1
|
Malankar GS, Shelar DS, Butcher RJ, Manjare ST. Development of diselenide-based fluorogenic system for the selective and sensitive detection of the Hg(II) in aqueous media. Dalton Trans 2025; 54:3911-3920. [PMID: 39886849 DOI: 10.1039/d4dt02967d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Mercury(II) is highly toxic thus the selective and sensitive detection of Hg(II) is important. This research article deals with the synthesis and characterization of the fluorogenic system based on diselenide containing rhodamine by single crystal XRD. The probe has been used for selective detection of Hg(II) in aqueous media with detection limit of 62.3 nM. The reaction of the Hg(II) with the probe induces opening of the spirolactam ring triggering fluorescence turn-on response. This reaction causes color change of the probe solution from colorless to pink. In addition, the probe showed the reversible binding behavior with Hg(II) and S2-. The effectiveness of the probe was evaluated using prostate cancer cell line through live cell imaging.
Collapse
Affiliation(s)
- Gauri S Malankar
- Department of Chemistry, University of Mumbai, Mumbai, 400098, India.
- Oregon Health and Science University, Portland, Oregon, USA
| | - Divyesh S Shelar
- Department of Chemistry, University of Mumbai, Mumbai, 400098, India.
| | | | - Sudesh T Manjare
- Department of Chemistry, University of Mumbai, Mumbai, 400098, India.
| |
Collapse
|
2
|
Sen A, Khan S, Rossetti S, Broege A, MacNeil I, DeLaForest A, Molden J, Davis L, Iversrud C, Seibel M, Kopher R, Schulz S, Laing L. Assessments of prostate cancer cell functions highlight differences between a pan-PI3K/mTOR inhibitor, gedatolisib, and single-node inhibitors of the PI3K/AKT/mTOR pathway. Mol Oncol 2025; 19:225-247. [PMID: 39092562 PMCID: PMC11705819 DOI: 10.1002/1878-0261.13703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/14/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024] Open
Abstract
Metastatic castration-resistant prostate cancer (mCRPC) is characterized by loss of androgen receptor (AR) sensitivity and oncogenic activation of the PI3K/AKT/mTOR (PAM) pathway. Loss of the PI3K regulator PTEN is frequent during prostate cancer (PC) initiation, progression, and therapeutic resistance. Co-targeting the PAM/AR pathways is a promising mCRPC treatment strategy but is hampered by reciprocal negative feedback inhibition or feedback relief. Most PAM inhibitors selectively spare (or weakly inhibit) one or more key nodes of the PAM pathway, potentiating drug resistance depending on the PAM pathway mutation status of patients. We posited that gedatolisib, a uniformly potent inhibitor of all class I PI3K isoforms, as well as mTORC1 and mTORC2, would be more effective than inhibitors targeting single PAM pathway nodes in PC cells. Using a combination of functional and metabolic assays, we evaluated a panel of PC cell lines with different PTEN/PIK3CA status for their sensitivity to multi-node PAM inhibitors (PI3K/mTOR: gedatolisib, samotolisib) and single-node PAM inhibitors (PI3Kα: alpelisib; AKT: capivasertib; mTOR: everolimus). Gedatolisib induced anti-proliferative and cytotoxic effects with greater potency and efficacy relative to the other PAM inhibitors, independent of PTEN/PIK3CA status. The superior effects of gedatolisib were likely associated with more effective inhibition of critical PAM-controlled cell functions, including cell cycle, survival, protein synthesis, oxygen consumption rate, and glycolysis. Our results indicate that potent and simultaneous blockade of all class I PI3K isoforms, mTORC1, and mTORC2 could circumvent PTEN-dependent resistance. Gedatolisib, as a single agent and in combination with other therapies, reported promising preliminary efficacy and safety in various solid tumor types. Gedatolisib is currently being evaluated in a Phase 1/2 clinical trial in combination with darolutamide in patients with mCRPC previously treated with an AR inhibitor, and in a Phase 3 clinical trial in combination with palbociclib and fulvestrant in patients with HR+/HER2- advanced breast cancer.
Collapse
|
3
|
Ishii K, Iguchi K, Matsuda C, Hirokawa Y, Sugimura Y, Watanabe M. Application of Original Prostate Cancer Progression Model Interacting with Fibroblasts in Preclinical Research. J Clin Med 2024; 13:7837. [PMID: 39768760 PMCID: PMC11678552 DOI: 10.3390/jcm13247837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Prostate cancer (PCa) is a heterogeneous disease that exhibits androgen sensitivity and responsiveness to androgen deprivation therapy (ADT). However, ADT induces only temporary remission, and the majority of PCa cases eventually progress to castration-resistant PCa (CRPC). During the development and progression of CRPC, androgen sensitivity and androgen receptor (AR) dependency in PCa cells are often deceased or lost due to ADT or spontaneously arising AR variants even before starting ADT. To prevent CRPC, a clinical PCa model derived from an AR-positive cancer cell line with weak or no androgen sensitivity is required. The human prostate LNCaP cell line is a good model for PCa because of its androgen sensitivity and AR dependency in terms of cell growth and gene expression. Notably, LNCaP cells are heterogeneous cells comprising different clones with natural variations in androgen sensitivity and AR dependency resulting from spontaneously occurring changes. In our group, to obtain androgen-insensitive or weakly sensitive clones spontaneously derived from parental LNCaP cells, we performed a limiting dilution of parental LNCaP cells and obtained several sublines with varying levels of androgen sensitivity and AR dependency. In addition, we established an androgen-insensitive subline from parental LNCaP cells by continuous passage under hormone-depleted conditions. This article provides a unique perspective on our original PCa progression model interacting with fibroblasts and its application in preclinical research.
Collapse
Affiliation(s)
- Kenichiro Ishii
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan; (C.M.); (Y.H.); (M.W.)
- Department of Nursing, Nagoya University of Arts and Sciences, Nagoya 460-0001, Japan
| | - Kazuhiro Iguchi
- Laboratory of Community Pharmacy, Gifu Pharmaceutical University, Gifu 501-1196, Japan;
| | - Chise Matsuda
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan; (C.M.); (Y.H.); (M.W.)
| | - Yoshifumi Hirokawa
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan; (C.M.); (Y.H.); (M.W.)
| | | | - Masatoshi Watanabe
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan; (C.M.); (Y.H.); (M.W.)
| |
Collapse
|
4
|
Takei T, Hamamura Y, Hongo H, Tashiro E, Imoto M, Kosaka T, Oya M. Selective killing of castration-resistant prostate cancer cells by formycin A via the ATF4-CHOP axis. Cancer Sci 2024; 115:3997-4007. [PMID: 39327674 PMCID: PMC11611774 DOI: 10.1111/cas.16349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/28/2024] [Accepted: 09/07/2024] [Indexed: 09/28/2024] Open
Abstract
Prostate cancer is initially androgen-dependent but often relapses to an androgen-independent state called castration-resistant prostate cancer (CRPC). Currently approved therapies have limited efficacy against CRPC, highlighting the need for novel therapeutic strategies. To address this need, we conducted a drug screen in our previously established aggressive CRPC cell model. We found that formycin A induced cell death in CRPC model cells but not in parental prostate cancer cells. In addition, formycin A upregulated death receptor 5 through the induction of endoplasmic reticulum stress, activating the "extrinsic" apoptosis pathway in CRPC model cells. Moreover, formycin A showed in vivo antitumor efficacy against CRPC xenografts in castrated nude mice. Thus, our findings highlight the potential of formycin A as a CRPC therapeutic.
Collapse
Affiliation(s)
- Tomoki Takei
- Department of Biosciences and Informatics, Faculty of Science and TechnologyKeio UniversityYokohamaJapan
- Department of NeurologyJuntendo University Graduate School of MedicineTokyoJapan
| | - Yuki Hamamura
- Department of Biosciences and Informatics, Faculty of Science and TechnologyKeio UniversityYokohamaJapan
| | - Hiroshi Hongo
- Department of UrologyKeio University School of MedicineTokyoJapan
| | - Etsu Tashiro
- Department of Biosciences and Informatics, Faculty of Science and TechnologyKeio UniversityYokohamaJapan
- Laboratory of BiochemistryShowa Pharmaceutical UniversityTokyoJapan
| | - Masaya Imoto
- Department of Biosciences and Informatics, Faculty of Science and TechnologyKeio UniversityYokohamaJapan
- Department of NeurologyJuntendo University Graduate School of MedicineTokyoJapan
| | - Takeo Kosaka
- Department of UrologyKeio University School of MedicineTokyoJapan
| | - Mototsugu Oya
- Department of UrologyKeio University School of MedicineTokyoJapan
| |
Collapse
|
5
|
Rhee JW, Adzavon YM, Sun Z. Stromal androgen signaling governs essential niches in supporting prostate development and tumorigenesis. Oncogene 2024; 43:3419-3425. [PMID: 39369165 PMCID: PMC11573710 DOI: 10.1038/s41388-024-03175-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/07/2024]
Abstract
Androgens and androgen receptor (AR) mediated signaling pathways are essential for prostate development, morphogenesis, growth, and regeneration. Early tissue recombination experiments showed that AR-deficient urogenital sinus mesenchyme combined with intact urogenital sinus epithelium failed to develop into a prostate, demonstrating a stem cell niche for mesenchymal AR in prostatic development. Androgen signaling remains critical for prostate maturation and growth during postnatal stages. Importantly, most primary prostate cancer (PCa) cells express the AR, and aberrant activation of AR directly promotes PCa development, growth, and progression. Therefore, androgen deprivation therapy (ADT) targeting the AR in PCa cells is the main treatment for advanced PCa. However, it eventually fails, leading to the development of castration-resistant PCa, an incurable disease. Given these clinical challenges, the oncogenic AR action needs to be reevaluated for developing new and effective therapies. Recently, an essential niche role of stromal AR was identified in regulating prostate development and tumorigenesis. Here, we summarize the latest discoveries of stromal AR niches and their interactions with prostatic epithelia. In combination with emerging clinical and experimental evidence, we specifically discuss several important and long-term unanswered questions regarding tumor niche roles of stromal AR and highlight future therapeutic strategies by co-targeting epithelial and stromal AR for treating advanced PCa.
Collapse
Affiliation(s)
- June-Wha Rhee
- Department of Medicine, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Yao Mawulikplimi Adzavon
- Department of Cell Biology, Department of Oncology, Montefiore Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Zijie Sun
- Department of Cell Biology, Department of Oncology, Montefiore Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
6
|
Adzavon YM, Culig Z, Sun Z. Interactions between androgen and IGF1 axes in prostate tumorigenesis. Nat Rev Urol 2024:10.1038/s41585-024-00942-3. [PMID: 39375467 DOI: 10.1038/s41585-024-00942-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 10/09/2024]
Abstract
Androgen signalling through the androgen receptor (AR) is essential for prostate tumorigenesis. However, androgen signalling pathways also interact with other growth factor-mediated signalling pathways to regulate the prostatic cell cycle, differentiation, apoptosis and proliferation in the initiation and progression of prostate cancer. Insulin-like growth factor 1 (IGF1) is one of the most prominent growth factors in prostate tumorigenesis. Clinical and experimental evidence has demonstrated that IGF1 signalling supports both androgen-dependent and androgen-independent prostate tumorigenesis, suggesting that improved understanding of the interactions between the IGF1 and androgen axes might aid the development of new therapeutic strategies. Available data have shown a dynamic role of androgen-AR signalling in the activation of IGF1-signalling pathways by augmenting transcription of the IGF1 receptor in prostatic basal epithelial cells and by increasing IGF1 secretion through the suppression of IGF-binding protein 3 expression in prostatic stromal cells. In turn, IGF1 stimulates Wnt-β-catenin signalling in prostatic basal progenitors to promote prostatic oncogenic transformation and prostate cancer development. These findings highlight the cooperative, autocrine and paracrine interactions that underlie the oncogenic effects of androgens and IGF1 and open up new opportunities for therapeutic targeting.
Collapse
Affiliation(s)
- Yao Mawulikplimi Adzavon
- Department of Cell Biology, Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Oncology, Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Zoran Culig
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Zijie Sun
- Department of Cell Biology, Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
7
|
Shao IH, Chang TH, Chang YH, Hsieh YH, Sheng TW, Wang LJ, Chien YH, Huang LK, Chu YC, Kan HC, Lin PH, Yu KJ, Hsieh ML, Chuang CK, Wu CT, Hsieh CH, Pang ST. Periprostatic adipose tissue inhibits tumor progression by secreting apoptotic factors: A natural barrier induced by the immune response during the early stages of prostate cancer. Oncol Lett 2024; 28:485. [PMID: 39170882 PMCID: PMC11338243 DOI: 10.3892/ol.2024.14617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 06/27/2024] [Indexed: 08/23/2024] Open
Abstract
Prostate cancer (PCa) is the second most prevalent malignancy in men worldwide. The risk factors for PCa include obesity, age and family history. Increased visceral fat has been associated with high PCa risk, which has prompted previous researchers to investigate the influence of body composition and fat distribution on PCa prognosis. However, there is a lack of studies focusing on the mechanisms and interactions between periprostatic adipose tissue (PPAT) and PCa cells. The present study investigated the association between the composition of pelvic adipose tissue and PCa aggressiveness to understand the role played by this tissue in PCa progression. Moreover, PPAT-conditioned medium (CM) was prepared to assess the influence of the PPAT secretome on the pathophysiology of PCa. The present study included 50 patients with localized PCa who received robot-assisted radical prostatectomy. Medical records were collected, magnetic resonance imaging scans were analyzed and body compositions were calculated to identify the associations between adipose tissue volume and clinical PCa aggressiveness. In addition, CM was prepared from PPAT and perivesical adipose tissue (PVAT) collected from 25 patients during surgery, and its effects on the PCa cell lines C4-2 and LNCaP, and the prostate epithelial cell line PZ-HPV-7, were investigated using a cell proliferation assay and RNA sequencing (RNA-seq). The results revealed that the initial prostate-specific antigen level was significantly correlated with pelvic and periprostatic adipose tissue volumes. In addition, PPAT volume was significantly higher in patients with extracapsular tumor extension. PCa cell proliferation was significantly reduced when the cells were cultured in PPAT-CM compared with when they were cultured in control- and PVAT-CM. RNA-seq revealed that immune responses, and the cell death and apoptosis pathways were enriched in PPAT-CM-cultured cells indicating that the cytokines or other factors secreted from PPAT-CM induced PCa cell apoptosis. These findings revealed that the PPAT secretome may inhibit PCa cell proliferation by activating immune responses and promoting cancer cell apoptosis. This mechanism may act as a first-line defense during the early stages of PCa.
Collapse
Affiliation(s)
- I-Hung Shao
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333423, Taiwan, R.O.C
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, R.O.C
- Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, R.O.C
| | - Tzu-Hsuan Chang
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333423, Taiwan, R.O.C
| | - Ying-Hsu Chang
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, R.O.C
- Division of Urology, Department of Surgery, New Taipei Municipal Tucheng Hospital, New Taipei 236017, Taiwan, R.O.C
| | - Yu-Hsin Hsieh
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333423, Taiwan, R.O.C
| | - Ting-Wen Sheng
- Department of Medical Imaging and Intervention, New Taipei Municipal Tucheng Hospital, New Taipei 236017, Taiwan, R.O.C
| | - Li-Jen Wang
- Department of Medical Imaging and Intervention, New Taipei Municipal Tucheng Hospital, New Taipei 236017, Taiwan, R.O.C
| | - Yu-Hsuan Chien
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333423, Taiwan, R.O.C
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, R.O.C
| | - Liang-Kang Huang
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333423, Taiwan, R.O.C
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, R.O.C
| | - Yuan-Cheng Chu
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333423, Taiwan, R.O.C
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, R.O.C
| | - Hung-Cheng Kan
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333423, Taiwan, R.O.C
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, R.O.C
| | - Po-Hung Lin
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333423, Taiwan, R.O.C
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, R.O.C
| | - Kai-Jie Yu
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333423, Taiwan, R.O.C
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, R.O.C
| | - Ming-Li Hsieh
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333423, Taiwan, R.O.C
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, R.O.C
| | - Cheng-Keng Chuang
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333423, Taiwan, R.O.C
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, R.O.C
| | - Chun-Te Wu
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333423, Taiwan, R.O.C
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, R.O.C
| | - Chin-Hsuan Hsieh
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333423, Taiwan, R.O.C
| | - See-Tong Pang
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333423, Taiwan, R.O.C
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, R.O.C
| |
Collapse
|
8
|
Shiota M, Ushijima M, Tsukahara S, Nagakawa S, Okada T, Tanegashima T, Kobayashi S, Matsumoto T, Eto M. Oxidative stress in peroxisomes induced by androgen receptor inhibition through peroxisome proliferator-activated receptor promotes enzalutamide resistance in prostate cancer. Free Radic Biol Med 2024; 221:81-88. [PMID: 38762061 DOI: 10.1016/j.freeradbiomed.2024.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/20/2024]
Abstract
Androgen receptor (AR)-targeting therapy induces oxidative stress in prostate cancer. However, the mechanism of oxidative stress induction by AR-targeting therapy remains unclear. This study investigated the mechanism of oxidative stress induction by AR-targeting therapy, with the aim to develop novel therapeutics targeting oxidative stress induced by AR-targeting therapy. Intracellular reactive oxygen species (ROS) was examined by fluorescence microscopy and flow cytometry analysis. The effects of silencing gene expression and small molecule inhibitors on gene expression and cytotoxic effects were examined by quantitative real-time PCR and cell proliferation assay. ROS induced by androgen depletion co-localized with peroxisomes in prostate cancer cells. Among peroxisome-related genes, PPARA was commonly induced by AR inhibition and involved in ROS production via PKC signaling. Inhibition of PPARα by specific siRNA and a small molecule inhibitor suppressed cell proliferation and increased cellular sensitivity to the antiandrogen enzalutamide in prostate cancer cells. This study revealed a novel pathway by which AR inhibition induced intracellular ROS mainly in peroxisomes through PPARα activation in prostate cancer. This pathway is a promising target for the development of novel therapeutics for prostate cancer in combination with AR-targeting therapy such as antiandrogen enzalutamide.
Collapse
Affiliation(s)
- Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| | - Miho Ushijima
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shigehiro Tsukahara
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shohei Nagakawa
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Tatsunori Okada
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Tokiyoshi Tanegashima
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Satoshi Kobayashi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Takashi Matsumoto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| |
Collapse
|
9
|
Samaržija I, Lukiyanchuk V, Lončarić M, Rac-Justament A, Stojanović N, Gorodetska I, Kahya U, Humphries JD, Fatima M, Humphries MJ, Fröbe A, Dubrovska A, Ambriović-Ristov A. The extracellular matrix component perlecan/HSPG2 regulates radioresistance in prostate cancer cells. Front Cell Dev Biol 2024; 12:1452463. [PMID: 39149513 PMCID: PMC11325029 DOI: 10.3389/fcell.2024.1452463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024] Open
Abstract
Radiotherapy of prostate cancer (PC) can lead to the acquisition of radioresistance through molecular mechanisms that involve, in part, cell adhesion-mediated signaling. To define these mechanisms, we employed a DU145 PC model to conduct a comparative mass spectrometry-based proteomic analysis of the purified integrin nexus, i.e., the cell-matrix junction where integrins bridge assembled extracellular matrix (matrisome components) to adhesion signaling complexes (adhesome components). When parental and radioresistant cells were compared, the expression of integrins was not changed, but cell radioresistance was associated with extensive matrix remodeling and changes in the complement of adhesion signaling proteins. Out of 72 proteins differentially expressed in the parental and radioresistant cells, four proteins were selected for functional validation based on their correlation with biochemical recurrence-free survival. Perlecan/heparan sulfate proteoglycan 2 (HSPG2) and lysyl-like oxidase-like 2 (LOXL2) were upregulated, while sushi repeat-containing protein X-linked (SRPX) and laminin subunit beta 3 (LAMB3) were downregulated in radioresistant DU145 cells. Knockdown of perlecan/HSPG2 sensitized radioresistant DU145 RR cells to irradiation while the sensitivity of DU145 parental cells did not change, indicating a potential role for perlecan/HSPG2 and its associated proteins in suppressing tumor radioresistance. Validation in androgen-sensitive parental and radioresistant LNCaP cells further supported perlecan/HSPG2 as a regulator of cell radiosensitivity. These findings extend our understanding of the interplay between extracellular matrix remodeling and PC radioresistance and signpost perlecan/HSPG2 as a potential therapeutic target and biomarker for PC.
Collapse
Affiliation(s)
- Ivana Samaržija
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Vasyl Lukiyanchuk
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
| | - Marija Lončarić
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Anja Rac-Justament
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Nikolina Stojanović
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ielizaveta Gorodetska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Uğur Kahya
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Jonathan D Humphries
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Mahak Fatima
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
| | - Martin J Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
| | - Ana Fröbe
- Department of Oncology and Nuclear Medicine, Sestre Milosrdnice University Hospital Center, School of Dental Medicine, University of Zagreb, Zagreb, Croatia
| | - Anna Dubrovska
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- German Cancer Consortium, Partner Site Dresden and German Cancer Research Center, Heidelberg, Germany
- National Center for Tumor Diseases, Partner Site Dresden: German Cancer Research Center, Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Andreja Ambriović-Ristov
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
10
|
Bagal SK, Astles PC, Diène C, Argyrou A, Crafter C, Cassar DJ, Fallan C, Hock A, Jones T, Moreau K, Lamont GM, Lamont S, Michaloglou C, Packer MJ, Pike A, Ramos-Montoya A, Scott JS, Shaw J, Shologu Z. Discovery of a Series of Orally Bioavailable Androgen Receptor Degraders for the Treatment of Prostate Cancer. J Med Chem 2024; 67:11732-11750. [PMID: 38991141 DOI: 10.1021/acs.jmedchem.4c00269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Androgen receptor (AR) signaling plays a key role in the progression of prostate cancer. This study describes the discovery and optimization of a novel series of AR PROTAC degraders that recruit the Cereblon (CRBN) E3 ligase. Having identified a series of AR ligands based on 4-(4-phenyl-1-piperidyl)-2-(trifluoromethyl)benzonitrile, our PROTAC optimization strategy focused on linker connectivity and CRBN ligand SAR to deliver potent degradation of AR in LNCaP cells. This work culminated in compounds 11 and 16 which demonstrated good rodent oral bioavailability. Subsequent SAR around the AR binding region brought in an additional desirable feature, degradation of the important treatment resistance mutation L702H. Compound 22 (AZ'3137) possessed an attractive profile showing degradation of AR and L702H mutant AR with good oral bioavailability across species. The compound also inhibited AR signaling in vitro and tumor growth in vivo in a mouse prostate cancer xenograft model.
Collapse
Affiliation(s)
| | | | - Coura Diène
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | | | | | | | | | - Andreas Hock
- Discovery Sciences R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Thomas Jones
- Discovery Sciences R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Kevin Moreau
- Clinical Pharmacology and Safety Sciences, AstraZeneca, Cambridge CB4 0WG, U.K
| | | | - Scott Lamont
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | | | | | - Andy Pike
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | | | | | - Joseph Shaw
- Discovery Sciences R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | | |
Collapse
|
11
|
Kurganovs NJ, Engedal N. To eat or not to eat: a critical review on the role of autophagy in prostate carcinogenesis and prostate cancer therapeutics. Front Pharmacol 2024; 15:1419806. [PMID: 38910881 PMCID: PMC11190189 DOI: 10.3389/fphar.2024.1419806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Around 1 in 7 men will be diagnosed with prostate cancer during their lifetime. Many strides have been made in the understanding and treatment of this malignancy over the years, however, despite this; treatment resistance and disease progression remain major clinical concerns. Recent evidence indicate that autophagy can affect cancer formation, progression, and therapeutic resistance. Autophagy is an evolutionarily conserved process that can remove unnecessary or dysfunctional components of the cell as a response to metabolic or environmental stress. Due to the emerging importance of autophagy in cancer, targeting autophagy should be considered as a potential option in disease management. In this review, along with exploring the advances made on understanding the role of autophagy in prostate carcinogenesis and therapeutics, we will critically consider the conflicting evidence observed in the literature and suggest how to obtain stronger experimental evidence, as the application of current findings in clinical practice is presently not viable.
Collapse
Affiliation(s)
- Natalie Jayne Kurganovs
- Autophagy in Cancer Lab, Institute for Cancer Research, Department of Tumor Biology, Oslo University Hospital, Oslo, Norway
| | - Nikolai Engedal
- Autophagy in Cancer Lab, Institute for Cancer Research, Department of Tumor Biology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
12
|
Pimentel LS, Bastos LM, Goulart LR, Ribeiro LNDM. Therapeutic Effects of Essential Oils and Their Bioactive Compounds on Prostate Cancer Treatment. Pharmaceutics 2024; 16:583. [PMID: 38794244 PMCID: PMC11125265 DOI: 10.3390/pharmaceutics16050583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
Since prostate cancer (PCa) relies on limited therapies, more effective alternatives are required. Essential oils (EOs) and their bioactive compounds are natural products that have many properties including anticancer activity. This review covers studies published between 2000 and 2023 and discusses the anti-prostate cancer mechanisms of the EOs from several plant species and their main bioactive compounds. It also provides a critical perspective regarding the challenges to be overcome until they reach the market. EOs from chamomile, cinnamon, Citrus species, turmeric, Cymbopogon species, ginger, lavender, Mentha species, rosemary, Salvia species, thyme and other species have been tested in different PCa cell lines and have shown excellent results, including the inhibition of cell growth and migration, the induction of apoptosis, modulation in the expression of apoptotic and anti-apoptotic genes and the suppression of angiogenesis. The most challenging aspects of EOs, which limit their clinical uses, are their highly lipophilic nature, physicochemical instability, photosensitivity, high volatility and composition variability. The processing of EO-based products in the pharmaceutical field may be an interesting alternative to circumvent EOs' limitations, resulting in several benefits in their further clinical use. Identifying their bioactive compounds, therapeutic effects and chemical structures could open new perspectives for innovative developments in the field. Moreover, this could be helpful in obtaining versatile chemical synthesis routes and/or biotechnological drug production strategies, providing an accurate, safe and sustainable source of these bioactive compounds, while looking at their use as gold-standard therapy in the close future.
Collapse
Affiliation(s)
- Leticia Santos Pimentel
- Laboratory of Nanobiotechnology Professor Luiz Ricardo Goulart Filho, Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, Bloco 2E, Sala 248, Uberlândia 38405-302, MG, Brazil
| | | | | | - Lígia Nunes de Morais Ribeiro
- Laboratory of Nanobiotechnology Professor Luiz Ricardo Goulart Filho, Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, Bloco 2E, Sala 248, Uberlândia 38405-302, MG, Brazil
| |
Collapse
|
13
|
Smith T, White T, Chen Z, Stewart LV. The KDM5 inhibitor PBIT reduces proliferation of castration-resistant prostate cancer cells via cell cycle arrest and the induction of senescence. Exp Cell Res 2024; 437:113991. [PMID: 38462208 PMCID: PMC11091958 DOI: 10.1016/j.yexcr.2024.113991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/12/2024]
Abstract
The compound 2-4(4-methylphenyl)-1,2-benzisothiazol-3(2H)-one (PBIT) is an inhibitor of the KDM5 family of lysine-specific histone demethylases that has been suggested as a lead compound for cancer therapy. The goal of this study was to explore the effects of PBIT within human prostate cancers. Micromolar concentrations of PBIT altered proliferation of castration-sensitive LNCaP and castration-resistant C4-2B, LNCaP-MDV3100 and PC-3 human prostate cancer cell lines. We then characterized the mechanism underlying the anti-proliferative effects of PBIT within the C4-2B and PC-3 cell lines. Data from Cell Death ELISAs suggest that PBIT does not induce apoptosis within C4-2B or PC-3 cells. However, PBIT did increase the amount of senescence associated beta-galactosidase. PBIT also altered cell cycle progression and increased protein levels of the cell cycle protein p21. PC-3 and C4-2B cells express varying amounts of KDM5A, KDM5B, and KDM5C, the therapeutic targets of PBIT. siRNA-mediated knockdown studies suggest that inhibition of multiple KDM5 isoforms contribute to the anti-proliferative effect of PBIT. Furthermore, combination treatments involving PBIT and the PPARγ agonist 15-deoxy-Δ-12, 14 -prostaglandin J2 (15d-PGJ₂) also reduced PC-3 cell proliferation. Together, these data strongly suggest that PBIT significantly reduces the proliferation of prostate cancers via a mechanism that involves cell cycle arrest and senescence.
Collapse
Affiliation(s)
- Tunde Smith
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Tytianna White
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Zhenbang Chen
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, 37208, USA
| | - LaMonica V Stewart
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, 37208, USA.
| |
Collapse
|
14
|
Rawat C, Ben-Salem S, Singh N, Chauhan G, Rabljenovic A, Vaghela V, Venkadakrishnan VB, Macdonald JD, Dahiya UR, Ghanem Y, Bachour S, Su Y, DePriest AD, Lee S, Muldong M, Kim HT, Kumari S, Valenzuela MM, Zhang D, Hu Q, Cortes Gomez E, Dehm SM, Zoubeidi A, Jamieson CAM, Nicolas M, McKenney J, Willard B, Klein EA, Magi-Galluzzi C, Stauffer SR, Liu S, Heemers HV. Prostate Cancer Progression Relies on the Mitotic Kinase Citron Kinase. Cancer Res 2023; 83:4142-4160. [PMID: 37801613 PMCID: PMC10841833 DOI: 10.1158/0008-5472.can-23-0883] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/14/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Abstract
Prostate cancer remains the second leading cause of cancer death in men in Western cultures. A deeper understanding of the mechanisms by which prostate cancer cells divide to support tumor growth could help devise strategies to overcome treatment resistance and improve survival. Here, we identified that the mitotic AGC family protein kinase citron kinase (CIT) is a pivotal regulator of prostate cancer growth that mediates prostate cancer cell interphase progression. Increased CIT expression correlated with prostate cancer growth induction and aggressive prostate cancer progression, and CIT was overexpressed in prostate cancer compared with benign prostate tissue. CIT overexpression was controlled by an E2F2-Skp2-p27 signaling axis and conferred resistance to androgen-targeted treatment strategies. The effects of CIT relied entirely on its kinase activity. Conversely, CIT silencing inhibited the growth of cell lines and xenografts representing different stages of prostate cancer progression and treatment resistance but did not affect benign epithelial prostate cells or nonprostatic normal cells, indicating a potential therapeutic window for CIT inhibition. CIT kinase activity was identified as druggable and was potently inhibited by the multikinase inhibitor OTS-167, which decreased the proliferation of treatment-resistant prostate cancer cells and patient-derived organoids. Isolation of the in vivo CIT substrates identified proteins involved in diverse cellular functions ranging from proliferation to alternative splicing events that are enriched in treatment-resistant prostate cancer. These findings provide insights into the regulation of aggressive prostate cancer cell behavior by CIT and identify CIT as a functionally diverse and druggable driver of prostate cancer progression. SIGNIFICANCE The poorly characterized protein kinase citron kinase is a therapeutic target in prostate cancer that drives tumor growth by regulating diverse substrates, which control several hallmarks of aggressive prostate cancer progression. See related commentary by Mishra et al., p. 4008.
Collapse
Affiliation(s)
- Chitra Rawat
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio
| | - Salma Ben-Salem
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio
| | - Nidhi Singh
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio
| | - Gaurav Chauhan
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio
| | | | - Vishwa Vaghela
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio
| | - Varadha Balaji Venkadakrishnan
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio
| | | | - Ujjwal R Dahiya
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio
| | - Yara Ghanem
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio
| | - Salam Bachour
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Yixue Su
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio
| | - Adam D DePriest
- Department of Cancer Genetics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Sanghee Lee
- Department of Urology, UC San Diego, La Jolla, California
| | | | - Hyun-Tae Kim
- Department of Urology, UC San Diego, La Jolla, California
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sangeeta Kumari
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio
| | | | - Dingxiao Zhang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
- School of Biomedical Sciences, Hunan University, Changsa, China
| | - Qiang Hu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Eduardo Cortes Gomez
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Scott M Dehm
- Masonic Cancer Center and Departments of Laboratory Medicine and Pathology and Urology, University of Minnesota, Minneapolis, Minnesota
| | - Amina Zoubeidi
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Canada
| | | | - Marlo Nicolas
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, Ohio
| | - Jesse McKenney
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, Ohio
| | | | - Eric A Klein
- Department of Urology, Cleveland Clinic, Cleveland, Ohio
| | | | - Shaun R Stauffer
- Center for Therapeutics Discovery, Cleveland Clinic, Cleveland, Ohio
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | | |
Collapse
|
15
|
Zhang X, Jiang P, Wang C. The role of prostate-specific antigen in the osteoblastic bone metastasis of prostate cancer: a literature review. Front Oncol 2023; 13:1127637. [PMID: 37746292 PMCID: PMC10513387 DOI: 10.3389/fonc.2023.1127637] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Prostate cancer is the only human malignancy that generates predominantly osteoblastic bone metastases, and osteoblastic bone metastases account for more than 90% of osseous metastases of prostate cancer. Prostate-specific antigen (PSA) plays an important role in the osteoblastic bone metastasis of prostate cancer, which can promote osteomimicry of prostate cancer cells, suppress osteoclast differentiation, and facilitate osteoblast proliferation and activation at metastatic sites. In the meantime, it can activate osteogenic factors, including insulin-like growth factor, transforming growth factor β2 and urokinase-type plasminogen activator, and meanwhile suppress osteolytic factors such as parathyroid hormone-related protein. To recapitulate, PSA plays a significant role in the osteoblastic predominance of prostate cancer bone metastasis and bone remodeling by regulating multiple cells and factors involved in osseous metastasis.
Collapse
Affiliation(s)
| | | | - Chaojun Wang
- Department of Urology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
16
|
Jathal MK, Siddiqui S, Vasilatis DM, Durbin Johnson BP, Drake C, Mooso BA, D'Abronzo LS, Batra N, Mudryj M, Ghosh PM. Androgen receptor transcriptional activity is required for heregulin-1β-mediated nuclear localization of the HER3/ErbB3 receptor tyrosine kinase. J Biol Chem 2023; 299:104973. [PMID: 37380074 PMCID: PMC10407237 DOI: 10.1016/j.jbc.2023.104973] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/05/2023] [Accepted: 06/17/2023] [Indexed: 06/30/2023] Open
Abstract
Prostate cancer is initially regulated by the androgen receptor (AR), a ligand-activated, transcription factor, and is in a hormone-dependent state (hormone-sensitive prostate cancer (HSPC)), but eventually becomes androgen-refractory (castration-resistant prostate cancer (CRPC)) because of mechanisms that bypass the AR, including by activation of ErbB3, a member of the epidermal growth factor receptor family. ErbB3 is synthesized in the cytoplasm and transported to the plasma membrane for ligand binding and dimerization, where it regulates downstream signaling, but nuclear forms are reported. Here, we demonstrate in prostatectomy samples that ErbB3 nuclear localization is observed in malignant, but not benign prostate, and that cytoplasmic (but not nuclear) ErbB3 correlated positively with AR expression but negatively with AR transcriptional activity. In support of the latter, androgen depletion upregulated cytoplasmic, but not nuclear ErbB3, while in vivo studies showed that castration suppressed ErbB3 nuclear localization in HSPC, but not CRPC tumors. In vitro treatment with the ErbB3 ligand heregulin-1β (HRG) induced ErbB3 nuclear localization, which was androgen-regulated in HSPC but not in CRPC. In turn, HRG upregulated AR transcriptional activity in CRPC but not in HSPC cells. Positive correlation between ErbB3 and AR expression was demonstrated in AR-null PC-3 cells where stable transfection of AR restored HRG-induced ErbB3 nuclear transport, while AR knockdown in LNCaP reduced cytoplasmic ErbB3. Mutations of ErbB3's kinase domain did not affect its localization but was responsible for cell viability in CRPC cells. Taken together, we conclude that AR expression regulated ErbB3 expression, its transcriptional activity suppressed ErbB3 nuclear translocation, and HRG binding to ErbB3 promoted it.
Collapse
Affiliation(s)
- Maitreyee K Jathal
- Research Service, VA Northern California Health Care System, Mather, California, USA; Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, USA
| | - Salma Siddiqui
- Research Service, VA Northern California Health Care System, Mather, California, USA
| | - Demitria M Vasilatis
- Research Service, VA Northern California Health Care System, Mather, California, USA; Department of Urologic Surgery, University of California Davis, Sacramento, California, USA
| | - Blythe P Durbin Johnson
- Division of Biostatistics, Department of Public Health Sciences, University of California Davis, Davis, California, USA
| | - Christiana Drake
- Department of Statistics, University of California Davis, Davis, California, USA
| | - Benjamin A Mooso
- Research Service, VA Northern California Health Care System, Mather, California, USA
| | - Leandro S D'Abronzo
- Department of Urologic Surgery, University of California Davis, Sacramento, California, USA
| | - Neelu Batra
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, California, USA
| | - Maria Mudryj
- Research Service, VA Northern California Health Care System, Mather, California, USA; Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, USA
| | - Paramita M Ghosh
- Research Service, VA Northern California Health Care System, Mather, California, USA; Department of Urologic Surgery, University of California Davis, Sacramento, California, USA; Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, California, USA.
| |
Collapse
|
17
|
Shrestha P, Rotatori S, Madden-Hennessey K, Mohammed C, Yang CH, Urbani J, Pettinelli J, Liu X, Zhao Q. Selective expansion of target cells using the Enrich TROVO platform. Biotechniques 2023; 75:56-64. [PMID: 37551835 PMCID: PMC10476488 DOI: 10.2144/btn-2023-0038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/24/2023] [Indexed: 08/09/2023] Open
Abstract
Enriching target cell clones from diverse cell populations is vital for many life science applications. We have developed a novel method to rapidly and efficiently purify specific clonal cell populations from a larger, heterogeneous group using the Enrich TroVo system (Enrich Biosystems Inc., CT, USA). This system takes advantage of microfabrication and optical technologies by utilizing small hydrogel wells to separate desired cell populations and an innovative patching technique to selectively eliminate undesired cells. This method allows the isolation and growth of desired cells with minimal impact on their viability and proliferation. We successfully isolated and expanded clonal cell populations of desired cells using two model cells. Compared with fluorescence-activated cell sorting, Enrich TroVo system offers a promising alternative for isolating of sensitive, adherent cells, that is, patient-derived cells.
Collapse
Affiliation(s)
- Prem Shrestha
- Enrich Biosystems Inc., 21 Business Park Drive, Suite 4, Branford, CT 06405, USA
| | - Stephen Rotatori
- Enrich Biosystems Inc., 21 Business Park Drive, Suite 4, Branford, CT 06405, USA
| | | | - Christina Mohammed
- Enrich Biosystems Inc., 21 Business Park Drive, Suite 4, Branford, CT 06405, USA
| | - Chi-han Yang
- Enrich Biosystems Inc., 21 Business Park Drive, Suite 4, Branford, CT 06405, USA
| | - Jordan Urbani
- Enrich Biosystems Inc., 21 Business Park Drive, Suite 4, Branford, CT 06405, USA
| | - Joseph Pettinelli
- Enrich Biosystems Inc., 21 Business Park Drive, Suite 4, Branford, CT 06405, USA
| | - Xueqi Liu
- Enrich Biosystems Inc., 21 Business Park Drive, Suite 4, Branford, CT 06405, USA
| | - Qi Zhao
- Enrich Biosystems Inc., 21 Business Park Drive, Suite 4, Branford, CT 06405, USA
| |
Collapse
|
18
|
Folcher A, Gordienko D, Iamshanova O, Bokhobza A, Shapovalov G, Kannancheri‐Puthooru D, Mariot P, Allart L, Desruelles E, Spriet C, Diez R, Oullier T, Marionneau‐Lambot S, Brisson L, Geraci S, Impheng H, Lehen'kyi V, Haustrate A, Mihalache A, Gosset P, Chadet S, Retif S, Laube M, Sobilo J, Lerondel S, Villari G, Serini G, Pla AF, Roger S, Fromont‐Hankard G, Djamgoz M, Clezardin P, Monteil A, Prevarskaya N. NALCN-mediated sodium influx confers metastatic prostate cancer cell invasiveness. EMBO J 2023; 42:e112198. [PMID: 37278161 PMCID: PMC10308360 DOI: 10.15252/embj.2022112198] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 06/07/2023] Open
Abstract
There is growing evidence that ion channels are critically involved in cancer cell invasiveness and metastasis. However, the molecular mechanisms of ion signaling promoting cancer behavior are poorly understood and the complexity of the underlying remodeling during metastasis remains to be explored. Here, using a variety of in vitro and in vivo techniques, we show that metastatic prostate cancer cells acquire a specific Na+ /Ca2+ signature required for persistent invasion. We identify the Na+ leak channel, NALCN, which is overexpressed in metastatic prostate cancer, as a major initiator and regulator of Ca2+ oscillations required for invadopodia formation. Indeed, NALCN-mediated Na+ influx into cancer cells maintains intracellular Ca2+ oscillations via a specific chain of ion transport proteins including plasmalemmal and mitochondrial Na+ /Ca2+ exchangers, SERCA and store-operated channels. This signaling cascade promotes activity of the NACLN-colocalized proto-oncogene Src kinase, actin remodeling and secretion of proteolytic enzymes, thus increasing cancer cell invasive potential and metastatic lesions in vivo. Overall, our findings provide new insights into an ion signaling pathway specific for metastatic cells where NALCN acts as persistent invasion controller.
Collapse
Affiliation(s)
- Antoine Folcher
- Inserm U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Equipe Labellisée par la Ligue Nationale Contre le Cancer, GIS ONCO LilleUniversity of LilleLilleFrance
| | - Dmitri Gordienko
- Inserm U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Equipe Labellisée par la Ligue Nationale Contre le Cancer, GIS ONCO LilleUniversity of LilleLilleFrance
| | - Oksana Iamshanova
- Inserm U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Equipe Labellisée par la Ligue Nationale Contre le Cancer, GIS ONCO LilleUniversity of LilleLilleFrance
| | - Alexandre Bokhobza
- Inserm U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Equipe Labellisée par la Ligue Nationale Contre le Cancer, GIS ONCO LilleUniversity of LilleLilleFrance
| | - George Shapovalov
- Inserm U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Equipe Labellisée par la Ligue Nationale Contre le Cancer, GIS ONCO LilleUniversity of LilleLilleFrance
| | - Dheeraj Kannancheri‐Puthooru
- Inserm U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Equipe Labellisée par la Ligue Nationale Contre le Cancer, GIS ONCO LilleUniversity of LilleLilleFrance
| | - Pascal Mariot
- Inserm U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Equipe Labellisée par la Ligue Nationale Contre le Cancer, GIS ONCO LilleUniversity of LilleLilleFrance
| | - Laurent Allart
- Inserm U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Equipe Labellisée par la Ligue Nationale Contre le Cancer, GIS ONCO LilleUniversity of LilleLilleFrance
| | - Emilie Desruelles
- Inserm U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Equipe Labellisée par la Ligue Nationale Contre le Cancer, GIS ONCO LilleUniversity of LilleLilleFrance
| | - Corentin Spriet
- TISBio, Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), CNRS, UMR 8576Université de LilleLilleFrance
| | - Raquel Diez
- Cell Physiology Research Group, Department of PhysiologyUniversity of ExtremaduraCáceresSpain
| | | | | | - Lucie Brisson
- Inserm UMR1069, Nutrition Croissance et CancerUniversity of ToursToursFrance
| | - Sandra Geraci
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm UMR 1033 LYOSLyonFrance
| | - Hathaichanok Impheng
- Department of Physiology, Faculty of Medical scienceNaresuan UniversityPhitsanulokThailand
| | - V'yacheslav Lehen'kyi
- Inserm U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Equipe Labellisée par la Ligue Nationale Contre le Cancer, GIS ONCO LilleUniversity of LilleLilleFrance
| | - Aurélien Haustrate
- Inserm U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Equipe Labellisée par la Ligue Nationale Contre le Cancer, GIS ONCO LilleUniversity of LilleLilleFrance
| | - Adriana Mihalache
- Service d'Anatomie et de Cytologie PathologiquesGroupement des Hôpitaux de l'Université Catholique de LilleLilleFrance
| | - Pierre Gosset
- Service d'Anatomie et de Cytologie PathologiquesGroupement des Hôpitaux de l'Université Catholique de LilleLilleFrance
| | - Stéphanie Chadet
- EA4245 Transplantation, Immunology, InflammationUniversity of ToursToursFrance
| | - Stéphanie Retif
- PHENOMIN‐TAAM, CNRS UPS44, Centre d'Imagerie du Petit Animal (CIPA), 3B rue de la FérollerieOrléansFrance
| | - Maryline Laube
- PHENOMIN‐TAAM, CNRS UPS44, Centre d'Imagerie du Petit Animal (CIPA), 3B rue de la FérollerieOrléansFrance
| | - Julien Sobilo
- PHENOMIN‐TAAM, CNRS UPS44, Centre d'Imagerie du Petit Animal (CIPA), 3B rue de la FérollerieOrléansFrance
| | - Stéphanie Lerondel
- PHENOMIN‐TAAM, CNRS UPS44, Centre d'Imagerie du Petit Animal (CIPA), 3B rue de la FérollerieOrléansFrance
| | - Giulia Villari
- Department of OncologyUniversity of Torino School of MedicineCandioloItaly
- Candiolo Cancer Institute – Fondazione del Piemonte per l'Oncologia (FPO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)CandioloItaly
| | - Guido Serini
- Department of OncologyUniversity of Torino School of MedicineCandioloItaly
- Candiolo Cancer Institute – Fondazione del Piemonte per l'Oncologia (FPO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)CandioloItaly
| | | | - Sébastien Roger
- EA4245 Transplantation, Immunology, InflammationUniversity of ToursToursFrance
| | - Gaelle Fromont‐Hankard
- Inserm UMR1069, Nutrition Croissance et CancerUniversity of ToursToursFrance
- Department of PathologyCHRU de ToursToursFrance
| | - Mustafa Djamgoz
- Department of Life SciencesImperial College LondonLondonUK
- Biotechnology Research CentreCyprus International UniversityMersinTürkiye
| | - Philippe Clezardin
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm UMR 1033 LYOSLyonFrance
| | - Arnaud Monteil
- LabEx “Ion Channel Science and Therapeutics”, IGF, CNRS, INSERMUniversity of MontpellierMontpellierFrance
| | - Natalia Prevarskaya
- Inserm U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Equipe Labellisée par la Ligue Nationale Contre le Cancer, GIS ONCO LilleUniversity of LilleLilleFrance
| |
Collapse
|
19
|
Cho CC, Lin CJ, Huang HH, Yang WZ, Fei CY, Lin HY, Lee MS, Yuan HS. Mechanistic Insights into Harmine-Mediated Inhibition of Human DNA Methyltransferases and Prostate Cancer Cell Growth. ACS Chem Biol 2023; 18:1335-1350. [PMID: 37188336 PMCID: PMC10278071 DOI: 10.1021/acschembio.3c00065] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/24/2023] [Indexed: 05/17/2023]
Abstract
Mammalian DNA methyltransferases (DNMTs), including DNMT1, DNMT3A, and DNMT3B, are key DNA methylation enzymes and play important roles in gene expression regulation. Dysregulation of DNMTs is linked to various diseases and carcinogenesis, and therefore except for the two approved anticancer azanucleoside drugs, various non-nucleoside DNMT inhibitors have been identified and reported. However, the underlying mechanisms for the inhibitory activity of these non-nucleoside inhibitors still remain largely unknown. Here, we systematically tested and compared the inhibition activities of five non-nucleoside inhibitors toward the three human DNMTs. We found that harmine and nanaomycin A blocked the methyltransferase activity of DNMT3A and DNMT3B more efficiently than resveratrol, EGCG, and RG108. We further determined the crystal structure of harmine in complex with the catalytic domain of the DNMT3B-DNMT3L tetramer revealing that harmine binds at the adenine cavity of the SAM-binding pocket in DNMT3B. Our kinetics assays confirm that harmine competes with SAM to competitively inhibit DNMT3B-3L activity with a Ki of 6.6 μM. Cell-based studies further show that harmine treatment inhibits castration-resistant prostate cancer cell (CRPC) proliferation with an IC50 of ∼14 μM. The CPRC cells treated with harmine resulted in reactivating silenced hypermethylated genes compared to the untreated cells, and harmine cooperated with an androgen antagonist, bicalutamide, to effectively inhibit the proliferation of CRPC cells. Our study thus reveals, for the first time, the inhibitory mechanism of harmine on DNMTs and highlights new strategies for developing novel DNMT inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Chao-Cheng Cho
- Institute
of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic
of China
| | - Chun-Jung Lin
- Institute
of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic
of China
- Graduate
Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, Taiwan 10048, Republic of China
| | - Hsun-Ho Huang
- Institute
of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic
of China
- Graduate
Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, Taiwan 10048, Republic of China
| | - Wei-Zen Yang
- Institute
of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic
of China
| | - Cheng-Yin Fei
- Institute
of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic
of China
| | - Hsin-Ying Lin
- Graduate
Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, Taiwan 10048, Republic of China
| | - Ming-Shyue Lee
- Graduate
Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, Taiwan 10048, Republic of China
| | - Hanna S. Yuan
- Institute
of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic
of China
- Graduate
Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, Taiwan 10048, Republic of China
| |
Collapse
|
20
|
Windus LCE, Matigian N, Avery VM. Induction of Reactive Bone Stromal Fibroblasts in 3D Models of Prostate Cancer Bone Metastases. BIOLOGY 2023; 12:861. [PMID: 37372146 DOI: 10.3390/biology12060861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
A dynamic interplay between prostate cancer (PCa) cells and reactive bone stroma modulates the growth of metastases within the bone microenvironment. Of the stromal cells, metastasis-associated fibroblasts (MAFs) are known to contribute but are the least studied cell type in PCa tumour progression. It is the aim of the current study to establish a biologically relevant 3D in vitro model that mimics the cellular and molecular profiles of MAFs found in vivo. Using 3D in vitro cell culture models, the bone-derived fibroblast cell line, HS-5, was treated with conditioned media from metastatic-derived PCa cell lines, PC3 and MDA-PCa 2b, or mouse-derived fibroblasts 3T3. Two corresponding reactive cell lines were propagated: HS5-PC3 and HS5-MDA, and evaluated for alterations in morphology, phenotype, cellular behaviour, plus protein and genomic profiles. HS5-PC3 and HS5-MDA displayed distinct alterations in expression levels of N-Cadherin, non-functional E-Cadherin, alpha-smooth muscle actin (α-SMA), Tenascin C, and vimentin, along with transforming growth factor receptor expression (TGF β R1 and R2), consistent with subpopulations of MAFs reported in vivo. Transcriptomic analysis revealed a reversion of HS5-PC3 towards a metastatic phenotype with an upregulation in pathways known to regulate cancer invasion, proliferation, and angiogenesis. The exploitation of these engineered 3D models could help further unravel the novel biology regulating metastatic growth and the role fibroblasts play in the colonisation process.
Collapse
Affiliation(s)
- Louisa C E Windus
- Discovery Biology, Centre for Cellular Phenomics, Griffith University, Nathan, QLD 4111, Australia
| | - Nicholas Matigian
- QCIF Facility for Advanced Bioinformatics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Vicky M Avery
- Discovery Biology, Centre for Cellular Phenomics, Griffith University, Nathan, QLD 4111, Australia
- School of Environment and Science, Griffith Sciences, Griffith University, Nathan, QLD 4111, Australia
| |
Collapse
|
21
|
Sailer V, von Amsberg G, Duensing S, Kirfel J, Lieb V, Metzger E, Offermann A, Pantel K, Schuele R, Taubert H, Wach S, Perner S, Werner S, Aigner A. Experimental in vitro, ex vivo and in vivo models in prostate cancer research. Nat Rev Urol 2023; 20:158-178. [PMID: 36451039 DOI: 10.1038/s41585-022-00677-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2022] [Indexed: 12/02/2022]
Abstract
Androgen deprivation therapy has a central role in the treatment of advanced prostate cancer, often causing initial tumour remission before increasing independence from signal transduction mechanisms of the androgen receptor and then eventual disease progression. Novel treatment approaches are urgently needed, but only a fraction of promising drug candidates from the laboratory will eventually reach clinical approval, highlighting the demand for critical assessment of current preclinical models. Such models include standard, genetically modified and patient-derived cell lines, spheroid and organoid culture models, scaffold and hydrogel cultures, tissue slices, tumour xenograft models, patient-derived xenograft and circulating tumour cell eXplant models as well as transgenic and knockout mouse models. These models need to account for inter-patient and intra-patient heterogeneity, the acquisition of primary or secondary resistance, the interaction of tumour cells with their microenvironment, which make crucial contributions to tumour progression and resistance, as well as the effects of the 3D tissue network on drug penetration, bioavailability and efficacy.
Collapse
Affiliation(s)
- Verena Sailer
- Institute for Pathology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Gunhild von Amsberg
- Department of Oncology and Hematology, University Cancer Center Hamburg Eppendorf and Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Stefan Duensing
- Section of Molecular Urooncology, Department of Urology, University Hospital Heidelberg and National Center for Tumour Diseases, Heidelberg, Germany
| | - Jutta Kirfel
- Institute for Pathology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Verena Lieb
- Research Division Molecular Urology, Department of Urology and Paediatric Urology, University Hospital Erlangen, Erlangen, Germany
| | - Eric Metzger
- Department of Urology, Center for Clinical Research, University of Freiburg Medical Center, Freiburg, Germany
| | - Anne Offermann
- Institute for Pathology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Klaus Pantel
- Institute for Tumour Biology, Center for Experimental Medicine, University Clinics Hamburg-Eppendorf, Hamburg, Germany
- Mildred-Scheel-Nachwuchszentrum HaTRiCs4, University Cancer Center Hamburg, Hamburg, Germany
| | - Roland Schuele
- Department of Urology, Center for Clinical Research, University of Freiburg Medical Center, Freiburg, Germany
| | - Helge Taubert
- Research Division Molecular Urology, Department of Urology and Paediatric Urology, University Hospital Erlangen, Erlangen, Germany
| | - Sven Wach
- Research Division Molecular Urology, Department of Urology and Paediatric Urology, University Hospital Erlangen, Erlangen, Germany
| | - Sven Perner
- University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Pathology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Stefan Werner
- Institute for Tumour Biology, Center for Experimental Medicine, University Clinics Hamburg-Eppendorf, Hamburg, Germany
- Mildred-Scheel-Nachwuchszentrum HaTRiCs4, University Cancer Center Hamburg, Hamburg, Germany
| | - Achim Aigner
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, University of Leipzig, Medical Faculty, Leipzig, Germany.
| |
Collapse
|
22
|
Li X, Zhuo S, Cho YS, Liu Y, Yang Y, Zhu J, Jiang J. YAP antagonizes TEAD-mediated AR signaling and prostate cancer growth. EMBO J 2023; 42:e112184. [PMID: 36588499 PMCID: PMC9929633 DOI: 10.15252/embj.2022112184] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 01/03/2023] Open
Abstract
Hippo signaling restricts tumor growth by inhibiting the oncogenic potential of YAP/TAZ-TEAD transcriptional complex. Here, we uncover a context-dependent tumor suppressor function of YAP in androgen receptor (AR) positive prostate cancer (PCa) and show that YAP impedes AR+ PCa growth by antagonizing TEAD-mediated AR signaling. TEAD forms a complex with AR to enhance its promoter/enhancer occupancy and transcriptional activity. YAP and AR compete for TEAD binding and consequently, elevated YAP in the nucleus disrupts AR-TEAD interaction and prevents TEAD from promoting AR signaling. Pharmacological inhibition of MST1/2 or LATS1/2, or transgenic activation of YAP suppressed the growth of PCa expressing therapy resistant AR splicing variants. Our study uncovers an unanticipated crosstalk between Hippo and AR signaling pathways, reveals an antagonistic relationship between YAP and TEAD in AR+ PCa, and suggests that targeting the Hippo signaling pathway may provide a therapeutical opportunity to treat PCa driven by therapy resistant AR variants.
Collapse
Affiliation(s)
- Xu Li
- Department of Molecular BiologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Shu Zhuo
- Department of Molecular BiologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Center for Cancer Targeted Therapies, Signet Therapeutics Inc.Research Institute of Tsinghua University in ShenzhenShenzhenChina
| | - Yong Suk Cho
- Department of Molecular BiologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Yuchen Liu
- Department of Developmental BiologyHarvard School of Dental MedicineBostonMAUSA
- Harvard Stem Cell InstituteBostonMAUSA
- Dana‐Farber/Harvard Cancer CenterBostonMAUSA
| | - Yingzi Yang
- Department of Developmental BiologyHarvard School of Dental MedicineBostonMAUSA
- Harvard Stem Cell InstituteBostonMAUSA
- Dana‐Farber/Harvard Cancer CenterBostonMAUSA
| | - Jian Zhu
- Department of Molecular BiologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Department of General Surgery, The Second Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Jin Jiang
- Department of Molecular BiologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| |
Collapse
|
23
|
Preclinical models of prostate cancer - modelling androgen dependency and castration resistance in vitro, ex vivo and in vivo. Nat Rev Urol 2023:10.1038/s41585-023-00726-1. [PMID: 36788359 DOI: 10.1038/s41585-023-00726-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 02/16/2023]
Abstract
Prostate cancer is well known to be dependent on the androgen receptor (AR) for growth and survival. Thus, AR is the main pharmacological target to treat this disease. However, after an initially positive response to AR-targeting therapies, prostate cancer will eventually evolve to castration-resistant prostate cancer, which is often lethal. Tumour growth was initially thought to become androgen-independent following treatments; however, results from molecular studies have shown that most resistance mechanisms involve the reactivation of AR. Consequently, tumour cells become resistant to castration - the blockade of testicular androgens - and not independent of AR per se. However, confusion still remains on how to properly define preclinical models of prostate cancer, including cell lines. Most cell lines were isolated from patients for cell culture after evolution of the tumour to castration-resistant prostate cancer, but not all of these cell lines are described as castration resistant. Moreover, castration refers to the blockade of testosterone production by the testes; thus, even the concept of "castration" in vitro is questionable. To ensure maximal transfer of knowledge from scientific research to the clinic, understanding the limitations and advantages of preclinical models, as well as how these models recapitulate cancer cell androgen dependency and can be used to study castration resistance mechanisms, is essential.
Collapse
|
24
|
Patterson JC, Varkaris A, Croucher PJP, Ridinger M, Dalrymple S, Nouri M, Xie F, Varmeh S, Jonas O, Whitman MA, Chen S, Rashed S, Makusha L, Luo J, Isaacs JT, Erlander MG, Einstein DJ, Balk SP, Yaffe MB. Plk1 Inhibitors and Abiraterone Synergistically Disrupt Mitosis and Kill Cancer Cells of Disparate Origin Independently of Androgen Receptor Signaling. Cancer Res 2023; 83:219-238. [PMID: 36413141 PMCID: PMC9852064 DOI: 10.1158/0008-5472.can-22-1533] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/20/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Abiraterone is a standard treatment for metastatic castrate-resistant prostate cancer (mCRPC) that slows disease progression by abrogating androgen synthesis and antagonizing the androgen receptor (AR). Here we report that inhibitors of the mitotic regulator polo-like kinase-1 (Plk1), including the clinically active third-generation Plk1 inhibitor onvansertib, synergizes with abiraterone in vitro and in vivo to kill a subset of cancer cells from a wide variety of tumor types in an androgen-independent manner. Gene-expression analysis identified an AR-independent synergy-specific gene set signature upregulated upon abiraterone treatment that is dominated by pathways related to mitosis and the mitotic spindle. Abiraterone treatment alone caused defects in mitotic spindle orientation, failure of complete chromosome condensation, and improper cell division independently of its effects on AR signaling. These effects, although mild following abiraterone monotherapy, resulted in profound sensitization to the antimitotic effects of Plk1 inhibition, leading to spindle assembly checkpoint-dependent mitotic cancer cell death and entosis. In a murine patient-derived xenograft model of abiraterone-resistant metastatic castration-resistant prostate cancer (mCRPC), combined onvansertib and abiraterone resulted in enhanced mitotic arrest and dramatic inhibition of tumor cell growth compared with either agent alone. Overall, this work establishes a mechanistic basis for the phase II clinical trial (NCT03414034) testing combined onvansertib and abiraterone in mCRPC patients and indicates this combination may have broad utility for cancer treatment. SIGNIFICANCE Abiraterone treatment induces mitotic defects that sensitize cancer cells to Plk1 inhibition, revealing an AR-independent mechanism for this synergistic combination that is applicable to a variety of cancer types.
Collapse
Affiliation(s)
- Jesse C. Patterson
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andreas Varkaris
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA,Division of Medical Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | | | | | - Susan Dalrymple
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Mannan Nouri
- Division of Medical Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Fang Xie
- Division of Medical Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Shohreh Varmeh
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Oliver Jonas
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Matthew A. Whitman
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sen Chen
- Division of Medical Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Saleh Rashed
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lovemore Makusha
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jun Luo
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - John T. Isaacs
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | | | - David J. Einstein
- Division of Medical Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Steven P. Balk
- Division of Medical Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Michael B. Yaffe
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
25
|
The SMARCD Family of SWI/SNF Accessory Proteins Is Involved in the Transcriptional Regulation of Androgen Receptor-Driven Genes and Plays a Role in Various Essential Processes of Prostate Cancer. Cells 2022; 12:cells12010124. [PMID: 36611918 PMCID: PMC9818446 DOI: 10.3390/cells12010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Previous studies have demonstrated an involvement of chromatin-remodelling SWI/SNF complexes in the development of prostate cancer, suggesting both tumor suppressor and oncogenic activities. SMARCD1/BAF60A, SMARCD2/BAF60B, and SMARCD3/BAF60C are mutually exclusive accessory subunits that confer functional specificity and are components of all known SWI/SNF subtypes. To assess the role of SWI/SNF in prostate tumorigenesis, we studied the functions and functional relations of the SMARCD family members. Performing RNA-seq in LnCAP cells grown in the presence or absence of dihydrotestosterone, we found that the SMARCD proteins are involved in the regulation of numerous hormone-dependent AR-driven genes. Moreover, we demonstrated that all SMARCD proteins can regulate AR-downstream targets in androgen-depleted cells, suggesting an involvement in the progression to castration-resistance. However, our approach also revealed a regulatory role for SMARCD proteins through antagonization of AR-signalling. We further demonstrated that the SMARCD proteins are involved in several important cellular processes such as the maintenance of cellular morphology and cytokinesis. Taken together, our findings suggest that the SMARCD proteins play an important, yet paradoxical, role in prostate carcinogenesis. Our approach also unmasked the complex interplay of paralogue SWI/SNF proteins that must be considered for the development of safe and efficient therapies targeting SWI/SNF.
Collapse
|
26
|
Zgarbová E, Vrzal R. The Impact of Indoles Activating the Aryl Hydrocarbon Receptor on Androgen Receptor Activity in the 22Rv1 Prostate Cancer Cell Line. Int J Mol Sci 2022; 24:ijms24010502. [PMID: 36613955 PMCID: PMC9820252 DOI: 10.3390/ijms24010502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
The activation of the aryl hydrocarbon receptor (AhR) by xenobiotic compounds was demonstrated to result in the degradation of the androgen receptor (AR). Since prostate cancer is often dependent on AR, it has become a significant therapeutic target. As a result of the emerging concept of bacterial mimicry, we tested whether compounds with indole scaffolds capable of AhR activation have the potential to restrict AR activity in prostate cancer cells. Altogether, 22 indolic compounds were tested, and all of them activated AhR. However, only eight decreased DHT-induced AR luciferase activity. All indoles, which met the AhR-activating and AR-suppressing criteria, decreased the expression of DHT-inducible AR target genes, specifically KLK3 and FKBP5 mRNAs. The reduced AR binding to the KLK3 promoter was confirmed by a chromatin immunoprecipitation (ChIP) assay. In addition, some indoles significantly decreased AR protein and mRNA level. By using CRISPR/Cas9 AhR knockout technology, no relationship between AhR and AR, measured as target gene expression, was observed. In conclusion, some indoles that activate AhR possess AR-inhibiting activity, which seems to be related to the downregulation of AR expression rather than to AR degradation alone. Moreover, there does not seem to be a clear relationship that would connect AhR activation with AR activity suppression in 22Rv1 cells.
Collapse
|
27
|
Winter G, Eberhardt N, Löffler J, Raabe M, Alam MNA, Hao L, Abaei A, Herrmann H, Kuntner C, Glatting G, Solbach C, Jelezko F, Weil T, Beer AJ, Rasche V. Preclinical PET and MR Evaluation of 89Zr- and 68Ga-Labeled Nanodiamonds in Mice over Different Time Scales. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4471. [PMID: 36558325 PMCID: PMC9780863 DOI: 10.3390/nano12244471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Nanodiamonds (NDs) have high potential as a drug carrier and in combination with nitrogen vacancies (NV centers) for highly sensitive MR-imaging after hyperpolarization. However, little remains known about their physiological properties in vivo. PET imaging allows further evaluation due to its quantitative properties and high sensitivity. Thus, we aimed to create a preclinical platform for PET and MR evaluation of surface-modified NDs by radiolabeling with both short- and long-lived radiotracers. Serum albumin coated NDs, functionalized with PEG groups and the chelator deferoxamine, were labeled either with zirconium-89 or gallium-68. Their biodistribution was assessed in two different mouse strains. PET scans were performed at various time points up to 7 d after i.v. injection. Anatomical correlation was provided by additional MRI in a subset of animals. PET results were validated by ex vivo quantification of the excised organs using a gamma counter. Radiolabeled NDs accumulated rapidly in the liver and spleen with a slight increase over time, while rapid washout from the blood pool was observed. Significant differences between the investigated radionuclides were only observed for the spleen (1 h). In summary, we successfully created a preclinical PET and MR imaging platform for the evaluation of the biodistribution of NDs over different time scales.
Collapse
Affiliation(s)
- Gordon Winter
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | - Nina Eberhardt
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | - Jessica Löffler
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
- Department of Internal Medicine II, Experimental Cardiovascular Imaging, Ulm University Medical Center, 89081 Ulm, Germany
| | - Marco Raabe
- Department of Synthesis of Macromolecules, Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Md. Noor A. Alam
- Department of Synthesis of Macromolecules, Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Li Hao
- Department of Internal Medicine II, Experimental Cardiovascular Imaging, Ulm University Medical Center, 89081 Ulm, Germany
| | - Alireza Abaei
- Department of Internal Medicine II, Experimental Cardiovascular Imaging, Ulm University Medical Center, 89081 Ulm, Germany
| | - Hendrik Herrmann
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | - Claudia Kuntner
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University Vienna, 1090 Vienna, Austria
| | - Gerhard Glatting
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | - Christoph Solbach
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | - Fedor Jelezko
- Institute for Quantum Optics, Ulm University, 89081 Ulm, Germany
| | - Tanja Weil
- Department of Synthesis of Macromolecules, Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Ambros J. Beer
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | - Volker Rasche
- Department of Internal Medicine II, Experimental Cardiovascular Imaging, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
28
|
JAG1 Intracellular Domain Enhances AR Expression and Signaling and Promotes Stem-like Properties in Prostate Cancer Cells. Cancers (Basel) 2022; 14:cancers14225714. [PMID: 36428807 PMCID: PMC9688638 DOI: 10.3390/cancers14225714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/01/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
JAG1 expression is upregulated in high-grade metastatic prostate carcinomas and associated with poor disease-free survival of patients with prostate cancer. Intriguingly, all JAG1-positive prostate carcinomas express JICD although JICD function in prostate cancer (PC) cells is poorly understood. In this study, we found that JICD overexpression increased the expression levels of AR, especially AR-Vs, in PC cell lines and significantly enhanced androgen-independent and androgen-dependent function of ARs. Interestingly, JICD overexpression upregulated the expression of the PCSC marker CD133 in PC cells as the expression of self-renewal markers; namely, NANOG and OCT3/4 increased. In addition, JICD overexpression highly increased the expression of anti-apoptotic BCL-XL protein, while it little affected the expression of apoptotic BIM protein. In 3D cell culture assays, the spheres formed by JICD-overexpressing PC subline cells (C4-2 and CWR22Rv1) were larger than those formed by control (EV) subline cells with undifferentiated morphology. Although JICD overexpression caused quiescence in cell proliferation, it activated the expression of components in PCSC-related signaling pathways, increased PC cell mobility, and promoted in vivo xenograft mouse tumorigenesis. Therefore, JICD may play a crucial role in enhancing androgen independence and promoting stem-like properties in PC cells and should be considered a novel target for CRPC and PCSC diagnostic therapy.
Collapse
|
29
|
Hiroto A, Kim WK, Pineda A, He Y, Lee DH, Le V, Olson AW, Aldahl J, Nenninger CH, Buckley AJ, Xiao GQ, Geradts J, Sun Z. Stromal androgen signaling acts as tumor niches to drive prostatic basal epithelial progenitor-initiated oncogenesis. Nat Commun 2022; 13:6552. [PMID: 36323713 PMCID: PMC9630272 DOI: 10.1038/s41467-022-34282-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
The androgen receptor (AR)-signaling pathways are essential for prostate tumorigenesis. Although significant effort has been devoted to directly targeting AR-expressing tumor cells, these therapies failed in most prostate cancer patients. Here, we demonstrate that loss of AR in stromal sonic-hedgehog Gli1-lineage cells diminishes prostate epithelial oncogenesis and tumor development using in vivo assays and mouse models. Single-cell RNA sequencing and other analyses identified a robust increase of insulin-like growth factor (IGF) binding protein 3 expression in AR-deficient stroma through attenuation of AR suppression on Sp1-regulated transcription, which further inhibits IGF1-induced Wnt/β-catenin activation in adjacent basal epithelial cells and represses their oncogenic growth and tumor development. Epithelial organoids from stromal AR-deficient mice can regain IGF1-induced oncogenic growth. Loss of human prostate tumor basal cell signatures reveals in basal cells of stromal AR-deficient mice. These data demonstrate a distinct mechanism for prostate tumorigenesis and implicate co-targeting stromal and epithelial AR-signaling for prostate cancer.
Collapse
Affiliation(s)
- Alex Hiroto
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Won Kyung Kim
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Ariana Pineda
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Yongfeng He
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Dong-Hoon Lee
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Vien Le
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Adam W Olson
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Joseph Aldahl
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Christian H Nenninger
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Alyssa J Buckley
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Guang-Qian Xiao
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joseph Geradts
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Zijie Sun
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
30
|
Blocking Studies to Evaluate Receptor-Specific Radioligand Binding in the CAM Model by PET and MR Imaging. Cancers (Basel) 2022; 14:cancers14163870. [PMID: 36010864 PMCID: PMC9406147 DOI: 10.3390/cancers14163870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/05/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary In the development of new targeted radiopharmaceuticals, it is mandatory to demonstrate their target-specific binding. Rodents are still primarily used for these experiments. With respect to the 3Rs principles, the demand for alternative methods to reduce the number of animal experiments is continuously increasing. In the present study, we investigated whether radiotracer uptake specificity can be evaluated by blocking studies in the CAM model. PET and MR imaging were used to visualize and quantify ligand accumulation. It was demonstrated that the CAM model could be used to evaluate the target-specific binding of a radiopharmaceutical. Due to intrinsic limitations of the CAM model, animal testing will still be required at more advanced stages of compound development. Still, the CAM model could significantly reduce the number of experiments through early compound pre-selection. Abstract Inhibition studies in small animals are the standard for evaluating the specificity of newly developed drugs, including radiopharmaceuticals. Recently, it has been reported that the tumor accumulation of radiotracers can be assessed in the chorioallantoic membrane (CAM) model with similar results to experiments in mice, such contributing to the 3Rs principles (reduction, replacement, and refinement). However, inhibition studies to prove receptor-specific binding have not yet been performed in the CAM model. Thus, in the present work, we analyzed the feasibility of inhibition studies in ovo by PET and MRI using the PSMA-specific ligand [18F]siPSMA-14 and the corresponding inhibitor 2-PMPA. A dose-dependent blockade of [18F]siPSMA-14 uptake was successfully demonstrated by pre-dosing with different inhibitor concentrations. Based on these data, we conclude that the CAM model is suitable for performing inhibition studies to detect receptor-specific binding. While in the later stages of development of novel radiopharmaceuticals, testing in rodents will still be necessary for biodistribution analysis, the CAM model is a promising alternative to mouse experiments in the early phases of compound evaluation. Thus, using the CAM model and PET and MR imaging for early pre-selection of promising radiolabeled compounds could significantly reduce the number of animal experiments.
Collapse
|
31
|
Hellsten R, Stiehm A, Palominos M, Persson M, Bjartell A. The STAT3 inhibitor GPB730 enhances the sensitivity to enzalutamide in prostate cancer cells. Transl Oncol 2022; 24:101495. [PMID: 35917644 PMCID: PMC9344336 DOI: 10.1016/j.tranon.2022.101495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/06/2022] [Accepted: 07/19/2022] [Indexed: 10/25/2022] Open
Abstract
Enzalutamide is a second-generation anti-androgen which has shown increased survival in patients with metastatic prostate cancer. However, some patients do not respond to this therapy or will develop resistance to treatment over time. Signal Transducer and Activator of Transcription 3 (STAT3) is known to be involved in castration-resistant prostate cancer and to interact with androgen receptor (AR)-signaling. This study aims to investigate the combination enzalutamide and the small molecule STAT3 inhibitor GPB730 for enhanced therapeutic effect in advanced prostate cancer in vitro. The prostate cancer cell lines LNCaP (androgen dependent) and C4-2 (androgen insensitive) were used. The effect of enzalutamide and GPB730, alone and in combination, was investigated on viability and IC50 values calculated. Enzalutamide and GPB730 treated LNCaP and C4-2 cells were subjected to western blot and QPCR analyses in order to investigate the expression of AR, STAT3 and down-stream targets. C4-2 were less sensitive to growth inhibition by enzalutamide than LNCaP cells. GPB730 enhanced the growth inhibitory effect of enzalutamide in LNCaP and C4-2 cells. The addition of GPB730 to enzalutamide decreased the IC50 values for enzalutamide by 3.3-fold for LNCaP and by 12-fold for C4-2. In C4-2 cells, GPB730 alone decreased PSA expression and enhanced the enzalutamide induced decrease in NKX3.1 expression. GPB730 and enzalutamide in combination enhanced inhibition of c-myc and survivin expression. This study suggests that enzalutamide may be combined with the STAT3 inhibitor GPB730 in order to enhance the efficacy of enzalutamide, offering a new therapeutic approach in advanced prostate cancer.
Collapse
Affiliation(s)
- Rebecka Hellsten
- Department of Translational Medicine, Lund University, Scheelevägen 8, Building 404:A3, Lund SE-223 63, Sweden.
| | - Anna Stiehm
- Department of Translational Medicine, Lund University, Scheelevägen 8, Building 404:A3, Lund SE-223 63, Sweden
| | - Macarena Palominos
- Department of Translational Medicine, Lund University, Scheelevägen 8, Building 404:A3, Lund SE-223 63, Sweden
| | - Margareta Persson
- Department of Laboratory Medicine, Lund University, Scheelevägen 8, Building 404:A3, Lund SE-223 63, Sweden
| | - Anders Bjartell
- Department of Translational Medicine, Lund University, Scheelevägen 8, Building 404:A3, Lund SE-223 63, Sweden; Department of Urology, Skåne University Hospital, Jan Waldenströms gata 5, Malmö SE-205 02, Sweden
| |
Collapse
|
32
|
Kakarla M, ChallaSivaKanaka S, Dufficy MF, Gil V, Filipovich Y, Vickman R, Crawford SE, Hayward SW, Franco OE. Ephrin B Activate Src Family Kinases in Fibroblasts Inducing Stromal Remodeling in Prostate Cancer. Cancers (Basel) 2022; 14:2336. [PMID: 35565468 PMCID: PMC9102363 DOI: 10.3390/cancers14092336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 12/14/2022] Open
Abstract
Through stromal-epithelial interactions, carcinoma associated fibroblasts (CAF) play a critical role in tumor growth and progression. Activation of erythrophoyetin-producing human hepatocellular (Eph) receptors has been implicated in cancer. Eph receptor interactions with Ephrin ligands lead to bidirectional signals in the recipient and effector cells. The consequences of continuous reverse Ephrin signaling activation in fibroblasts on prostate cancer (PCa) is unknown. When compared to benign prostate fibroblast, CAF displayed higher expression of Ephrin B1, B2, and B3 ligands (EFNB1, EFNB2, and EFNB3). In this study, we found that continuous activation of EFNB1 and EFNB3 in a benign human prostate stromal cell line (BHPrS1) increased the expression of CAF markers and induced a CAF phenotype. BHPrS1EFNB1 and BHPrS1EFNB3 displayed a pro-tumorigenic secretome with multiple effects on neovascularization, collagen deposition, and cancer cell proliferation, overall increasing tumorigenicity of a premalignant prostate epithelial cell line BPH1 and PCa cell line LNCaP, both in vitro and in vivo. Inhibition of Src family kinases (SFK) in BHPrS1EFNB1 and BHPrS1EFNB3 suppressed EFNB-induced ɑ-SMA (Alpha-smooth muscle actin) and TN-C (Tenascin-C) in vitro. Our study suggests that acquisition of CAF characteristics via SFK activation in response to increased EFNB ligands could promote carcinogenesis via modulation of TME in PCa.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Omar E. Franco
- Department of Surgery, NorthShore University HealthSystem, Research Institute, 1001 University Place, Chicago, IL 60201, USA; (M.K.); (S.C.); (M.F.D.); (V.G.); (Y.F.); (R.V.); (S.E.C.); (S.W.H.)
| |
Collapse
|
33
|
Abate-Shen C, de Almeida FN. Establishment of the LNCaP Cell Line - The Dawn of an Era for Prostate Cancer Research. Cancer Res 2022; 82:1689-1691. [PMID: 35502546 PMCID: PMC9153264 DOI: 10.1158/0008-5472.can-22-1065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022]
Abstract
Among the relatively few established human prostate cancer cell lines, LNCaP cells are unique in their ability to model key stages of prostate cancer progression. Analyses of LNCaP cells and their derivatives have been invaluable for elucidating important translational aspects of prostate tumorigenesis, metastasis, and drug response, particularly in the context of androgen receptor signaling. Here, we present major highlights from a wealth of literature that has exploited LNCaP cells and their derivatives to inform on prostate cancer progression and androgen response for improving the treatment of patients with prostate cancer. See related article by Horoszewicz and colleagues, Cancer Res 1983;43:1809-18.
Collapse
Affiliation(s)
- Cory Abate-Shen
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY USA 10032
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY USA 10032
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY USA 10032
- Department of Urology, Columbia University Irving Medical Center, New York, NY USA 10032
- Department of Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY USA 10032
| | - Francisca Nunes de Almeida
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY USA 10032
| |
Collapse
|
34
|
TR3 Enhances AR Variant Production and Transactivation, Promoting Androgen Independence of Prostate Cancer Cells. Cancers (Basel) 2022; 14:cancers14081911. [PMID: 35454821 PMCID: PMC9031921 DOI: 10.3390/cancers14081911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/12/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Advanced prostate cancer development is associated with androgen-independent AR signaling. TR3 overexpression alters AR expression, splicing process, and transactivation towards increasing the androgen independence of AR signaling in prostate cancer cells. These results suggest that TR3 is a pivotal factor in the progression of prostate cancer to advanced form. Abstract The pro-oncogenic function of TR3, an orphan nuclear receptor, has been reported in prostate cancer. However, the roles of TR3 in androgen receptor (AR) expression and signaling in prostate cancer cells are poorly understood. Database analysis revealed that TR3 expression level is elevated in prostate tumors, and is positively, although weakly, correlated with that of AR. TR3 overexpression increased the production of AR splice variants in addition to general upregulation of AR expression. TR3 interacted with some spliceosomal complex components and AR precursor mRNA, altering the splice junction rates between exons. TR3 also enhanced androgen-independent AR function. Furthermore, TR3 overexpression increased cell proliferation and mobility of AR-positive prostate cancer cells and stimulated tumorigenesis of androgen-independent prostate cancer cells in mouse xenograft models. This is the first study to report that TR3 is a multifunctional regulator of AR signaling in prostate cancer cells. TR3 alters AR expression, splicing process, and activity in prostate cancer cells, increasing the androgen independence of AR signaling. Therefore, TR3 may play a crucial role in the progression of prostate cancer to an advanced castration-resistant form.
Collapse
|
35
|
Reduced NCOR2 expression accelerates androgen deprivation therapy failure in prostate cancer. Cell Rep 2021; 37:110109. [PMID: 34910907 PMCID: PMC8889623 DOI: 10.1016/j.celrep.2021.110109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/21/2021] [Accepted: 11/17/2021] [Indexed: 01/27/2023] Open
Abstract
This study addresses the roles of nuclear receptor corepressor 2 (NCOR2) in prostate cancer (PC) progression in response to androgen deprivation therapy (ADT). Reduced NCOR2 expression significantly associates with shorter disease-free survival in patients with PC receiving adjuvant ADT. Utilizing the CWR22 xenograft model, we demonstrate that stably reduced NCOR2 expression accelerates disease recurrence following ADT, associates with gene expression patterns that include neuroendocrine features, and induces DNA hypermethylation. Stably reduced NCOR2 expression in isogenic LNCaP (androgen-sensitive) and LNCaP-C4–2 (androgen-independent) cells revealed that NCOR2 reduction phenocopies the impact of androgen treatment and induces global DNA hypermethylation patterns. NCOR2 genomic binding is greatest in LNCaP-C4–2 cells and most clearly associates with forkhead box (FOX) transcription factor FOXA1 binding. NCOR2 binding significantly associates with transcriptional regulation most when in active enhancer regions. These studies reveal robust roles for NCOR2 in regulating the PC transcriptome and epigenome and underscore recent mutational studies linking NCOR2 loss of function to PC disease progression. Long et al. show that reduced levels of NCOR2 lead to accelerated prostate cancer recurrence during androgen withdrawal in a patient-derived xenograft model. NCOR2 reduction is characterized by incomplete response to androgen withdrawal, and recurrent tumors show increased neuroendocrine traits. These phenotypic changes are associated with hypermethylated enhancers.
Collapse
|
36
|
Huang M, Koizumi A, Narita S, Nakanishi H, Sato H, Kashima S, Nara T, Kanda S, Numakura K, Saito M, Satoh S, Nanjo H, Sasaki T, Habuchi T. Altering phosphoinositides in high-fat diet-associated prostate tumor xenograft growth. MedComm (Beijing) 2021; 2:756-764. [PMID: 34977875 PMCID: PMC8706770 DOI: 10.1002/mco2.89] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 11/08/2022] Open
Abstract
The metabolic reprogramming of phospholipids may affect intracellular signal transduction pathways. A high-fat diet (HFD) is attributed to prostate cancer (PCa) progression, but the expression pattern and role of phospholipids in HFD-mediated PCa progression remains unclear. In this study, HFD enhanced LNCaP xenograft tumor growth by upregulating the phosphatidylinositol (PI) 3-kinase (PI3K)/AKT signaling pathway. A lipidomic analysis using xenograft tumors showed that phosphoinositides, especially PI (3,4,5)-trisphosphate (PIP3), including several species containing C38:4, C38:3, and C40:4 fatty acids, increased in the HFD group compared to control. Fatty acid synthase (FASN) was significantly upregulated in xenograft tumors under HFD in both gene and protein levels. PCa cell growth was significantly inhibited through the decreased AKT signaling pathway by treatment with cerulenin, a chemical FASN inhibitor, which also downregulated PIP, PIP2, and PIP3 but not PI. Thus, dietary fat influences PCa progression and alters phosphoinositides, especially PIP3, a critical player in the PI3K/AKT pathway. These results may offer appropriate targets, such as FASN, for dietary intervention and/or chemoprevention to reduce PCa incidence and progression.
Collapse
Affiliation(s)
- Mingguo Huang
- Department of UrologyAkita University Graduate School of MedicineAkitaJapan
| | - Atsushi Koizumi
- Department of UrologyAkita University Graduate School of MedicineAkitaJapan
| | - Shintaro Narita
- Department of UrologyAkita University Graduate School of MedicineAkitaJapan
| | - Hiroki Nakanishi
- Research Center for BiosignalAkita University Graduate School of MedicineAkitaJapan
| | - Hiromi Sato
- Department of UrologyAkita University Graduate School of MedicineAkitaJapan
| | - Soki Kashima
- Department of UrologyAkita University Graduate School of MedicineAkitaJapan
| | - Taketoshi Nara
- Department of UrologyAkita University Graduate School of MedicineAkitaJapan
| | - Sohei Kanda
- Department of UrologyAkita University Graduate School of MedicineAkitaJapan
| | - Kazuyuki Numakura
- Department of UrologyAkita University Graduate School of MedicineAkitaJapan
| | - Mitsuru Saito
- Department of UrologyAkita University Graduate School of MedicineAkitaJapan
| | - Shigeru Satoh
- Department of UrologyAkita University Graduate School of MedicineAkitaJapan
| | - Hiroshi Nanjo
- Department of Clinical PathologyAkita University Graduate School of MedicineAkitaJapan
| | - Takehiko Sasaki
- Department of Biochemical Pathophysiology/Lipid BiologyMedical Research InstituteTokyo Medical and Dental UniversityBunkyo‐kuTokyoJapan
| | - Tomonori Habuchi
- Department of UrologyAkita University Graduate School of MedicineAkitaJapan
| |
Collapse
|
37
|
Haffner MC, Bhamidipati A, Tsai HK, Esopi DM, Vaghasia AM, Low JY, Patel RA, Guner G, Pham MT, Castagna N, Hicks J, Wyhs N, Aebersold R, De Marzo AM, Nelson WG, Guo T, Yegnasubramanian S. Phenotypic characterization of two novel cell line models of castration-resistant prostate cancer. Prostate 2021; 81:1159-1171. [PMID: 34402095 PMCID: PMC8460612 DOI: 10.1002/pros.24210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/30/2021] [Accepted: 08/04/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Resistance to androgen deprivation therapies is a major driver of mortality in advanced prostate cancer. Therefore, there is a need to develop new preclinical models that allow the investigation of resistance mechanisms and the assessment of drugs for the treatment of castration-resistant prostate cancer. METHODS We generated two novel cell line models (LAPC4-CR and VCaP-CR) which were derived by passaging LAPC4 and VCaP cells in vivo and in vitro under castrate conditions. We performed detailed transcriptomic (RNA-seq) and proteomic analyses (SWATH-MS) to delineate expression differences between castration-sensitive and castration-resistant cell lines. Furthermore, we characterized the in vivo and in vitro growth characteristics of these novel cell line models. RESULTS The two cell line derivatives LAPC4-CR and VCaP-CR showed castration-resistant growth in vitro and in vivo which was only minimally inhibited by AR antagonists, enzalutamide, and bicalutamide. High-dose androgen treatment resulted in significant growth arrest of VCaP-CR but not in LAPC4-CR cells. Both cell lines maintained AR expression, but exhibited distinct expression changes on the mRNA and protein level. Integrated analyses including data from LNCaP and the previously described castration-resistant LNCaP-abl cells revealed an expression signature of castration resistance. CONCLUSIONS The two novel cell line models LAPC4-CR and VCaP-CR and their comprehensive characterization on the RNA and protein level represent important resources to study the molecular mechanisms of castration resistance.
Collapse
Affiliation(s)
- Michael C. Haffner
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Pathology, University of Washington, Seattle, WA, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, MD, Baltimore, USA
| | - Akshay Bhamidipati
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, MD, Baltimore, USA
| | - Harrison K. Tsai
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, MD, Baltimore, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - David M. Esopi
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, MD, Baltimore, USA
| | - Ajay M. Vaghasia
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, MD, Baltimore, USA
| | - Jin-Yih Low
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Radhika A. Patel
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Gunes Guner
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Hacettepe University Faculty of Medicine, Department of Pathology, Ankara, Turkey
| | - Minh-Tam Pham
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, MD, Baltimore, USA
| | - Nicole Castagna
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, MD, Baltimore, USA
| | - Jessica Hicks
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Nicolas Wyhs
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, MD, Baltimore, USA
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH, Zürich, Switzerland
- Faculty of Science, University of Zürich, Zürich. Switzerland
| | - Angelo M. De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, MD, Baltimore, USA
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William G. Nelson
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, MD, Baltimore, USA
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tiannan Guo
- Department of Biology, Institute of Molecular Systems Biology, ETH, Zürich, Switzerland
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
| | - Srinivasan Yegnasubramanian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, MD, Baltimore, USA
| |
Collapse
|
38
|
Zhao J, Li Q, Feng B, Wei D, Han Y, Li M, Wang Y, Luo Y, Jiang Y. MicroRNA‑149 inhibits cancer cell malignant phenotype by regulating Akt1 in C4‑2 CRPC cell line. Oncol Rep 2021; 46:258. [PMID: 34698359 PMCID: PMC8561672 DOI: 10.3892/or.2021.8209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 08/31/2021] [Indexed: 01/06/2023] Open
Abstract
Prostate cancer (PCa) is an androgen‑dependent disease. Androgen receptor (AR) has a crucial role in the development and progression of PCa. Recently, several microRNAs (miRNAs/miRs) involved in AR regulation have been associated with castration‑resistant prostate cancer (CRPC), the terminal stage of PCa. Nevertheless, the precise mechanism remains unclear. The present study aimed to identify a novel miR‑149 regulatory network and potential therapeutic target for CRPC. It was found that ectopic expression of miR‑149 mimic could inhibit AR expression, repress epithelial‑mesenchymal transition, induce cell cycle arrest and apoptosis in CRPC cell line C4‑2, whereas the miR‑149 inhibitor exerted the opposite effects. Furthermore, it was also revealed that miR‑149 could reduce the functional activity of the PI3K/Akt1 signaling pathway by targeting Akt1 protein, the key regulatory factor of the PI3K/Akt1 signaling pathway. Knockdown of Akt1 by short hairpin RNA increased apoptosis, reduced proliferation, and restrained migration and invasion in CRPC cells, with the effect of AR inhibition. In conclusion, these results revealed that miR‑149 acts as a tumor suppressor in CRPC cell line C4‑2 and restrains its progression through the AR signaling pathway by targeting Akt1. The miR‑149/Akt1/AR regulatory pathway may represent a novel PCa therapeutic target.
Collapse
Affiliation(s)
- Jiahui Zhao
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Chaoyang, Beijing 100029, P.R. China
| | - Qiankun Li
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Chaoyang, Beijing 100029, P.R. China
| | - Bingfu Feng
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Chaoyang, Beijing 100029, P.R. China
| | - Dechao Wei
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Chaoyang, Beijing 100029, P.R. China
| | - Yili Han
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Chaoyang, Beijing 100029, P.R. China
| | - Mingchuan Li
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Chaoyang, Beijing 100029, P.R. China
| | - Yongxing Wang
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Chaoyang, Beijing 100029, P.R. China
| | - Yong Luo
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Chaoyang, Beijing 100029, P.R. China
| | - Yongguang Jiang
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Chaoyang, Beijing 100029, P.R. China
| |
Collapse
|
39
|
Drosophila Accessory Gland: A Complementary In Vivo Model to Bring New Insight to Prostate Cancer. Cells 2021; 10:cells10092387. [PMID: 34572036 PMCID: PMC8468328 DOI: 10.3390/cells10092387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer is the most common cancer in aging men. Despite recent progress, there are still few effective treatments to cure its aggressive and metastatic stages. A better understanding of the molecular mechanisms driving disease initiation and progression appears essential to support the development of more efficient therapies and improve patient care. To do so, multiple research models, such as cell culture and mouse models, have been developed over the years and have improved our comprehension of the biology of the disease. Recently, a new model has been added with the use of the Drosophila accessory gland. With a high level of conservation of major signaling pathways implicated in human disease, this functional equivalent of the prostate represents a powerful, inexpensive, and rapid in vivo model to study epithelial carcinogenesis. The purpose of this review is to quickly overview the existing prostate cancer models, including their strengths and limitations. In particular, we discuss how the Drosophila accessory gland can be integrated as a convenient complementary model by bringing new understanding in the mechanisms driving prostate epithelial tumorigenesis, from initiation to metastatic formation.
Collapse
|
40
|
Ideta Y, Tagawa T, Hayashi Y, Baba J, Takahashi K, Mitsudo K, Sakurai K. Transcriptomic Profiling Predicts Multiple Pathways and Molecules Associated With the Metastatic Phenotype of Oral Cancer Cells. Cancer Genomics Proteomics 2021; 18:17-27. [PMID: 33419893 DOI: 10.21873/cgp.20238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/25/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND/AIM Metastasis to cervical lymph nodes of oral squamous cell carcinoma (OSCC) leads to a poor prognosis. The present study aimed at investigating the pathways and molecules associated with OSCC metastasis. MATERIALS AND METHODS The transcriptome between HSC-3 cells and their highly metastatic subline, HSC-3-M3 cells, was examined using gene expression microarray. Gene enrichment analyses and Ingenuity Pathway Analysis were performed. Kaplan-Meier plot analysis using a publicly available dataset was conducted to assess whether candidate molecules are prognosticators. RESULTS A total of 1,018 genes were differentially expressed, and the inflammatory pathway and NF-kB were predicted to be activated in HSC-3-M3 cells. CSF2 was suggested to be an indicator of poor prognosis in head and neck cancers. CONCLUSION Inflammation and NF-kB may be involved in the metastasis of OSCC, and CSF2 is a promising diagnostic and therapeutic molecule. Moreover, HSC-3-M3 cells are a useful cell line model for studying OSCC progression.
Collapse
Affiliation(s)
- Yuka Ideta
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, Kanagawa, Japan.,Department of Nutrition and Dietetics, School of Family and Consumer Sciences, Kamakura Women's University, Kanagawa, Japan
| | - Takanobu Tagawa
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Yuichiro Hayashi
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, Kanagawa, Japan
| | - Junichi Baba
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, Kanagawa, Japan
| | - Kimiko Takahashi
- Department of Nutrition and Dietetics, School of Family and Consumer Sciences, Kamakura Women's University, Kanagawa, Japan
| | - Kenji Mitsudo
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, Kanagawa, Japan
| | - Kouhei Sakurai
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, Kanagawa, Japan; .,Department of Nutrition and Dietetics, School of Family and Consumer Sciences, Kamakura Women's University, Kanagawa, Japan
| |
Collapse
|
41
|
Lu D, Song Y, Yu Y, Wang D, Liu B, Chen L, Li X, Li Y, Cheng L, Lv F, Zhang P, Xing Y. KAT2A-mediated AR translocation into nucleus promotes abiraterone-resistance in castration-resistant prostate cancer. Cell Death Dis 2021; 12:787. [PMID: 34381019 PMCID: PMC8357915 DOI: 10.1038/s41419-021-04077-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 11/24/2022]
Abstract
Abiraterone, a novel androgen synthesis inhibitor, has been approved for castration-resistant prostate cancer (CRPC) treatment. However, most patients eventually acquire resistance to this agent, and the underlying mechanisms related to this resistance remain largely unelucidated. Lysine acetyltransferase 2 A (KAT2A) has been reported to enhance transcriptional activity for certain histone or non-histone proteins through the acetylation and post-translational modification of the androgen receptor (AR). Therefore, we hypothesised that KAT2A might play a critical role in the resistance of prostate tumours to hormonal treatment. In this study, we found that KAT2A expression was increased in abiraterone-resistant prostate cancer C4-2 cells (C4-2-AbiR). Consistently, elevated expression of KAT2A was observed in patients with prostate cancer exhibiting high-grade disease or biochemical recurrence following radical prostatectomy, as well as in those with poor clinical survival outcomes. Moreover, KAT2A knockdown partially re-sensitised C4-2-AbiR cells to abiraterone, whereas KAT2A overexpression promoted abiraterone resistance in parental C4-2 cells. Consistent with this finding, KAT2A knockdown rescued abiraterone sensitivity and inhibited the proliferation of C4-2-AbiR cells in a mouse model. Mechanistically, KAT2A directly acetylated the hinge region of the AR, and induced AR translocation from the cytoplasm to the nucleus, resulting in increased transcriptional activity of the AR-targeted gene prostate specific antigen (PSA) leading to resistance to the inhibitory effect of abiraterone on proliferation. Taken together, our findings demonstrate a substantial role for KAT2A in the regulation of post-translational modifications in AR affecting CRPC development, suggesting that targeting KAT2A might be a potential strategy for CRPC treatment.
Collapse
Affiliation(s)
- Dingheng Lu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yarong Song
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ying Yu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Decai Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bing Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Liang Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xuexiang Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yunxue Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lulin Cheng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fang Lv
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Pu Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yifei Xing
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
42
|
Comparison of Quantification of Target-Specific Accumulation of [ 18F]F-siPSMA-14 in the HET-CAM Model and in Mice Using PET/MRI. Cancers (Basel) 2021; 13:cancers13164007. [PMID: 34439163 PMCID: PMC8393674 DOI: 10.3390/cancers13164007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 01/07/2023] Open
Abstract
Simple Summary Animal studies are essential for the development of new radiopharmaceuticals to determine specific accumulation and biodistribution. Alternative models, such as the HET-CAM model, offer the possibility of reducing animal experiments in accordance with the 3Rs principles. Accurate quantification of tumor accumulation of a PSMA-specific ligand in the HET-CAM model and comparison with corresponding animal experiments was performed using the imaging modalities PET and MRI. It was demonstrated that the HET-CAM model leads to comparable results and is suitable as an alternative to animal experiments for the initial assessment of target-specific binding of novel radiopharmaceuticals. However, as evaluation of biodistribution in ovo is still limited, further animal experiments with promising compounds are mandatory. Abstract Assessment of biodistribution and specific tumor accumulation is essential for the development of new radiopharmaceuticals and requires animal experiments. The HET-CAM (hens-egg test—chorioallantoic membrane) model can be used in combination with the non-invasive imaging modalities PET and MRI for pre-selection during radiopharmaceutical development to reduce the number of animal experiments required. Critical to the acceptance of this model is the demonstration of the quantifiability and reproducibility of these data compared to the standard animal model. Tumor accumulation and biodistribution of the PSMA-specific radiotracer [18F]F-siPSMA-14 was analyzed in the chick embryo and in an immunodeficient mouse model. Evaluation was based on MRI and PET data in both models. γ-counter measurements and histopathological analyses complemented these data. PSMA-specific accumulation of [18F]F-siPSMA-14 was successfully demonstrated in the HET-CAM model, similar to the results obtained by mouse model studies. The combination of MR and PET imaging allowed precise quantification of peptide accumulation, initial assessment of biodistribution, and accurate determination of tumor volume. Thus, the use of the HET-CAM model is suitable for the pre-selection of new radiopharmaceuticals and potentially reduces animal testing in line with the 3Rs principles of animal welfare.
Collapse
|
43
|
Bery F, Cancel M, Guéguinou M, Potier-Cartereau M, Vandier C, Chantôme A, Guibon R, Bruyère F, Fromont G, Mahéo K. Zeb1 and SK3 Channel Are Up-Regulated in Castration-Resistant Prostate Cancer and Promote Neuroendocrine Differentiation. Cancers (Basel) 2021; 13:cancers13122947. [PMID: 34204608 PMCID: PMC8231145 DOI: 10.3390/cancers13122947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Currently, neuroendocrine prostate cancers remain fatal, so it is crucial to better understand mechanisms of resistance to hormone therapy driving this phenotype. We have shown that Enza, a new generation hormone therapy, promotes prostate cancer cells neurodifferentiation by activating a positive feedback loop between the key transcription factor of epithelial to mesenchymal transition Zeb1 and the calcium-sensitive potassium channel SK3. These two actors are overexpressed in patients with neuroendocrine castration-resistant prostate cancer. Targeting SK3 channel by Ohmline, a synthetic ether lipid, inhibits neuroendocrine differentiation of prostate cancer cells, which opens new therapeutic prospects for neuroendocrine prostate cancers. Abstract Therapeutic strategies for metastatic castration-resistant prostate cancer aim to target androgen receptor signaling. Despite initial survival benefits, treatment resistance invariably occurs, leading to lethal disease. Therapies targeting the androgen receptor can induce the emergence of a neuroendocrine phenotype and reactivate embryonic programs associated with epithelial to mesenchymal transition. We recently reported that dysregulation of the calcium signal can induce the transcription factor Zeb1, a key determinant of cell plasticity during tumor progression. The aim of this study was to determine whether the androgen receptor-targeted treatment Enzalutamide could induce dysregulation of the calcium signal involved in the progression toward epithelial to mesenchymal transition and neuroendocrine differentiation, contributing to therapeutic escape. Our results show that Zeb1 and the SK3 potassium channel are overexpressed in vivo in neuroendocrine castration-resistant prostate cancer and in vitro in LNCaP cells neurodifferentiated after Enzalutamide treatment. Moreover, the neuroendocrine phenotype is associated with a deregulation of the expression of Orai calcium channels. We showed that Zeb1 and SK3 are critical drivers of neuroendocrine differentiation. Interestingly, Ohmline, an SK3 inhibitor, can prevent the expression of Zeb1 and neuroendocrine markers induced by Enzalutamide. This study offers new perspectives to increase hormone therapy efficacy and improve clinical outcomes.
Collapse
Affiliation(s)
- Fanny Bery
- N2C UMR 1069, University of Tours, INSERM, F-37032 Tours, France; (F.B.); (M.C.); (M.G.); (M.P.-C.); (C.V.); (A.C.); (R.G.); (G.F.)
| | - Mathilde Cancel
- N2C UMR 1069, University of Tours, INSERM, F-37032 Tours, France; (F.B.); (M.C.); (M.G.); (M.P.-C.); (C.V.); (A.C.); (R.G.); (G.F.)
- Department of Oncology, CHRU Bretonneau, CEDEX 9, F-37044 Tours, France
| | - Maxime Guéguinou
- N2C UMR 1069, University of Tours, INSERM, F-37032 Tours, France; (F.B.); (M.C.); (M.G.); (M.P.-C.); (C.V.); (A.C.); (R.G.); (G.F.)
| | - Marie Potier-Cartereau
- N2C UMR 1069, University of Tours, INSERM, F-37032 Tours, France; (F.B.); (M.C.); (M.G.); (M.P.-C.); (C.V.); (A.C.); (R.G.); (G.F.)
| | - Christophe Vandier
- N2C UMR 1069, University of Tours, INSERM, F-37032 Tours, France; (F.B.); (M.C.); (M.G.); (M.P.-C.); (C.V.); (A.C.); (R.G.); (G.F.)
| | - Aurélie Chantôme
- N2C UMR 1069, University of Tours, INSERM, F-37032 Tours, France; (F.B.); (M.C.); (M.G.); (M.P.-C.); (C.V.); (A.C.); (R.G.); (G.F.)
| | - Roseline Guibon
- N2C UMR 1069, University of Tours, INSERM, F-37032 Tours, France; (F.B.); (M.C.); (M.G.); (M.P.-C.); (C.V.); (A.C.); (R.G.); (G.F.)
- CHRU of Tours, Department of Pathology, N2C UMR 1069, University of Tours, INSERM, CEDEX 9, F-37044 Tours, France
| | - Franck Bruyère
- CHRU of Tours, Department of Urology, CEDEX 9, F-37044 Tours, France;
| | - Gaëlle Fromont
- N2C UMR 1069, University of Tours, INSERM, F-37032 Tours, France; (F.B.); (M.C.); (M.G.); (M.P.-C.); (C.V.); (A.C.); (R.G.); (G.F.)
- CHRU of Tours, Department of Pathology, N2C UMR 1069, University of Tours, INSERM, CEDEX 9, F-37044 Tours, France
| | - Karine Mahéo
- N2C UMR 1069, University of Tours, INSERM, F-37032 Tours, France; (F.B.); (M.C.); (M.G.); (M.P.-C.); (C.V.); (A.C.); (R.G.); (G.F.)
- Correspondence: ; Tel.: +33-(0)2-47-36-62-13
| |
Collapse
|
44
|
Cleavage of the Perlecan-Semaphorin 3A-Plexin A1-Neuropilin-1 (PSPN) Complex by Matrix Metalloproteinase 7/Matrilysin Triggers Prostate Cancer Cell Dyscohesion and Migration. Int J Mol Sci 2021; 22:ijms22063218. [PMID: 33809984 PMCID: PMC8004947 DOI: 10.3390/ijms22063218] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
The Perlecan-Semaphorin 3A-Plexin A1-Neuropilin-1 (PSPN) Complex at the cell surface of prostate cancer (PCa) cells influences cell–cell cohesion and dyscohesion. We investigated matrix metalloproteinase-7/matrilysin (MMP-7)’s ability to digest components of the PSPN Complex in bone metastatic PCa cells using in silico analyses and in vitro experiments. Results demonstrated that in addition to the heparan sulfate proteoglycan, perlecan, all components of the PSPN Complex were degraded by MMP-7. To investigate the functional consequences of PSPN Complex cleavage, we developed a preformed microtumor model to examine initiation of cell dispersion after MMP-7 digestion. We found that while perlecan fully decorated with glycosaminoglycan limited dispersion of PCa microtumors, MMP-7 initiated rapid dyscohesion and migration even with perlecan present. Additionally, we found that a bioactive peptide (PLN4) found in perlecan domain IV in a region subject to digestion by MMP-7 further enhanced cell dispersion along with MMP-7. We found that digestion of the PSPN Complex with MMP-7 destabilized cell–cell junctions in microtumors evidenced by loss of co-registration of E-cadherin and F-actin. We conclude that MMP-7 plays a key functional role in PCa cell transition from a cohesive, indolent phenotype to a dyscohesive, migratory phenotype favoring production of circulating tumor cells and metastasis to bone.
Collapse
|
45
|
Molecular Profiling of Docetaxel-Resistant Prostate Cancer Cells Identifies Multiple Mechanisms of Therapeutic Resistance. Cancers (Basel) 2021; 13:cancers13061290. [PMID: 33799432 PMCID: PMC7998254 DOI: 10.3390/cancers13061290] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Therapeutic options for the treatment of men with metastatic castration-resistant prostate cancer are limited. Docetaxel—a taxane-based chemotherapeutic agent—was the first treatment to demonstrate significant efficacy in the treatment of this disease. However, responses to docetaxel are frequently curtailed by development of drug resistance, and patients eventually succumb to disease progression due to acquisition of drug resistance. In this study, we established drug-resistant prostate cancer cell lines and identified several mechanisms that may be associated with the development of drug resistance in prostate cancer. Actioning these mechanisms could provide a potential approach to re-sensitize drug-resistant cancer cells to docetaxel treatment and thereby further add to the life-prolonging effects of this drug in men with metastatic castration-resistant prostate cancer. Abstract Docetaxel—a taxane-based chemotherapeutic agent—was the first treatment to demonstrate significant improvements in overall survival in men with metastatic castration-resistant prostate cancer (mCRPC). However, the response to docetaxel is generally short-lived, and relapse eventually occurs due to the development of resistance. To explore the mechanisms of acquired docetaxel resistance in prostate cancer (PCa) and set these in the context of androgen deprivation therapy, we established docetaxel-resistant PCa cell lines, derived from the androgen-dependent LNCaP cell line, and from the LNCaP lineage-derived androgen-independent C4-2B sub-line. We generated two docetaxel-resistant LNCaPR and C4-2BR sub-lines, with IC50 values 77- and 50-fold higher than those of the LNCaP and C4-2B parental cells, respectively. We performed gene expression analysis of the matched sub-lines and found several alterations that may confer docetaxel resistance. In addition to increased expression of ABCB1, an ATP-binding cassette (ABC) transporter, and a well-known gene associated with development of docetaxel resistance, we identified genes associated with androgen signaling, cell survival, and overexpression of ncRNAs. In conclusion, we identified multiple mechanisms that may be associated with the development of taxane drug resistance in PCa. Actioning these mechanisms could provide a potential approach to re-sensitization of docetaxel-resistant PCa cells to docetaxel treatment and thereby further add to the life-prolonging effects of this drug in men with mCRPC.
Collapse
|
46
|
Nollet EA, Cardo-Vila M, Ganguly SS, Tran JD, Schulz VV, Cress A, Corey E, Miranti CK. Androgen receptor-induced integrin α6β1 and Bnip3 promote survival and resistance to PI3K inhibitors in castration-resistant prostate cancer. Oncogene 2020; 39:5390-5404. [PMID: 32565538 PMCID: PMC7395876 DOI: 10.1038/s41388-020-1370-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 11/09/2022]
Abstract
The androgen receptor (AR) is the major driver of prostate cancer growth and survival. However, almost all patients relapse with castration resistant disease (CRPC) when treated with anti-androgen therapy. In CRPC, AR is often aberrantly activated independent of androgen. Targeting survival pathways downstream of AR could be a viable strategy to overcome CRPC. Surprisingly, little is known about how AR drives prostate cancer survival. Furthermore, CRPC tumors in which Pten is lost are also resistant to eradication by PI3K inhibitors. We sought to identify the mechanism by which AR drives tumor survival in CRPC to identify ways to overcome resistance to PI3K inhibition. We found that integrin α6β1 and Bnip3 are selectively elevated in CRPC downstream of AR. While integrin α6 promotes survival and is a direct transcriptional target of AR, the ability of AR to induce Bnip3 is dependent on adhesion to laminin and integrin α6β1-dependent nuclear translocation of HIF1α. Integrin α6β1 and Bnip3 were found to promote survival of CRPC cells selectively on laminin through the induction of autophagy and mitophagy. Furthermore, blocking Bnip3 or integrin α6β1 restored sensitivity to PI3K inhibitors in Pten-negative CRPC. We identified an AR driven pathway that cooperates with laminin and hypoxia to drive resistance to PI3K inhibitors. These findings can help explain in part why PI3K inhibitors have failed in clinical trials to overcome AR-dependent CRPC.
Collapse
Affiliation(s)
| | - Marina Cardo-Vila
- Department of Cellular and Molecular Medicine and Prostate Cancer Research Program at University of Arizona Cancer Center, Tucson, AZ, USA
| | - Sourik S Ganguly
- Department of Cellular and Molecular Medicine and Prostate Cancer Research Program at University of Arizona Cancer Center, Tucson, AZ, USA
| | - Jack D Tran
- Department of Cellular and Molecular Medicine and Prostate Cancer Research Program at University of Arizona Cancer Center, Tucson, AZ, USA
| | | | - Anne Cress
- Department of Cellular and Molecular Medicine and Prostate Cancer Research Program at University of Arizona Cancer Center, Tucson, AZ, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Cindy K Miranti
- Van Andel Research Institute, Grand Rapids, MI, USA. .,Department of Cellular and Molecular Medicine and Prostate Cancer Research Program at University of Arizona Cancer Center, Tucson, AZ, USA.
| |
Collapse
|
47
|
Gupta S, Pungsrinont T, Ženata O, Neubert L, Vrzal R, Baniahmad A. Interleukin-23 Represses the Level of Cell Senescence Induced by the Androgen Receptor Antagonists Enzalutamide and Darolutamide in Castration-Resistant Prostate Cancer Cells. Discov Oncol 2020; 11:182-190. [PMID: 32562083 PMCID: PMC7335377 DOI: 10.1007/s12672-020-00391-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer (PCa) is the most common cancer and the second leading cause of cancer-related deaths of men in Western countries. Androgen deprivation therapy is initially successful, however eventually fails, and tumors progress to the more aggressive castration-resistant PCa (CRPC). Yet, androgen receptor (AR) usually remains as a major regulator of tumor cell proliferation in CRPC. Interleukin-23 (IL-23) was recently shown to promote the development of CRPC by driving AR transcription. Here we used the androgen-sensitive LNCaP, castration-resistant C4-2, and 22Rv1 cells. Interestingly, cellular senescence is induced in these human cell lines by treatment with the AR antagonists enzalutamide (ENZ) or darolutamide (ODM), which might be one underlying mechanism for inhibition of PCa cell proliferation. Treatment with IL-23 alone did not change cellular senescence levels in these cell lines, whereas IL-23 inhibited significantly cellular senescence levels induced by ENZ or ODM in both CRPC cell lines C4-2 and 22Rv1 but not in LNCaP cells. This indicates a response of IL-23 specific in CRPC cells. Generating LNCaP and C4-2 three-dimensional (3D) spheroids and treatment with AR antagonists resulted in the reduced spheroid volume and thus growth inhibition. However, the combination of AR antagonists with IL-23 did not affect the antagonist-mediated reduction of spheroid volumes. This observation was confirmed with proliferation assays using adherent monolayer cell cultures. Taken together, the data indicate that IL-23 treatment reduces the AR antagonists-induced level of cellular senescence of CRPC cells, which could be one possible mechanism for promoting castration resistance.
Collapse
Affiliation(s)
- Siddharth Gupta
- Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, 07740, Jena, Germany
| | - Thanakorn Pungsrinont
- Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, 07740, Jena, Germany
| | - Ondrej Ženata
- Department of Cell Biology and Genetics, Palacky University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Laura Neubert
- Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, 07740, Jena, Germany
| | - Radim Vrzal
- Department of Cell Biology and Genetics, Palacky University, Šlechtitelů 27, 78371, Olomouc, Czech Republic.
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, 07740, Jena, Germany.
| |
Collapse
|
48
|
Frankenstein Z, Basanta D, Franco OE, Gao Y, Javier RA, Strand DW, Lee M, Hayward SW, Ayala G, Anderson ARA. Stromal reactivity differentially drives tumour cell evolution and prostate cancer progression. Nat Ecol Evol 2020; 4:870-884. [PMID: 32393869 PMCID: PMC11000594 DOI: 10.1038/s41559-020-1157-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 02/19/2020] [Indexed: 01/19/2023]
Abstract
Prostate cancer (PCa) progression is a complex eco-evolutionary process driven by the feedback between evolving tumour cell phenotypes and microenvironmentally driven selection. To better understand this relationship, we used a multiscale mathematical model that integrates data from biology and pathology on the microenvironmental regulation of PCa cell behaviour. Our data indicate that the interactions between tumour cells and their environment shape the evolutionary dynamics of PCa cells and explain overall tumour aggressiveness. A key environmental determinant of this aggressiveness is the stromal ecology, which can be either inhibitory, highly reactive (supportive) or non-reactive (neutral). Our results show that stromal ecology correlates directly with tumour growth but inversely modulates tumour evolution. This suggests that aggressive, environmentally independent PCa may be a result of poor stromal ecology, supporting the concept that purely tumour epithelium-centric metrics of aggressiveness may be incomplete and that incorporating markers of stromal ecology would improve prognosis.
Collapse
Affiliation(s)
- Ziv Frankenstein
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Independent Researcher, New York, NY, USA
| | - David Basanta
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Omar E Franco
- Department of Surgery, NorthShore University HealthSystem Research Institute, Evanston, IL, USA
| | - Yan Gao
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Rodrigo A Javier
- Department of Surgery, NorthShore University HealthSystem Research Institute, Evanston, IL, USA
| | - Douglas W Strand
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | - MinJae Lee
- Biostatistics/Epidemiology/Research Design Core, Department of Internal Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Simon W Hayward
- Department of Surgery, NorthShore University HealthSystem Research Institute, Evanston, IL, USA
| | - Gustavo Ayala
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Alexander R A Anderson
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
49
|
Bompard J, Rosso A, Brizuela L, Mebarek S, Blum LJ, Trunfio-Sfarghiu AM, Lollo G, Granjon T, Girard-Egrot A, Maniti O. Membrane Fluidity as a New Means to Selectively Target Cancer Cells with Fusogenic Lipid Carriers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5134-5144. [PMID: 32338922 DOI: 10.1021/acs.langmuir.0c00262] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lipid-based carriers such as liposomes represent one of the most advanced classes of drug delivery systems. Their clinical success relies on their composition, similar to that of the cell membrane. Their cellular specificity often relies on a ligand-receptor interaction. Although differences in the physicochemical properties of the cell membrane between tumor and nontumor cells have been reported, they are not systematically used for drug delivery purposes. In this report, a new approach was developed to ensure selective targeting based on physical compatibility between the target and the carrier membranes. By modulating the liposome composition and thus its membrane fluidity, we achieved selective targeting on four cancer cell lines of varying aggressiveness. Furthermore, using membrane-embedded and inner core-encapsulated fluorophores, we assessed the mechanism of this interaction to be based on the fusion of the liposome with the cell membranes. Membrane fluidity is therefore a major parameter to be considered when designing lipid drug carriers as a promising, lower cost alternative to current targeting strategies based on covalent grafting.
Collapse
Affiliation(s)
- Julien Bompard
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246, CNRS, Univ Lyon, Université Lyon 1, Lyon, France
| | - Annalisa Rosso
- Laboratoire d'Automatique, de Génie des Procédés et de Génie PharmaceutiqueLAGEPP UMR 5007, CNRS, Univ Lyon, Université Lyon 1, Lyon, France
| | - Leyre Brizuela
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246, CNRS, Univ Lyon, Université Lyon 1, Lyon, France
| | - Saïda Mebarek
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246, CNRS, Univ Lyon, Université Lyon 1, Lyon, France
| | - Loïc J Blum
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246, CNRS, Univ Lyon, Université Lyon 1, Lyon, France
| | - Ana-Maria Trunfio-Sfarghiu
- Laboratoire de Mécanique des Contacts et Structures, LaMCoS UMR 5259, CNRS, Univ Lyon, Université Lyon 1, Lyon, France
| | - Giovanna Lollo
- Laboratoire d'Automatique, de Génie des Procédés et de Génie PharmaceutiqueLAGEPP UMR 5007, CNRS, Univ Lyon, Université Lyon 1, Lyon, France
| | - Thierry Granjon
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246, CNRS, Univ Lyon, Université Lyon 1, Lyon, France
| | - Agnès Girard-Egrot
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246, CNRS, Univ Lyon, Université Lyon 1, Lyon, France
| | - Ofelia Maniti
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246, CNRS, Univ Lyon, Université Lyon 1, Lyon, France
| |
Collapse
|
50
|
Winter G, Koch ABF, Löffler J, Lindén M, Solbach C, Abaei A, Li H, Glatting G, Beer AJ, Rasche V. Multi-Modal PET and MR Imaging in the Hen's Egg Test-Chorioallantoic Membrane (HET-CAM) Model for Initial in Vivo Testing of Target-Specific Radioligands. Cancers (Basel) 2020; 12:cancers12051248. [PMID: 32429233 PMCID: PMC7281765 DOI: 10.3390/cancers12051248] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/17/2022] Open
Abstract
The validation of novel target-specific radioligands requires animal experiments mostly using mice with xenografts. A pre-selection based on a simpler in vivo model would allow to reduce the number of animal experiments, in accordance with the 3Rs principles (reduction, replacement, refinement). In this respect, the chick embryo or hen’s egg test–chorioallantoic membrane (HET-CAM) model is of special interest, as it is not considered an animal until day 17. Thus, we evaluated the feasibility of quantitative analysis of target-specific radiotracer accumulation in xenografts using the HET-CAM model and combined positron emission tomography (PET) and magnetic resonance imaging (MRI). For proof-of-principle we used established prostate-specific membrane antigen (PSMA)-positive and PSMA-negative prostate cancer xenografts and the clinically widely used PSMA-specific PET-tracer [68Ga]Ga-PSMA-11. Tracer accumulation was quantified by PET and tumor volumes measured with MRI (n = 42). Moreover, gamma-counter analysis of radiotracer accumulation was done ex-vivo. A three- to five-fold higher ligand accumulation in the PSMA-positive tumors compared to the PSMA-negative tumors was demonstrated. This proof-of-principle study shows the general feasibility of the HET-CAM xenograft model for target-specific imaging with PET and MRI. The ultimate value for characterization of novel target-specific radioligands now has to be validated in comparison to mouse xenograft experiments.
Collapse
Affiliation(s)
- Gordon Winter
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany; (A.B.F.K.); (J.L.); (C.S.); (A.J.B.)
- Correspondence: (G.W.); (V.R.); Tel.: +49-731-500-61364 (G.W.); +49-731-500-45014 (V.R.)
| | - Andrea B. F. Koch
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany; (A.B.F.K.); (J.L.); (C.S.); (A.J.B.)
| | - Jessica Löffler
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany; (A.B.F.K.); (J.L.); (C.S.); (A.J.B.)
- Core Facility Small Animal Imaging, Ulm University Medical Center, 89081 Ulm, Germany; (A.A.); (H.L.)
| | - Mika Lindén
- Department of Inorganic Chemistry II, Ulm University, 89081 Ulm, Germany;
| | - Christoph Solbach
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany; (A.B.F.K.); (J.L.); (C.S.); (A.J.B.)
| | - Alireza Abaei
- Core Facility Small Animal Imaging, Ulm University Medical Center, 89081 Ulm, Germany; (A.A.); (H.L.)
| | - Hao Li
- Core Facility Small Animal Imaging, Ulm University Medical Center, 89081 Ulm, Germany; (A.A.); (H.L.)
| | - Gerhard Glatting
- Department of Nuclear Medicine, Medical Radiation Physics, Ulm University Medical Center, 89081 Ulm, Germany;
| | - Ambros J. Beer
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany; (A.B.F.K.); (J.L.); (C.S.); (A.J.B.)
| | - Volker Rasche
- Core Facility Small Animal Imaging, Ulm University Medical Center, 89081 Ulm, Germany; (A.A.); (H.L.)
- Internal Medicine II, Ulm University Medical Center, 89081 Ulm, Germany
- Correspondence: (G.W.); (V.R.); Tel.: +49-731-500-61364 (G.W.); +49-731-500-45014 (V.R.)
| |
Collapse
|