1
|
Calabrese EJ, Hayes AW, Pressman P, Dhawan G, Kapoor R, Agathokleous E, Calabrese V. Quercetin induces its chemoprotective effects via hormesis. Food Chem Toxicol 2024; 184:114419. [PMID: 38142767 DOI: 10.1016/j.fct.2023.114419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
Quercetin is a polyphenol present in numerous fruits and vegetables and therefore widely consumed by humans with average daily dietary intakes of 10-20 mg/day. It is also a popular dietary supplement of 250-1000 mg/day. However, despite the widespread consumer interest in quercetin, due to its possible chemopreventive properties, the extensively studied quercetin presents a highly diverse and complex array of biological effects. Consequently, the present paper provides the first assessment of quercetin-induced hormetic concentration/dose responses, their quantitative features and mechanistic foundations, and their biological, biomedical, clinical, and public health implications. The findings indicate that quercetin-induced hormetic dose responses are widespread, being independent of biological model, cell type, and endpoint. These findings have the potential to enlighten future experimental studies with quercetin especially with respect to study design parameters and may also affect the appraisal of possible public health benefits and risks associated with highly diverse consumer consumption practices.
Collapse
Affiliation(s)
- Edward J Calabrese
- School of Public Health and Health Sciences, Department of Environmental Health, Morrill I-N344, University of Massachusetts, Amherst, MA, 01003, USA.
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA.
| | - Peter Pressman
- University of Maine, 5728 Fernald Hall, Room 201, Orono, ME, 04469, USA.
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD), University of Health Sciences, Amritsar, India.
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA.
| | - Evgenios Agathokleous
- School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania, 95123, Italy.
| |
Collapse
|
2
|
Gupta A, Ahmad R, Siddiqui S, Yadav K, Srivastava A, Trivedi A, Ahmad B, Khan MA, Shrivastava AK, Singh GK. Flavonol morin targets host ACE2, IMP-α, PARP-1 and viral proteins of SARS-CoV-2, SARS-CoV and MERS-CoV critical for infection and survival: a computational analysis. J Biomol Struct Dyn 2022; 40:5515-5546. [PMID: 33526003 PMCID: PMC7869441 DOI: 10.1080/07391102.2021.1871863] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/30/2020] [Indexed: 12/31/2022]
Abstract
A sudden outbreak of a novel coronavirus SARS-CoV-2 in 2019 has now emerged as a pandemic threatening to efface the existence of mankind. In absence of any valid and appropriate vaccines to combat this newly evolved agent, there is need of novel resource molecules for treatment and prophylaxis. To this effect, flavonol morin which is found in fruits, vegetables and various medicinal herbs has been evaluated for its antiviral potential in the present study. PASS analysis of morin versus reference antiviral drugs baricitinib, remdesivir and hydroxychloroquine revealed that morin displayed no violations of Lipinski's rule of five and other druglikeness filters. Morin also displayed no tumorigenic, reproductive or irritant effects and exhibited good absorption and permeation through GI (clogP <5). In principal component analysis, morin appeared closest to baricitinib in 3D space. Morin displayed potent binding to spike glycoprotein, main protease 3CLPro and papain-like protease PLPro of SARS-CoV-2, SARS-CoV and MERS-CoV using molecular docking and significant binding to three viral-specific host proteins viz. human ACE2, importin-α and poly (ADP-ribose) polymerase (PARP)-1, further lending support to its antiviral efficacy. Additionally, morin displayed potent binding to pro-inflammatory cytokines IL-6, 8 and 10 also supporting its anti-inflammatory activity. MD simulation of morin with SARS-CoV-2 3CLPro and PLPro displayed strong stability at 300 K. Both complexes exhibited constant RMSDs of protein side chains and Cα atoms throughout the simulation run time. In conclusion, morin might hold considerable therapeutic potential for the treatment and management of not only COVID-19, but also SARS and MERS if studied further. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anamika Gupta
- Department of Biochemistry, Era’s Lucknow Medical College and Hospital, Era University, Lucknow, UP, India
| | - Rumana Ahmad
- Department of Biochemistry, Era’s Lucknow Medical College and Hospital, Era University, Lucknow, UP, India
| | - Sahabjada Siddiqui
- Department of Biotechnology, Era’s Lucknow Medical College and Hospital, Era University, Lucknow, UP, India
| | - Kusum Yadav
- Department of Biochemistry, University of Lucknow, Lucknow, UP, India
| | - Aditi Srivastava
- Department of Biochemistry, Era’s Lucknow Medical College and Hospital, Era University, Lucknow, UP, India
| | - Anchal Trivedi
- Department of Biochemistry, Era’s Lucknow Medical College and Hospital, Era University, Lucknow, UP, India
| | - Bilal Ahmad
- Research Cell, Era’s Lucknow Medical College and Hospital, Era University, Lucknow, UP, India
| | | | - Amit Kumar Shrivastava
- Department of Pharmacology, Universal College of Medical Sciences & Hospital, Ranigaon, Bhairahawa, Rupandehi, Nepal
| | - Girish Kumar Singh
- Department of Orthopedics, Era’s Lucknow Medical College and Hospital, Era University, Lucknow, UP, India
| |
Collapse
|
3
|
Mirazimi SMA, Dashti F, Tobeiha M, Shahini A, Jafari R, Khoddami M, Sheida AH, EsnaAshari P, Aflatoonian AH, Elikaii F, Zakeri MS, Hamblin MR, Aghajani M, Bavarsadkarimi M, Mirzaei H. Application of Quercetin in the Treatment of Gastrointestinal Cancers. Front Pharmacol 2022; 13:860209. [PMID: 35462903 PMCID: PMC9019477 DOI: 10.3389/fphar.2022.860209] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/02/2022] [Indexed: 02/06/2023] Open
Abstract
Many cellular signaling pathways contribute to the regulation of cell proliferation, division, motility, and apoptosis. Deregulation of these pathways contributes to tumor cell initiation and tumor progression. Lately, significant attention has been focused on the use of natural products as a promising strategy in cancer treatment. Quercetin is a natural flavonol compound widely present in commonly consumed foods. Quercetin has shown significant inhibitory effects on tumor progression via various mechanisms of action. These include stimulating cell cycle arrest or/and apoptosis as well as its antioxidant properties. Herein, we summarize the therapeutic effects of quercetin in gastrointestinal cancers (pancreatic, gastric, colorectal, esophageal, hepatocellular, and oral).
Collapse
Affiliation(s)
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Tobeiha
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Shahini
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Raha Jafari
- Department of Medicine, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran
| | - Mehrad Khoddami
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Hossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Parastoo EsnaAshari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Hossein Aflatoonian
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fateme Elikaii
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Melika Sadat Zakeri
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Mohammad Aghajani
- Infectious Disease Research Center, School of Nursing and Midwifery, Kashan University of Medical Sciences, Kashan, Iran
| | - Minoodokht Bavarsadkarimi
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
4
|
Ghazi T, Arumugam T, Foolchand A, Chuturgoon AA. The Impact of Natural Dietary Compounds and Food-Borne Mycotoxins on DNA Methylation and Cancer. Cells 2020; 9:E2004. [PMID: 32878338 PMCID: PMC7565866 DOI: 10.3390/cells9092004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer initiation and progression is an accumulation of genetic and epigenetic modifications. DNA methylation is a common epigenetic modification that regulates gene expression, and aberrant DNA methylation patterns are considered a hallmark of cancer. The human diet is a source of micronutrients, bioactive molecules, and mycotoxins that have the ability to alter DNA methylation patterns and are thus a contributing factor for both the prevention and onset of cancer. Micronutrients such as betaine, choline, folate, and methionine serve as cofactors or methyl donors for one-carbon metabolism and other DNA methylation reactions. Dietary bioactive compounds such as curcumin, epigallocatechin-3-gallate, genistein, quercetin, resveratrol, and sulforaphane reactivate essential tumor suppressor genes by reversing aberrant DNA methylation patterns, and therefore, they have shown potential against various cancers. In contrast, fungi-contaminated agricultural foods are a source of potent mycotoxins that induce carcinogenesis. In this review, we summarize the existing literature on dietary micronutrients, bioactive compounds, and food-borne mycotoxins that affect DNA methylation patterns and identify their potential in the onset and treatment of cancer.
Collapse
Affiliation(s)
| | | | | | - Anil A. Chuturgoon
- Department of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (T.G.); (T.A.); (A.F.)
| |
Collapse
|
5
|
Sanna C, Maxia A, Fenu G, Loi MC. So Uncommon and so Singular, but Underexplored: An Updated Overview on Ethnobotanical Uses, Biological Properties and Phytoconstituents of Sardinian Endemic Plants. PLANTS (BASEL, SWITZERLAND) 2020; 9:E958. [PMID: 32751394 PMCID: PMC7465485 DOI: 10.3390/plants9080958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022]
Abstract
The last decades have recorded an increase of plant-based drug discovery processes. Indeed, natural products possess a superior chemical diversity as compared to synthetic ones, leading to a renewal in searching for new therapeutic agents from the plant kingdom. In particular, since the structural variety of natural compounds reflects the biodiversity of their source organisms, regions of the world with high biodiversity and endemism deserve particular interest. In this context, Sardinia Island (Italy), with 290 endemic taxa (12% of the total flora), is expected to provide unique and structurally diverse phytochemicals for drug development. Several research groups built up a large program dedicated to the analysis of Sardinian endemic species, highlighting their peculiar features, both in respect of phytochemical and biological profiles. On this basis, the aim of this review is to provide an up-to-date and comprehensive overview on ethnobotanical uses, biological properties and phytoconstituents of Sardinian endemic plants in order to support their beneficial potential and to provide input for future investigations. We documented 152 articles published from 1965 to June 2020 in which a broad range of biological activities and the identification of previously undescribed compounds have been reported, supporting their great value as sources of therapeutic agents.
Collapse
Affiliation(s)
- Cinzia Sanna
- Department of Life and Environmental Sciences, University of Cagliari, Via Sant’Ignazio da Laconi 13, 09123 Cagliari, Italy; (A.M.); (G.F.); (M.C.L.)
- Co.S.Me.Se—Consorzio per lo Studio dei Metaboliti Secondari, Via Sant’Ignazio da Laconi 13, 09123 Cagliari, Italy
| | - Andrea Maxia
- Department of Life and Environmental Sciences, University of Cagliari, Via Sant’Ignazio da Laconi 13, 09123 Cagliari, Italy; (A.M.); (G.F.); (M.C.L.)
- Co.S.Me.Se—Consorzio per lo Studio dei Metaboliti Secondari, Via Sant’Ignazio da Laconi 13, 09123 Cagliari, Italy
| | - Giuseppe Fenu
- Department of Life and Environmental Sciences, University of Cagliari, Via Sant’Ignazio da Laconi 13, 09123 Cagliari, Italy; (A.M.); (G.F.); (M.C.L.)
| | - Maria Cecilia Loi
- Department of Life and Environmental Sciences, University of Cagliari, Via Sant’Ignazio da Laconi 13, 09123 Cagliari, Italy; (A.M.); (G.F.); (M.C.L.)
| |
Collapse
|
6
|
Salehi B, Machin L, Monzote L, Sharifi-Rad J, Ezzat SM, Salem MA, Merghany RM, El Mahdy NM, Kılıç CS, Sytar O, Sharifi-Rad M, Sharopov F, Martins N, Martorell M, Cho WC. Therapeutic Potential of Quercetin: New Insights and Perspectives for Human Health. ACS OMEGA 2020; 5:11849-11872. [PMID: 32478277 PMCID: PMC7254783 DOI: 10.1021/acsomega.0c01818] [Citation(s) in RCA: 273] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/01/2020] [Indexed: 05/03/2023]
Abstract
Quercetin (Que) and its derivatives are naturally occurring phytochemicals with promising bioactive effects. The antidiabetic, anti-inflammatory, antioxidant, antimicrobial, anti-Alzheimer's, antiarthritic, cardiovascular, and wound-healing effects of Que have been extensively investigated, as well as its anticancer activity against different cancer cell lines has been recently reported. Que and its derivatives are found predominantly in the Western diet, and people might benefit from their protective effect just by taking them via diets or as a food supplement. Bioavailability-related drug-delivery systems of Que have also been markedly exploited, and Que nanoparticles appear as a promising platform to enhance their bioavailability. The present review aims to provide a brief overview of the therapeutic effects, new insights, and upcoming perspectives of Que.
Collapse
Affiliation(s)
- Bahare Salehi
- Student
Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
| | - Laura Machin
- Institute
of Pharmacy and Food, University of Havana, Havana, Cuba
| | - Lianet Monzote
- Parasitology
Department, Institute of Medicine Tropical
Pedro Kourí, Havana, Cuba
| | - Javad Sharifi-Rad
- Phytochemistry
Research Center, Shahid Beheshti University
of Medical Sciences, Tehran 1991953381, Iran
| | - Shahira M. Ezzat
- Department
of Pharmacognosy, Faculty of Pharmacy, Cairo
University, Kasr El-Aini
Street, Cairo 11562, Egypt
- Department
of Pharmacognosy, Faculty of Pharmacy, October
University for Modern Sciences and Arts (MSA), 6th October 12566, Egypt
| | - Mohamed A. Salem
- Department
of Pharmacognosy, Faculty of Pharmacy, Menoufia
University, Gamal Abd
El Nasr st., Shibin Elkom, Menoufia 32511, Egypt
| | - Rana M. Merghany
- Department
of Pharmacognosy, National Research Centre, Giza 12622, Egypt
| | - Nihal M. El Mahdy
- Department
of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October 12566, Egypt
| | - Ceyda Sibel Kılıç
- Department
of Pharmaceutical Botany, Faculty of Pharmacy, Ankara University, Ankara 06100, Turkey
| | - Oksana Sytar
- Department of Plant Biology Department, Institute of Biology, Taras Shevchenko National University of Kyiv, Volodymyrska str., 64, Kyiv 01033, Ukraine
- Department of Plant Physiology, Slovak
University of Agriculture, Nitra, A. Hlinku 2, Nitra 94976, Slovak Republic
| | - Mehdi Sharifi-Rad
- Department
of Medical Parasitology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, Dushanbe 734003, Tajikistan
| | - Natália Martins
- Faculty of Medicine, University
of Porto, Porto 4200-319, Portugal
- Institute
for Research and Innovation in Health (i3S), University of Porto, Porto 4200-135, Portugal
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy,
and Centre
for Healthy Living, University of Concepción, Concepción 4070386, Chile
- Universidad de Concepción, Unidad
de Desarrollo Tecnológico,
UDT, Concepción 4070386, Chile
| | - William C. Cho
- Department
of Clinical Oncology, Queen
Elizabeth Hospital, 30
Gascoigne Road, Kowloon, Hong
Kong
| |
Collapse
|
7
|
Francenia Santos-Sánchez N, Salas-Coronado R, Villanueva-Cañongo C, Hernández-Carlos B. Antioxidant Compounds and Their Antioxidant Mechanism. Antioxidants (Basel) 2019. [DOI: 10.5772/intechopen.85270] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
8
|
Afshari K, Haddadi NS, Haj-Mirzaian A, Farzaei MH, Rohani MM, Akramian F, Naseri R, Sureda A, Ghanaatian N, Abdolghaffari AH. Natural flavonoids for the prevention of colon cancer: A comprehensive review of preclinical and clinical studies. J Cell Physiol 2019; 234:21519-21546. [PMID: 31087338 DOI: 10.1002/jcp.28777] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/07/2019] [Accepted: 04/11/2019] [Indexed: 12/18/2022]
Abstract
Flavonoids comprise a group of natural polyphenols consisting of more than 5,000 subtypes mostly existing in fruits and vegetables. Flavonoids consumption could potentially attenuate the incidence and recurrence risk of colorectal cancers through their antiperoxidative, antioxidant, and anti-inflammatory effects. In addition, these compounds regulate the mitochondrial function, balance the bacterial flora and promote the apoptosis process in cancerous cells. However, some previous data failed to show the effectiveness of flavonoids in reducing the risk of colorectal cancer. In this study, we have reviewed the efficacy of different flavonoids subtypes on the risk of colon cancer and molecular mechanisms involved in this process in both clinical and animal studies. In addition, we tried to elucidate the potential synergy between these compounds and current colorectal cancer treatments.
Collapse
Affiliation(s)
- Khashayar Afshari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazgol-Sadat Haddadi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arvin Haj-Mirzaian
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Mojtaba Rohani
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Freshteh Akramian
- Department of Pharmacology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Rozita Naseri
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, University of the Balearic Islands, Palma de Mallorca, Spain.,CIBEROBN (Physiopathology of Obesity and Nutrition, CB12/03/30038), Instituto de Salud Carlos III, Madrid, Spain
| | - Negar Ghanaatian
- Department of Pharmacology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Amir Hossein Abdolghaffari
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
9
|
Dziedzic K, Górecka D, Szwengiel A, Olejnik A, Rychlik J, Kreft I, Drożdżyńska A, Walkowiak J. The cytotoxic effect of artificially digested buckwheat products on HT-29 colon cancer cells. J Cereal Sci 2018. [DOI: 10.1016/j.jcs.2018.07.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Darband SG, Kaviani M, Yousefi B, Sadighparvar S, Pakdel FG, Attari JA, Mohebbi I, Naderi S, Majidinia M. Quercetin: A functional dietary flavonoid with potential chemo-preventive properties in colorectal cancer. J Cell Physiol 2018; 233:6544-6560. [PMID: 29663361 DOI: 10.1002/jcp.26595] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/12/2018] [Indexed: 02/06/2023]
Abstract
Recently, an intense attention has been paid to the application of natural compounds as a novel therapeutic strategy for cancer treatment. Quercetin, a natural flavonol present in many commonly consumed food items, is widely demonstrated to exert inhibitory effects on cancer progression through various mechanisms. Since there is a strong association with diets containing abundant vegetables, fruits, and grains, and significant decline in the risk of colon cancer, accumulation studies have focused on the anticancer potential of quercetin in colorectal cancer. Cell cycle arrest, increase in apoptosis, antioxidant replication, modulation of estrogen receptors, regulation of signaling pathways, inhibition of and metastasis and angiogenesis are among various mechanisms underlying the chemo-preventive effects of quercetin in colorectal cancer. This review covers various therapeutic interactions of Quercetin as to how targets cellular involved in cancer treatment.
Collapse
Affiliation(s)
- Saber G Darband
- Danesh Pey Hadi Co., Health Technology, Development Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Bahman Yousefi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Sadighparvar
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Firouz G Pakdel
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Javad A Attari
- Department of Neurosurgery, Urmia University of Medical Sciences, Urmia, Iran
| | - Iraj Mohebbi
- Social Determinants of Health Center, Occupational Medicine Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Somayeh Naderi
- Danesh Pey Hadi Co., Health Technology, Development Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
11
|
A Comprehensive Review on Pharmacotherapeutics of Three Phytochemicals, Curcumin, Quercetin, and Allicin, in the Treatment of Gastric Cancer. J Gastrointest Cancer 2017; 48:314-320. [DOI: 10.1007/s12029-017-9997-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Subramanian AP, John AA, Vellayappan MV, Balaji A, Jaganathan SK, Mandal M, Supriyanto E. Honey and its Phytochemicals: Plausible Agents in Combating Colon Cancer through its Diversified Actions. J Food Biochem 2016. [DOI: 10.1111/jfbc.12239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Aruna Priyadharshni Subramanian
- IJN-UTM Cardiovascular Engineering Centre, Faculty of Biosciences and Medical Engineering; Universiti Teknologi Malaysia; Johor Bahru 81310 Malaysia
| | - Agnes Aruna John
- IJN-UTM Cardiovascular Engineering Centre, Faculty of Biosciences and Medical Engineering; Universiti Teknologi Malaysia; Johor Bahru 81310 Malaysia
| | - Muthu Vignesh Vellayappan
- IJN-UTM Cardiovascular Engineering Centre, Faculty of Biosciences and Medical Engineering; Universiti Teknologi Malaysia; Johor Bahru 81310 Malaysia
| | - Arunpandian Balaji
- IJN-UTM Cardiovascular Engineering Centre, Faculty of Biosciences and Medical Engineering; Universiti Teknologi Malaysia; Johor Bahru 81310 Malaysia
| | - Saravana Kumar Jaganathan
- IJN-UTM Cardiovascular Engineering Centre, Faculty of Biosciences and Medical Engineering; Universiti Teknologi Malaysia; Johor Bahru 81310 Malaysia
| | - Mahitosh Mandal
- School of Medical Science and Technology; Indian Institute of Technology; West Bengal India
| | - Eko Supriyanto
- IJN-UTM Cardiovascular Engineering Centre, Faculty of Biosciences and Medical Engineering; Universiti Teknologi Malaysia; Johor Bahru 81310 Malaysia
| |
Collapse
|
13
|
Smith AJ, Oertle J, Warren D, Prato D. Quercetin: A Promising Flavonoid with a Dynamic Ability to Treat Various Diseases, Infections, and Cancers. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/jct.2016.72010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Shahzad H, Giribabu N, Sekaran M, Salleh N. Quercetin Induces Dose-Dependent Differential Morphological and Proliferative Changes in Rat Uteri in the Presence and in the Absence of Estrogen. J Med Food 2015; 18:1307-16. [PMID: 26135605 DOI: 10.1089/jmf.2014.3293] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Quercetin could have profound effects on uterine morphology and proliferation, which are known to be influenced by estrogen. This study investigated the effect of quercetin on these uterine parameters in the presence and in the absence of estrogen. Ovariectomized adult female rats received peanut oil, quercetin (10, 50, and 100 mg/kg/day), estrogen, or estrogen+quercetin (10, 50, or 100 mg/kg/day) treatment for 7 consecutive days. At the end of the treatment, uteri were harvested for histological and molecular biological analyses. Distribution of proliferative cell nuclear antigen (PCNA) protein in the uterus was observed by immunohistochemistry. Levels of expression of PCNA protein and mRNA in uterine tissue homogenates were determined by Western blotting and real-time polymerase chain reaction, respectively. Our findings indicated that administration of 10 mg/kg/day of quercetin either alone or with estrogen resulted in decreased uterine expression of PCNA protein and mRNA with the percentage of PCNA-positive cells in uterine luminal and glandular epithelia markedly reduced compared with estrogen-only treatment. Changes in uterine morphology were the opposite of changes observed following estrogen treatment. Treatment with 100 mg/kg/day of quercetin either alone or with estrogen resulted in elevated PCNA protein and mRNA expression. In addition, the percentages of PCNA-positive cells in the epithelia, which line the lumen and glands, were increased with morphological features mimicking changes that occur following estrogen treatment. Following 50 mg/kg/day quercetin treatment, the changes observed were in between those changes that occur following 10 and 100 mg/kg/day quercetin treatment. In conclusion, changes in uterine morphology and proliferation following 10 mg/kg/day quercetin treatment could be attributed to quercetin's antiestrogenic properties, while changes that occur following 100 mg/kg/day quercetin treatment could be attributed to quercetin's estrogenic properties.
Collapse
Affiliation(s)
- Huma Shahzad
- 1 Department of Physiology, University of Malaya , Kuala Lumpur, Malaysia
| | - Nelli Giribabu
- 1 Department of Physiology, University of Malaya , Kuala Lumpur, Malaysia
| | - Muniandy Sekaran
- 2 Department of Molecular Medicine, Faculty of Medicine, University of Malaya , Kuala Lumpur, Malaysia
| | - Naguib Salleh
- 1 Department of Physiology, University of Malaya , Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Quercetin Enhances Chemosensitivity to Gemcitabine in Lung Cancer Cells by Inhibiting Heat Shock Protein 70 Expression. Clin Lung Cancer 2015; 16:e235-43. [PMID: 26050647 DOI: 10.1016/j.cllc.2015.05.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/10/2015] [Accepted: 05/12/2015] [Indexed: 11/22/2022]
Abstract
UNLABELLED Quercetin is a bioflavonoid known for antioxidation and antiproliferation activities. We demonstrated that quercetin inhibited cancer cell growth and sensitized cancer cells to gemcitabine treatment by promoting apoptosis via inhibiting heat shock protein 70 expression. Our results suggest that quercetin might have potential to increase sensitivity to chemotherapy and that heat shock protein 70 could be a new target for lung cancer treatment. BACKGROUND Quercetin is a bioflavonoid with antiproliferative and proapoptotic activity in various cancer cells. However, little is known about the mechanism by which quercetin inhibits cancer growth or its potential role as a chemosensitizer in lung cancer cells. We investigated whether quercetin-induced inhibition of heat shock protein 70 (HSP70) is involved in its anticancer activity and whether it could modulate the responsiveness of lung cancer cells to chemotherapy. MATERIALS AND METHODS Various concentrations of quercetin and gemcitabine, either alone or in combination, were applied to lung cancer cells (A549 and H460 cells). We evaluated cell viability with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide salt assay, apoptotic activity by determining caspase-3 and caspase-9 activities, and HSP70 expression using Western blot analysis after treatment. RESULTS Quercetin reduced cell viability and suppressed HSP70 expression in both cell lines dose-dependently. Adding a fixed quercetin dose enhanced gemcitabine-induced cell death, which was related to increased caspase-3 and caspase-9 activities. Combination treatment with quercetin and gemcitabine downregulated HSP70 expression more prominently than treatment with quercetin or gemcitabine alone. CONCLUSION Quercetin-induced HSP70 inhibition was involved in growth inhibition and sensitization to chemotreatment in lung cancer cells. Quercetin might have potential as a chemosensitizer in lung cancer treatment.
Collapse
|
16
|
Ruta graveolens L. induces death of glioblastoma cells and neural progenitors, but not of neurons, via ERK 1/2 and AKT activation. PLoS One 2015; 10:e0118864. [PMID: 25785932 PMCID: PMC4364962 DOI: 10.1371/journal.pone.0118864] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 01/07/2015] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma multiforme is a highly aggressive brain tumor whose prognosis is very poor. Due to early invasion of brain parenchyma, its complete surgical removal is nearly impossible, and even after aggressive combined treatment (association of surgery and chemo- and radio-therapy) five-year survival is only about 10%. Natural products are sources of novel compounds endowed with therapeutic properties in many human diseases, including cancer. Here, we report that the water extract of Ruta graveolens L., commonly known as rue, induces death in different glioblastoma cell lines (U87MG, C6 and U138) widely used to test novel drugs in preclinical studies. Ruta graveolens’ effect was mediated by ERK1/2 and AKT activation, and the inhibition of these pathways, via PD98058 and wortmannin, reverted its antiproliferative activity. Rue extract also affects survival of neural precursor cells (A1) obtained from embryonic mouse CNS. As in the case of glioma cells, rue stimulates the activation of ERK1/2 and AKT in A1 cells, whereas their blockade by pharmacological inhibitors prevents cell death. Interestingly, upon induction of differentiation and cell cycle exit, A1 cells become resistant to rue’s noxious effects but not to those of temozolomide and cisplatin, two alkylating agents widely used in glioblastoma therapy. Finally, rutin, a major component of the Ruta graveolens water extract, failed to cause cell death, suggesting that rutin by itself is not responsible for the observed effects. In conclusion, we report that rue extracts induce glioma cell death, discriminating between proliferating/undifferentiated and non-proliferating/differentiated neurons. Thus, it can be a promising tool to isolate novel drugs and also to discover targets for therapeutic intervention.
Collapse
|
17
|
Immunomodulatory effect of red onion (Allium cepa Linn) scale extract on experimentally induced atypical prostatic hyperplasia in Wistar rats. Mediators Inflamm 2014; 2014:640746. [PMID: 24829522 PMCID: PMC4009127 DOI: 10.1155/2014/640746] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 02/21/2014] [Accepted: 02/26/2014] [Indexed: 02/01/2023] Open
Abstract
Red onion scales (ROS) contain large amounts of flavonoids that are responsible for the reported antioxidant activity, immune enhancement, and anticancer property. Atypical prostatic hyperplasia (APH) was induced in adult castrated Wistar rats by both s.c. injection of testosterone (0.5 mg/rat/day) and by smearing citral on shaved skin once every 3 days for 30 days. Saw palmetto (100 mg/kg) as a positive control and ROS suspension at doses of 75, 150, and 300 mg/kg/day were given orally every day for 30 days. All medications were started 7 days after castration and along with testosterone and citral. The HPLC profile of ROS methanolic extract displayed two major peaks identified as quercetin and quercetin-4′-β-O-D-glucoside. Histopathological examination of APH-induced prostatic rats revealed evidence of hyperplasia and inflammation with cellular proliferation and reduced apoptosis Immunohistochemistry showed increased tissue expressions of IL-6, IL-8, TNF-α, IGF-1, and clusterin, while TGF-β1 was decreased, which correlates with the presence of inflammation. Both saw palmetto and RO scale treatment have ameliorated these changes. These ameliorative effects were more evident in RO scale groups and were dose dependent. In conclusion, methanolic extract of ROS showed a protective effect against APH induced rats that may be attributed to potential anti-inflammatory and immunomodulatory effects.
Collapse
|
18
|
Structure-activity association of flavonoids in lung diseases. Molecules 2014; 19:3570-95. [PMID: 24662074 PMCID: PMC6271797 DOI: 10.3390/molecules19033570] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 03/13/2014] [Accepted: 03/17/2014] [Indexed: 12/22/2022] Open
Abstract
Flavonoids are polyphenolic compounds classified into flavonols, flavones, flavanones, isoflavones, catechins, anthocyanidins, and chalcones according to their chemical structures. They are abundantly found in Nature and over 8,000 flavonoids have from different sources, mainly plant materials, have been described. Recently reports have shown the valuable effects of flavonoids as antiviral, anti-allergic, antiplatelet, antitumor, antioxidant, and anti-inflammatory agents and interest in these compounds has been increasing since they can be helpful to human health. Several mechanisms of action are involved in the biological properties of flavonoids such as free radical scavenging, transition metal ion chelation, activation of survival genes and signaling pathways, regulation of mitochondrial function and modulation of inflammatory responses. The anti-inflammatory effects of flavonoids have been described in a number of studies in the literature, but not frequently associated to respiratory disease. Thus, this review aims to discuss the effects of different flavonoids in the control of lung inflammation in some disorders such as asthma, lung emphysema and acute respiratory distress syndrome and the possible mechanisms of action, as well as establish some structure-activity relationships between this biological potential and chemical profile of these compounds.
Collapse
|
19
|
Abstract
Food-derived flavonoid quercetin, widely distributed in onions, apples, and tea, is able to inhibit growth of various cancer cells indicating that this compound can be considered as a good candidate for anticancer therapy. Although the exact mechanism of this action is not thoroughly understood, behaving as antioxidant and/or prooxidant as well as modulating different intracellular signalling cascades may all play a certain role. Such inhibitory activity of quercetin has been shown to depend first of all on cell lines and cancer types; however, no comprehensive site-specific analysis of this effect has been published. In this review article, cytotoxicity constants of quercetin measured in various human malignant cell lines of different origin were compiled from literature and a clear cancer selective action was demonstrated. The most sensitive malignant sites for quercetin revealed to be cancers of blood, brain, lung, uterine, and salivary gland as well as melanoma whereas cytotoxic activity was higher in more aggressive cells compared to the slowly growing cells showing that the most harmful cells for the organism are probably targeted. More research is needed to overcome the issues of poor water solubility and relatively low bioavailability of quercetin as the major obstacles limiting its clinical use.
Collapse
|
20
|
Jung M, Bu SY, Tak KH, Park JE, Kim E. Anticarcinogenic effect of quercetin by inhibition of insulin-like growth factor (IGF)-1 signaling in mouse skin cancer. Nutr Res Pract 2013; 7:439-45. [PMID: 24353828 PMCID: PMC3865265 DOI: 10.4162/nrp.2013.7.6.439] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 07/02/2013] [Accepted: 07/26/2013] [Indexed: 11/18/2022] Open
Abstract
It has been shown that dysregulation of IGF-1 signaling is associated with tumor incidence and progression, whereas blockade of the signaling can effectively inhibit carcinogenesis. Although several mechanisms of anticancer activity of quercetin were proposed, molecular targets of quercetin have not been identified yet. Hence, we assessed the effect of quercetin on IGF-1 signaling inhibition in BK5.IGF-1 transgenic (Tg) mice, which over-expresses IGF-1 in the skin epidermis. A quercetin diet (0.02% wt/wt) for 20 weeks remarkably delayed the incidence of skin tumor by 2 weeks and reduced tumor multiplicity by 35% in a 7,12-dimethylbenz(a)anthracene (DMBA)-tetradecanoyl phorbol-13-acetate (TPA) two stage mouse skin carcinogenesis protocol. Moreover, skin hyperplasia in Tg mice was significantly inhibited by a quercetin supplementation. Further analysis of the MT1/2 skin papilloma cell line showed that a quercetin treatment dose dependently suppressed IGF-1 induced phosphorylation of the IGF-1 receptor (IGF-1R), insulin receptor substrate (IRS)-1, Akt and S6K; however, had no effect on the phosphorylation of PTEN. Additionally, the quercetin treatment inhibited IGF-1 stimulated cell proliferation in a dose dependent manner. Taken together, these data suggest that quercetin has a potent anticancer activity through the inhibition of IGF-1 signaling.
Collapse
Affiliation(s)
- Minjeong Jung
- Department of Food Science and Nutrition, Kyungpook National University, Daegu 702-701, Korea
| | - So Young Bu
- Department of Food and Nutrition, Daegu University, Gyeongbuk 712-714, Korea
| | - Ka-Hee Tak
- Department of Food Science and Nutrition, Catholic University of Daegu, 13-13 Hayangro, Hayangeup, Gyeongsan, Gyeongbuk 712-702, Korea
| | - Jeong-Eun Park
- Department of Food Science and Nutrition, Catholic University of Daegu, 13-13 Hayangro, Hayangeup, Gyeongsan, Gyeongbuk 712-702, Korea
| | - Eunjung Kim
- Department of Food Science and Nutrition, Catholic University of Daegu, 13-13 Hayangro, Hayangeup, Gyeongsan, Gyeongbuk 712-702, Korea
| |
Collapse
|
21
|
Kountouri AM, Gioxari A, Karvela E, Kaliora AC, Karvelas M, Karathanos VT. Chemopreventive properties of raisins originating from Greece in colon cancer cells. Food Funct 2013; 4:366-72. [PMID: 23211994 DOI: 10.1039/c2fo30259d] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Colorectal cancer is one of the major causes of cancer-related mortality in humans in both developed and developing countries. Dietary patterns influence the risk of colon cancer development, while plant-derived foods have gained great interest, due to the high content of antioxidants. Corinthian raisins (Currants, CR) and Sultanas (S) (Vitis vinifera L., Vitaceae) are dried vine fruits produced in Greece with many culinary uses in both the Mediterranean and the Western nutrition. In the present study, we investigated the effects of CR and S on human colon cancer cells. Methanol extracts of CR and S were used at different concentrations. The total polyphenol content and anti-radical activity were measured by Folin-Ciocalteu and DPPH, respectively. Antioxidant, anti-inflammatory and anti-proliferative effects on HT29 cell culture were evaluated. All extracts exhibited DPPH˙ scavenging activity in a dose-dependent manner. Both products suppressed cell proliferation, while the levels of glutathione and cyclooxygenase 2 were significantly decreased. A significant reduction in IL-8 levels and NF-kappaB p65 activation was also observed. Both antioxidant and anti-inflammatory effects were dependent on the duration of exposure. Results indicate that the methanol extracts of CR and S exhibit anti-radical activity in vitro, as well as cancer preventive efficacy on colon cancer cells, with S having slightly higher activity. The beneficial properties of these unique dried grapes are attributed to their high content of phenolic compounds.
Collapse
Affiliation(s)
- Aggeliki M Kountouri
- Department of Science of Dietetics-Nutrition, Harokopio University, 70 El. Venizelou Str., 17 671 Kallithea, Athens, Greece
| | | | | | | | | | | |
Collapse
|
22
|
Lee KH, Yoo CG. Simultaneous inactivation of GSK-3β suppresses quercetin-induced apoptosis by inhibiting the JNK pathway. Am J Physiol Lung Cell Mol Physiol 2013; 304:L782-9. [DOI: 10.1152/ajplung.00348.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Quercetin, a ubiquitous bioactive plant flavonoid, has shown to exert a broad range of activities, such as apoptotic, antioxidant, and anti-inflammatory effects. Thus, flavonoids can mediate both cell protection and cell injury. Recently, quercetin has been reported to prevent the progression of emphysema in animal models through antioxidant and anti-inflammatory actions. These findings suggest that quercetin could be a potential treatment option for chronic obstructive pulmonary disease. Its clinical application, however, could be limited by the cytotoxicity of quercetin, and understanding of the apoptotic mechanisms of quercetin is a prerequisite to develop a therapeutic strategy with minimal cytotoxicity. We evaluated the apoptotic effect of quercetin and its molecular mechanisms in normal bronchial epithelial cells (BEAS-2B cells). Quercetin decreased the viability of BEAS-2B cells via apoptosis in a dose- and time-dependent manner. Quercetin activated JNK and increased the expression levels of c-Jun and p53-dependent Bax. Blockade of JNK activation by overexpression of dominant negative JNK1 suppressed apoptosis by quercetin via inhibition of caspase-3 activation and reduction of p53 and Bax expression. Simultaneously, quercetin inactivated glycogen synthase kinase (GSK)-3β, which is phosphatidylinositol 3-kinase/Akt dependent. Overexpression of a constitutively active GSK-3β mutant enhanced quercetin-induced JNK activation. In contrast, overexpression of enzymatically inert GSK-3β inhibited JNK activation, resulting in a suppression of apoptosis by quercetin. Taken together, the JNK-p53 pathway is involved in quercetin-induced apoptosis, and simultaneous inactivation of GSK-3β can attenuate apoptosis in normal bronchial epithelial cells.
Collapse
Affiliation(s)
- Kyoung-Hee Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea; Clinical Research Institute, Seoul National University Hospital, Seoul, Korea; and Lung Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Chul-Gyu Yoo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea; Clinical Research Institute, Seoul National University Hospital, Seoul, Korea; and Lung Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
23
|
The insulin-mimetic effect of Morin: a promising molecule in diabetes treatment. Biochim Biophys Acta Gen Subj 2013; 1830:3102-11. [PMID: 23352912 DOI: 10.1016/j.bbagen.2013.01.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 01/15/2013] [Accepted: 01/17/2013] [Indexed: 11/21/2022]
Abstract
BACKGROUND Type-2 diabetes is a worldwidely diffuse disease characterized by insulin resistance that arises from alterations of receptor and/or post-receptor events of insulin signalling. Studies performed with PTP1B-deficent mice demonstrated that PTP1B is the main negative regulator of insulin signalling. Inhibition or down regulation of this enzyme causes enhanced insulin sensitivity. Hence this enzyme represents the most attractive target for development of innovative anti-diabetic drugs. METHODS Selection of new PTP1B inhibitors among an in house library of polyphenolic compounds was carried out screening their activity. The inhibition mechanism of Morin was determined by kinetic analyses. The cellular action of Morin was assayed on HepG2 cells. Analyses of the insulin signalling pathways was carried out by Western blot methods, glycogen synthesis was estimated by measuring the incorporation of [(3)H]-glucose, gluconeogenesis rate was assayed by measuring the glucose release in the cell medium. Cell growth was estimated by cell count. Docking analysis was conducted with SwissDock program. RESULTS We demonstrated that Morin: i) is a non-competitive inhibitor of PTP1B displaying a Ki in the μM range; ii) increases the phosphorylation of the insulin receptor and Akt; iii) inhibits gluconeogenesis and enhances glycogen synthesis. Morin does not enhance cell growth. CONCLUSIONS We have identified Morin as a new small molecular non-competitive inhibitor of PTP1B, which behaves as an activator and sensitizer of the insulin receptor stimulating the metabolic pathways only. GENERAL SIGNIFICANCE Our study suggests that Morin is a useful lead for development of new low Mr compounds potentially active as antidiabetic drugs.
Collapse
|
24
|
Matsukawa Y, Nishino H, Yoshida M, Sugihara H, Katsura K, Takamatsu T, Okuzumi J, Matsumoto K, Sato-Nishimori F, Sakai T. Quercetin enhances tumorigenicity induced by N-ethyl-N'-nitro-N-nitrosoguanidine in the duodenum of mice. Environ Health Prev Med 2012; 6:235-9. [PMID: 21432340 DOI: 10.1007/bf02897975] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2001] [Accepted: 07/19/2001] [Indexed: 12/01/2022] Open
Abstract
Quercetin, a flavonoid, widely distributed in many fruits and vegetables, is well known to have an antitumor effect despite its mutagenicity. In this study, we examined the effect of dietary quercetin on duodenum-tumorigenicity of mice induced by a chemical carcinogen, N-ethyl-N'-nitro-N-nitrosoguanidine (ENNG). Eight-week-old male C57BL/6 mice were divided into 4 groups; ENNG without quercetin (group A), ENNG with 0.2% quercetin (group B), ENNG with 2% quercetin (group C), and 2% quercetin without ENNG (group D). ENNG was given in drinking water for the first 4 weeks, and thereafter quercetin was given in a mixed diet. At week 20, the average number of duodenal tumors per mouse was significantly higher in group C (mean±SE, 7.26±1.75, p<0.05) than in group A (2.32±0.31). The size of the duodenal tumors increased significantly in group B (1.79±0.09 mm, p<0.001) compared with group A (1.43±0.09 mm). In contrast, no duodenal tumor was induced in group D. The present findings suggest that excessive intake of quercetin occasionally is a risk factor for carcinogenesis of some specific organs such as the upper intestine.
Collapse
Affiliation(s)
- Yoshizumi Matsukawa
- Department of Preventive Medicine, Kyoto Prefectural University of Medicine, Kyoto
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Chidambara Murthy KN, Kim J, Vikram A, Patil BS. Differential inhibition of human colon cancer cells by structurally similar flavonoids of citrus. Food Chem 2011; 132:27-34. [PMID: 26434259 DOI: 10.1016/j.foodchem.2011.10.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 07/13/2011] [Accepted: 10/06/2011] [Indexed: 01/16/2023]
Abstract
A number of studies in the recent years have evaluated the anti-proliferative activity of flavonoids. Although certain studies investigated the structure-activity based on the phenotypic assays, no study has correlated the flavonoids structure with the ability to alter gene/protein expression. Present study was focused to understand the structure-function relationship of citrus flavonoids in terms of their ability to alter the gene expression in the colon adenocarcinoma cells. Eight structurally related flavonoids found in citrus were evaluated for their ability to inhibit colon cancer (SW480) cells, as well as change the expression of apoptosis related genes/proteins. Apigenin and quercetagetin demonstrated most significant inhibition of cell proliferation with 63.6% and 45.7% inhibition of cell growth at 200μM after 48h of incubation, respectively. The cell death was also confirmed by images of fluorescently tagged cells. Furthermore, up-regulation of Bax/Bcl2 protein ratio as well as activation of Caspase3 at 200μM at 48h confirmed the induction of apoptosis by apigenin and quercetagetin. In addition, results suggest that the change in Bax/Bcl2 ratio by apigenin and quercetagetin seems to be due to their ability to alter the expression of bax and bcl2 transcription. Results of the currents study suggest that among the citrus flavonoids, double bond between C2 and C3 and hydroxyl group at C3, C6 are highly decisive for the proliferation inhibition and apoptosis induction ability. Taken together, these results demonstrate that among the major flavonoids of citrus, apigenin and quercetagetin have potent anti-cancer activity through inducing apoptosis in SW480 human colon cancer cells.
Collapse
Affiliation(s)
- K N Chidambara Murthy
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX 77845-2119, USA
| | - Jinhee Kim
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX 77845-2119, USA
| | - Amit Vikram
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX 77845-2119, USA
| | - Bhimanagouda S Patil
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX 77845-2119, USA.
| |
Collapse
|
26
|
Li Y, Kang X, Wang Q. HSP70 decreases receptor-dependent phosphorylation of Smad2 and blocks TGF-β-induced epithelial-mesenchymal transition. J Genet Genomics 2011; 38:111-6. [PMID: 21477782 DOI: 10.1016/j.jgg.2011.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 01/16/2011] [Accepted: 01/17/2011] [Indexed: 10/18/2022]
Abstract
Smad2 and Smad3, the intracellular mediators of transforming growth factor β (TGF-β) signaling, are directly phosphorylated by the activated type I receptor kinase, and then shuttle from the cytoplasm into the nucleus to regulate target gene expression. Here, we report that the 70-kDa heat-shock protein (HSP70) interacts with Smad2 and decreases TGF-β signal transduction. Ectopic expression of HSP70 prevents receptor-dependent phosphorylation and nuclear translocation of Smad2, and blocks TGF-β-induced epithelial-mesenchymal transition (EMT) in HaCat cells. Our findings reveal an essential role of HSP70 in TGF-β-induced epithelial-mesenchymal transition (EMT) by impeding Smad2 phosphorylation.
Collapse
Affiliation(s)
- Yihao Li
- College of Life Sciences, Hebei University, Baoding 071002, China
| | | | | |
Collapse
|
27
|
Tokalov SV, Abramyuk AM, Abolmaali ND. Protection of p53 wild type cells from taxol by genistein in the combined treatment of lung cancer. Nutr Cancer 2010; 62:795-801. [PMID: 20661829 DOI: 10.1080/01635581003605912] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This study specifies the basic principles to selectively kill p53-deficient cells (H1299, FaDu) by taxol and to protect p53 wild type cells (A549) by the prior administration of structurally related flavonoids (apigenin, genistein, and quercetin). Cytotoxic and cytostatic properties of flavonoids were investigated in vitro by flow cytometry and were compared to known anticancer drugs (cisplatin, doxorubicin, etoposide). It was confirmed that doxorubicin induced growth arrest and protected A549 cells from taxol while simultaneously killing or blocking H1299 and FaDu cancer cells. It was found that doxorubicin could be successfully substituted in this way by the isoflavone genistein used at physiologically relevant concentrations. The other compounds analyzed revealed less selectivity (apigenin, cisplatin) or demonstrated higher toxicity (cisplatin, etoposide, and quercetin). We concluded that genistein-based therapy may have antagonistic effects when combined with mitotic poisons. The proposed therapeutic strategy allows protection of p53 wild type cells from taxol and selectively increases apoptosis in p53-deficient cells. This strategy exploits the naturally occurring compound that can be used without significant toxicity in rather high concentrations as present in common diets.
Collapse
Affiliation(s)
- Sergey V Tokalov
- OncoRay-Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, University of Technology Dresden, Fetscherstrasse 74, Dresden, Germany.
| | | | | |
Collapse
|
28
|
Vidya Priyadarsini R, Senthil Murugan R, Maitreyi S, Ramalingam K, Karunagaran D, Nagini S. The flavonoid quercetin induces cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer (HeLa) cells through p53 induction and NF-κB inhibition. Eur J Pharmacol 2010; 649:84-91. [PMID: 20858478 DOI: 10.1016/j.ejphar.2010.09.020] [Citation(s) in RCA: 268] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 08/24/2010] [Accepted: 09/09/2010] [Indexed: 12/19/2022]
Abstract
With increasing use of plant-derived cancer chemotherapeutic agents, exploring the antiproliferative effects of phytochemicals has gained increasing momentum for anticancer drug design. The dietary phytochemical quercetin, modulates several signal transduction pathways associated with cell proliferation and apoptosis. The present study was undertaken to examine the effect of quercetin on cell viability, and to determine the molecular mechanism of quercetin-induced cell death by investigating the expression of Bcl-2 family proteins (Bcl-2, Bcl-xL, Mcl1, Bax, Bad, p-Bad), cytochrome C, Apaf-1, caspases, and survivin as well as the cell cycle regulatory proteins (p53, p21, cyclin D1), and NF-κB family members (p50, p65, IκB, p-IκB-α, IKKβ and ubiquitin ligase) in human cervical cancer (HeLa) cells. The results demonstrate that quercetin suppressed the viability of HeLa cells in a dose-dependent manner by inducing G2/M phase cell cycle arrest and mitochondrial apoptosis through a p53-dependent mechanism. This involved characteristic changes in nuclear morphology, phosphatidylserine externalization, mitochondrial membrane depolarization, modulation of cell cycle regulatory proteins and NF-κB family members, upregulation of proapoptotic Bcl-2 family proteins, cytochrome C, Apaf-1 and caspases, and downregulation of antiapoptotic Bcl-2 proteins and survivin. Quercetin that exerts opposing effects on different signaling networks to inhibit cancer progression is a classic candidate for anticancer drug design.
Collapse
Affiliation(s)
- R Vidya Priyadarsini
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar-608 002, Tamil Nadu, India
| | | | | | | | | | | |
Collapse
|
29
|
Jung JH, Lee JO, Kim JH, Lee SK, You GY, Park SH, Park JM, Kim EK, Suh PG, An JK, Kim HS. Quercetin suppresses HeLa cell viability via AMPK-induced HSP70 and EGFR down-regulation. J Cell Physiol 2010; 223:408-14. [PMID: 20082303 DOI: 10.1002/jcp.22049] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Quercetin, an anti-oxidant flavonoid that is widely distributed in the plant kingdom, has been suggested to have chemopreventive effects on cancer cells, although the mechanism is not completely understood. In this study, we found that quercetin increased the phosphorylation of AMP-activated protein kinase (AMPK) and downstream acetyl-CoA carboxylase (ACC) and suppressed the viability of HeLa cells. AICAR, an AMPK activator, and quercetin down-regulated heat shock protein (HSP)70 and increased the activity of the pro-apoptotic effector, caspase 3. Knock-down of AMPK blocked quercetin-mediated HSP70 down-regulation. Moreover, knock-down of HSP70 enhanced quercetin-mediated caspase 3 activation. Furthermore, quercetin sustained epidermal growth factor receptor (EGFR) activation by suppressing the phosphatases, PP2a and SHP-2. Finally, quercetin increased the interaction between EGFR and Cbl, and also induced the tyrosine phosphorylation of Cbl. Together, these results suggest that quercetin may have anti-tumor effects on HeLa cells via AMPK-induced HSP70 and down-regulation of EGFR.
Collapse
Affiliation(s)
- Jin Hee Jung
- Department of Anatomy, Korea University College of Medicine, Seongbuk-gu, Seoul 136-701, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Flavonoids from Artemisia annua L. as antioxidants and their potential synergism with artemisinin against malaria and cancer. Molecules 2010; 15:3135-70. [PMID: 20657468 PMCID: PMC6263261 DOI: 10.3390/molecules15053135] [Citation(s) in RCA: 271] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 04/08/2010] [Accepted: 04/19/2010] [Indexed: 02/06/2023] Open
Abstract
Artemisia annua is currently the only commercial source of the sesquiterpene lactone artemisinin. Since artemisinin was discovered as the active component of A. annua in early 1970s, hundreds of papers have focused on the anti-parasitic effects of artemisinin and its semi-synthetic analogs dihydroartemisinin, artemether, arteether, and artesunate. Artemisinin per se has not been used in mainstream clinical practice due to its poor bioavailability when compared to its analogs. In the past decade, the work with artemisinin-based compounds has expanded to their anti-cancer properties. Although artemisinin is a major bioactive component present in the traditional Chinese herbal preparations (tea), leaf flavonoids, also present in the tea, have shown a variety of biological activities and may synergize the effects of artemisinin against malaria and cancer. However, only a few studies have focused on the potential synergistic effects between flavonoids and artemisinin. The resurgent idea that multi-component drug therapy might be better than monotherapy is illustrated by the recent resolution of the World Health Organization to support artemisinin-based combination therapies (ACT), instead of the previously used monotherapy with artemisinins. In this critical review we will discuss the possibility that artemisinin and its semi-synthetic analogs might become more effective to treat parasitic diseases (such as malaria) and cancer if simultaneously delivered with flavonoids. The flavonoids present in A. annua leaves have been linked to suppression of CYP450 enzymes responsible for altering the absorption and metabolism of artemisinin in the body, but also have been linked to a beneficial immunomodulatory activity in subjects afflicted with parasitic and chronic diseases.
Collapse
|
31
|
Kim JM, Lee EK, Park G, Kim MK, Yokozawa T, Yu BP, Chung HY. Morin modulates the oxidative stress-induced NF-κB pathway through its anti-oxidant activity. Free Radic Res 2010; 44:454-61. [DOI: 10.3109/10715761003610737] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
32
|
Abstract
Flavonoids are plant-based phenolic compounds, and quercetin is the most abundant dietary member of this family. One of the most important characteristics of quercetin is its antioxidant property. The aim of this study was to investigate antioxidant effects of quercetin on corpora cavernosa of mice. Corpora cavernosa were isolated in organ baths, precontracted with phenylephrine (0.5 microm) and relaxant responses were mediated by acetylcholine (0.1-1 microm), electrical field stimulation (EFS, 1-16 Hz, 0.5 ms, 30 V) or acidified sodium nitrite (a NaNO(2), 0.5 mm). Superoxide anion generators; pyrogallol (50 microm), hydroquinone (100 microm), LY 83583 (6-Anilinoquinolin-5,8-quinone, 10 microm) and superoxide dismutase (SOD) inhibitor; diethyldithiocarbamic acid (DETCA, 8 mm) were used in order to expose corpus cavernosa to oxidant stress. Acetylcholine (0.1-1 microm) induced relaxant responses were significantly inhibited in LY 83583 (10 microm) and DETCA + LY 83583 applicated trials. EFS-induced relaxant responses were significantly inhibited in DETCA (8 mm) and DETCA + LY 83583 administrated trials. On the other hand, acidified sodium nitrite-induced responses were inhibited by all of the superoxide anion generators tested. Quercetin (10 microm) failed to improve the inhibitions on endothelium and electrically stimulated responses. Acidified sodium nitrite (0.5 mm) mediated relaxant responses were significantly restored by quercetin except the groups in which LY 83583 were used. The data suggest that quercetin acts as a protective agent in mouse corpus cavernosum, increasing the bioavailability of exogenous nitric oxide by protecting it from superoxide anion (O(2)(-)).
Collapse
|
33
|
Wan LL, Xia J, Ye D, Liu J, Chen J, Wang G. Effects of Quercetin on Gene and Protein Expression of NOX and NOS after Myocardial Ischemia and Reperfusion in Rabbit. Cardiovasc Ther 2009; 27:28-33. [DOI: 10.1111/j.1755-5922.2009.00071.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
34
|
Aalinkeel R, Bindukumar B, Reynolds JL, Sykes DE, Mahajan SD, Chadha KC, Schwartz SA. The dietary bioflavonoid, quercetin, selectively induces apoptosis of prostate cancer cells by down-regulating the expression of heat shock protein 90. Prostate 2008; 68:1773-89. [PMID: 18726985 PMCID: PMC2826114 DOI: 10.1002/pros.20845] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Human and animal studies have suggested that diet-derived flavonoids, in particular quercetin may play a beneficial role by preventing or inhibiting oncogenesis, but the underlying mechanism remains unclear. The aim of this study is to evaluate the effect(s) of quercetin on normal and malignant prostate cells and to identify the target(s) of quercetin's action. METHODOLOGY We addressed this question using cells in culture and investigated whether quercetin affects key biological processes responsible for tumor cell properties such as cell proliferation and apoptosis and also studied the effect of quercetin on the proteome of prostate cancer cells using difference gel electrophoresis (DIGE) to assess changes in the expression of relevant proteins. RESULTS Our findings demonstrate that quercetin treatment of prostate cancer cells results in decreased cell proliferation and viability. Furthermore, we demonstrate that quercetin promotes cancer cell apoptosis by down-regulating the levels of heat shock protein (Hsp) 90. Depletion of Hsp90 by quercetin results in decreased cell viability, levels of surrogate markers of Hsp90 inhibition (intracellular and secreted), induced apoptosis and activation of caspases in cancer cells but not in normal prostate epithelial cells. Knockdown of Hsp90 by short interfering RNA also resulted in induction apoptosis similar to quercetin in cancer cells as indicated by annexin V staining. CONCLUSION Our results demonstrate that quercetin down-regulates the expression of Hsp90 which, in turn, induces inhibition of growth and cell death in prostate cancer cells while exerting no quantifiable effect on normal prostate epithelial cells.
Collapse
Affiliation(s)
- Ravikumar Aalinkeel
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, State University of New York at Buffalo, Buffalo General Hospital, Kaleida Health, Buffalo, New York
| | - B. Bindukumar
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, State University of New York at Buffalo, Buffalo General Hospital, Kaleida Health, Buffalo, New York
| | - Jessica L. Reynolds
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, State University of New York at Buffalo, Buffalo General Hospital, Kaleida Health, Buffalo, New York
| | - Donald E. Sykes
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, State University of New York at Buffalo, Buffalo General Hospital, Kaleida Health, Buffalo, New York
| | - Supriya D. Mahajan
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, State University of New York at Buffalo, Buffalo General Hospital, Kaleida Health, Buffalo, New York
| | - Kailash C. Chadha
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York
| | - Stanley A. Schwartz
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, State University of New York at Buffalo, Buffalo General Hospital, Kaleida Health, Buffalo, New York
- Correspondence to: Stanley A. Schwartz, MD, PhD, Buffalo General, Hospital/SUNY Buffalo, Division of Allergy, Immunology and, Rheumatology, Department of Medicine, 100 High Street, Buffalo, NY 14203.
| |
Collapse
|
35
|
Lugli E, Ferraresi R, Roat E, Troiano L, Pinti M, Nasi M, Nemes E, Bertoncelli L, Gibellini L, Salomoni P, Cooper EL, Cossarizza A. Quercetin inhibits lymphocyte activation and proliferation without inducing apoptosis in peripheral mononuclear cells. Leuk Res 2008; 33:140-50. [PMID: 18774171 DOI: 10.1016/j.leukres.2008.07.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2008] [Revised: 07/11/2008] [Accepted: 07/23/2008] [Indexed: 01/08/2023]
Abstract
Toxicity of chemotherapeutic drugs towards normal cells is a serious side effect of cancer treatment. Thus, finding of molecules with low toxicity for normal cells is crucial. Several natural compounds, such as flavonoid quercertin, are receiving a growing attention as "chemopreventers". Quercetin kills tumour-derived cell lines, but little is known about its effects on normal cells. Here we show that although quercetin exerts a higher apoptotic potential on leukemic cell lines than on peripheral blood mononuclear cells (PBMCs) and does not sensitize PBMCs to CD95-induced apoptosis, it is able to inhibit normal immune functions such as T cell proliferation and activation. Quercetin sensitivity is independent on cell cycle progression since it was not abrogated in serum-starved U937 cells, nor proliferating PBMCs underwent apoptosis after quercetin treatment. However, quercetin prevented PHA-induced PBMC proliferation and SEB-induced upregulation of activation markers. Our data suggest that quercetin, while incapable of inducing apoptosis in normal cells under several conditions, could interfere with effector T cell function.
Collapse
Affiliation(s)
- Enrico Lugli
- Department of Biomedical Sciences, Chair of Immunology, University of Modena and Reggio Emilia, via Campi 287, 41100 Modena, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Siriwardhana N, Kim KN, Lee KW, Kim SH, Ha JH, Song CB, Lee JB, Jeon YJ. Optimisation of hydrophilic antioxidant extraction fromHizikiafusiformisby integrating treatments of enzymes, heat and pH control. Int J Food Sci Technol 2008. [DOI: 10.1111/j.1365-2621.2006.01485.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Zhang Y, Chen AY, Li M, Chen C, Yao Q. Ginkgo biloba extract kaempferol inhibits cell proliferation and induces apoptosis in pancreatic cancer cells. THE JOURNAL OF SURGICAL RESEARCH 2008. [PMID: 18570926 DOI: 10.1016/j.jss.2008.02.036s0022-4804(08)00140-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Kaempferol is one of the most important constituents in ginkgo flavonoids. Recent studies indicate kaempferol may have antitumor activities. The objective of this study was to determine the effect and mechanisms of kaempferol on pancreatic cancer cell proliferation and apoptosis. MATERIALS AND METHODS Pancreatic cancer cell lines MIA PaCa-2 and Panc-1 were treated with kaempferol, and the inhibitory effects of kaempferol on pancreatic cancer cell proliferation were examined by direct cell counting, 3H-thymidine incorporation, and MTS assay. Lactate dehydrogenase release from cells was determined as an index of cytotoxicity. Apoptosis was analyzed by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling assay. RESULTS Upon the treatment with 70 microm kaempferol for 4 days, MIA PaCa-2 cell proliferation was significantly inhibited by 79% and 45.7% as determined by direct cell counting and MTS assay, respectively, compared with control cells (P < 0.05). Similarly, the treatment with kaempferol significantly inhibited Panc-1 cell proliferation. Kaempferol treatment also significantly reduced 3H-thymidine incorporation in both MIA PaCa-2 and Panc-1 cells. Combination treatment of low concentrations of kaempferol and 5-fluorouracil showed an additive effect on the inhibition of MIA PaCa-2 cell proliferation. Furthermore, kaempferol had significantly less cytotoxicity than 5-fluorouracil in normal human pancreatic ductal epithelial cells (P = 0.029). In both MIA PaCa-2 and Panc-1 cells, apoptotic cell population was increased when treated with kaempferol in a concentration-dependent manner. CONCLUSIONS Ginkgo biloba extract kaempferol effectively inhibits pancreatic cancer cell proliferation and induces cancer cell apoptosis, which may sensitize pancreatic tumor cells to chemotherapy. Kaempferol may have clinical applications as adjuvant therapy in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Yuqing Zhang
- Molecular Surgeon Research Center, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
38
|
Ginkgo biloba extract kaempferol inhibits cell proliferation and induces apoptosis in pancreatic cancer cells. J Surg Res 2008; 148:17-23. [PMID: 18570926 DOI: 10.1016/j.jss.2008.02.036] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 02/12/2008] [Accepted: 02/20/2008] [Indexed: 12/26/2022]
Abstract
BACKGROUND Kaempferol is one of the most important constituents in ginkgo flavonoids. Recent studies indicate kaempferol may have antitumor activities. The objective of this study was to determine the effect and mechanisms of kaempferol on pancreatic cancer cell proliferation and apoptosis. MATERIALS AND METHODS Pancreatic cancer cell lines MIA PaCa-2 and Panc-1 were treated with kaempferol, and the inhibitory effects of kaempferol on pancreatic cancer cell proliferation were examined by direct cell counting, 3H-thymidine incorporation, and MTS assay. Lactate dehydrogenase release from cells was determined as an index of cytotoxicity. Apoptosis was analyzed by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling assay. RESULTS Upon the treatment with 70 microm kaempferol for 4 days, MIA PaCa-2 cell proliferation was significantly inhibited by 79% and 45.7% as determined by direct cell counting and MTS assay, respectively, compared with control cells (P < 0.05). Similarly, the treatment with kaempferol significantly inhibited Panc-1 cell proliferation. Kaempferol treatment also significantly reduced 3H-thymidine incorporation in both MIA PaCa-2 and Panc-1 cells. Combination treatment of low concentrations of kaempferol and 5-fluorouracil showed an additive effect on the inhibition of MIA PaCa-2 cell proliferation. Furthermore, kaempferol had significantly less cytotoxicity than 5-fluorouracil in normal human pancreatic ductal epithelial cells (P = 0.029). In both MIA PaCa-2 and Panc-1 cells, apoptotic cell population was increased when treated with kaempferol in a concentration-dependent manner. CONCLUSIONS Ginkgo biloba extract kaempferol effectively inhibits pancreatic cancer cell proliferation and induces cancer cell apoptosis, which may sensitize pancreatic tumor cells to chemotherapy. Kaempferol may have clinical applications as adjuvant therapy in the treatment of pancreatic cancer.
Collapse
|
39
|
Ye B, Yang JL, Chen LJ, Wu XX, Yang HS, Zhao JM, Yuan ZP, Li J, Wen YJ, Mao YQ, Lei S, Kan B, Fan LY, Yao WX, Wang R, Wang GQ, Du XB, Liu HY, Wu HB, Xu JR, Li HX, Zhang W, Zhao X, Wei YQ, Cheng L. Induction of apoptosis by phenylisocyanate derivative of quercetin: involvement of heat shock protein. Anticancer Drugs 2008; 18:1165-71. [PMID: 17893517 DOI: 10.1097/cad.0b013e3280145274] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Quercetin, a widely distributed bioflavonoid, inhibits the growth of various tumor cells. The present study was designed to investigate whether a novel quercetin derivative [phenylisocyanate of quercetin (PHICNQ)] exerts antitumor activity against K562 and CT26 tumor cell lines by inducing apoptosis, and to examine the possible mechanism in the phenomenon. The cell proliferation assay of K562 and CT26 tumor cells was determined by the trypan blue dye exclusion test. Apoptosis of PHICNQ-treated cells was determined by morphological analysis, agarose gel DNA electrophoresis and quantitated by flow cytometry after staining with propidium iodide. Cell cycle was evaluated by flow cytometry. The expression of heat shock protein 70 was checked by Western blot analysis. Our results showed that PHICNQ inhibited the proliferation of K562 and CT26 cells in a dose-dependent and time-dependent manner. PHICNQ was 308- and 73-fold more active on CT26 and K562 cells than quercetin, respectively. In addition to this cytostatic effect, treatment of K562 and CT26 tumor cells with PHICNQ induced apoptosis. PHICNQ treatment downregulated the expression of heat shock protein 70 more dramatically than quercetin treatment. These results suggest that PHICNQ is a more powerful antiproliferative derivative than quercetin, with cytostatic and apoptotic effects on K562 and CT26 tumor cells. PHICNQ may trigger apoptosis in tumor cells through inhibition of heat shock protein 70 synthesis and expression.
Collapse
Affiliation(s)
- Bin Ye
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, PRC
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Rubin DT, Cruz-Correa MR, Gasche C, Jass JR, Lichtenstein GR, Montgomery EA, Riddell RH, Rutter MD, Ullman TA, Velayos FS, Itzkowitz S. Colorectal cancer prevention in inflammatory bowel disease and the role of 5-aminosalicylic acid: a clinical review and update. Inflamm Bowel Dis 2008; 14:265-74. [PMID: 17932965 DOI: 10.1002/ibd.20297] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A roundtable consensus meeting was held to consolidate current knowledge on the etiology of colorectal cancer in patients with inflammatory bowel disease and to review current strategies, both diagnostic and preventive, specifically addressing the role of 5-aminosalicylic acid. Specific topics that were addressed included: the epidemiology of colorectal cancer, including an assessment of risk factors and the impact of colonoscopy on colorectal cancer incidence and mortality; the origin and evolution of dysplasia nomenclature and the natural history of dysplasia; review of the experience of St. Mark's Hospital (London) as gleaned from its surveillance database; mechanisms by which 5-aminosalicylic acid is thought to exert a chemopreventive effect; the potential future role of 5-aminosalicylic acid in chemopreventive strategies; chemoprevention in familial adenomatous polyposis; and other future research directions. This article provides a comprehensive overview of the issues discussed and should act as a guide to shaping the design of future studies in this area.
Collapse
Affiliation(s)
- David T Rubin
- University of Chicago Medical Center, Chicago, IL 60637, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Sun H, Cheng XP, You-Ye Z, Jiang P, Zhou JN. Quercetin subunit specifically reduces GlyR-mediated current in rat hippocampal neurons. Neuroscience 2007; 148:548-59. [PMID: 17664043 DOI: 10.1016/j.neuroscience.2007.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 06/04/2007] [Accepted: 06/08/2007] [Indexed: 10/23/2022]
Abstract
Quercetin is a substance of low molecular weight found in vascular plants with a wide range of biological activities including antioxidative and anti-inflammatory activities. In the present study, the effects of quercetin on native glycine receptors (GlyRs) in cultured rat hippocampal neurons were investigated using a whole-cell patch-clamp technique. Quercetin reversibly and concentration-dependently depressed glycine-induced current (I(Gly)), with an IC50 of 10.7+/-0.24 microM and a Hill coefficient of 1.08+/-0.12. Quercetin depressed maximum I(Gly) and significantly changed the EC50 for glycine and the Hill coefficient. Kinetic analysis indicated that quercetin accelerated the rates of desensitization. Interestingly, after the end of glycine with quercetin coapplication, a transient rebound occurred. The quercetin effects also displayed voltage-dependence, being greater at positive membrane potentials. These effects suggested that quercetin may act as an open channel blocker. Furthermore, in the sequential application protocol, quercetin inhibited the peak amplitude of I(Gly) to a macroscopic degree while slowing GlyR desensitization. These effects implied that quercetin has a depressant effect independent of GlyR channel's opening, which maybe caused by an allosteric mechanism. Strikingly, quercetin inhibited the amplitude of recombinant-induced current mediated by alpha2-, alpha2beta-, alpha3- and alpha3beta-GlyRs but had no effects on alpha1- and alpha1beta-GlyRs that were expressed in HEK293T cells. We also investigated the effects of quercetin on I(Gly) in spinal neurons during development in vitro. The extent of blockade by quercetin on I(Gly) was slighter in spinal neurons than in hippocampal neurons in a development-dependent manner. Taken together, our results suggest that quercetin has possible effects in information processing within a neuronal network by inhibition of I(Gly) and may be useful as a pharmacological probe for identifying the subunit types of GlyRs.
Collapse
Affiliation(s)
- Hao Sun
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Neurobiology and Biophysics, School of Life Science, University of Science and Technology of China, Anhui, China
| | | | | | | | | |
Collapse
|
42
|
Manna SK, Aggarwal RS, Sethi G, Aggarwal BB, Ramesh GT. Morin (3,5,7,2',4'-Pentahydroxyflavone) abolishes nuclear factor-kappaB activation induced by various carcinogens and inflammatory stimuli, leading to suppression of nuclear factor-kappaB-regulated gene expression and up-regulation of apoptosis. Clin Cancer Res 2007; 13:2290-7. [PMID: 17404114 PMCID: PMC2740379 DOI: 10.1158/1078-0432.ccr-06-2394] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE Morin is a flavone that exhibits antiproliferative, antitumor, and anti-inflammatory effects through a mechanism that is not well understood. Because of the role of transcription factor nuclear factor-kappaB (NF-kappaB) in the control of cell survival, proliferation, tumorigenesis, and inflammation, we postulated that morin mediates its effects by modulating NF-kappaB activation. EXPERIMENTAL DESIGN We investigated the effect of morin on NF-kappaB pathway activated by inflammatory agents, carcinogens, and tumor promoters. The effect of this flavone on expression of NF-kappaB-regulated gene products involved in cell survival, proliferation, and invasion was also examined. RESULTS We showed by DNA-binding assay that NF-kappaB activation induced by tumor necrosis factor (TNF), phorbol 12-myristate 13-acetate, lipopolysaccharide, ceramide, interleukin-1, and H(2)O(2) was suppressed by morin; the suppression was not cell type specific. The suppression of NF-kappaB by morin was mediated through inhibition of IkappaBalpha (inhibitory subunit of NF-kappaB) kinase, leading to suppression of phosphorylation and degradation of IkappaBalpha and consequent p65 nuclear translocation. Morin also inhibited the NF-kappaB-dependent reporter gene expression activated by TNF, TNF receptor (TNFR) 1, TNFR1-associated death domain, TNFR-associated factor 2, NF-kappaB-inducing kinase, IkappaB kinase, and the p65 subunit of NF-kappaB. NF-kappaB-regulated gene products involved in cell survival [inhibitor of apoptosis (IAP) 1, IAP2, X chromosome-linked IAP, Bcl-xL, and survivin], proliferation (cyclin D1 and cyclooxygenase-2), and invasion (matrix metalloproteinase-9) were down-regulated by morin. These effects correlated with enhancement of apoptosis induced by TNF and chemotherapeutic agents. CONCLUSION Overall, our results indicate that morin suppresses the activation of NF-kappaB and NF-kappaB-regulated gene expression, leading to enhancement of apoptosis. This may provide the molecular basis for the ability of morin to act as an anticancer and anti-inflammatory agent.
Collapse
Affiliation(s)
- Sunil K. Manna
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
- Molecular Neurotoxicology Laboratory/Proteomics Core, Department of Biology, Texas Southern University, Houston, Texas
- Laboratory of Immunology, Center for DNA Fingerprinting and Diagnostics, Nacharam, Hyderabad, India 500 076
| | - Rishi S. Aggarwal
- Molecular Neurotoxicology Laboratory/Proteomics Core, Department of Biology, Texas Southern University, Houston, Texas
| | - Gautam Sethi
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Bharat B. Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Govindarajan T. Ramesh
- Molecular Neurotoxicology Laboratory/Proteomics Core, Department of Biology, Texas Southern University, Houston, Texas
| |
Collapse
|
43
|
Psahoulia FH, Moumtzi S, Roberts ML, Sasazuki T, Shirasawa S, Pintzas A. Quercetin mediates preferential degradation of oncogenic Ras and causes autophagy in Ha-RAS-transformed human colon cells. Carcinogenesis 2006; 28:1021-31. [PMID: 17148506 DOI: 10.1093/carcin/bgl232] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Several food polyphenols act as chemopreventers by reducing the incidence of many types of cancer, especially in colon epithelia. In this study, we have investigated whether the flavonoid quercetin can modulate cell proliferation and survival by targeting key molecules and/or biological processes responsible for tumor cell properties. The effect of quercetin on the expression of Ras oncoproteins was specifically studied using systems of either constitutive or conditional expression of oncogenic RAS in human epithelial cells. Our findings suggest that quercetin inhibits cell viability as well as cancer cell properties like anchorage-independent growth. These findings were further supported at the molecular level, since quercetin treatment resulted in a preferential reduction of Ras protein levels in cell lines expressing oncogenic Ras proteins. Notably, in cells that only express wild-type Ras or in those where the oncogenic Ras allele was knocked out, quercetin had no evident effects upon Ras levels. We have shown that quercetin drastically reduces half-life of oncogenic Ras but has no effect when the cells are treated with a proteasome inhibitor. Moreover, in Ha-RAS-transformed cells, quercetin induces autophagic processes. Since quercetin downregulates the levels of oncogenic Ras in cancer cells, we propose that this flavonoid could act as a chemopreventive agent for cancers with frequent mutations of RAS genes.
Collapse
Affiliation(s)
- Faiy H Psahoulia
- Laboratory of Signal Mediated Gene Expression, Institute of Biological Research and Biotechnology, National Hellenic Research Foundation, 48 Vas. Konstantinou Avenue, Athens 11635, Greece
| | | | | | | | | | | |
Collapse
|
44
|
Nichenametla SN, Taruscio TG, Barney DL, Exon JH. A review of the effects and mechanisms of polyphenolics in cancer. Crit Rev Food Sci Nutr 2006; 46:161-83. [PMID: 16431408 DOI: 10.1080/10408390591000541] [Citation(s) in RCA: 244] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This paper is a comprehensive review of the effects of bioactive polyphenolic compounds commonly found in many fruits and vegetables on cancer. These include the pheniolic acids, anthocyanins, catechins, stilbenes and several other flavonoids. We have attempted to compile information from most of the major studies in this area into one source. The review encompasses the occurrence and bioavailability of the polyphenolics, the in vitro and in vivo evidence for their effects on cancer, both positive and negative, and the various mechanisms by which the chemicals may exert their effects. Although most of the work done to date indicates a chemopreventative activity of these compounds, there are some studies that show cancer-inducing or no effects. There are several common mechanisms by which these chemicals exert their effects that could be conducive to additive, synergistic, or antagonistic interactions. These include effects on cellular differentiation, proliferation, and apoptosis, effects on proteins and enzymes that are involved in these processes at a molecular level, and other various effects through altered immune function and chemical metabolism.
Collapse
|
45
|
Chen TJ, Jeng JY, Lin CW, Wu CY, Chen YC. Quercetin inhibition of ROS-dependent and -independent apoptosis in rat glioma C6 cells. Toxicology 2006; 223:113-26. [PMID: 16647178 DOI: 10.1016/j.tox.2006.03.007] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Revised: 03/14/2006] [Accepted: 03/14/2006] [Indexed: 10/24/2022]
Abstract
In the present study, we investigated the protective mechanism of quercetin (QUE) and its glycosides, rutin (RUT) and quercitrin (QUI), on reactive oxygen species (ROS)-dependent (H(2)O(2)) and -independent (chemical anoxia) cell death in rat glioma C6 cells. Induction of HO-1 protein expression was detected in QUE- but not RUT- or QUI-treated C6 cells, and this was prevented by cycloheximide and actinomycin D. Incubation of C6 cells with QUE, but not RUT or QUI, protected C6 cells from H(2)O(2)- and chemical anoxia-induced cytotoxicity according to the MTT and LDH release assays. Apoptotic characteristics including chromatin condensation, DNA ladders, and hypodiploid cells appeared in H(2)O(2)-and chemical anoxia-treated C6 cells, and those events were significantly suppressed by adding QUE (but not RUT or QUI). Increases in caspase 3, 8, and 9 enzyme activities with decreases in pro-PARP and pro-caspase 3 protein levels and an increase in cleaved D4-GDI protein were identified in H(2)O(2)-and chemical anoxia-treated C6 cells, and these were blocked by the addition of QUE, but not by RUT or QUI. Intracellular peroxide levels increased with H(2)O(2) and decreased with chemical anoxia, and the addition of QUE reduced the intracellular peroxide levels induced by H(2)O(2). Results of an anti-DPPH radical assay showed that QUE, RUT, and QUI dose-dependently inhibited the production of DPPH radicals in vitro; however, QUE (but not RUT or QUI) prevention of DNA damage induced by OH radicals was identified with a plasmid digestion assay. Increases in phosphorylated ERK and p53 protein expressions were detected in H(2)O(2)- but not chemical anoxia-treated C6 cells, and the addition of QUE significantly blocked H(2)O(2)-induced phosphorylated ERK and p53 protein expressions. Adding the HO-1 inhibitors, SnPP, CoPP, and ZnPP, reversed the protective effect of QUE against H(2)O(2)- and chemical anoxia-induced cell death according to the MTT assay and morphological observations. Additionally, QUE exhibited inhibitory effects on LPS/TPA-induced transformation in accordance with a decrease in MMP-9 enzyme activity and iNOS protein expression in C6 cells. Taken together, the results of this study suggest that QUE exhibits an inhibitory effect on both ROS-dependent and -independent cell death, and induction of HO-1 protein expression is involved.
Collapse
Affiliation(s)
- Tong-Jong Chen
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, No.95, Wen-Chung Road, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
46
|
Yuan ZP, Chen LJ, Fan LY, Tang MH, Yang GL, Yang HS, Du XB, Wang GQ, Yao WX, Zhao QM, Ye B, Wang R, Diao P, Zhang W, Wu HB, Zhao X, Wei YQ. Liposomal Quercetin Efficiently Suppresses Growth of Solid Tumors in Murine Models. Clin Cancer Res 2006; 12:3193-9. [PMID: 16707620 DOI: 10.1158/1078-0432.ccr-05-2365] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Quercetin is a potent chemotherapeutic drug. Clinical trials exploring different schedules of administration of quercetin have been hampered by its extreme water insolubility. To overcome this limitation, this study is aimed to develop liposomal quercetin and investigate its distribution in vivo and antitumor efficacy in vivo and in vitro. EXPERIMENTAL DESIGN Quercetin was encapsulated in polyethylene glycol 4000 liposomes. Biodistribution of liposomal quercetin i.v. at 50 mg/kg in tumor-bearing mice was detected by high-performance liquid chromatography. Induction of apoptosis by liposomal quercetin in vitro was tested. The antitumor activity of liposomal quercetin was evaluated in the immunocompetent C57BL/6N mice bearing LL/2 Lewis lung cancer and in BALB/c mice bearing CT26 colon adenocarcinoma and H22 hepatoma. Tumor volume and survival time were observed. The mechanisms underlying the antitumor effect of quercetin in vivo was investigated by detecting the microvessel density, apoptosis, and heat shock protein 70 expression in tumor tissues. RESULTS Liposomal quercetin could be dissolved in i.v. injection and effectively accumulate in tumor tissues. The half-time of liposomal quercetin was 2 hours in plasma. The liposomal quercetin induced apoptosis in vitro and significantly inhibited tumor growth in vivo in a dose-dependent manner. The optimal dose of liposomal quercetin resulted in a 40-day survival rate of 40%. Quantitative real-time PCR showed that liposomal quercetin down-regulated the expression of heat shock protein 70 in tumor tissues. Immunohistochemistry analysis showed that liposomal quercetin inhibited tumor angiogenesis as assessed by CD31 and induced tumor cell apoptosis. CONCLUSIONS Our data indicated that pegylated liposomal quercetin can significantly improve the solubility and bioavailability of quercetin and can be a potential application in the treatment of tumor.
Collapse
Affiliation(s)
- Zhi-ping Yuan
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Jackson SJT, Venema RC. Quercetin inhibits eNOS, microtubule polymerization, and mitotic progression in bovine aortic endothelial cells. J Nutr 2006; 136:1178-84. [PMID: 16614401 DOI: 10.1093/jn/136.5.1178] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Quercetin (QRN), one of the most abundant flavonoids in the human diet, is a known antioxidant and inhibitor of cancer cell cycle progression. Here, we provide the first evidence that QRN inhibits angiogenesis via a mechanism involving both suppression of endothelial nitric oxide synthase (eNOS) and early M-phase cell cycle arrest. Bovine aortic endothelial (BAE) cells were exposed to doses of up to 100 micromol/L QRN and assayed for eNOS activity and phosphorylation status. Phosphorylation of eNOS at Ser 617 (bovine sequence) is thought to occur in response to Akt stimulation and to be required for eNOS activity. Together with basal eNOS activity, eNOS phosphorylation at Ser 617 and Akt Ser 473 phosphorylation were dose dependently and concomitantly suppressed by QRN within 30 min. Furthermore, although the significant (P < 0.05) inhibitory effect of a single 100 micromol/L QRN dose on eNOS activity was overcome within approximately 24 h, chronic QRN exposures (24-48 h) led to early M-phase arrest and disruption of mitotic microtubule polymerization. In vivo, QRN administered i.p. to female Balb/C mice bearing both syngeneic mammary tumors and Matrigel implants suppressed angiogenesis as measured by endothelial cell immunohistochemistry and hemoglobin concentration. Taken together, these findings suggest a dual mechanism by which QRN suppresses endothelial cell proliferation, both acutely via inhibition of eNOS Ser 617 phosphorylation, and chronically via perturbation of mitotic microtubule polymerization. This novel mechanism of QRN in endothelial cells may in part explain its inhibitory action on angiogenesis and further discern a potential role of QRN as a chemopreventive agent.
Collapse
Affiliation(s)
- Steven J T Jackson
- Medical College of Georgia, Vascular Biology Center, CB 3207, Augusta, GA 30912, USA
| | | |
Collapse
|
48
|
van der Woude H, Boersma MG, Alink GM, Vervoort J, Rietjens IMCM. Consequences of quercetin methylation for its covalent glutathione and DNA adduct formation. Chem Biol Interact 2006; 160:193-203. [PMID: 16516181 DOI: 10.1016/j.cbi.2005.12.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 12/08/2005] [Accepted: 12/09/2005] [Indexed: 10/25/2022]
Abstract
This study investigates the pro-oxidant activity of 3'- and 4'-O-methylquercetin, two relevant phase II metabolites of quercetin without a functional catechol moiety, which is generally thought to be important for the pro-oxidant activity of quercetin. Oxidation of 3'- and 4'-O-methylquercetin with horseradish peroxidase in the presence of glutathione yielded two major metabolites for each compound, identified as the 6- and 8-glutathionyl conjugates of 3'- and 4'-O-methylquercetin. Thus, catechol-O-methylation of quercetin does not eliminate its pro-oxidant chemistry. Furthermore, the formation of these A-ring glutathione conjugates of 3'- and 4'-O-methylquercetin indicates that quercetin o-quinone may not be an intermediate in the formation of covalent quercetin adducts with glutathione, protein and/or DNA. In additional studies, it was demonstrated that covalent DNA adduct formation by a mixture of [4-(14)C]-3'- and 4'-O-methylquercetin in HepG2 cells amounted to only 42% of the level of covalent adducts formed by a similar amount of [4-(14)C]-quercetin. Altogether, these results reveal the effect of methylation of the catechol moiety of quercetin on its pro-oxidant behavior. Methylation of quercetin does not eliminate but considerably attenuates the cellular implications of the pro-oxidant activity of quercetin, which might add to the mechanisms underlying the apparent lack of in vivo carcinogenicity of this genotoxic compound. The paper also presents a new mechanism for the pro-oxidant chemistry of quercetin, eliminating the requirement for formation of an o-quinone, and explaining why methylation of the catechol moiety does not fully abolish formation of reactive DNA binding metabolites.
Collapse
Affiliation(s)
- Hester van der Woude
- Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
49
|
Abstract
Oxidative stress and associated mechanisms involving inflammation, aberrant signaling pathways and gap junction intercellular communication is increasingly associated with the pathogenesis of various chronic degenerative disorders such as atherosclerosis, neurodegeneration and cancer. Consumption of fruits, vegetables and beverages like teas continues to be suggested to have the capacity to reduce the incidence of cancer. The bioactive compounds including phenolics may be responsible for the chemopreventive effects. While the free radical scavenging and antioxidant properties of phenolics are well established, emerging literature reports suggest that their chemopreventive effects may also be ascribed to their ability to modulate components of cell signaling pathways. This paper reviews the potential chemoprevention role of phenolics with a focus on cellular signal transduction mechanisms and prevention of gap junction intercellular communication relevant to cancer.
Collapse
Affiliation(s)
- Muhammad A Soobrattee
- Department of Biosciences, Faculty of Science, University of Mauritius, Réduit, Republic of Mauritius
| | | | | |
Collapse
|
50
|
van der Woude H, Ter Veld MGR, Jacobs N, van der Saag PT, Murk AJ, Rietjens IMCM. The stimulation of cell proliferation by quercetin is mediated by the estrogen receptor. Mol Nutr Food Res 2005; 49:763-71. [PMID: 15937998 DOI: 10.1002/mnfr.200500036] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Quercetin causes biphasic modulation of the proliferation of specific colon and mammary cancer cells. In this study, the possible involvement of the estrogen receptor (ER) in the stimulation of cell proliferation by quercetin was investigated. For this purpose, the effect of quercetin on cell proliferation was tested in ER-positive MCF-7 and T47D cells, and in ER-negative HCC-38 and MDA-MB231 cells. Quercetin stimulated proliferation of ER-positive cells only, suggesting this effect to be ER-dependent. In support of these results, quercetin induced ER-ERE-mediated gene expression in a reporter gene assay using U2-OS cells transfected with either ERalpha or ERbeta, with 10(5)-10(6) times lower affinity than 17beta-estradiol (E2) and 10(2)-10(3 )times lower affinity than genistein. Quercetin activated the ERbeta to a 4.5-fold higher level than E2, whereas the maximum induction level of ERalpha by quercetin was only 1.7 fold that of E2. These results point at the relatively high capacity of quercetin to stimulate supposed 'beneficial' ERbeta responses as compared to the stimulation of ERalpha, the receptor possibly involved in adverse cell proliferative effects. Altogether, the results of this study reveal that physiologically relevant concentrations of quercetin can exert phytoestrogen-like activity similar to that observed for the isoflavonoid genistein.
Collapse
|