be related to changes in nutritional habits, such as low intake in methyl donor molecules, leading to abnormal epigenetic marks in mouse model mimicking CD susceptibility.
Collapse
Affiliation(s)
- Jérémy Denizot
- Clermont Université, M2iSH, UMR 1071 INSERM/Université d'Auvergne, Clermont-Ferrand, France Unité Sous Contrat 2018 Institut National de la Recherche Agronomique, Clermont-Ferrand, France
| | - Alexis Desrichard
- Departments of Oncogenetics and Breast Oncology, Centre Jean Perrin, Clermont-Ferrand, France
| | - Allison Agus
- Clermont Université, M2iSH, UMR 1071 INSERM/Université d'Auvergne, Clermont-Ferrand, France Unité Sous Contrat 2018 Institut National de la Recherche Agronomique, Clermont-Ferrand, France
| | - Nancy Uhrhammer
- Departments of Oncogenetics and Breast Oncology, Centre Jean Perrin, Clermont-Ferrand, France
| | - Nicolas Dreux
- Clermont Université, M2iSH, UMR 1071 INSERM/Université d'Auvergne, Clermont-Ferrand, France Unité Sous Contrat 2018 Institut National de la Recherche Agronomique, Clermont-Ferrand, France
| | - Valérie Vouret-Craviari
- Institute for Research on Cancer and aging (IRCAN), Nice, France University of Nice-Sophia Antipolis, Nice, France
| | - Paul Hofman
- Institute for Research on Cancer and aging (IRCAN), Nice, France University of Nice-Sophia Antipolis, Nice, France Laboratory of Clinical and Experimental Pathology and Human Biobank, Pasteur Hospital, Nice, France
| | - Arlette Darfeuille-Michaud
- Clermont Université, M2iSH, UMR 1071 INSERM/Université d'Auvergne, Clermont-Ferrand, France Unité Sous Contrat 2018 Institut National de la Recherche Agronomique, Clermont-Ferrand, France Institut Universitaire de Technologie, Génie Biologique, Aubière, France Centre Hospitalier Universitaire Clermont-Ferrand, France
| | - Nicolas Barnich
- Clermont Université, M2iSH, UMR 1071 INSERM/Université d'Auvergne, Clermont-Ferrand, France Unité Sous Contrat 2018 Institut National de la Recherche Agronomique, Clermont-Ferrand, France Institut Universitaire de Technologie, Génie Biologique, Aubière, France
| |
Collapse
|
42
|
Abstract
In humans, the S100 protein family is composed of 21 members that exhibit a high degree of structural similarity, but are not functionally interchangeable. This family of proteins modulates cellular responses by functioning both as intracellular Ca(2+) sensors and as extracellular factors. Dysregulated expression of multiple members of the S100 family is a common feature of human cancers, with each type of cancer showing a unique S100 protein profile or signature. Emerging in vivo evidence indicates that the biology of most S100 proteins is complex and multifactorial, and that these proteins actively contribute to tumorigenic processes such as cell proliferation, metastasis, angiogenesis and immune evasion. Drug discovery efforts have identified leads for inhibiting several S100 family members, and two of the identified inhibitors have progressed to clinical trials in patients with cancer. This Review highlights new findings regarding the role of S100 family members in cancer diagnosis and treatment, the contribution of S100 signalling to tumour biology, and the discovery and development of S100 inhibitors for treating cancer.
Collapse
Affiliation(s)
- Anne R. Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | - David J. Weber
- Center for Biomolecular Therapeutics and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, Maryland 20102, USA
| | - Danna B. Zimmer
- Center for Biomolecular Therapeutics and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, Maryland 20102, USA
| |
Collapse
|
43
|
Skowronki K, Andrews J, Rodenhiser DI, Coomber BL. Genome-wide analysis in human colorectal cancer cells reveals ischemia-mediated expression of motility genes via DNA hypomethylation. PLoS One 2014; 9:e103243. [PMID: 25079072 PMCID: PMC4117527 DOI: 10.1371/journal.pone.0103243] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 06/30/2014] [Indexed: 12/26/2022] Open
Abstract
DNA hypomethylation is an important epigenetic modification found to occur in many different cancer types, leading to the upregulation of previously silenced genes and loss of genomic stability. We previously demonstrated that hypoxia and hypoglycaemia (ischemia), two common micro-environmental changes in solid tumours, decrease DNA methylation through the downregulation of DNMTs in human colorectal cancer cells. Here, we utilized a genome-wide cross-platform approach to identify genes hypomethylated and upregulated by ischemia. Following exposure to hypoxia or hypoglycaemia, methylated DNA from human colorectal cancer cells (HCT116) was immunoprecipitated and analysed with an Affymetrix promoter array. Additionally, RNA was isolated and analysed in parallel with an Affymetrix expression array. Ingenuity pathway analysis software revealed that a significant proportion of the genes hypomethylated and upregulated were involved in cellular movement, including PLAUR and CYR61. A Matrigel invasion assay revealed that indeed HCT116 cells grown in hypoxic or hypoglycaemic conditions have increased mobility capabilities. Confirmation of upregulated expression of cellular movement genes was performed with qPCR. The correlation between ischemia and metastasis is well established in cancer progression, but the molecular mechanisms responsible for this common observation have not been clearly identified. Our novel data suggests that hypoxia and hypoglycaemia may be driving changes in DNA methylation through downregulation of DNMTs. This is the first report to our knowledge that provides an explanation for the increased metastatic potential seen in ischemic cells; i.e. that ischemia could be driving DNA hypomethylation and increasing expression of cellular movement genes.
Collapse
Affiliation(s)
- Karolina Skowronki
- Department of Biomedical Sciences; Ontario Veterinary College; University of Guelph; Guelph, ON, Canada
| | - Joseph Andrews
- Departments of Biochemistry, Oncology and Paediatrics; University of Western Ontario; London Regional Cancer Centre and Children’s Health Research Institute; London, ON, Canada
| | - David I. Rodenhiser
- Departments of Biochemistry, Oncology and Paediatrics; University of Western Ontario; London Regional Cancer Centre and Children’s Health Research Institute; London, ON, Canada
| | - Brenda L. Coomber
- Department of Biomedical Sciences; Ontario Veterinary College; University of Guelph; Guelph, ON, Canada
| |
Collapse
|
44
|
Li L, Huang K, You Y, Fu X, Hu L, Song L, Meng Y. Hypoxia-induced miR-210 in epithelial ovarian cancer enhances cancer cell viability via promoting proliferation and inhibiting apoptosis. Int J Oncol 2014; 44:2111-20. [PMID: 24715221 DOI: 10.3892/ijo.2014.2368] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/11/2014] [Indexed: 11/06/2022] Open
Abstract
miR-210 is upregulated in a HIF-1α-dependent way in several types of cancers. In addition, upregulated miR-210 promotes cancer proliferation, via its anti-apoptotic effects. It is blind to the regulation of miR-210 under hypoxia conditions for ovarian cancer cells and to the effect of miR-210 on ovarian cancer growth. In the present study, we determined the expression of miR-210 in epithelial ovarian cancer specimens, and in ovarian cancer cell lines under hypoxia conditions, and determined in detail the effect of miR-210 overexpression on tumor cell proliferation, and the possible mechanisms of tumor growth by miR-210 regulation. It was shown that miR-210 expression is upregulated, in response to hypoxia conditions in epithelial ovarian cancer specimens as well as epithelial ovarian cancer cell lines, with an association to HIF-1α overexpression. Furthermore, upregulated miR-210 promoted tumor growth in vitro via targeting PTPN1 and inhibiting apoptosis. Therefore, our findings shed light on the mechanism of ovarian cancer adaptation to hypoxia.
Collapse
Affiliation(s)
- Li'an Li
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Ke Huang
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yanqin You
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Xiaoyu Fu
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Lingyun Hu
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Lei Song
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yuanguang Meng
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
45
|
Increased metabolites of 5-lipoxygenase from hypoxic ovarian cancer cells promote tumor-associated macrophage infiltration. Oncogene 2014; 34:1241-52. [PMID: 24662827 DOI: 10.1038/onc.2014.85] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/11/2014] [Accepted: 02/25/2014] [Indexed: 12/27/2022]
Abstract
5-lipoxygenase (5-LOX), a member of the lipoxygenase gene family, is a key enzyme assisting in the conversion of arachidonic acid to 5-HETE and leukotrienes. Tumor-associated macrophages (TAMs) have a critical role in the progression and metastasis of many tumors, including ovarian tumors. Moreover, TAMs are often found in a high density in the hypoxic areas of tumors. However, the relevant mechanisms have not been studied explicitly until now. In this study, we found that the expression of 5-LOX strongly correlated with the density of TAMs in hypoxic areas of human ovarian tumor tissues. In cultured ovarian cancer cells, 5-LOX metabolites were increased under hypoxic conditons. Increased 5-LOX metabolites from hypoxic ovarian cancer cells promoted migration and invasion of macrophages, which was further demonstrated to be mediated by the upregulation of matrix metalloproteinase (MMP)-7 expression through the p38 pathway. Besides, we also showed that 5-LOX metabolites enhanced the release of tumor necrosis factor (TNF-α) and heparin-binding epidermal growth factor-like growth factor through upregulation of MMP-7. Furthermore, in animal models, Zileuton (a selective and specific 5-LOX inhibitor) reduced the MMP-7 expression and the number of macrophages infiltrating in the xenograft. Our findings suggest for the first time that increased metabolites of 5-LOX from hypoxic ovarian cancer cells promote TAM infiltration. These results of this study have immediate translational implications for the therapeutic exploitation of TAMs.
Collapse
|
46
|
Asby DJ, Cuda F, Hoakwie F, Miranda E, Tavassoli A. HIF-1 promotes the expression of its α-subunit via an epigenetically regulated transactivation loop. ACTA ACUST UNITED AC 2014; 10:2505-8. [DOI: 10.1039/c4mb00351a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A HIF-1 protein–protein interaction inhibitor is used to establish the presence of a HIF-1α transactivation loop in hypoxia.
Collapse
Affiliation(s)
- D. J. Asby
- Chemistry
- University of Southampton
- Southampton, UK
| | - F. Cuda
- Chemistry
- University of Southampton
- Southampton, UK
| | - F. Hoakwie
- Chemistry
- University of Southampton
- Southampton, UK
| | - E. Miranda
- Chemistry
- University of Southampton
- Southampton, UK
| | - A. Tavassoli
- Chemistry
- University of Southampton
- Southampton, UK
- Cancer Sciences
- Faculty of Medicine
| |
Collapse
|
47
|
LIU JIA, XU ZHENMING, QIU GUANGBIN, ZHENG ZHIHONG, SUN KAILAI, FU WEINENG. S100A4 is upregulated via the binding of c-Myb in methylation-free laryngeal cancer cells. Oncol Rep 2013; 31:442-9. [DOI: 10.3892/or.2013.2824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 10/11/2013] [Indexed: 11/05/2022] Open
|
48
|
Blair JD, Yuen RK, Lim BK, McFadden DE, von Dadelszen P, Robinson WP. Widespread DNA hypomethylation at gene enhancer regions in placentas associated with early-onset pre-eclampsia. Mol Hum Reprod 2013; 19:697-708. [PMID: 23770704 PMCID: PMC3779005 DOI: 10.1093/molehr/gat044] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 05/24/2013] [Accepted: 06/07/2013] [Indexed: 12/17/2022] Open
Abstract
Pre-eclampsia is a serious complication of pregnancy that can affect both maternal and fetal outcomes. Early-onset pre-eclampsia (EOPET) is a severe form of pre-eclampsia that is associated with altered physiological characteristics and gene expression in the placenta. DNA methylation is a relatively stable epigenetic modification to DNA that can reflect gene expression, and can provide insight into the mechanisms underlying such expression changes. This case-control study focused on DNA methylation and gene expression of whole chorionic villi samples from 20 EOPET placentas and 20 gestational age-matched controls from pre-term births. DNA methylation was also assessed in placentas affected by late-onset pre-eclampsia (LOPET) and normotensive intrauterine growth restriction (nIUGR). The Illumina HumanMethylation450 BeadChip was used to assess DNA methylation at >480 000 cytosine-guanine dinucleotide (CpG) sites. The Illumina HT-12v4 Expression BeadChip was used to assess gene expression of >45 000 transcripts in a subset of cases and controls. DNA methylation analysis by pyrosequencing was used to follow-up the initial findings in four genes with a larger cohort of cases and controls, including nIUGR and LOPET placentas. Bioinformatic analysis was used to identify overrepresentation of gene ontology categories and transcription factor binding motifs. We identified 38 840 CpG sites with significant (false discovery rate <0.01) DNA methylation alterations in EOPET, of which 282 had >12.5% methylation difference compared with the controls. Significant sites were enriched at the enhancers and low CpG density regions of the associated genes and the majority (74.5%) of these sites were hypomethylated in EOPET. EOPET, but not associated clinical features, such as intrauterine growth restriction (IUGR), presented a distinct DNA methylation profile. CpG sites from four genes relevant to pre-eclampsia (INHBA, BHLHE40, SLC2A1 and ADAM12) showed different extent of changes in LOPET and nIUGR. Genome-wide expression in a subset of samples showed that some of the gene expression changes were negatively correlated with DNA methylation changes, particularly for genes that are responsible for angiogenesis (such as EPAS1 and FLT1). Results could be confounded by altered cell populations in abnormal placentas. Larger sample sizes are needed to fully address the possibility of sub-profiles of methylation within the EOPET cohort. Based on DNA methylation profiling, we conclude that there are widespread DNA methylation alterations in EOPET that may be associated with changes in placental function. This property may provide a useful tool for early screening of such placentas. This study identifies DNA methylation changes at many loci previously reported to have altered gene expression in EOPET placentas, as well as in novel biologically relevant genes we confirmed to be differentially expressed. These results may be useful for DNA- methylation-based non-invasive prenatal diagnosis of at-risk pregnancies.
Collapse
Affiliation(s)
- John D. Blair
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, CanadaV5Z 4H4
- Child & Family Research Institute, Vancouver, BC, CanadaV5Z 4H4
| | - Ryan K.C. Yuen
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, CanadaV5Z 4H4
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, CanadaM5G 1X8
| | - Brendan K. Lim
- Child & Family Research Institute, Vancouver, BC, CanadaV5Z 4H4
| | - Deborah E. McFadden
- Department of Pathology, University of British Columbia, Vancouver, BC, CanadaV5Z 4H4
| | - Peter von Dadelszen
- Child & Family Research Institute, Vancouver, BC, CanadaV5Z 4H4
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, BC, CanadaV5Z 4H4
| | - Wendy P. Robinson
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, CanadaV5Z 4H4
- Child & Family Research Institute, Vancouver, BC, CanadaV5Z 4H4
| |
Collapse
|
49
|
Zhao Y, Zhang T, Wang Q. S100 calcium-binding protein A4 is a novel independent prognostic factor for the poor prognosis of gastric carcinomas. Oncol Rep 2013; 30:111-8. [PMID: 23612849 DOI: 10.3892/or.2013.2419] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/05/2013] [Indexed: 12/26/2022] Open
Abstract
Overexpression of the S100 calcium-binding protein A4 (S100A4) is involved in epithelial-to-mesenchymal transition, oncogenic transformation, angiogenesis, cytoskeletal integrity and cancer metastasis. Here, we elucidated the role of S100A4 in tumorigenesis and progression of gastric carcinomas. S100A4 expression in gastric carcinomas, adenomas and adjacent non-neoplastic mucosa was analyzed by immunohistochemical, real-time reverse transcriptase (RT)-polymerase chain reaction (PCR) and western blot analyses, and was correlated with various clinicopathological parameters. S100A4 protein expression was increased gradually in the following order: gastritis (19.2%), intestinal metaplasia (IM; 23.3%), dysplasia (34.9%) and carcinoma (55.2%; P<0.001). S100A4 was positively correlated with tumor size, depth of invasion, lymphatic invasion, lymph node metastasis and tumor-node-metastasis (TNM) staging (P<0.05), but not with the age and gender of the carcinoma patients (P>0.05). Intestinal-type (IT) carcinomas showed a higher S100A4 expression than diffuse-type (DT) carcinomas (P<0.001). S100A4 mRNA expression also increased in the following order: gastritis < IM < dysplasia < carcinoma (P<0.05). S100A4 overexpression was observed in gastric carcinomas with a larger diameter, deeper invasion, lymph node metastasis and in IT carcinoma (P<0.05). Univariate analysis using the Kaplan-Meier method indicated a lower cumulative survival rate for patients with weak or moderate S100A4 expression compared with patients not expressing S100A4 (P<0.001). Multivariate analysis using Cox's proportional hazard model demonstrated that depth of invasion, lymphatic or venous invasion, lymph node metastasis, TNM staging and S100A4 expression were independent factors for poor patient prognosis (P<0.05). In conclusion, S100A4 upregulation is positively associated with the pathogenesis, growth, invasion, metastasis and differentiation of gastric carcinomas. S100A4 may be a promising marker indicative of the aggressive behavior and prognosis of gastric carcinomas.
Collapse
Affiliation(s)
- Ying Zhao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | | | | |
Collapse
|
50
|
Nguyen MP, Lee S, Lee YM. Epigenetic regulation of hypoxia inducible factor in diseases and therapeutics. Arch Pharm Res 2013; 36:252-63. [DOI: 10.1007/s12272-013-0058-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 12/25/2012] [Indexed: 12/14/2022]
|