1
|
Nakasone ES, Zemla TJ, Yu M, Lin SY, Ou FS, Carter K, Innocenti F, Saltz L, Grady WM, Cohen SA. Evaluating the utility of ZNF331 promoter methylation as a prognostic and predictive marker in stage III colon cancer: results from CALGB 89803 (Alliance). Epigenetics 2024; 19:2349980. [PMID: 38716804 PMCID: PMC11085945 DOI: 10.1080/15592294.2024.2349980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
While epigenomic alterations are common in colorectal cancers (CRC), few epigenomic biomarkers that risk-stratify patients have been identified. We thus sought to determine the potential of ZNF331 promoter hypermethylation (mZNF331) as a prognostic and predictive marker in colon cancer. We examined the association of mZNF331 with clinicopathologic features, relapse, survival, and treatment efficacy in patients with stage III colon cancer treated within a randomized adjuvant chemotherapy trial (CALGB/Alliance89803). Residual tumour tissue was available for genomic DNA extraction and methylation analysis for 385 patients. ZNF331 promoter methylation status was determined by bisulphite conversion and fluorescence-based real-time polymerase chain reaction. Kaplan-Meier estimator and Cox proportional hazard models were used to assess the prognostic and predictive role of mZNF331 in this well-annotated dataset, adjusting for clinicopathologic features and standard molecular markers. mZNF331 was observed in 267/385 (69.4%) evaluable cases. Histopathologic features were largely similar between patients with mZNF331 compared to unmethylated ZNF331 (unmZNFF31). There was no significant difference in disease-free or overall survival between patients with mZNF331 versus unmZNF331 colon cancers, even when adjusting for clinicopathologic features and molecular marker status. Similarly, there was no difference in disease-free or overall survival across treatment arms when stratified by ZNF331 methylation status. While ZNF331 promoter hypermethylation is frequently observed in CRC, our current study of a small subset of patients with stage III colon cancer suggests limited applicability as a prognostic marker. Larger studies may provide more insight and clarity into the applicability of mZNF331 as a prognostic and predictive marker.
Collapse
Affiliation(s)
- Elizabeth S. Nakasone
- Division of Oncology, University of Washington, Seattle, WA, USA
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Tyler J. Zemla
- Alliance Statistics and Data Management Center, Mayo Clinic, Rochester, MN, USA
| | - Ming Yu
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - She Yu Lin
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- School of Life Sciences, Nantong University, Nantong, P.R. China
| | - Fang-Shu Ou
- Alliance Statistics and Data Management Center, Mayo Clinic, Rochester, MN, USA
| | - Kelly Carter
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Federico Innocenti
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Leonard Saltz
- Department of Gastrointestinal Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - William M. Grady
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Gastroenterology, University of Washington, Seattle, WA, USA
| | - Stacey A. Cohen
- Division of Oncology, University of Washington, Seattle, WA, USA
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
2
|
Zhong Z, Wang T, Zang R, Zang Y, Feng Y, Yan S, Geng C, Zhu N, Wang Q. Dual PI3K/mTOR inhibitor PF-04979064 regulates tumor growth in gastric cancer and enhances drug sensitivity of gastric cancer cells to 5-FU. Biomed Pharmacother 2024; 170:116086. [PMID: 38159377 DOI: 10.1016/j.biopha.2023.116086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
Gastric cancer (GC) is characterized by high tumor heterogeneity, increased surgical difficulty, and limited chemotherapy efficacy, and it is associated with a poor prognosis. The abnormal proliferation of cells involves abnormal activation of the PI3K/AKT/mTOR signaling pathway. Inhibition of this signaling pathway can inhibit tumor cell proliferation and induce cell apoptosis. This study evaluated the effect of PF-04979064, a dual inhibitor of PI3K and mTOR, on human GC cells. PF-04979064 significantly inhibited the proliferation of human gastric adenocarcinoma AGS cells and the undifferentiated GC cell line HGC-27, promoting cell apoptosis. Combination treatment with PF-04979064 and the GC first-line clinical drug 5-FU showed synergistic effects, and PF-04979064 markedly increased the sensitivity of GC cells to chemotherapy drugs. Western blot results showed that PF-04979064 significantly inhibited the PI3K/AKT/mTOR signaling pathway in GC cells, whereas RNA seq results demonstrated substantial alterations in gene expression profiles upon treatment with PF-04979064. This study provides insight into the effects of PF-04979064, thereby establishing a solid foundation for its potential clinical application in the treatment of GC.
Collapse
Affiliation(s)
- Ziyuan Zhong
- School of Medical Laboratory, WeiFang Medical University, No.7166, Baotong West Street, Weifang, Shandong, 261053, China
| | - Tengkai Wang
- Cheeloo College of Medicine, Shandong University, No. 44 Wenhua West Road, Jinan, Shandong, 250012, China; Department of Gastroenterology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Ruochen Zang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Yufei Zang
- Cheeloo College of Medicine, Shandong University, No. 44 Wenhua West Road, Jinan, Shandong, 250012, China
| | - Yaoyao Feng
- Cheeloo College of Medicine, Shandong University, No. 44 Wenhua West Road, Jinan, Shandong, 250012, China
| | - Shujun Yan
- Department of Clinical Laboratory, Qilu Hospital of Shandong University (Qingdao), 758 Hefei Road, Qingdao, Shandong, 266035, China
| | - Congcong Geng
- Cheeloo College of Medicine, Shandong University, No. 44 Wenhua West Road, Jinan, Shandong, 250012, China
| | - Na Zhu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University (Qingdao), 758 Hefei Road, Qingdao, Shandong, 266035, China
| | - Qian Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China; Department of Clinical Laboratory, Qilu Hospital of Shandong University (Qingdao), 758 Hefei Road, Qingdao, Shandong, 266035, China.
| |
Collapse
|
3
|
Moore LL, Houchen CW. Epigenetic Landscape and Therapeutic Implication of Gene Isoforms of Doublecortin-Like Kinase 1 for Cancer Stem Cells. Int J Mol Sci 2023; 24:16407. [PMID: 38003596 PMCID: PMC10671580 DOI: 10.3390/ijms242216407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
While significant strides have been made in understanding cancer biology, the enhancement in patient survival is limited, underscoring the urgency for innovative strategies. Epigenetic modifications characterized by hereditary shifts in gene expression without changes to the DNA sequence play a critical role in producing alternative gene isoforms. When these processes go awry, they influence cancer onset, growth, spread, and cancer stemness. In this review, we delve into the epigenetic and isoform nuances of the protein kinase, doublecortin-like kinase 1 (DCLK1). Recognized as a hallmark of tumor stemness, DCLK1 plays a pivotal role in tumorigenesis, and DCLK1 isoforms, shaped by alternative promoter usage and splicing, can reveal potential therapeutic touchpoints. Our discussion centers on recent findings pertaining to the specific functions of DCLK1 isoforms and the prevailing understanding of its epigenetic regulation via its two distinct promoters. It is noteworthy that all DCLK1 isoforms retain their kinase domain, suggesting that their unique functionalities arise from non-kinase mechanisms. Consequently, our research has pivoted to drugs that specifically influence the epigenetic generation of these DCLK1 isoforms. We posit that a combined therapeutic approach, harnessing both the epigenetic regulators of specific DCLK1 isoforms and DCLK1-targeted drugs, may prove more effective than therapies that solely target DCLK1.
Collapse
Affiliation(s)
- Landon L. Moore
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Courtney W. Houchen
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
- The Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
4
|
Zhong B, Liao Q, Wang X, Wang X, Zhang J. The roles of epigenetic regulation in cholangiocarcinogenesis. Biomed Pharmacother 2023; 166:115290. [PMID: 37557012 DOI: 10.1016/j.biopha.2023.115290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
Cholangiocarcinoma (CCA), a heterogeneous malignancy of bile duct epithelial cells, is characterized by aggressiveness, difficult diagnosis, and poor prognosis due to limited understanding and lack of effective therapeutic strategies. Genetic and epigenetic alterations accumulated in CCA cells can cause the aberrant regulation of oncogenes and tumor suppressors. Epigenetic alterations with histone modification, DNA methylation, and noncoding RNA modulation are associated with the carcinogenesis of CCA. Mutation or silencing of genes by various mechanisms can be a frequent event during CCA development. Alterations in histone acetylation/deacetylation at the posttranslational level, DNA methylation at promoters, and noncoding RNA regulation contribute to the heterogeneity of CCA and drive tumor development. In this review article, we mainly focus on the roles of epigenetic regulation in cholangiocarcinogenesis. Alterations in epigenetic modification can be potential targets for the therapeutic management of CCA, and epigenetic targets may become diagnostic biomarkers of CCA.
Collapse
Affiliation(s)
- Baiyin Zhong
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Qicheng Liao
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Xin Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Xiaonong Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Jianhong Zhang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China; Ganzhou Key Laboratory of Hepatocellular Carcinoma, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
5
|
Xue Y, Huang C, Pei B, Wang Z, Dai Y. An overview of DNA methylation markers for early detection of gastric cancer: current status, challenges, and prospects. Front Genet 2023; 14:1234645. [PMID: 37560387 PMCID: PMC10407555 DOI: 10.3389/fgene.2023.1234645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023] Open
Abstract
Background: Gastric cancer (GC) is one of the most common malignancies, with a low 5-year survival rate. However, if diagnosed at an early stage, it can be cured by endoscopic treatment and has a good prognosis. While gastrointestinal X-ray and upper endoscopy are used as national GC screening methods in some GC high-risk countries, such as Japan and Korea, their radiation exposure, invasiveness, and high cost suggest that they are not the optimal tools for early detection of GC in many countries. Therefore, a cost-effective, and highly accurate method for GC early detection is urgently needed in clinical settings. DNA methylation plays a key role in cancer progression and metastasis and has been demonstrated as a promising marker for cancer early detection. Aims and methods: This review provides a comprehensive overview of the current status of DNA methylation markers associated with GC, the assays developed for GC early detection, challenges in methylation marker discovery and application, and the future prospects of utilizing methylation markers for early detection of GC. Through our analysis, we found that the currently reported DNA methylation markers related to GC are mainly in the early discovery stage. Most of them have only been evaluated in tissue samples. The majority of non-invasive assays developed based on blood lack standardized sampling protocols, pre-analytical procedures, and multicenter validation, and they exhibit insufficient sensitivity for early-stage GC detection. Meanwhile, the reported GC DNA methylation markers are generally considered pan-cancer markers. Conclusion: Therefore, future endeavors should focus on identifying additional methylation markers specific to GC and establishing non-invasive diagnostic assays that rely on these markers. These assays should undergo multicenter, large-scale prospective validation in diverse populations.
Collapse
Affiliation(s)
- Ying Xue
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Chao Huang
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Bing Pei
- Department of Clinical Laboratory, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian, Jiangsu, China
| | - ZhenZhen Wang
- Department of Laboratory Medicine, Affiliated Xuzhou Maternity and Child Healthcare Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yanmiao Dai
- Department of Spleen and Stomach Diseases, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| |
Collapse
|
6
|
Wang Y, Peng J, Song C, Yang Y, Qin T. Zinc finger and SCAN domain-containing 18 suppresses the proliferation, self-renewal, and drug resistance of glioblastoma cells. Heliyon 2023; 9:e17000. [PMID: 37389038 PMCID: PMC10300323 DOI: 10.1016/j.heliyon.2023.e17000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 07/01/2023] Open
Abstract
Elucidation of cellular and molecular mechanisms key to glioblastoma growth, self-renewal, survival, and metastasis is important for developing novel therapeutic strategies. In this study, the expression and function of zinc finger and SCAN domain-containing 18 (ZSCAN18) in human glioblastoma cell lines were characterized. Compared with normal astrocytes, ZSCAN18 was significantly down-regulated in all tested glioblastoma cell lines, with the LN-229 cell line having the lowest ZSCAN18 expression. Lentivirus-mediated ZSCAN18 overexpression suppressed glioblastoma cell proliferation, sphere formation, and SOX2 and OCT4 expression, implying the negative role of ZSCAN18 in glioblastoma development. ZSCAN18 overexpression enhanced the sensitivity of glioblastoma cells to Temozolomide. The glioblastoma implantation model showed a consistent inhibitory effect of ZSCAN18 on the proliferation and self-renewal of glioblastoma cells in vivo. Notably, ZSCAN18 overexpression resulted in the down-regulation of glioma-associated oncogene homolog 1 (GLI1) which is the terminal component of the Hedgehog signaling. Lentivirus-mediated GLI1 overexpression restored the proliferation and promoted the resistance of glioblastoma cells to Temozolomide. However, GLI1 overexpression did not affect the self-renewal of ZSCAN18-overexpressing glioblastoma cells. Taken together, this research uncovers the role of ZSCAN18 in regulating glioblastoma cell growth and maintenance. ZSCAN18 could be a potential glioblastoma biomarker.
Collapse
Affiliation(s)
- Yan Wang
- The Pediatric Care and Rehabilitation Division at Affiliated Renhe Hospital of China Three Gorges University, Yichang City, Hubei Province, 443000, China
| | - Jingwei Peng
- The Department of Pediatrics at Affiliated Renhe Hospital of China Three Gorges University, Yichang City, Hubei Province, 443000, China
| | - Chenchen Song
- The Pediatric Care and Rehabilitation Division at Affiliated Renhe Hospital of China Three Gorges University, Yichang City, Hubei Province, 443000, China
| | - Yining Yang
- The Pediatric Care and Rehabilitation Division at Affiliated Renhe Hospital of China Three Gorges University, Yichang City, Hubei Province, 443000, China
| | - Tao Qin
- The Department of Radiology and Radiotherapy at Xingshan County People's Hospital, Yichang City, Hubei Province, 443700, China
| |
Collapse
|
7
|
Wang Y, Luo Y, Fu S, He L, Pan G, Fan D, Wen Q, Fan Y. Zinc finger and SCAN domain-containing protein 18 is a potential DNA methylation-modified tumor suppressor and biomarker in breast cancer. Front Endocrinol (Lausanne) 2023; 14:1095604. [PMID: 37223020 PMCID: PMC10200902 DOI: 10.3389/fendo.2023.1095604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/18/2023] [Indexed: 05/25/2023] Open
Abstract
Introduction Zinc finger and SCAN domain-containing protein 18 (ZSCAN18) has been investigated as a putative biomarker of multiple human cancers. However, the expression profile, epigenetic modification, prognostic value, transcription regulation, and molecular mechanism of ZSCAN18 in breast cancer (BC) remain unknown. Methods In the study, we present an integrated analysis of ZSCAN18 in BC based on public omics datasets with the use of multiple bioinformatics tools. Genes potentially regulated through restoration of ZSCAN18 expression in MDA-MB-231 cells were investigated to identify pathways associated with BC. Results We observed that ZSCAN18 was downregulated in BC and mRNA expression was significantly correlated with clinicopathological parameters. Low expression of ZSCAN18 was found in the HER2-positive and TNBC subtypes. High expression of ZSCAN18 was associated with good prognosis. As compared to normal tissues, the extent of ZSCAN18 DNA methylation was greater with fewer genetic alterations in BC tissues. ZSCAN18 was identified as a transcription factor that might be involved in intracellular molecular and metabolic processes. Low ZSCAN18 expression was associated with the cell cycle and glycolysis signaling pathway. Overexpression of ZSCAN18 inhibited mRNA expression of genes associated with the Wnt/β-catenin and glycolysis signaling pathways, including CTNNB1, BCL9, TSC1, and PFKP. ZSCAN18 expression was negatively correlated with infiltrating B cells and dendritic cells (DCs), as determined by the TIMER web server and reference to the TISIDB. ZSCAN18 DNA methylation was positively correlated with activated B cells, activated CD8+ and CD4+ T cells, macrophages, neutrophils, and activated DCs. Moreover, five ZSCAN18-related hub genes (KDM6B, KAT6A, KMT2D, KDM1A, and HSPBP1) were identified. ZSCAN18, ZNF396, and PGBD1 were identified as components of a physical complex. Conclusion ZSCAN18 is a potential tumor suppressor in BC, as expression is modified by DNA methylation and associated with patient survival. In addition, ZSCAN18 plays important roles in transcription regulation, the glycolysis signaling pathway, and the tumor immune microenvironment.
Collapse
Affiliation(s)
- Yu Wang
- Health Management Department, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuhao Luo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| | - Shaozhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| | - Lijia He
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| | - Guangrui Pan
- Department of Breast Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Dongmei Fan
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| | - Yu Fan
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| |
Collapse
|
8
|
Carli ALE, Hardy JM, Hoblos H, Ernst M, Lucet IS, Buchert M. Structure-Guided Prediction of the Functional Impact of DCLK1 Mutations on Tumorigenesis. Biomedicines 2023; 11:biomedicines11030990. [PMID: 36979969 PMCID: PMC10046695 DOI: 10.3390/biomedicines11030990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Doublecortin-like kinase 1 (DCLK1) is a functional serine/threonine (S/T)-kinase and a member of the doublecortin family of proteins which are characterized by their ability to bind to microtubules (MTs). DCLK1 is a proposed cancer driver gene, and its upregulation is associated with poor overall survival in several solid cancer types. However, how DCLK1 associates with MTs and how its kinase function contributes to pro-tumorigenic processes is poorly understood. This review builds on structural models to propose not only the specific functions of the domains but also attempts to predict the impact of individual somatic missense mutations on DCLK1 functions. Somatic missense mutations in DCLK1 are most frequently located within the N-terminal MT binding region and likely impact on the ability of DCLK1 to bind to αβ-tubulin and to polymerize and stabilize MTs. Moreover, the MT binding affinity of DCLK1 is negatively regulated by its auto-phosphorylation, and therefore mutations that affect kinase activity are predicted to indirectly alter MT dynamics. The emerging picture portrays DCLK1 as an MT-associated protein whose interactions with tubulin heterodimers and MTs are tightly controlled processes which, when disrupted, may confer pro-tumorigenic properties.
Collapse
Affiliation(s)
- Annalisa L E Carli
- Cancer Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Joshua M Hardy
- ACRF Chemical Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Hanadi Hoblos
- ACRF Chemical Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Matthias Ernst
- Cancer Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Isabelle S Lucet
- ACRF Chemical Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael Buchert
- Cancer Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
9
|
Big Data in Gastroenterology Research. Int J Mol Sci 2023; 24:ijms24032458. [PMID: 36768780 PMCID: PMC9916510 DOI: 10.3390/ijms24032458] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
Studying individual data types in isolation provides only limited and incomplete answers to complex biological questions and particularly falls short in revealing sufficient mechanistic and kinetic details. In contrast, multi-omics approaches to studying health and disease permit the generation and integration of multiple data types on a much larger scale, offering a comprehensive picture of biological and disease processes. Gastroenterology and hepatobiliary research are particularly well-suited to such analyses, given the unique position of the luminal gastrointestinal (GI) tract at the nexus between the gut (mucosa and luminal contents), brain, immune and endocrine systems, and GI microbiome. The generation of 'big data' from multi-omic, multi-site studies can enhance investigations into the connections between these organ systems and organisms and more broadly and accurately appraise the effects of dietary, pharmacological, and other therapeutic interventions. In this review, we describe a variety of useful omics approaches and how they can be integrated to provide a holistic depiction of the human and microbial genetic and proteomic changes underlying physiological and pathophysiological phenomena. We highlight the potential pitfalls and alternatives to help avoid the common errors in study design, execution, and analysis. We focus on the application, integration, and analysis of big data in gastroenterology and hepatobiliary research.
Collapse
|
10
|
Li B, Ren B, Ma G, Cai F, Wang P, Zeng Y, Liu Y, Zhang L, Yang Y, Liang H, Zhang R, Deng J. Inactivation of ZSCAN18 by promoter hypermethylation drives the proliferation via attenuating TP53INP2-mediated autophagy in gastric cancer cells. Clin Epigenetics 2023; 15:10. [PMID: 36650573 PMCID: PMC9847086 DOI: 10.1186/s13148-023-01425-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Zinc finger and scan domain containing 18 (ZSCAN18) belongs to the zinc finger transcription factor superfamily, which consists of hundreds of members that play critical roles in all steps of tumorigenesis. METHODS This study aims to investigate the roles of ZSCAN18 in gastric cancer (GC). The expression level in GC and the clinicopathologic features of ZSCAN18 were detected by immunohistochemistry staining. Methylation of ZSCAN18 promoter in GC tissues and cell lines was analyzed via MassARRAY; the same method was used to detect GC cell lines demethylated by 5-aza-2'-deoxycytidine treatment. The biological function of ZSCAN18 in GC cells was verified by in vitro and in vivo experiments. The downstream molecular mechanism of ZSCAN18 was explored using RNA next-generation sequencing, immunofluorescence and chromatin immunoprecipitation. RESULTS Our work revealed ZSCAN18 expression was markedly reduced in GC tissues compared with adjacent normal tissues as a result of hypermethylation in GC. Likewise, ZSCAN18 expression was significantly reduced in a panel of GC cell lines as a result of the densely methylated ZSCAN18 promoter. Functionally, ZSCAN18 overexpression inhibited the biological progression of GC cells, which was characterized by weaken proliferation, enhanced autophagy and suppressed tumor growth. ZSCAN18 acted as a transcription factor and played an important role in binding to the promoter of tumor protein 53-induced nuclear protein 2 (TP53INP2), and we also confirmed the anti-tumor effect of TP53INP2 in GC. Furthermore, the knockdown of TP53INP2 alleviated the inhibiting effects of ZSCAN18 in GC cells by in vitro and in vivo experiments. CONCLUSIONS Collectively, this study unveiled that ZSCAN18 played an anticancer role in GC by promoting autophagy and transcriptional regulation of TP53INP2 and provided a promising target for the diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Bin Li
- grid.411918.40000 0004 1798 6427Department of Gastric Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 People’s Republic of China
| | - Baoqing Ren
- grid.411918.40000 0004 1798 6427Department of Gastric Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 People’s Republic of China ,grid.464423.3Department of Gastroenterology and Pancreatic Surgery, ShanXi Provincial People’s Hospital, Taiyuan, 030000 People’s Republic of China
| | - Gang Ma
- grid.411918.40000 0004 1798 6427Department of Gastric Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 People’s Republic of China
| | - Fenglin Cai
- grid.411918.40000 0004 1798 6427Department of Gastric Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 People’s Republic of China
| | - Pengliang Wang
- grid.411918.40000 0004 1798 6427Department of Gastric Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 People’s Republic of China
| | - Yi Zeng
- grid.411918.40000 0004 1798 6427Department of Gastric Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 People’s Republic of China
| | - Yong Liu
- grid.411918.40000 0004 1798 6427Department of Gastric Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 People’s Republic of China
| | - Li Zhang
- grid.411918.40000 0004 1798 6427Department of Gastric Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 People’s Republic of China
| | - Yang Yang
- grid.411918.40000 0004 1798 6427Department of Gastric Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 People’s Republic of China
| | - Han Liang
- grid.411918.40000 0004 1798 6427Department of Gastric Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 People’s Republic of China
| | - Rupeng Zhang
- grid.411918.40000 0004 1798 6427Department of Gastric Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 People’s Republic of China
| | - Jingyu Deng
- grid.411918.40000 0004 1798 6427Department of Gastric Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 People’s Republic of China
| |
Collapse
|
11
|
Cysteine dioxygenase 1 attenuates the proliferation via inducing oxidative stress and integrated stress response in gastric cancer cells. Cell Death Dis 2022; 8:493. [PMID: 36526626 PMCID: PMC9758200 DOI: 10.1038/s41420-022-01277-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
Whereas cysteine dioxygenase 1 (CDO1) expression is lost due to its hypermethylated promoter across a range of cancer types including gastric cancer (GC), its functions and molecular underpinnings remain largely unknown. Here we demonstrate that reduced CDO1 expression is indicative of unfavorable prognosis in patients with GC. CDO1 overexpression in GC cells markedly inhibits cellular proliferation in vitro and in vivo. Mechanistically, CDO1 exerts this cytostatic effect via increasing oxidative stress and thus activating integrated stress response (ISR) in GC cells. High throughput screening (HTS) of antioxidants library identifies that Engeletin, a flavanonol glycoside, blunts oxidative stress and the ISR to relieve the inhibitory effect of CDO1 on the proliferation in GC cells. Additionally, genetic disruption or pharmaceutical inhibition of the ISR boosts the growth in the GC cells with CDO1 expression. Our data uncover the molecular mechanisms underlying the cytostatic function of CDO1 in the proliferation of GC cells.
Collapse
|
12
|
Albana J, Goyal U. Gastrointestinal Cancer Found in the Cervix With Unknown Primary Site and Treated With Definitive Chemoradiation. Cureus 2022; 14:e27300. [PMID: 36039268 PMCID: PMC9403251 DOI: 10.7759/cureus.27300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 11/15/2022] Open
Abstract
Locally advanced gastrointestinal cancers and cervical cancers are usually treated with a multimodality approach. Our case report shows a patient who was found to have gastrointestinal cancer in the cervix, and no primary gastrointestinal cancer was found on workup. She underwent chemoradiation to the pelvis with concurrent capecitabine and then underwent cervical brachytherapy with tandem and ovoid. She initially had done well but then noticed increased symptoms at follow-ups. Unfortunately, she was found to have residual disease about 16 months after the completion of treatment. There have been no reports of treatment of gastrointestinal cancer in the cervix with an unknown primary site in the literature to our knowledge.
Collapse
|
13
|
Bondaruk J, Jaksik R, Wang Z, Cogdell D, Lee S, Chen Y, Dinh KN, Majewski T, Zhang L, Cao S, Tian F, Yao H, Kuś P, Chen H, Weinstein JN, Navai N, Dinney C, Gao J, Theodorescu D, Logothetis C, Guo CC, Wang W, McConkey D, Wei P, Kimmel M, Czerniak B. The origin of bladder cancer from mucosal field effects. iScience 2022; 25:104551. [PMID: 35747385 PMCID: PMC9209726 DOI: 10.1016/j.isci.2022.104551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/19/2021] [Accepted: 06/02/2022] [Indexed: 12/30/2022] Open
Abstract
Whole-organ mapping was used to study molecular changes in the evolution of bladder cancer from field effects. We identified more than 100 dysregulated pathways, involving immunity, differentiation, and transformation, as initiators of carcinogenesis. Dysregulation of interleukins signified the involvement of inflammation in the incipient phases of the process. An aberrant methylation/expression of multiple HOX genes signified dysregulation of the differentiation program. We identified three types of mutations based on their geographic distribution. The most common were mutations restricted to individual mucosal samples that targeted uroprogenitor cells. Two types of mutations were associated with clonal expansion and involved large areas of mucosa. The α mutations occurred at low frequencies while the β mutations increased in frequency with disease progression. Modeling revealed that bladder carcinogenesis spans 10-15 years and can be divided into dormant and progressive phases. The progressive phase lasted 1-2 years and was driven by β mutations.
Collapse
Affiliation(s)
- Jolanta Bondaruk
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roman Jaksik
- Department of Systems Biology and Engineering and Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Ziqiao Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Cogdell
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sangkyou Lee
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yujie Chen
- Systems, Synthetic and Physical Biology Program, Rice University, Houston, TX, USA
| | - Khanh Ngoc Dinh
- Department of Statistics and the Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
| | - Tadeusz Majewski
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Li Zhang
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH, USA
| | - Shaolong Cao
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Feng Tian
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hui Yao
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paweł Kuś
- Department of Systems Biology and Engineering and Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Huiqin Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John N. Weinstein
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neema Navai
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Colin Dinney
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, TX, USA
| | - Dan Theodorescu
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai, Los Angeles, CA, USA
| | - Christopher Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, TX, USA
| | - Charles C. Guo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wenyi Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David McConkey
- Johns Hopkins Greenberg Bladder Cancer Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marek Kimmel
- Department of Statistics, Rice University, Houston, TX, USA
| | - Bogdan Czerniak
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
14
|
Sun M, Ju J, Ding Y, Zhao C, Tian C. The signaling pathways regulated by KRAB zinc-finger proteins in cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188731. [DOI: 10.1016/j.bbcan.2022.188731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/23/2022] [Accepted: 04/20/2022] [Indexed: 12/11/2022]
|
15
|
Olechnowicz A, Oleksiewicz U, Machnik M. KRAB-ZFPs and cancer stem cells identity. Genes Dis 2022. [PMID: 37492743 PMCID: PMC10363567 DOI: 10.1016/j.gendis.2022.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Studies on carcinogenesis continue to provide new information about different disease-related processes. Among others, much research has focused on the involvement of cancer stem cells (CSCs) in tumor initiation and progression. Studying the similarities and differences between CSCs and physiological stem cells (SCs) allows for a better understanding of cancer biology. Recently, it was shown that stem cell identity is partially governed by the Krϋppel-associated box domain zinc finger proteins (KRAB-ZFPs), the biggest family of transcription regulators. Several KRAB-ZFP factors exert a known effect in tumor cells, acting as tumor suppressor genes (TSGs) or oncogenes, yet their role in CSCs is still poorly characterized. Here, we review recent studies regarding the influence of KRAB-ZFPs and their cofactor protein TRIM28 on CSCs phenotype, stemness features, migration and invasion potential, metastasis, and expression of parental markers.
Collapse
|
16
|
He J, Huang J, Tang G, Wang P, He M, Wei S. Low Expression of ZNF154 is Related to Poor Prognosis in Gastric Cancer. Cancer Manag Res 2022; 14:659-672. [PMID: 35210862 PMCID: PMC8860727 DOI: 10.2147/cmar.s340053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/03/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction Zinc finger protein 154 (ZNF154) has been identified as a tumor suppressor gene in multiple carcinomas. Lymph node (LN) metastasis is one of the most intensively negative factor of gastric cancer (GC) prognosis. However, the potential mechanisms of ZNF154-mediated LN metastasis are not elucidated. This study aimed to investigate the role of ZNF154 in LN metastasis of GC and their underlying mechanisms through in vitro and in vivo experiments. Methods Antitumor effect was measured by growth inhibition by cell counting kit-8 (CCK-8) and colony formation assay. Cell cycle distribution and apoptosis were evaluated by flow cytometry. Cell migration and invasion were measured by wound healing and transwell invasion assays, respectively. The expression levels of proteins were analyzed by Western blot. Xenograft models were used for validation in vivo. Results Our research showed that ZNF154 was down-regulated in 81.43% (57 of 70) of GC tissues compared with 58.6% of paired non-tumor tissues from patients, ZNF154 was down-regulated in 100% (7 of 7) of GC cell lines, up-regulated expression of ZNF154 in MGC-803 GC cells reduced cell proliferation, viability, migration and invasion, and enhanced cell apoptosis and arrested cell cycle in G2 phase, and suppressed tumorigenicity of MGC-803 cells in mice. Furthermore, up-regulated expression of ZNF154 mRNA reduced the expression of B-cell lymphoma-2 (Bcl-2), matrix metalloproteinase 2 (MMP-1), hepatocyte growth factor (HGF), vascular endothelial growth factor-A/C (VEGF-A/C). Conclusion ZNF154 inhibited LN metastasis of GC cells by suppressing several biological events of GC cells. ZNF154 was a tumor suppressor gene that is a promising target for blocking nodal involvement in GC.
Collapse
Affiliation(s)
- Jinsong He
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Jing Huang
- Lung Cancer Institute, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Guo Tang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Pan Wang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Ming He
- Graduate School of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Shoujiang Wei
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
- Correspondence: Shoujiang Wei, Email
| |
Collapse
|
17
|
Chen M, Zhu JY, Mu WJ, Guo L. Cysteine dioxygenase type 1 (CDO1): its functional role in physiological and pathophysiological processes. Genes Dis 2022. [DOI: 10.1016/j.gendis.2021.12.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
18
|
Cheng L, Yang Z, Guo W, Wu C, Liang S, Tong A, Cao Z, Thorne RF, Yang SY, Yu Y, Chen Q. DCLK1 autoinhibition and activation in tumorigenesis. Innovation (N Y) 2022; 3:100191. [PMID: 34977835 PMCID: PMC8686072 DOI: 10.1016/j.xinn.2021.100191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 11/23/2021] [Indexed: 02/05/2023] Open
Abstract
Doublecortin-like kinase 1 (DCLK1) is upregulated in many tumors and is a marker for tumor stem cells. Accumulating evidence suggests DCLK1 constitutes a promising drug target for cancer therapy. However, the regulation of DCLK1 kinase activity is poorly understood, particularly the function of its autoinhibitory domain (AID), and, moreover, no physiological activators of DCLK1 have presently been reported. Here we determined the first DCLK1 kinase structure in the autoinhibited state and identified the neuronal calcium sensor HPCAL1 as an activator of DCLK1. The C-terminal AID functions to block the ATP-binding site and is competitive with ATP. HPCAL1 binds directly to the AID in a Ca2+-dependent manner, which releases the autoinhibition. We also analyzed cancer-associated mutations occurring in the AID and elucidate how these mutations disrupt DCLK1 autoinhibition to elicit kinase activity upregulation. Our results present a molecular mechanism for autoinhibition and activation of DCLK1 kinase activity and provide insights into DCLK1-associated tumorigenesis.
Collapse
Affiliation(s)
- Linna Cheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China.,Institute of Hematology, Henan Key Laboratory of Stem Cell Differentiation and Modification, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou 450003, China
| | - Zejing Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Wenhao Guo
- Department of Abdominal Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Chengyong Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Shufang Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Zhongwei Cao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Rick F Thorne
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou 450003, China
| | - Sheng-Yong Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Yamei Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Qiang Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| |
Collapse
|
19
|
Wang Y, Yi J, Liu X. Roles of Dclk1 in the pathogenesis, diagnosis, prognosis and treatment of pancreatic cancer: A review. Expert Rev Gastroenterol Hepatol 2022; 16:13-19. [PMID: 34937474 DOI: 10.1080/17474124.2022.2020643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/16/2021] [Indexed: 11/11/2022]
Abstract
INTRODUCTION Pancreatic cancer (PC) is a malignant tumor with significantly increased incidence and poor prognosis. Its extremely poor prognosis is generally attributed to its early invasion and metastasis as well as the presence of chemotherapy resistance, which may be related to the potential role of cancer stem cells (CSCs). Doublecortin-like kinase 1 (Dclk1) has been recognized to be a marker of CSCs in PC, showing intimate association with its occurrence, metastasis, and poor prognosis. AREAS COVERED A review serves to provide a comprehensive overview of Dclk1 in the pathogenesis, diagnosis, prognosis, and treatment in PC. EXPERT OPINION Searching for potential key biomarkers for PC has been an urgent issue to be addressed. The expression of Dclk1 is increasing in PC, and its effect is linked to the mutant Kras, supporting that it may be a potential new target. Therefore, it highlights Dclk1 as a candidate biomarker and therapeutic target in future clinical application.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Xiangya Hospital, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Jun Yi
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Xiangya Hospital, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Xiaowei Liu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Xiangya Hospital, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| |
Collapse
|
20
|
Establishment of a prognostic model of ten transcription factors in gastric cancer. Genomics 2021; 113:4075-4087. [PMID: 34688795 DOI: 10.1016/j.ygeno.2021.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 09/23/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023]
Abstract
Transcription factors (TFs) play an important role in tumors. We integrated and analyzed 13 GPL570 platform gastric cancer (GC) microarrays, identified 10 independent prognostic TFs, and constructed a GC prognostic model. Using GSE26942 as the verification set, the Kaplan-Meier curve showed that the signature distinguish the survival rate of GC patients (P < 0.01), and the AUC values are 0.746 and 0.630, respectively. Compared with the clinicopathological characteristics, the signature is an independent prognostic factor (P < 0.05). A nomogram was established based on the model, and the five-year calibration curve verified that the prediction of the nomogram was almost consistent with the actual survival rate, C-index of 0.747 indicated a moderate prognostic ability. The analysis of target genes of 10 TFs showed that they are closely related to the progression of GC. External database and rt-PCR showed that the RNA and protein expression of TFs are consistent with our analysis.
Collapse
|
21
|
Carbone A, De Santis E, Cela O, Giambra V, Miele L, Marrone G, Grieco A, Buschbeck M, Capitanio N, Mazza T, Mazzoccoli G. The Histone Variant MacroH2A1 Impacts Circadian Gene Expression and Cell Phenotype in an In Vitro Model of Hepatocellular Carcinoma. Biomedicines 2021; 9:biomedicines9081057. [PMID: 34440260 PMCID: PMC8391426 DOI: 10.3390/biomedicines9081057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide. A foremost risk factor for HCC is obesity/metabolic syndrome-related non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH), which is prompted by remarkable changes in transcription patterns of genes enriching metabolic, immune/inflammatory, and circadian pathways. Epigenetic mechanisms play a role in NAFLD-associated HCC, and macroH2A1, a variant of histone H2A, is involved in the pathogenesis modulating the expression of oncogenes and/or tumor suppressor genes and interacting with SIRT1, which crucially impacts the circadian clock circuitry. Hence, we aimed to appraise if and how macroH2A1 regulated the expression patterns of circadian genes in the setting of NAFLD-associated HCC. We took advantage of an in vitro model of liver cancer represented by HepG2 (human hepatocarcinoma) cells stably knocked down for macroH2A1 and conducted whole transcriptome profiling and deep phenotyping analysis. We found up-regulation of PER1 along with several deregulated circadian genes, enriching several important pathways and functions related to cancer onset and progression, such as epithelial-to-mesenchymal transition, cell cycle deregulation, and DNA damage. PER1 silencing partially mitigated the malignant phenotype induced by the loss of macroH2A1 in HCC cells. In conclusion, our findings suggest a modulatory role for the core circadian protein PER1 in liver carcinogenesis in the context of a lack of the macroH2A1 epigenetic and transcriptional landscape.
Collapse
Affiliation(s)
- Annalucia Carbone
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Elisabetta De Santis
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (E.D.S.); (V.G.)
| | - Olga Cela
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (O.C.); (N.C.)
| | - Vincenzo Giambra
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (E.D.S.); (V.G.)
| | - Luca Miele
- Fondazione Policlinico Universitario A. Gemelli-IRCCS, Catholic University of the Sacred Heart, 00168 Rome, Italy; (L.M.); (G.M.); (A.G.)
| | - Giuseppe Marrone
- Fondazione Policlinico Universitario A. Gemelli-IRCCS, Catholic University of the Sacred Heart, 00168 Rome, Italy; (L.M.); (G.M.); (A.G.)
| | - Antonio Grieco
- Fondazione Policlinico Universitario A. Gemelli-IRCCS, Catholic University of the Sacred Heart, 00168 Rome, Italy; (L.M.); (G.M.); (A.G.)
| | - Marcus Buschbeck
- Josep Carreras Leukaemia Research Institute, IJC Building, Can Ruti Campus Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Spain;
| | - Nazzareno Capitanio
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (O.C.); (N.C.)
| | - Tommaso Mazza
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
- Correspondence: ; Tel./Fax: +39-(0882)-410-255
| |
Collapse
|
22
|
Cheng L, Huang S, Chen L, Dong X, Zhang L, Wu C, Ye K, Shao F, Zhu Z, Thorne RF. Research Progress of DCLK1 Inhibitors as Cancer Therapeutics. Curr Med Chem 2021; 29:2261-2273. [PMID: 34254905 DOI: 10.2174/0929867328666210709110721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/29/2021] [Accepted: 06/11/2021] [Indexed: 11/22/2022]
Abstract
Doublecortin-like kinase 1 (DCLK1) has emerged over the last decade as a unique stem cell marker within gastrointestinal tissues. Evidence from mouse models shows that high Dclk1 expression denotes a population of cells that promote tissue regeneration and serve as potential cancer stem cells. Moreover, since specific DCLK1 isoforms are overexpressed in many cancers and not normal cells, targeting the expression or kinase activity of DCLK1 can inhibit cancer cell growth. Here we review the evidence for DCLK1 as a prospective cancer target, including its isoform-specific expression and mutational status in human cancers. We further discuss the challenges and current progress in the development of small-molecule inhibitors of DCLK1.
Collapse
Affiliation(s)
- Linna Cheng
- Institute of Hematology, Henan Key Laboratory of Stem Cell Differentiation and Modification, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Shenzhen Huang
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Lijuan Chen
- Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Xiaoyan Dong
- Institute of Hematology, Henan Key Laboratory of Stem Cell Differentiation and Modification, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Lei Zhang
- Institute of Hematology, Henan Key Laboratory of Stem Cell Differentiation and Modification, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Chengye Wu
- Institute of Hematology, Henan Key Laboratory of Stem Cell Differentiation and Modification, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Kaihong Ye
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, No.7, WeiWu Road, Zhengzhou, 450003, Henan, China
| | - Fengmin Shao
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, No.7, WeiWu Road, Zhengzhou, 450003, Henan, China
| | - Zunmin Zhu
- Institute of Hematology, Henan Key Laboratory of Stem Cell Differentiation and Modification, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Rick F Thorne
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, No.7, WeiWu Road, Zhengzhou, 450003, Henan, China
| |
Collapse
|
23
|
Nie C, Han X, Wei R, Leonteva A, Hong J, Du X, Wang J, Zhu L, Zhao Y, Xue Y, Zhou H, Tian W. Association of ZNF331 and WIF1 methylation in peripheral blood leukocytes with the risk and prognosis of gastric cancer. BMC Cancer 2021; 21:551. [PMID: 33992091 PMCID: PMC8126111 DOI: 10.1186/s12885-021-08199-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/14/2021] [Indexed: 12/19/2022] Open
Abstract
Background Peripheral blood leukocyte (PBL) DNA methylation may serve as a surrogate marker to evaluate the susceptibility to and prognosis of gastric cancer (GC). In this study, blood-derived DNA methylation levels of two tumour-related genes, namely, ZNF331 and WIF1, and their impacts on the risk and prognosis of GC were evaluated. Methods In total, 398 GC cases and 397 controls were recruited for the study. Then, all cases were followed up for 5 years. ZNF331 and WIF1 promoter methylation status in PBLs was measured using a methylation-sensitive high-resolution melting method. Logistic and Cox regression models were used to analyse the correlation between gene methylation and the risk and prognosis of GC. Confounders were balanced through propensity score (PS) matching. Results High ZNF331 methylation significantly decreased GC risk after PS adjustment (OR = 0.580, 95% CI: 0.375–0.898, P = 0.015), which also presented in males (OR = 0.577, 95% CI: 0.343–0.970, P = 0.038). However, WIF1 methylation was not associated with GC risk. Additionally, significant combined effects between ZNF331 methylation and the intake of green vegetables and garlic were observed (OR = 0.073, 95% CI: 0.027–0.196, P < 0.001 and OR = 0.138, 95% CI: 0.080–0.238, P < 0.001, respectively). Furthermore, ZNF331 and WIF1 methylation had no impact on the prognosis of GC. Conclusion ZNF331 methylation in PBLs may affect GC risk in combination with the consumption of green vegetables and garlic and may act as a potential biomarker of GC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08199-4.
Collapse
Affiliation(s)
- Chuang Nie
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, 157 Baojian Road, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Xu Han
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, 157 Baojian Road, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Rongrong Wei
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, 157 Baojian Road, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Anastasiia Leonteva
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, 157 Baojian Road, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Jia Hong
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, 157 Baojian Road, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Xinyu Du
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, 157 Baojian Road, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Jing Wang
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, 157 Baojian Road, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Lin Zhu
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, 157 Baojian Road, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Yashuang Zhao
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, 157 Baojian Road, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Yingwei Xue
- Department of Gastroenterological Surgery, Third Affiliated Hospital of Harbin Medical University, 150 Haping Road, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Haibo Zhou
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, 157 Baojian Road, Harbin, 150081, Heilongjiang Province, People's Republic of China.
| | - Wenjing Tian
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, 157 Baojian Road, Harbin, 150081, Heilongjiang Province, People's Republic of China.
| |
Collapse
|
24
|
KRAB-ZFP Transcriptional Regulators Acting as Oncogenes and Tumor Suppressors: An Overview. Int J Mol Sci 2021; 22:ijms22042212. [PMID: 33672287 PMCID: PMC7926519 DOI: 10.3390/ijms22042212] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 12/17/2022] Open
Abstract
Krüppel-associated box zinc finger proteins (KRAB-ZFPs) constitute the largest family of transcriptional factors exerting co-repressor functions in mammalian cells. In general, KRAB-ZFPs have a dual structure. They may bind to specific DNA sequences via zinc finger motifs and recruit a repressive complex through the KRAB domain. Such a complex mediates histone deacetylation, trimethylation of histone 3 at lysine 9 (H3K9me3), and subsequent heterochromatization. Nevertheless, apart from their repressive role, KRAB-ZFPs may also co-activate gene transcription, likely through interaction with other factors implicated in transcriptional control. KRAB-ZFPs play essential roles in various biological processes, including development, imprinting, retroelement silencing, and carcinogenesis. Cancer cells possess multiple genomic, epigenomic, and transcriptomic aberrations. A growing number of data indicates that the expression of many KRAB-ZFPs is altered in several tumor types, in which they may act as oncogenes or tumor suppressors. Hereby, we review the available literature describing the oncogenic and suppressive roles of various KRAB-ZFPs in cancer. We focused on their association with the clinicopathological features and treatment response, as well as their influence on the cancer cell phenotype. Moreover, we summarized the identified upstream and downstream molecular mechanisms that may govern the functioning of KRAB-ZFPs in a cancer setting.
Collapse
|
25
|
Terkelsen T, Pernemalm M, Gromov P, Børresen-Dale AL, Krogh A, Haakensen VD, Lethiö J, Papaleo E, Gromova I. High-throughput proteomics of breast cancer interstitial fluid: identification of tumor subtype-specific serologically relevant biomarkers. Mol Oncol 2021; 15:429-461. [PMID: 33176066 PMCID: PMC7858121 DOI: 10.1002/1878-0261.12850] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 08/13/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022] Open
Abstract
Despite significant advancements in breast cancer (BC) research, clinicians lack robust serological protein markers for accurate diagnostics and tumor stratification. Tumor interstitial fluid (TIF) accumulates aberrantly externalized proteins within the local tumor space, which can potentially gain access to the circulatory system. As such, TIF may represent a valuable starting point for identifying relevant tumor-specific serological biomarkers. The aim of the study was to perform comprehensive proteomic profiling of TIF to identify proteins associated with BC tumor status and subtype. A liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis of 35 TIFs of three main subtypes: luminal (19), Her2 (4), and triple-negative (TNBC) (12) resulted in the identification of > 8800 proteins. Unsupervised hierarchical clustering segregated the TIF proteome into two major clusters, luminal and TNBC/Her2 subgroups. High-grade tumors enriched with tumor infiltrating lymphocytes (TILs) were also stratified from low-grade tumors. A consensus analysis approach, including differential abundance analysis, selection operator regression, and random forest returned a minimal set of 24 proteins associated with BC subtypes, receptor status, and TIL scoring. Among them, a panel of 10 proteins, AGR3, BCAM, CELSR1, MIEN1, NAT1, PIP4K2B, SEC23B, THTPA, TMEM51, and ULBP2, was found to stratify the tumor subtype-specific TIFs. In particular, upregulation of BCAM and CELSR1 differentiates luminal subtypes, while upregulation of MIEN1 differentiates Her2 subtypes. Immunohistochemistry analysis showed a direct correlation between protein abundance in TIFs and intratumor expression levels for all 10 proteins. Sensitivity and specificity were estimated for this protein panel by using an independent, comprehensive breast tumor proteome dataset. The results of this analysis strongly support our data, with eight of the proteins potentially representing biomarkers for stratification of BC subtypes. Five of the most representative proteomics databases currently available were also used to estimate the potential for these selected proteins to serve as putative serological markers.
Collapse
Affiliation(s)
- Thilde Terkelsen
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Maria Pernemalm
- Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Pavel Gromov
- Breast Cancer Biology Group, Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Anna-Lise Børresen-Dale
- Department of Cancer Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Norway
| | - Anders Krogh
- Department of Computer Science, University of Copenhagen, Denmark.,Department of Biology, University of Copenhagen, Denmark
| | - Vilde D Haakensen
- Department of Cancer Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Norway
| | - Janne Lethiö
- Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Elena Papaleo
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark.,Translational Disease System Biology, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Denmark
| | - Irina Gromova
- Breast Cancer Biology Group, Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| |
Collapse
|
26
|
Omics-Based Platforms: Current Status and Potential Use for Cholangiocarcinoma. Biomolecules 2020; 10:biom10101377. [PMID: 32998289 PMCID: PMC7600697 DOI: 10.3390/biom10101377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/26/2020] [Accepted: 09/26/2020] [Indexed: 02/07/2023] Open
Abstract
Cholangiocarcinoma (CCA) has been identified as a highly malignant cancer that can be transformed from epithelial cells of the bile duct, including intrahepatic, perihilar and extrahepatic. High-resolution imaging tools (abdominal ultrasound, computed tomography and percutaneous transhepatic cholangial drainage) are recruited for diagnosis. However, the lack of early diagnostic biomarkers and treatment evaluation can lead to serious outcomes and poor prognosis (i.e., CA19-9, MUC5AC). In recent years, scientists have established a large number of omics profiles to reveal underlying mechanisms and networks (i.e., IL-6/STAT3, NOTCH). With these results, we achieved several genomic alteration events (i.e., TP53mut, KRASmut) and epigenetic modifications (i.e., DNA methylation, histone modification) in CCA cells and clinical patients. Moreover, we reviewed candidate gene (such as NF-kB, YAP1) that drive gene transcription factors and canonical pathways through transcriptomics profiles (including microarrays and next-generation sequencing). In addition, the proteomics database also indicates which molecules and their directly binding status could trigger dysfunction signatures in tumorigenesis (carbohydrate antigen 19-9, mucins). Most importantly, we collected metabolomics datasets and pivotal metabolites. These results reflect the pharmacotherapeutic options and evaluate pharmacokinetic/pharmacodynamics in vitro and in vivo. We reversed the panels and selected many potentially small compounds from the connectivity map and L1000CDS2 system. In this paper, we summarize the prognostic value of each candidate gene and correlate this information with clinical events in CCA. This review can serve as a reference for further research to clearly investigate the complex characteristics of CCA, which may lead to better prognosis, drug repurposing and treatment strategies.
Collapse
|
27
|
Wang C, Liu S, Kuang Y, Hu X, Fang X. Downregulation of ZNF365 by methylation predicts poor prognosis in patients with colorectal cancer by decreasing phospho-p53 (Ser15) expression. Oncol Lett 2020; 20:85. [PMID: 32863918 PMCID: PMC7436887 DOI: 10.3892/ol.2020.11946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 06/26/2020] [Indexed: 01/11/2023] Open
Abstract
ZNF365 is a transcription factor that plays important roles in different types of cancer, such as colorectal cancer, breast cancer and hepatocellular carcinoma. ZNF365 can promote stalled replication fork recovery to prevent genomic instability, which is a notable feature of sporadic and hereditary types of cancers. However, the function of ZNF365 in the tumor progression of colorectal cancer (CRC) remains unclear. Thus, immunohistochemical staining was used to investigate the association between ZNF365 expression and the clinicopathological characteristics of patients with colorectal cancer. The results demonstrated that ZNF365 protein was strongly expressed in the nucleus and cytoplasm of normal colorectal mucosa. Furthermore ZNF365, which is methylated and downregulated in most cancer cell lines and tissues, was significantly associated with lymph node metastasis (P=0.015), depth of invasion (P=0.031) and histopathological grading (P=0.042). A positive correlation was observed between ZNF365 expression and phosphorylated (P)-p53 (Ser15) protein expression (r=0.18; P=0.038). Survival analysis indicated that patients with high ZNF365 expression had a higher survival rate than those with low ZNF365 expression (P=0.009), suggesting that ZNF365 may be an independent prognostic factor for survival in colorectal cancer (P=0.046). Taken together, the results of the present study demonstrated that ZNF365 was frequently inactivated by promoter methylation and independently predicted poor prognosis in patients with colorectal cancer by downregulating P-p53 (Ser15) expression.
Collapse
Affiliation(s)
- Chan Wang
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Shuiping Liu
- Department of Cancer Pharmacology and Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Holistic Integrative Pharmacy Institutes, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310012, P.R. China
| | - Yeye Kuang
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Xiaotong Hu
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China.,Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Xiao Fang
- Department of Anesthesiology and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
28
|
Leite ML, Oliveira KBS, Cunha VA, Dias SC, da Cunha NB, Costa FF. Epigenetic Therapies in the Precision Medicine Era. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Michel Lopes Leite
- Genomic Sciences and Biotechnology Program UCB ‐ Brasilia, SgAN 916, Modulo B, Bloco C, 70790‐160 Brasília DF Brazil
| | | | - Victor Albuquerque Cunha
- Genomic Sciences and Biotechnology Program UCB ‐ Brasilia, SgAN 916, Modulo B, Bloco C, 70790‐160 Brasília DF Brazil
| | - Simoni Campos Dias
- Genomic Sciences and Biotechnology Program UCB ‐ Brasilia, SgAN 916, Modulo B, Bloco C, 70790‐160 Brasília DF Brazil
- Animal Biology DepartmentUniversidade de Brasília UnB, Campus Darcy Ribeiro. Brasilia DF 70910‐900 Brazil
| | - Nicolau Brito da Cunha
- Genomic Sciences and Biotechnology Program UCB ‐ Brasilia, SgAN 916, Modulo B, Bloco C, 70790‐160 Brasília DF Brazil
| | - Fabricio F. Costa
- Cancer Biology and Epigenomics ProgramAnn & Robert H Lurie Children's Hospital of Chicago Research Center, Northwestern University's Feinberg School of Medicine 2430 N. Halsted St., Box 220 Chicago IL 60611 USA
- Northwestern University's Feinberg School of Medicine 2430 N. Halsted St., Box 220 Chicago IL 60611 USA
- MATTER Chicago 222 W. Merchandise Mart Plaza, Suite 12th Floor Chicago IL 60654 USA
- Genomic Enterprise (www.genomicenterprise.com) San Diego, CA 92008 and New York NY 11581 USA
| |
Collapse
|
29
|
Zhu L, Huang C, Yang X, Zhang B, He X, Xu W, Huang K. Proteomics reveals the alleviation of zinc towards aflatoxin B1-induced cytotoxicity in human hepatocyes (HepG2 cells). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 198:110596. [PMID: 32353602 DOI: 10.1016/j.ecoenv.2020.110596] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 05/24/2023]
Abstract
Aflatoxin B1 (AFB1) is a known carcinogen found in contaminated food and designated by the World Health Organization as a class I carcinogenic substance. AFB1 presents with carcinogenicity, teratogenicity, and mutagenicity, and the liver is the human organ most susceptible to AFB1. Zinc (Zn), which is one of the essential nutrient elements that could protect the cells from biological toxins, heavy metals, hydrogen peroxide, metal chelators and radiation, is assessed in this study for its potential to alleviate AFB1-induced cytotoxicity. Samples were divided into three groups, namely CK, AFB1, and AFB1+Zn. Protein expressions were analyzed by two-way electrophoresis combined with flight mass spectrometry, with 41 differentially expressed proteins identified in the results, mainly related to oxidative stress, cell apoptosis, DNA damage, and energy metabolism. Zn was found to regulate the expression of peroxidases (peroxiredoxin-1, peroxiredoxin-5, peroxiredoxin-6) to relieve AFB1-induced oxidative stress. Moreover, Zn could decrease the expression of pro-apoptotic genes (cleaved-caspase-3, caspase-9, and Bax) and increase the expression of anti-apoptotic genes (Bcl-2 and Bcl-xl) to alleviate the cell apoptosis induced by AFB1. In addition, AFB1 reduced intracellular ATP levels, whereas Zn supplementation boosted ATP levels and maintained homeostasis and a steady state of cellular energy metabolism by modulating AMPK-ACC phosphorylation levels, while many zinc finger proteins changed after AFB1 treatment. These results, therefore, indicate that Zn could alleviate AFB1-induced cytotoxicity by changing the expressions of zinc finger proteins in liver hepatocellular carcinoma (HepG2 cells).
Collapse
Affiliation(s)
- Liye Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, 100083, China
| | - Chuchu Huang
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, 100083, China
| | - Xuan Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, 100083, China
| | - Boyang Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, 100083, China
| | - Xiaoyun He
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, 100083, China
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, 100083, China
| | - Kunlun Huang
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
30
|
Vedeld HM, Folseraas T, Lind GE. Detecting cholangiocarcinoma in patients with primary sclerosing cholangitis - The promise of DNA methylation and molecular biomarkers. JHEP Rep 2020; 2:100143. [PMID: 32939446 PMCID: PMC7479288 DOI: 10.1016/j.jhepr.2020.100143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a highly fatal malignancy of the bile ducts that arises in up to 20% of patients with primary sclerosing cholangitis (PSC). Current detection methods for CCA display suboptimal sensitivity and/or specificity, and there is no evidence-based screening strategy for CCA in patients with PSC. Consequently, CCA is often detected too late for surgical resection, contributing to the high mortality associated with this malignancy. Recently, biomarkers have emerged with potential to complement current detection methods, and/or be used for cancer surveillance in high-risk patient groups, including patients with PSC. Aberrant DNA methylation patterns represent promising biomarkers with great potential for CCA detection. Such aberrations are frequent in CCA, often occur early, and can be detected in liquid biopsies, including blood, bile and urine. This review summarises and highlights the most promising DNA methylation biomarkers identified for CCA detection so far, focusing on patients with PSC. Other promising molecular biomarkers for detection of PSC-associated CCA in liquid biopsies will also be briefly covered.
Collapse
Affiliation(s)
- Hege Marie Vedeld
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Trine Folseraas
- Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway.,Section of Gastroenterology, Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Guro Elisabeth Lind
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
31
|
Yin W, Wang X, Li Y, Wang B, Song M, Hulbert A, Chen C, Yu F. Promoter hypermethylation of cysteine dioxygenase type 1 in patients with non-small cell lung cancer. Oncol Lett 2020; 20:967-973. [PMID: 32566027 DOI: 10.3892/ol.2020.11592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 02/28/2020] [Indexed: 12/19/2022] Open
Abstract
In the present study, promoter hypermethylation of cysteine dioxygenase type 1 (CDO1) was evaluated in non-small cell lung cancer (NSCLC) tissues to assess the value of CDO1 as a novel biomarker to improve the diagnosis of NSCLC. Tumor tissue samples and corresponding normal lung tissue samples from 42 patients with NSCLC were obtained at the Department of Thoracic Surgery, The Second Xiangya Hospital (Changsha, China). Conventional methylation-specific PCR (cMSP) and methylation-on-beads followed by quantitative methylation-specific PCR (MOB-qMSP) were used to analyze the tumor and normal lung tissue samples. Using these two methods, promoter DNA hypermethylation of the CDO1 gene was detected in 59.4 and 71.0% of tumor tissues of patients with NSCLC and in 9.4 and 0% of normal lung tissue, respectively. Compared with the rate of methylation in the well-differentiated NSCLC tissues (15.4 and 55.6%, respectively), the rate of CDO1 gene promoter methylation was higher in the poorly differentiated tissues (89.5 and 92.3%, respectively). Overall, it was demonstrated that the MOB-qMSP method had a higher positive detection rate for CDO1 hypermethylation compared with the cMSP method. In conclusion, CDO1 gene promoter hypermethylation was more frequently observed in NSCLC tissues compared with in normal lung tissues, and a high methylation frequency of the CDO1 gene in biopsy specimens of NSCLC was associated with the degree of differentiation.
Collapse
Affiliation(s)
- Wei Yin
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Xiang Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Yunping Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Bin Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Mingzhe Song
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Alicia Hulbert
- Department of Surgery, University of Illinois at Chicago School of Medicine, Chicago, IL 60607, USA
| | - Chen Chen
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Fenglei Yu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
32
|
Maekawa H, Ito T, Orita H, Kushida T, Sakurada M, Sato K, Hulbert A, Brock MV. Analysis of the methylation of CpG islands in the CDO1, TAC1 and CHFR genes in pancreatic ductal cancer. Oncol Lett 2020; 19:2197-2204. [PMID: 32194717 PMCID: PMC7039134 DOI: 10.3892/ol.2020.11340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 12/12/2019] [Indexed: 12/15/2022] Open
Abstract
No difference in the gene methylation status of tumor-suppression genes between pancreatic cancer tissues and adjacent non-cancer tissues is observed. The present study investigated whether the promoter CpG islands of the cysteine dioxygenase 1 (CDO1), tachykinin precursor 1 (TAC1) and checkpoint with forkhead and ring finger domains (CHFR) genes were methylated in pancreatic cancer and adjacent non-cancerous pancreatic tissue in order to determine if they could be considered as markers for the detection of pancreatic cancer. A total of 38 Formalin-fixed and paraffin-embedded pancreatic adenocarcinoma tissues and their adjacent non-cancerous specimens from patients with pancreatic cancer, as well as 9 non-cancerous pancreatic samples from patients without pancreatic adenocarcinoma were obtained following surgical resection. The hypermethylation of CpG islands was detected using a methylation-specific quantitative PCR. The methylation values were calculated using the ∆Cq method and were expressed as 2−ΔCq. The 2−ΔCq value of the CDO1 promoter from pancreatic adenocarcinoma specimens was significantly higher compared with that of adjacent non-cancerous and tumor-free pancreatic tissues (P<0.0001 and P=0.0008, respectively). The 2−ΔCq value of the TAC1 promoter of pancreatic adenocarcinoma was also significantly higher compared with that of adjacent non-cancerous tissues and tumor-free pancreatic samples (both P<0.0001). However, there was no significant difference in the 2−ΔCq value of the CHFR promoter among the pancreatic cancer, adjacent non-cancer tissue and tumor-free pancreatic samples. Furthermore, 12 out of the 38 pancreatic adenocarcinoma cases (31.6%) presented some methylation in the CHFR promoter. The results from Kaplan-Meier analysis between CHFR promoter methylation values and the clinicopathological characteristics of patients with pancreatic adenocarcinoma demonstrated that CHFR promoter methylation was significantly associated with lymph node metastasis. The methylation values of CDO1 and TAC1 promoters in cancer tissues were higher compared with adjacent tissues. However, whether hypermethylation of CDO1 and TAC1 promoters may serve as a biomarker in the diagnosis of pancreatic adenocarcinoma remains unclear.
Collapse
Affiliation(s)
- Hiroshi Maekawa
- Department of Surgery, Juntendo University Shizuoka Hospital, Juntendo University School of Medicine, Izunokuni, Shizuoka 410-2295, Japan
| | - Tomoaki Ito
- Department of Surgery, Juntendo University Shizuoka Hospital, Juntendo University School of Medicine, Izunokuni, Shizuoka 410-2295, Japan.,Department of Surgery, The Sidney Kimmel Cancer Center, The Johns Hopkins University, School of Medicine, Baltimore, MD 21287, USA
| | - Hajime Orita
- Department of Surgery, Juntendo University Shizuoka Hospital, Juntendo University School of Medicine, Izunokuni, Shizuoka 410-2295, Japan
| | - Tomoyuki Kushida
- Department of Surgery, Juntendo University Shizuoka Hospital, Juntendo University School of Medicine, Izunokuni, Shizuoka 410-2295, Japan
| | - Mutsumi Sakurada
- Department of Surgery, Juntendo University Shizuoka Hospital, Juntendo University School of Medicine, Izunokuni, Shizuoka 410-2295, Japan
| | - Koichi Sato
- Department of Surgery, Juntendo University Shizuoka Hospital, Juntendo University School of Medicine, Izunokuni, Shizuoka 410-2295, Japan
| | - Alicia Hulbert
- Department of Surgery, The Sidney Kimmel Cancer Center, The Johns Hopkins University, School of Medicine, Baltimore, MD 21287, USA.,Department of Surgery, University of Illinois at Chicago School of Medicine, Chicago, IL 60607, USA
| | - Malcolm V Brock
- Department of Surgery, The Sidney Kimmel Cancer Center, The Johns Hopkins University, School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
33
|
Wang FS, Wu WH, Hsiu WS, Liu YJ, Chuang KW. Genome-Scale Metabolic Modeling with Protein Expressions of Normal and Cancerous Colorectal Tissues for Oncogene Inference. Metabolites 2019; 10:metabo10010016. [PMID: 31881674 PMCID: PMC7022839 DOI: 10.3390/metabo10010016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/10/2019] [Accepted: 12/21/2019] [Indexed: 12/23/2022] Open
Abstract
Although cancer has historically been regarded as a cell proliferation disorder, it has recently been considered a metabolic disease. The first discovery of metabolic alterations in cancer cells refers to Otto Warburg’s observations. Cancer metabolism results in alterations in metabolic fluxes that are evident in cancer cells compared with most normal tissue cells. This study applied protein expressions of normal and cancer cells to reconstruct two tissue-specific genome-scale metabolic models. Both models were employed in a tri-level optimization framework to infer oncogenes. Moreover, this study also introduced enzyme pseudo-coding numbers in the gene association expression to avoid performing posterior decision-making that is necessary for the reaction-based method. Colorectal cancer (CRC) was the topic of this case study, and 20 top-ranked oncogenes were determined. Notably, these dysregulated genes were involved in various metabolic subsystems and compartments. We found that the average similarity ratio for each dysregulation is higher than 98%, and the extent of similarity for flux changes is higher than 93%. On the basis of surveys of PubMed and GeneCards, these oncogenes were also investigated in various carcinomas and diseases. Most dysregulated genes connect to catalase that acts as a hub and connects protein signaling pathways, such as those involving TP53, mTOR, AKT1, MAPK1, EGFR, MYC, CDK8, and RAS family.
Collapse
|
34
|
Hung CS, Wang YC, Guo JW, Yang RN, Lee CL, Shen MH, Huang CC, Huang CJ, Yang JY, Liu CY. Expression pattern of placenta specific 8 and keratin 20 in different types of gastrointestinal cancer. Mol Med Rep 2019; 21:659-666. [PMID: 31974611 PMCID: PMC6947936 DOI: 10.3892/mmr.2019.10871] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 11/06/2019] [Indexed: 12/14/2022] Open
Abstract
The aim of the present study was to investigate the expression of keratin 20 (KRT20) and placenta specific 8 (PLAC8) in gastrointestinal (GI) cancer with various differentiation phenotypes. The present study retrospectively investigated archived formalin-fixed paraffin-embedded tissue samples from 12 patients at different stages of GI cancer [four with gastric cancer, four with pancreatic cancer and four with colorectal cancer (CRC)]. The stages were pre-determined, according to differentiation phenotypes, by a pathologist of the Department of Pathology at Sijhih Cathay General Hospital. KRT20 and PLAC8 expression levels were assessed using immunohistochemistry. The CRC cell lines SW620 and Caco-2 were used to assess interactions between KRT20 and PLAC8 via reverse transcription-quantitative PCR. PLAC8 and KRT20 expression was observed consistently only in the well-differentiated CRC tissue samples. Low KRT20 expression levels were observed in the PLAC8 knockdown SW620 cells. In addition, there was a positive association between PLAC8 and KRT20 expression in the differentiated Caco-2 cells. According to the results of the present study, the differentiation status of GI cancer influenced KRT20 expression, particularly in CRC, which may explain why patients with well-differentiated CRC display better clinical outcomes. Therefore, the prognostic significance of KRT20 and PLAC8 may be particularly crucial for patients with CRC displaying a well-differentiated phenotype.
Collapse
Affiliation(s)
- Chih-Sheng Hung
- Department of Internal Medicine, Division of Gastroenterology, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C
| | - Yen-Chieh Wang
- Department of Surgery, Division of Urology, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C
| | - Jiun-Wen Guo
- Department of Medical Research, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C
| | - Ruey-Neng Yang
- Department of Internal Medicine, Sijhih Cathay General Hospital, New Taipei 22174, Taiwan, R.O.C
| | - Chia-Long Lee
- Department of Internal Medicine, Division of Gastroenterology, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C
| | - Ming-Hung Shen
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan, R.O.C
| | - Chi-Cheng Huang
- Department of Surgery, Taipei‑Veterans General Hospital, Taipei 11217, Taiwan, R.O.C
| | - Chi-Jung Huang
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan, R.O.C
| | - Jhih-Yun Yang
- Department of Mathematics, Taipei Wego Private Senior High School, Taipei 11254, Taiwan, R.O.C
| | - Chih-Yi Liu
- Department of Pathology, Sijhih Cathay General Hospital, New Taipei 22174, Taiwan, R.O.C
| |
Collapse
|
35
|
Jiang H, Gu J, Du J, Qi X, Qian C, Fei B. A 21‑gene Support Vector Machine classifier and a 10‑gene risk score system constructed for patients with gastric cancer. Mol Med Rep 2019; 21:347-359. [PMID: 31939629 PMCID: PMC6896370 DOI: 10.3892/mmr.2019.10841] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 10/25/2019] [Indexed: 01/17/2023] Open
Abstract
Gastric cancer (GC) ranks fifth in terms of incidence and third in terms of tumor mortality worldwide. The present study was designed to construct a Support Vector Machine (SVM) classifier and risk score system for GC. The GSE62254 (training set) and GSE26253 (validation set 2) datasets were downloaded from the Gene Expression Omnibus database. Furthermore, the gene expression profile of GC (validation set 1) was obtained from The Cancer Genome Atlas database. Differentially expressed genes (DEGs) between recurrent and non‑recurrent samples were determined using the limma package. The feature genes were selected using the Caret package, and an SVM classifier was built using the e1071 package. Using the penalized package, the optimal predictive genes for constructing a risk score system were screened. Finally, stratification analysis of clinical factors and pathway enrichment analysis were performed using Gene Set Enrichment Analysis. A total of 239 DEGs were identified in GSE62254, among which 114 DEGs were significantly associated with both recurrence‑free survival and overall survival. Subsequently, 21 feature genes were screened from the 114 DEGs, and an SVM classifier was built. A risk score system for survival prediction was constructed, following the selection of 10 optimal genes, including A‑kinase anchoring protein 12, angiopoietin‑like protein 1, cysteine‑rich sequence 1, myeloid/lymphoid or mixed‑lineage leukemia, translocated to chromosome 11, neuron navigator 3, neurobeachin, nephroblastoma overexpressed, pleiotrophin, tumor suppressor candidate 3 and zinc finger and SCAN domain containing 18. The stratification analysis revealed that pathological stage was an independent prognostic clinical factor in the high‑risk group. Additionally, eight significant pathways were associated with the 10‑gene signature. The SVM classifier and risk score system may be applied for classifying and predicting the prognosis of patients with GC, respectively.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, P.R. China
| | - Jiming Gu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, P.R. China
| | - Jun Du
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, P.R. China
| | - Xiaowei Qi
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, P.R. China
| | - Chengjia Qian
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, P.R. China
| | - Bojian Fei
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, P.R. China
| |
Collapse
|
36
|
Ibrahim J, Op de Beeck K, Fransen E, Peeters M, Van Camp G. The Gasdermin E Gene Has Potential as a Pan-Cancer Biomarker, While Discriminating between Different Tumor Types. Cancers (Basel) 2019; 11:cancers11111810. [PMID: 31752152 PMCID: PMC6896019 DOI: 10.3390/cancers11111810] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 01/08/2023] Open
Abstract
Due to the elevated rates of incidence and mortality of cancer, early and accurate detection is crucial for achieving optimal treatment. Molecular biomarkers remain important screening and detection tools, especially in light of novel blood-based assays. DNA methylation in cancer has been linked to tumorigenesis, but its value as a biomarker has not been fully explored. In this study, we have investigated the methylation patterns of the Gasdermin E gene across 14 different tumor types using The Cancer Genome Atlas (TCGA) methylation data (N = 6502). We were able to identify six CpG sites that could effectively distinguish tumors from normal samples in a pan-cancer setting (AUC = 0.86). This combination of pan-cancer biomarkers was validated in six independent datasets (AUC = 0.84–0.97). Moreover, we tested 74,613 different combinations of six CpG probes, where we identified tumor-specific signatures that could differentiate one tumor type versus all the others (AUC = 0.79–0.98). In all, methylation patterns exhibited great variation between cancer and normal tissues, but were also tumor specific. Our analyses highlight that a Gasdermin E methylation biomarker assay, not only has the potential for being a methylation-specific pan-cancer detection marker, but it also possesses the capacity to discriminate between different types of tumors.
Collapse
Affiliation(s)
- Joe Ibrahim
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650 Edegem, Belgium; (J.I.); (K.O.d.B.); (E.F.)
- Centre for Oncological Research, University of Antwerp and Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium;
| | - Ken Op de Beeck
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650 Edegem, Belgium; (J.I.); (K.O.d.B.); (E.F.)
- Centre for Oncological Research, University of Antwerp and Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium;
| | - Erik Fransen
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650 Edegem, Belgium; (J.I.); (K.O.d.B.); (E.F.)
- StatUa Centre for Statistics, University of Antwerp, 2000 Antwerp, Belgium
| | - Marc Peeters
- Centre for Oncological Research, University of Antwerp and Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium;
- Department of Medical Oncology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium
| | - Guy Van Camp
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650 Edegem, Belgium; (J.I.); (K.O.d.B.); (E.F.)
- Centre for Oncological Research, University of Antwerp and Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium;
- Correspondence: ; Tel.: +32-3275-9762
| |
Collapse
|
37
|
Intuyod K, Armartmuntree N, Jusakul A, Sakonsinsiri C, Thanan R, Pinlaor S. Current omics-based biomarkers for cholangiocarcinoma. Expert Rev Mol Diagn 2019; 19:997-1005. [PMID: 31566016 DOI: 10.1080/14737159.2019.1673162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Introduction: Cholangiocarcinoma (CCA) is a malignancy of the biliary tract. CCA generally has a low incidence worldwide but incidence is typically high in Southeast Asian countries, particularly in northeastern Thailand, where small liver-fluke (Opisthorchis viverrini) infection is endemic. CCA has a poor prognosis as most CCA patients present with advanced stages. Poor prognosis and worse outcomes are due to the lack of specific and early-stage CCA biomarkers. Areas covered: In this review, we discuss the use of CCA tissues, serum and bile samples as sources of diagnostic and prognostic markers by using -omics approaches, including genomics, epigenomics, transcriptomics and proteomics. The current state of the discovery of molecular candidates and their potential to be used as diagnostic and prognostic biomarkers for CCA are summarized and discussed. Expert opinion: Various potential molecules have been discovered, some of which have been verified as diagnostic biomarkers for CCA. However, most identified molecules require much further evaluation to help us find markers with high specificity, low cost and ease-of-use in routine diagnostic laboratories.
Collapse
Affiliation(s)
- Kitti Intuyod
- Department of Parasitology, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand
| | - Napat Armartmuntree
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand.,Department of Biochemistry, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand
| | - Apinya Jusakul
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand.,Faculty of Associated Medical Sciences, Khon Kaen University , Khon Kaen , Thailand
| | - Chadamas Sakonsinsiri
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand.,Department of Biochemistry, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand
| | - Raynoo Thanan
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand.,Department of Biochemistry, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand
| | - Somchai Pinlaor
- Department of Parasitology, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand
| |
Collapse
|
38
|
Xiu Y, Shao C, Zhu Y, Li Y, Gan T, Xu W, Piferrer F, Chen S. Differences in DNA Methylation Between Disease-Resistant and Disease-Susceptible Chinese Tongue Sole ( Cynoglossus semilaevis) Families. Front Genet 2019; 10:847. [PMID: 31572451 PMCID: PMC6753864 DOI: 10.3389/fgene.2019.00847] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 08/14/2019] [Indexed: 12/12/2022] Open
Abstract
DNA methylation, the most widely studied and most well-understood epigenetic modification, has been reported to play crucial roles in diverse processes. Although it has been found that DNA methylation can modulate the expression of immune-related genes in teleosts, a systemic analysis of epigenetic regulation on teleost immunity has rarely been performed. In this research, we employed whole-genome bisulfite sequencing to investigate the genome-wide DNA methylation profiles in select disease-resistant Cynoglossus semilaevis (DR-CS, family 14L006) and disease-susceptible C. semilaevis (DS-CS, family 14L104) against Vibrio harveyi infection. The results showed that following selective breeding, DR-CS had higher DNA methylation levels and different DNA methylation patterns, with 3,311 differentially methylated regions and 6,456 differentially methylated genes. Combining these data with the corresponding transcriptome data, we identified several immune-related genes that exhibited differential expression levels that were modulated by DNA methylation. Specifically, DNA methylation of tumor necrosis factor–like and lipopolysaccharide-binding protein-like was significantly correlated with their expression and significantly contributed to the disease resistance of the selected C. semilaevis family. In conclusion, we suggest that artificial selection for disease resistance in Chinese tongue sole causes changes in DNA methylation levels in important immune-related genes and that these epigenetic changes are potentially involved in multiple immune responses in Chinese tongue sole.
Collapse
Affiliation(s)
- Yunji Xiu
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Changwei Shao
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ying Zhu
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yangzhen Li
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Tian Gan
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wenteng Xu
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Francesc Piferrer
- Institut de Ciències del Mar (ICM), Spanish National Research Council (CSIC), Barcelona, Spain
| | - Songlin Chen
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
39
|
Identification of important invasion and proliferation related genes in adrenocortical carcinoma. Med Oncol 2019; 36:73. [PMID: 31321566 DOI: 10.1007/s12032-019-1296-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/01/2019] [Indexed: 12/17/2022]
|
40
|
Circulating biomarkers for early detection and clinical management of colorectal cancer. Mol Aspects Med 2019; 69:107-122. [PMID: 31189073 DOI: 10.1016/j.mam.2019.06.002] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 06/07/2019] [Accepted: 06/08/2019] [Indexed: 02/06/2023]
Abstract
New non-invasive approaches that can complement and improve on current strategies for colorectal cancer (CRC) screening and management are urgently needed. A growing number of publications have documented that components of tumors, which are shed into the circulation, can be detected in the form of liquid biopsies and can be used to detect CRC at early stages, to predict response to certain therapies and to detect CRC recurrence in a minimally invasive way. The analysis of circulating tumor DNA (ctDNA), tumor-derived cells (CTC, circulating tumor cells) or circulating microRNA (miRNA) in blood and other body fluids, have a great potential to improve different aspects of CRC management. The challenge now is to find which types of components, biofluids and detection methods would be the most suitable to be applied in the different steps of CRC detection and treatment. This chapter will provide an up to date review on ctDNA, CTCs and circulating miRNAs as new biomarkers for CRC, either for clinical management or early detection, highlighting their advantages and limitations.
Collapse
|
41
|
Huang M, Chen Y, Han D, Lei Z, Chu X. Role of the zinc finger and SCAN domain-containing transcription factors in cancer. Am J Cancer Res 2019; 9:816-836. [PMID: 31218096 PMCID: PMC6556609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 04/04/2019] [Indexed: 06/09/2023] Open
Abstract
Transcription factors are key determinants of gene expression that recognize and bind to short DNA sequence motifs, thereby regulating many biological processes including differentiation, development, and metabolism. Transcription factors are increasingly recognized for their roles in cancer progression. Here, we describe a subfamily of zinc finger transcription factors named zinc finger and SCAN domain containing (ZSCAN) transcription factors. In this review, we summarize the identified members of the ZSCAN family of transcription factors and their roles in cancer progression. Due to the complex regulation mechanisms, ZSCAN transcription factors may show promotive or prohibitive efforts in angiogenesis, cell apoptosis, cell differentiation, cell migration and invasion, cell proliferation, stem cell properties, and chemotherapy sensitivity. The upstream regulation mechanisms of their varied expression levels may include gene mutation, DNA methylation, alternative splicing, and miRNA regulation. What's more, to clarify their diverse functions, we summarize the modulation mechanisms of their activity in downstream genes transcription, including protein-protein interactions mediated by their SCAN box, recruitment of co-regulating molecules and post-translational modifications. A better understanding of the widespread regulatory mode of these transcription factors will provide further insight into the mechanism of transcriptional regulation and suggest novel therapeutic strategies against tumor progression.
Collapse
Affiliation(s)
- Mengxi Huang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing, Jiangsu Province, People’s Republic of China
| | - Yanyan Chen
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing, Jiangsu Province, People’s Republic of China
| | - Dong Han
- Department of Medical Oncology, Jinling Hospital, Nanjing Clinical School of Southern Medical UniversityNanjing, Jiangsu Province, People’s Republic of China
| | - Zengjie Lei
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing, Jiangsu Province, People’s Republic of China
- Department of Medical Oncology, Jinling Hospital, Nanjing Clinical School of Southern Medical UniversityNanjing, Jiangsu Province, People’s Republic of China
| | - Xiaoyuan Chu
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing, Jiangsu Province, People’s Republic of China
- Department of Medical Oncology, Jinling Hospital, Nanjing Clinical School of Southern Medical UniversityNanjing, Jiangsu Province, People’s Republic of China
| |
Collapse
|
42
|
Shafiei S, Kalantari E, Saeednejad Zanjani L, Abolhasani M, Asadi Lari MH, Madjd Z. Increased expression of DCLK1, a novel putative CSC maker, is associated with tumor aggressiveness and worse disease-specific survival in patients with bladder carcinomas. Exp Mol Pathol 2019; 108:164-172. [PMID: 31028726 DOI: 10.1016/j.yexmp.2019.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/13/2019] [Accepted: 04/24/2019] [Indexed: 01/06/2023]
Abstract
Doublecortin-like kinase 1 (DCLK1) has been characterized as a novel potential cancer stem cell (CSC) marker in several types of cancer. It is considered as one of the most specific markers for distinguishing colorectal CSCs from normal stem cells. Yet, there are limited reports on the role of DCLK1 as a putative CSC marker in bladder cancer. Using immunohistochemistry, DCLK1 expression was examined in a well-defined tissue microarray series of 472 bladder cancer tissues. The association between DCLK1 protein expression and clinicopathological features, as well as survival outcomes, was assessed. Our findings showed strong, moderate, and weak DCLK1 expression in 123 (26.1%), 230 (48.7%), and 119 (25.2%) of the bladder cancer specimens, respectively. Higher expression of DCLK1 was significantly associated with increase in histological grade (P ≤ .001), pT stage (P = .014), lamina propria (P = .006), and lamina propria/muscularis (L/M) involvement (P = .014). On multivariate analysis, pT stage (P < .001), histological grade (P = .021), and lamina propria involvement (P = .001) were independent prognostic factors in DCLK1 expression. Moreover, the expression of DCLK1 was found to be an independent marker of poor prognosis for disease- specific survival (DSS) (P = .048) in bladder carcinomas. Our observations showed that DCLK1 expression was associated with more aggressive tumor behavior, more advanced disease, and poorer DSS in patients with bladder carcinomas. However, any potential clinical applications of DCLK1 as a novel target molecule in bladder cancer patients would require further investigations.
Collapse
Affiliation(s)
- Somayeh Shafiei
- Dep of Pathology, Iran University of Medical Sciences, (IUMS), Tehran, Iran
| | - Elham Kalantari
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | | | - Maryam Abolhasani
- Dep of Pathology, Iran University of Medical Sciences, (IUMS), Tehran, Iran; Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran; Hasheminejad Kidney, Iran University of Medical Sciences, (IUMS), Tehran, Iran
| | | | - Zahra Madjd
- Dep of Pathology, Iran University of Medical Sciences, (IUMS), Tehran, Iran; Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran; Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada..
| |
Collapse
|
43
|
Harada H, Hosoda K, Moriya H, Mieno H, Ema A, Ushiku H, Washio M, Nishizawa N, Ishii S, Yokota K, Tanaka Y, Kaida T, Soeno T, Kosaka Y, Watanabe M, Yamashita K. Cancer-specific promoter DNA methylation of Cysteine dioxygenase type 1 (CDO1) gene as an important prognostic biomarker of gastric cancer. PLoS One 2019; 14:e0214872. [PMID: 30934021 PMCID: PMC6443169 DOI: 10.1371/journal.pone.0214872] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/21/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND There have been few available prognostic biomarkers in gastric cancer. We rigorously assessed the clinical relevance of promoter DNA methylation of Cysteine dioxygenase type 1 (CDO1) gene, a cancer-specific aberration, in human gastric cancer. METHODS Quantitative CDO1 methylation value (TaqMeth V) was initially calculated in 138 gastric cancer patients operated in 2005, and its clinical significance was elucidated. As a subsequent expanded set, 154 gastric cancer patients with pathological stage (pStage) II / III with no postoperative therapy were validated between 2000 and 2010. RESULTS (1) Median TaqMeth V of CDO1 gene methylation of gastric cancer was 25.6, ranging from 0 to 120.9. As pStage progressed, CDO1 TaqMeth V became higher (p < 0.0001). (2) The optimal cut-off value was determined to be 32.6; gastric cancer patients with high CDO1 gene methylation showed a significantly worse prognosis than those with low CDO1 gene methylation (p < 0.0001). (3) A multivariate cox proportional hazards model identified high CDO1 gene methylation (p = 0.033) as an independent prognostic factor. (4) The results were recapitulated in the expanded set in pStage III, where high CDO1 gene methylation group had a significantly worse prognosis than low CDO1 gene methylation group (p = 0.0065). Hematogenous metastasis was unique in pStage III with high CDO1 gene methylation (p = 0.0075). (5) Anchorage independent growth was reduced in several gastric cancer cell lines due to forced expression of the CDO1 gene, suggesting that abnormal CDO1 gene expression may represent distant metastatic ability. CONCLUSIONS Promoter DNA hypermethylation of CDO1 gene was rigorously validated as an important prognostic biomarker in primary gastric cancer with specific stage.
Collapse
Affiliation(s)
- Hiroki Harada
- Department of Surgery, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Kei Hosoda
- Department of Surgery, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Hiromitsu Moriya
- Department of Surgery, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Hiroaki Mieno
- Department of Surgery, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Akira Ema
- Department of Surgery, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Hideki Ushiku
- Department of Surgery, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Marie Washio
- Department of Surgery, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Nobuyuki Nishizawa
- Department of Surgery, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Satoru Ishii
- Department of Surgery, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Kazuko Yokota
- Department of Surgery, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Yoko Tanaka
- Department of Breast and Endocrine Surgery, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Takeshi Kaida
- Department of Surgery, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Takafumi Soeno
- Department of Surgery, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Yoshimasa Kosaka
- Department of Breast and Endocrine Surgery, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Masahiko Watanabe
- Department of Surgery, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Keishi Yamashita
- Department of Surgery, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa, Japan
- Division of Advanced Surgical Oncology, Department of Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
44
|
Park YS, Kim DS, Cho SW, Park JW, Jeon SJ, Moon TJ, Kim SH, Son BK, Oh TJ, An S, Kim JH, Chae JD. Analysis of Syndecan-2 Methylation in Bowel Lavage Fluid for the Detection of Colorectal Neoplasm. Gut Liver 2019; 12:508-515. [PMID: 29730903 PMCID: PMC6143447 DOI: 10.5009/gnl17357] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 01/05/2018] [Accepted: 02/03/2018] [Indexed: 02/06/2023] Open
Abstract
Background/Aims Syndecan-2 (SDC2) methylation was previously reported as a sensitive serologic biomarker for the early detection of colorectal cancer (CRC). The purpose of this study was to investigate whether SDC2 methylation is detectable in precancerous lesions and to determine the feasibility of using SDC2 methylation for the detection of CRC and precancerous lesions in bowel lavage fluid (BLF). Methods A total of 190 BLF samples were collected from the rectum at the beginning of colonoscopy from patients with colorectal neoplasm and healthy normal individuals. Fourteen polypectomy specimens were obtained during colonoscopy. A bisulfite pyrosequencing assay and quantitative methylation-specific polymerase chain reaction were conducted to measure SDC2 methylation in tissues and BLF DNA. Results SDC2 methylation was positive in 100% of villous adenoma (VA) and high-grade dysplasia, and hyperplastic polyp samples; 88.9% of tubular adenoma samples; and 0% of normal mucosa samples. In the BLF DNA test forSDC2 methylation, the sensitivity for detecting CRC and VA was 80.0% and 64.7%, respectively, at a specificity of 88.9%. The BLF of patients with multiple tubular adenomas, single tubular adenoma and hyperplastic polyps showed 62.8%, 26.7% and 28.6% rates of methylation-positive SDC2, respectively. Conclusions Our results demonstrated that SDC2 methylation was a frequent event in precancerous lesions and showed high potential in BLF for detecting patients with colorectal neoplasm.
Collapse
Affiliation(s)
- Young Sook Park
- Division of Gastroenterology, Department of Internal Medicine, Eulji General Hospital, Eulji University School of Medicine, Seoul, Korea
| | - Dong Shin Kim
- Division of Gastroenterology, Department of Internal Medicine, Eulji General Hospital, Eulji University School of Medicine, Seoul, Korea
| | - Sang Woo Cho
- Division of Gastroenterology, Department of Internal Medicine, Eulji General Hospital, Eulji University School of Medicine, Seoul, Korea
| | - Jong Won Park
- Division of Gastroenterology, Department of Internal Medicine, Eulji General Hospital, Eulji University School of Medicine, Seoul, Korea
| | - Sang Jin Jeon
- Division of Gastroenterology, Department of Internal Medicine, Eulji General Hospital, Eulji University School of Medicine, Seoul, Korea
| | - Tae Ju Moon
- Division of Gastroenterology, Department of Internal Medicine, Eulji General Hospital, Eulji University School of Medicine, Seoul, Korea
| | - Seong Hwan Kim
- Division of Gastroenterology, Department of Internal Medicine, Eulji General Hospital, Eulji University School of Medicine, Seoul, Korea
| | - Byoung Kwan Son
- Division of Gastroenterology, Department of Internal Medicine, Eulji General Hospital, Eulji University School of Medicine, Seoul, Korea
| | | | | | - Jeong Hwan Kim
- Department of Family Medicine, Eulji General Hospital, Eulji University School of Medicine, Seoul, Korea
| | - Jeong Don Chae
- Department of Laboratory Medicine, Eulji General Hospital, Eulji University School of Medicine, Seoul, Korea
| |
Collapse
|
45
|
Nakamoto S, Kumamoto Y, Igarashi K, Fujiyama Y, Nishizawa N, Ei S, Tajima H, Kaizu T, Watanabe M, Yamashita K. Methylated promoter DNA of CDO1 gene and preoperative serum CA19-9 are prognostic biomarkers in primary extrahepatic cholangiocarcinoma. PLoS One 2018; 13:e0205864. [PMID: 30325974 PMCID: PMC6191141 DOI: 10.1371/journal.pone.0205864] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/02/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Promoter DNA methylation of Cysteine dioxygenase type1 (CDO1) gene has been clarified as a molecular diagnostic and prognostic indicator in various human cancers. The aim of this study is to investigate the clinical relevance of CDO1 methylation in primary biliary tract cancer (BTC). METHODS CDO1 DNA methylation was assessed by quantitative methylation-specific PCR in 108 BTC tumor tissues and 101 corresponding normal tissues. BTC was composed of extrahepatic cholangiocarcinoma (EHCC) (n = 81) and ampullary carcinoma (AC) (n = 27). RESULTS The CDO1 methylation value in the tumor tissues was significantly higher than that in the corresponding normal tissues (p<0.0001). The overall survival (OS) in EHCC patients with hypermethylation was poorer than those with hypomethylation (p = 0.0018), whereas there was no significant difference in AC patients. Multivariate analysis identified that CDO1 hypermethylation, preoperative serum CA19-9 and perineural invasion were independent prognostic factors in EHCC. The EHCC patients with CDO1 hypermethylation exhibited more dismal prognosis than those with hypomethylation even in low group of CA19-9 level (p = 0.0006). CONCLUSIONS Our study provided evidence that promoter DNA methylation of CDO1 gene could be an excellent molecular diagnostic and prognostic biomarker in primary EHCC. The combination of CDO1 methylation and preoperative serum CA19-9 effectively enriched EHCC patients who showed the most dismal prognosis. These markers would be beneficial for clinical clarification of the optimal strategies in EHCC.
Collapse
Affiliation(s)
- Shuji Nakamoto
- Department of Surgery, Kitasato University Hospital, Kitasato, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Yusuke Kumamoto
- Department of Surgery, Kitasato University Hospital, Kitasato, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Kazuharu Igarashi
- Department of Surgery, Kitasato University Hospital, Kitasato, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Yoshiki Fujiyama
- Department of Surgery, Kitasato University Hospital, Kitasato, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Nobuyuki Nishizawa
- Department of Surgery, Kitasato University Hospital, Kitasato, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Shigenori Ei
- Department of Surgery, Kitasato University Hospital, Kitasato, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Hiroshi Tajima
- Department of Surgery, Kitasato University Hospital, Kitasato, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Takashi Kaizu
- Department of Surgery, Kitasato University Hospital, Kitasato, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Masahiko Watanabe
- Department of Surgery, Kitasato University Hospital, Kitasato, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Keishi Yamashita
- Department of Surgery, Kitasato University Hospital, Kitasato, Minami-ku, Sagamihara, Kanagawa, Japan
- Division of Advanced Surgical Oncology, Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Kitasato, Minami-ku, Sagamihara, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
46
|
Vedeld HM, Goel A, Lind GE. Epigenetic biomarkers in gastrointestinal cancers: The current state and clinical perspectives. Semin Cancer Biol 2018; 51:36-49. [PMID: 29253542 PMCID: PMC7286571 DOI: 10.1016/j.semcancer.2017.12.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/17/2017] [Accepted: 12/12/2017] [Indexed: 02/07/2023]
Abstract
Each year, almost 4.1 million people are diagnosed with gastrointestinal (GI) cancers. Due to late detection of this disease, the mortality is high, causing approximately 3 million cancer-related deaths annually, worldwide. Although the incidence and survival differs according to organ site, earlier detection and improved prognostication have the potential to reduce overall mortality burden from these cancers. Epigenetic changes, including aberrant promoter DNA methylation, are common events in both cancer initiation and progression. Furthermore, such changes may be identified non-invasively with the use of PCR based methods, in bodily fluids of cancer patients. These features make aberrant DNA methylation a promising substrate for the development of disease biomarkers for early detection, prognosis and for predicting response to therapy. In this article, we will provide an update and current clinical perspectives for DNA methylation alterations in patients with colorectal, gastric, pancreatic, liver and esophageal cancers, and discuss their potential role as cancer biomarkers.
Collapse
Affiliation(s)
- Hege Marie Vedeld
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway; K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Ajay Goel
- Center for Gastrointestinal Research, and Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA.
| | - Guro E Lind
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway; K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
47
|
Vedeld HM, Nesbakken A, Lothe RA, Lind GE. Re-assessing ZNF331 as a DNA methylation biomarker for colorectal cancer. Clin Epigenetics 2018; 10:70. [PMID: 29854011 PMCID: PMC5975481 DOI: 10.1186/s13148-018-0503-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 05/15/2018] [Indexed: 01/09/2023] Open
Abstract
We have previously shown that aberrant promoter methylation of ZNF331 is a potential biomarker for colorectal cancer detection with high sensitivity (71%) and specificity (98%). This finding was recently confirmed by others, and it was additionally suggested that promoter methylation of ZNF331 was an independent prognostic biomarker for colorectal cancer (n = 146). In the current study, our initial colorectal cancer sample series was extended to include a total of 423 cancer tissue samples. Aberrant promoter methylation was found in 71% of the samples, thus repeatedly suggesting the biomarker potential of ZNF331 for detection of colorectal cancer. Furthermore, multivariate Cox’s analysis indicated a trend towards inferior overall survival for colorectal cancer patients with aberrant methylation of ZNF331.
Collapse
Affiliation(s)
- Hege Marie Vedeld
- 1Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Norwegian Radium Hospital, Oslo, Norway.,2K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Arild Nesbakken
- 2K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.,4Department of Gastrointestinal Surgery, Oslo University Hospital-Aker, Oslo, Norway.,5Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ragnhild A Lothe
- 1Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Norwegian Radium Hospital, Oslo, Norway.,2K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.,5Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Guro E Lind
- 1Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Norwegian Radium Hospital, Oslo, Norway.,2K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.,3Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
48
|
Liu W, Wang S, Sun Q, Yang Z, Liu M, Tang H. DCLK1 promotes epithelial-mesenchymal transition via the PI3K/Akt/NF-κB pathway in colorectal cancer. Int J Cancer 2018; 142:2068-2079. [PMID: 29277893 DOI: 10.1002/ijc.31232] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/06/2017] [Accepted: 12/18/2017] [Indexed: 12/29/2022]
Abstract
Double cortin-like kinase 1 (DCLK1) plays important roles during the epithelial-mesenchymal transition (EMT) process in human colorectal cancer (CRC). However, the role of DCLK1 in regulating the EMT of CRC is still poorly understood. In this study, we report evidence that DCLK1 acts as a potent oncogene to drive its extremely malignant character of EMT in an NF-κB-dependent manner in CRC cells. Mechanistic investigations showed that DCLK1 induced the NF-κBp65 subunit expression through the PI3K/Akt/Sp1 axis and activated NF-κBp65 through the PI3K/Akt/IκBα pathway during the EMT of CRC cells. Moreover, we found that silencing the expression of DCLK1 inhibited the invasion and metastasis of CRC cells in vivo. Collectively, our findings identify DCLK1 as a pivotal regulator of an EMT axis in CRC, thus implicating DCLK1 as a potential therapeutic target for CRC metastasis.
Collapse
Affiliation(s)
- Weiying Liu
- Tianjin Life Science Research Center and Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shixing Wang
- Tianjin Life Science Research Center and Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qi Sun
- Tianjin Life Science Research Center and Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhen Yang
- Tianjin Life Science Research Center and Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Min Liu
- Tianjin Life Science Research Center and Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hua Tang
- Tianjin Life Science Research Center and Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
49
|
Integrated analysis of promoter methylation and expression of telomere related genes in breast cancer. Oncotarget 2018; 8:25442-25454. [PMID: 28424414 PMCID: PMC5421942 DOI: 10.18632/oncotarget.16036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/07/2017] [Indexed: 11/25/2022] Open
Abstract
Telomeres at the ends of eukaryotic chromosomes play a critical role in tumorgenesis. Using microfluidic PCR and next-generation bisulfite sequencing technology, we investigated the promoter methylation of 29 telomere related genes in paired tumor and normal tissues from 184 breast cancer patients. The expression of significantly differentially methylated genes was quantified using qPCR method.We observed that the average methylation level of the 29 telomere related genes was significant higher in tumor than that in normal tissues (P = 4.30E-21). A total of 4 genes (RAD50, RTEL, TERC and TRF1) showed significant hyper-methylation in breast tumor tissues. RAD51D showed significant methylation difference among the four breast cancer subtypes. The methylation of TERC showed significant association with ER status of breast cancer. The expression profiles of the 4 hyper-methylated genes showed significantly reduced expression in tumor tissues. The integration analysis of methylation and expression of these 4 genes showed a good performance in breast cancer prediction (AUC = 0.947).Our results revealed the methylation pattern of telomere related genes in breast cancer and suggested a novel 4-gene panel might be a valuable biomarker for breast cancer diagnosis.
Collapse
|
50
|
O'Rourke CJ, Munoz-Garrido P, Aguayo EL, Andersen JB. Epigenome dysregulation in cholangiocarcinoma. Biochim Biophys Acta Mol Basis Dis 2018. [DOI: 10.1016/j.bbadis.2017.06.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|