1
|
Huang Y, Gao Y, Lin Z, Miao H. Involvement of the ubiquitin-proteasome system in the regulation of the tumor microenvironment and progression. Genes Dis 2025; 12:101240. [PMID: 39759114 PMCID: PMC11697063 DOI: 10.1016/j.gendis.2024.101240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/11/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2025] Open
Abstract
The tumor microenvironment is a complex environment comprising tumor cells, non-tumor cells, and other critical non-cellular components. Some studies about tumor microenvironment have recently achieved remarkable progress in tumor treatment. As a substantial part of post-translational protein modification, ubiquitination is a crucial player in maintaining protein stability in cell signaling, cell growth, and a series of cellular life activities, which are also essential for regulating tumor cells or other non-tumor cells in the tumor microenvironment. This review focuses on the role and function of ubiquitination and deubiquitination modification in the tumor microenvironment while discussing the prospect of developing inhibitors targeting ubiquity-related enzymes, thereby providing ideas for future research in cancer therapy.
Collapse
Affiliation(s)
- Yulan Huang
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Yuan Gao
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China
| | - Zhenghong Lin
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Hongming Miao
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Jinfeng Laboratory, Chongqing 401329, China
| |
Collapse
|
2
|
Muhammad FA, Altalbawy FMA, Mandaliya V, Saraswat SK, Rekha MM, Aulakh D, Chahar M, Mahdi MS, Jaber MA, Alhadrawi M. Targeting breast tumor extracellular matrix and stroma utilizing nanoparticles. Clin Transl Oncol 2024:10.1007/s12094-024-03793-x. [PMID: 39692807 DOI: 10.1007/s12094-024-03793-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/08/2024] [Indexed: 12/19/2024]
Abstract
Breast cancer is a complicated malignancy and is known as the most common cancer in women. Considerable experiments have been devoted to explore the basic impacts of the tumor stroma, particularly the extracellular matrix (ECM) and stromal components, on tumor growth and resistance to treatment. ECM is made up of an intricate system of proteins, glycosaminoglycans, and proteoglycans, and maintains structural support and controls key signaling pathways involved in breast tumors. ECM can block different drugs such as chemotherapy and immunotherapy drugs from entering the tumor stroma. Furthermore, the stromal elements, such as cancer-associated fibroblasts (CAFs), immune cells, and blood vessels, have crucial impacts on tumor development and therapeutic resistance. Recently, promising outcomes have been achieved in using nanotechnology for delivering drugs to tumor stroma and crossing ECM in breast malignancies. Nanoparticles have various benefits for targeting the breast tumor stroma, such as improved permeability and retention, extended circulation time, and the ability to actively target the area. This review covers the latest developments in nanoparticle therapies that focus on breast tumor ECM and stroma. We will explore different approaches using nanoparticles to target the delivery of anticancer drugs like chemotherapy, small molecule drugs, various antitumor products, and other specific synthetic therapeutic agents to the breast tumor stroma. Furthermore, we will investigate the utilization of nanoparticles in altering the stromal elements, such as reprogramming CAFs and immune cells, and also remodeling ECM.
Collapse
Affiliation(s)
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia.
- National Institute of Laser Enhanced Sciences (NILES), University of Cairo, Giza, 12613, Egypt.
| | - Viralkumar Mandaliya
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, 360003, India
| | | | - M M Rekha
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Damanjeet Aulakh
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology Chitkara University, Rajpura, Punjab, 140401, India
| | - Mamata Chahar
- Department of Chemistry, NIMS Institute of Engineering and Technology, NIMS University Rajasthan, Jaipur, India
| | | | | | - Merwa Alhadrawi
- Department of Refrigeration and air Conditioning Techniques, College of Technical Engineering, The Islamic University, Najaf, Iraq
- Department of Refrigeration and air Conditioning Techniques, College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Department of Refrigeration and air Conditioning Techniques, College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
3
|
Xiao S, Cui J, Cao Y, Zhang Y, Yang J, Zheng L, Zhao F, Liu X, Zhou Z, Liu D, Wang P. Adolescent exposure to organophosphate insecticide malathion induces spermatogenesis dysfunction in mice by activating the HIF-1/MAPK/PI3K pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125209. [PMID: 39476999 DOI: 10.1016/j.envpol.2024.125209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/19/2024] [Accepted: 10/26/2024] [Indexed: 11/28/2024]
Abstract
Chemical-caused reproductive dysfunction has emerged as a global public health concern. This study investigated the adverse effects of the organophosphorus pesticide malathion on reproductive function in adolescent male mice at environmentally relevant concentrations. The results indicated that eight-week malathion exposure reduced testis weight, caused sex and thyroid hormone disorders, and induced testicular spermatogenic epithelium damage and oxidative stress. Testicular RNA sequencing indicated that malathion significantly affected testicular energy metabolism, hypoxia-inducible factor 1 (HIF-1) signaling, and steroid hormone biosynthesis pathways. Malathion significantly increased the gene and protein expression of HIF-1α by upregulating key genes in the mitogen-activated protein kinase (MAPK) pathway (Map2k2, Mapk3, and Eif4e2) and the phosphatidylinositol 3-kinase (PI3K) pathway (Pik3r2 and Akt1). Furthermore, malathion downregulated HIF-1α degradation-regulating genes while upregulating anaerobic metabolism and inflammation-related genes, thereby inhibiting normoxia and promoting hypoxia processes. Testicular hypoxia subsequently induced steroid hormone biosynthesis disorders and spermatogenesis dysfunction. Molecular docking verified that malathion interfered with HIF-1α and steroid hormone synthases (CYP11A1, CYP17A1 and CYP19A1) by forming hydrogen bonds and hydrophobic interactions with these proteins. This study presents the first evidence that malathion triggers spermatogenesis dysfunction in mice through activating the HIF-1/MAPK/PI3K pathway, providing a comprehensive understanding of the reproductive toxicity risks associated with organophosphorus pesticides.
Collapse
Affiliation(s)
- Shouchun Xiao
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Jingna Cui
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Yue Cao
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Yaru Zhang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Jiaxing Yang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Li Zheng
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Fanrong Zhao
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Xueke Liu
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Donghui Liu
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Peng Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing, 100193, PR China.
| |
Collapse
|
4
|
Jiang GH, Li S, Li HY, Xie LJ, Li SY, Yan ZT, Yu WQ, Luo J, Bai X, Kong LX, Lou YM, Zhang C, Li GC, Shan XF, Mao M, Wang X. Bidirectional associations among gallstone disease, non-alcoholic fatty liver disease, kidney stone disease. World J Gastroenterol 2024; 30:4914-4928. [PMID: 39679314 PMCID: PMC11612713 DOI: 10.3748/wjg.v30.i46.4914] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/02/2024] [Accepted: 09/27/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND A body of evidence has suggested bidirectional relationships among gallstone disease (GSD), non-alcoholic fatty liver disease (NAFLD), and kidney stone disease (KSD). However, the results are inconsistent, and studies on this topic in China are relatively few. Our goal is to explore the bidirectional associations among these three diseases through a multicenter study, systematic review, and meta-analysis. AIM To explore the bidirectional associations among these three diseases through a multicenter study, systematic review, and meta-analysis. The results may help to investigate the etiology of these diseases and shed light on the individualized prevention of these three diseases. METHODS Subjects who participated in physical examinations in Beijing, Tianjin, Chongqing in China were recruited. Multivariable logistic regression was employed to explore the bidirectional relationships among GSD, KSD, and NAFLD. Systematic review and meta-analysis were initiated to confirm the epidemiologic evidence from previous observational studies. Furthermore, trial sequential analysis (TSA) was conducted to evaluate whether the evidence was sufficient and conclusive. RESULTS Significant bidirectional associations were detected among the three diseases, independent of potential confounding factors. The pooled results of the systematic review and meta-analysis also corroborated the aforementioned results. The combined evidence from the multicenter study and meta-analysis was significant [pooled odds ratio (OR) = 1.42, 95%CI: 1.16-1.75, KSD → GSD; pooled OR = 1.48, 95%CI: 1.31-1.67, GSD → KSD; pooled OR = 1.31, 95%CI: 1.17-1.47, GSD → NAFLD; pooled OR = 1.37, 95%CI: 1.26-1.50, NAFLD → GSD; pooled OR = 1.28, 95%CI: 1.08-1.51, NAFLD → KSD; pooled OR = 1.21, 95%CI: 1.16-1.25, KSD → NAFLD]. TSA indicated that the evidence was sufficient and conclusive. CONCLUSION The present study presents relatively sufficient evidence for the positive bidirectional associations among GSD, KSD, and NAFLD. The results may provide clues for investigating the etiology of these three diseases and offer a guideline for identifying high-risk patients.
Collapse
Affiliation(s)
- Guo-Heng Jiang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Sheng Li
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Hong-Yu Li
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Lin-Jun Xie
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Shi-Yi Li
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Zi-Tong Yan
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Wen-Qian Yu
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jing Luo
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xuan Bai
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ling-Xi Kong
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yan-Mei Lou
- Department of Health Management, Beijing Xiaotangshan Hospital, Beijing 102211, China
| | - Chi Zhang
- Department of Prevention, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Guang-Can Li
- Department of Pharmacy, The People’s Hospital of Kaizhou District, Chongqing 405400, China
| | - Xue-Feng Shan
- Department of Pharmacy, Bishan Hospital of Chongqing Medical University, Chongqing 402760, China
| | - Min Mao
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xin Wang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
5
|
Altrawy A, Khalifa MM, Abdelmaksoud A, Khaled Y, Saleh ZM, Sobhy H, Abdel-Ghany S, Alqosaibi A, Al-Muhanna A, Almulhim J, El-Hashash A, Sabit H, Arneth B. Metabolites in the Dance: Deciphering Gut-Microbiota-Mediated Metabolic Reprogramming of the Breast Tumor Microenvironment. Cancers (Basel) 2024; 16:4132. [PMCID: PMC11674667 DOI: 10.3390/cancers16244132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/29/2024] [Accepted: 12/08/2024] [Indexed: 01/05/2025] Open
Abstract
Breast Cancer (BC) is an important disease causing death of many women worldwide. Here the relationship between gastroenteral microbionta and metabolism in the context of BC is investigated and described in detail. The interrelation between BC, metabolite abnormalities and reprogramming, and micronenvironment is described. All information about the various mechanisms by which these bacterial residents may influence disease initiation, progression, and treatment response is collected and summarized. We will see that gut-based biomarkers, and synergy between conventional therapies and microbiome interventions, together will soon be able to open-up new gates for breast cancer therapy. Breast cancer (BC), a major cause of death among women worldwide, has traditionally been linked to genetic and environmental factors. However, emerging research highlights the gut microbiome’s significant role in shaping BC development, progression, and treatment outcomes. This review explores the intricate relationship between the gut microbiota and the breast tumor microenvironment, emphasizing how these microbes influence immune responses, inflammation, and metabolic pathways. Certain bacterial species in the gut either contribute to or hinder BC progression by producing metabolites that affect hormone metabolism, immune system pathways, and cellular signaling. An imbalance in gut bacteria, known as dysbiosis, has been associated with a heightened risk of BC, with metabolites like short-chain fatty acids (SCFAs) and enzymes such as β-glucuronidase playing key roles in this process. Additionally, the gut microbiota can impact the effectiveness of chemotherapy, as certain bacteria can degrade drugs like gemcitabine and irinotecan, leading to reduced treatment efficacy. Understanding the complex interactions between gut bacteria and BC may pave the way for innovative treatment approaches, including personalized microbiome-targeted therapies, such as probiotics and fecal microbiota transplants, offering new hope for more effective prevention, diagnosis, and treatment of BC.
Collapse
Affiliation(s)
- Afaf Altrawy
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P. O. Box 77, Egypt; (A.A.); (M.M.K.); (H.S.); (H.S.)
| | - Maye M. Khalifa
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P. O. Box 77, Egypt; (A.A.); (M.M.K.); (H.S.); (H.S.)
| | - Asmaa Abdelmaksoud
- Department of Pharmaceutical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P. O. Box 77, Egypt;
| | - Yomna Khaled
- Department of Bioinformatics and Functional Genomics, College of Biotechnology, Misr University for Science and Technology, Giza P. O. Box 77, Egypt;
| | - Zeinab M. Saleh
- Department of Agriculture Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P. O. Box 77, Egypt;
| | - Hager Sobhy
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P. O. Box 77, Egypt; (A.A.); (M.M.K.); (H.S.); (H.S.)
| | - Shaimaa Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P. O. Box 77, Egypt;
| | - Amany Alqosaibi
- Department of Biology, College of Science, Imam Abdulrahman bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Afnan Al-Muhanna
- King Fahad Hospital of the University, Alkhobar, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Jawaher Almulhim
- Department of Biological Sciences, King Faisal University, Alahsa 31982, Saudi Arabia;
| | - Ahmed El-Hashash
- Department of Biomedicine, Texas A&M University, College Station, TX 77840, USA;
| | - Hussein Sabit
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P. O. Box 77, Egypt; (A.A.); (M.M.K.); (H.S.); (H.S.)
| | - Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Philipps University Marburg, Baldinger Str., 35043 Marburg, Germany
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Justus Liebig University, Feulgen Str., 35392 Giessen, Germany
| |
Collapse
|
6
|
Zhang Y, Luan M. Unraveling the role of PBK in glioblastoma: from molecular mechanisms to therapeutic targets. Ann Med Surg (Lond) 2024; 86:7147-7154. [PMID: 39649886 PMCID: PMC11623866 DOI: 10.1097/ms9.0000000000002708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 10/24/2024] [Indexed: 12/11/2024] Open
Abstract
Background This study investigates the gene expression characteristics of glioma-initiating cells (GIC), an important subgroup of glioblastoma (GBM), after knockdown of PBK (PDZ-binding kinase). Differentially expressed genes (DEGs) between PBK knockdown GIC and control groups were screened through bioinformatics methods. The authors analyzed the mechanisms and roles of these DEGs in GBM tumorigenesis and patient prognosis. Methods Microarray data (GSE53800) were obtained from the Gene Expression Omnibus (GEO) database, selecting 18 GIC cell line samples with or without PBK knockdown. Each control and knockdown group contained three samples. DEGs were screened using R software. GO enrichment analysis, KEGG pathway analysis, PPI network analysis, and hub gene identification were conducted to explore DEG mechanisms. Western blot analysis was also performed to detect EIF4E protein expression, one of the key hub genes, after PBK knockdown in the HS683 glioma cell line. Results A total of 175 upregulated and 145 downregulated genes were identified. GO analysis showed that DEGs were mainly enriched in the positive regulation of cell proliferation, cell adhesion, and angiogenesis. KEGG pathway analysis revealed that DEGs were mainly involved in neuroactive ligand-receptor interactions, calcium signaling, and HIF-1 signaling pathways. Western blot results indicated that EIF4E was downregulated after PBK knockdown. Conclusion A group of genes, such as EIF4E, were closely associated with PBK expression and functions. These findings may provide insight into the molecular mechanism of PBK in GBM.
Collapse
Affiliation(s)
| | - Mingyuan Luan
- Medicine Faculty, University of Tübingen, Tübingen, Germany
| |
Collapse
|
7
|
Zhang J, Yang J, Li G. Network pharmacology and molecular docking analysis on the mechanism of Wensan tincture in the treatment of pulmonary nodules: A review. Medicine (Baltimore) 2024; 103:e40648. [PMID: 39612458 PMCID: PMC11608671 DOI: 10.1097/md.0000000000040648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/05/2024] [Indexed: 12/01/2024] Open
Abstract
Network pharmacology and molecular docking methods were applied to elucidate the molecular mechanism of action of Wensan tincture (WST) in the treatment of pulmonary nodules. The Traditional Chinese Medicine Systems Pharmacology and the Traditional Chinese Medicine and Chemical Composition database were used to screen the active ingredients. Potential targets of WST were retrieved using Traditional Chinese Medicine Systems Pharmacology, SwissADME, and SwissTargetPrediction, while pulmonary nodule-associated targets were obtained from GeneCards and Online Mendelian Inheritance in Man databases. An active ingredient-target network was constructed using Cytoscape 3.9.1, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were conducted via the Database for Annotation, Visualization, and Integrated Discovery platform to identify core targets and signaling pathways. Molecular docking studies were performed using AutoDockTools. The results revealed 62 active ingredients and 344 corresponding targets within the tincture, alongside 1005 targets associated with pulmonary nodules. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses indicated that the potential therapeutic targets of WST include signal transducer and activator of transcription 3, mitogen-activated protein kinase-3, mitogen-activated protein kinase-1, Jun proto-oncogene, tumor protein 53, phosphoinositide-3-kinase regulatory subunit 1, heat shock protein 90 alpha family class A member 1, and AKT serine/threonine kinase 1. The primary pathways were the cancer pathway, mitogen-activated protein kinase signaling, advanced glycation end-products and their receptor signaling, epidermal growth factor receptor signaling, hypoxia-inducible factor-1 signaling, and the programmed cell death-ligand 1/programmed cell death protein 1 checkpoint pathways. Molecular docking demonstrated that quercetin exhibited the strongest binding affinity with mitogen-activated protein kinase-3, with a binding energy of -9.1 kcal/mol. Notably, key components of WST, such as quercetin, demonstrate considerable potential as drug candidates for the treatment of pulmonary nodules.
Collapse
Affiliation(s)
- Jinzhi Zhang
- Respiratory Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingqi Yang
- Respiratory Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Respiratory Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guangxi Li
- Respiratory Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Mussa A, Ismail NH, Hamid M, Al-Hatamleh MAI, Bragoli A, Hajissa K, Mokhtar NF, Mohamud R, Uskoković V, Hassan R. Understanding the role of TNFR2 signaling in the tumor microenvironment of breast cancer. J Exp Clin Cancer Res 2024; 43:312. [PMID: 39609700 PMCID: PMC11603874 DOI: 10.1186/s13046-024-03218-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed malignancy among women. It is characterized by a high level of heterogeneity that emerges from the interaction of several cellular and soluble components in the tumor microenvironment (TME), such as cytokines, tumor cells and tumor-associated immune cells. Tumor necrosis factor (TNF) receptor 2 (TNFR2) appears to play a significant role in microenvironmental regulation, tumor progression, immune evasion, drug resistance, and metastasis of many types of cancer, including BC. However, the significance of TNFR2 in BC biology is not fully understood. This review provides an overview of TNFR2 biology, detailing its activation and its interactions with important signaling pathways in the TME (e.g., NF-κB, MAPK, and PI3K/Akt pathways). We discuss potential therapeutic strategies targeting TNFR2, with the aim of enhancing the antitumor immune response to BC. This review provides insights into role of TNFR2 as a major immune checkpoint for the future treatment of patients with BC.
Collapse
Affiliation(s)
- Ali Mussa
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia
- Department of Biology, Faculty of Education, Omdurman Islamic University, P.O. Box 382, Omdurman, Sudan
| | - Nor Hayati Ismail
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia
| | - Mahasin Hamid
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Hunan Province, Changsha, 410013, China
- Department of Zoology, Faculty of Sciences and Information Technology, University of Nyala, Nyala, 63311, Sudan
| | - Mohammad A I Al-Hatamleh
- Division of Hematology and Oncology, Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Anthony Bragoli
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Khalid Hajissa
- Department of Zoology, Faculty of Science and Technology, Omdurman Islamic University, P.O. Box 382, Omdurman, Sudan
| | - Noor Fatmawati Mokhtar
- Institute for Research in Molecular Medicine (iNFORMM), Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia.
| | - Vuk Uskoković
- TardigradeNano LLC, Irvine, CA, 92604, USA
- Division of Natural Sciences, Fullerton College, Fullerton, CA, 92832, USA
| | - Rosline Hassan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia.
| |
Collapse
|
9
|
Liu S, Ji H, Zhang T, Huang J, Yin X, Zhang J, Wang P, Wang F, Tang X. Modified Zuojin pill alleviates gastric precancerous lesions by inhibiting glycolysis through the HIF-1α pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 136:156255. [PMID: 39603037 DOI: 10.1016/j.phymed.2024.156255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Gastric precancerous lesions (GPL) typically originates from chronic gastritis (CG), and the changes in glycolysis mediated by the HIF-1α pathway during the progression from CG to GPL are unclear. Modified Zuojin pill (SQQT) is a traditional Chinese herbal formula used for treating GPL. However, the underlying mechanism has not been fully elucidated. PURPOSE To investigate the changes in glycolysis mediated by the HIF-1α pathway during the progression from CG to GPL and whether SQQT can alleviate GPL by attenuating glycolysis through the HIF-1α pathway. METHODS A rat model of GPL was established, and the changes of glycolysis mediated by the HIF-1α pathway during the progression from CG to GPL were detected in 12th, 18th, 24th, and 30th weeks. The therapeutic efficacy of SQQT was evaluated through pathological changes. In vitro, the GPL cell model (MC cell) originated from GES-1 cells intervened by MNNG. The effects of SQQT on glycolysis and the HIF-1α pathway were detected in vivo and in vitro. In vitro, HIF-1α overexpression was used to confirmed that SQQT attenuated glycolysis by targeting the HIF-1α pathway. RESULTS Our study revealed that glycolysis mediated by the HIF-1α pathway exhibited dynamic changes in the progression from CG to GPL, characterized by sequential activation, deactivation, and reactivation. SQQT ameliorated gastric mucosal pathology and inflammation in GPL rats. Mechanistic studies revealed that SQQT alleviated glycolysis by targeting the HIF-1α pathway, and improved abnormal cellular proliferation and apoptosis. Importantly, HIF-1α overexpression blocked the effect of SQQT on glycolysis. CONCLUSION In the progression from CG to GPL, the HIF-1α pathway-mediated glycolysis was characterized by sequential activation, deactivation, and reactivation. SQQT attenuated glycolysis by targeting the HIF-1α pathway and improved abnormal cellular proliferation and apoptosis in the gastric mucosa, thereby exerting therapeutic effects on GPL.
Collapse
Affiliation(s)
- Shan Liu
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China.
| | - Haijie Ji
- Shanxi Province Academy of Traditional Chinese Medicine, Taiyuan 030012, China
| | - Tai Zhang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China; Peking University Traditional Chinese Medicine Clinical Medical School (Xiyuan), Peking University Health Science Center, Beijing 100091, China
| | - Jinke Huang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Xiaolan Yin
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Jiaqi Zhang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Ping Wang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Fengyun Wang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Xudong Tang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China.
| |
Collapse
|
10
|
Lin TK, Huang CR, Lin KJ, Hsieh YH, Chen SD, Lin YC, Chao AC, Yang DI. Potential Roles of Hypoxia-Inducible Factor-1 in Alzheimer's Disease: Beneficial or Detrimental? Antioxidants (Basel) 2024; 13:1378. [PMID: 39594520 PMCID: PMC11591038 DOI: 10.3390/antiox13111378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
The major pathological characteristics of Alzheimer's disease (AD) include senile plaques and neurofibrillary tangles (NFTs), which are mainly composed of aggregated amyloid-beta (Aβ) peptide and hyperphosphorylated tau protein, respectively. The excessive production of reactive oxygen species (ROS) and neuroinflammation are crucial contributing factors to the pathological mechanisms of AD. Hypoxia-inducible factor-1 (HIF-1) is a transcription factor critical for tissue adaption to low-oxygen tension. Growing evidence has suggested HIF-1 as a potential therapeutic target for AD; conversely, other experimental findings indicate that HIF-1 induction contributes to AD pathogenesis. These previous findings thus point to the complex, even contradictory, roles of HIF-1 in AD. In this review, we first introduce the general pathogenic mechanisms of AD as well as the potential pathophysiological roles of HIF-1 in cancer, immunity, and oxidative stress. Based on current experimental evidence in the literature, we then discuss the possible beneficial as well as detrimental mechanisms of HIF-1 in AD; these sections also include the summaries of multiple chemical reagents and proteins that have been shown to exert beneficial effects in AD via either the induction or inhibition of HIF-1.
Collapse
Affiliation(s)
- Tsu-Kung Lin
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (T.-K.L.); (C.-R.H.); (S.-D.C.)
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
| | - Chi-Ren Huang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (T.-K.L.); (C.-R.H.); (S.-D.C.)
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
| | - Kai-Jung Lin
- Department of Family Medicine, National Taiwan University Hospital, Taipei 100225, Taiwan;
| | - Yi-Heng Hsieh
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
| | - Shang-Der Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (T.-K.L.); (C.-R.H.); (S.-D.C.)
| | - Yi-Chun Lin
- Department of Neurology, Taipei City Hospital Renai Branch, Taipei 106243, Taiwan;
| | - A-Ching Chao
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
- Department of Neurology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Department of Sports Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Ding-I Yang
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| |
Collapse
|
11
|
Saadh MJ, Khalifehsoltani A, Hussein AHA, Allela OQB, Sameer HN, Rizaev J, Hameed HG, Idan AH, Alsaikhan F. Exosomal microRNAs in cancer metastasis: A bridge between tumor micro and macroenvironment. Pathol Res Pract 2024; 263:155666. [PMID: 39476605 DOI: 10.1016/j.prp.2024.155666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 11/10/2024]
Abstract
Malignant tumors are complicated structures of cancer cells that are constantly in communication with their local and distant environment. Exosomes are released by tumor cells and can facilitate the cell-cell interaction within the local microenvironment and the primary tumor. In fact, exosomes are secreted by both tumor and non-tumor cells, to provide a mutual communication network between cells and their micro- and/or macro-environments. Exososmes can contain a variety of biological cargos mostly based on their originated cells. Uptake of these exosomes by their recipient cells results in the alterations that their cargo can exert. MicroRNAs are identified as one of the most critical exosomal components, considering their pivotal regulatory roles in distinct biological process, including metastasis. Release and absorbance of exosomal microRNAs is possible by various cells within the host, and can have distinct biological consequences. Therefore, in this review we will discuss the role of exosomal microRNAs derived from tumor cells and untransformed cells within their micro- and macroenvironment in cancer progression and metastasis.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | | | | | | | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar 64001, Iraq
| | - Jasur Rizaev
- Department of Public health and Healthcare management, Rector, Samarkand State Medical University, 18, Amir Temur Street, Samarkand, Uzbekistan
| | | | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia; School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| |
Collapse
|
12
|
Zhang H, Lei S, Zhuo H, Xu Y, Ye Y, Luo Y. TRIM24 Up-Regulates ORM2 to Alleviate Abnormal Lipid Metabolism, Inflammation, and Oxidative Stress in Mice with Obstructive Sleep Apnea Syndrome and Metabolic Dysfunction-Associated Steatotic Liver Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:2091-2105. [PMID: 39168366 DOI: 10.1016/j.ajpath.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/29/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024]
Abstract
Obstructive sleep apnea syndrome (OSAS) is associated with the development and progression of metabolic dysfunction-associated steatotic liver disease (MASLD). Tripartite motif containing 24 (TRIM24) deficiency causes hepatic lipid accumulation and hepatitis. However, the expression, function, and mechanism of TRIM24 in OSAS and MASLD remain unclear. Herein, an OSAS and MASLD mouse model was established by intermittent hypoxia (IH) and high-fat diet. IH- and 1% free fatty acid-induced mouse liver cells served as an in vitro model. TRIM24 and HIF1A were up-regulated under the IH condition. HIF1A enhanced the transcriptional activity of TRIM24. Overexpression of TRIM24 reduced hepatic lipid accumulation, decreased serum levels of total cholesterol, triglyceride, and low-density lipoprotein cholesterol, and increased serum levels of high-density lipoprotein cholesterol in OSAS and MASLD mice. Additionally, overexpression of TRIM24 alleviated inflammation and oxidative stress, and modulated aberrant lipid metabolism. Mechanically, TRIM24 up-regulated the expression of ORM2, a key regulator of hepatic lipogenesis, by binding to H3K27ac and recruiting retinoic acid receptor-α to ORM2 promoter. The cell rescue model was used to verify that ORM2 mediated the hepatoprotective effects of TRIM24. The current study reveals the important role of TRIM24 as an epigenetic coregulator of transcription in OSAS and MASLD, providing additional insights into understanding the pathogenesis and preventing the development of OSAS and MASLD.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Si Lei
- Department of General Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui Zhuo
- Department of General Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yan Xu
- Department of General Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yun Ye
- Department of General Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yingquan Luo
- Department of General Medicine, The Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
13
|
Zhao Y, Liu L, Hao J, Wang H, Cao Y, Lan Y, Ji L. Identification and validation of novel genes related to immune microenvironment in polycystic ovary syndrome. Medicine (Baltimore) 2024; 103:e40229. [PMID: 39470566 PMCID: PMC11521087 DOI: 10.1097/md.0000000000040229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/20/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most complicated chronic inflammatory diseases in women of reproductive age and is one of the primary factors responsible for infertility. There is substantial dispute relating to the pathophysiology of PCOS. Consequently, there is a critical need for further research to identify the factors underlying the pathophysiology of PCOS. Three transcriptome profiles of granulosa cells from patients with PCOS and normal controls were obtained from the gene expression integration database. We also obtained relevant microarrays of granulocytes prepared from PCOS patients and normal controls from the gene expression integration database. Then, we used the R package to perform correlations and identify differences between PCOS and normal controls with regard to immune infiltrating cells and functionality. Subsequently, intersecting genes were identified and risk models were constructed. Finally, the results were validated by enzyme linked immunosorbent assay and real-time PCR. We identified 8 genes related to cuproptosis (SLC31A1, PDHB, PDHA1, DLST, DLD, DLAT, DBT, and ATP7A) and 5 genes related to m7G (SNUPN, NUDT16, GEMIN5, DCPS, and EIF4E3) that were associated with immune infiltration. Furthermore, the expression levels of DLAT (P = .049) and NUDT16 (P = .024) differed significantly between the PCOS patients and normal controls, as revealed by multifactorial analysis. Both DLAT and NUDT16 were negatively correlated with immune cell expression and function and expression levels were significantly lower in the PCOS group. Finally, real-time PCR and enzyme linked immunosorbent assay demonstrated that the expression levels of DLAT and NUDT16 were significantly reduced in the granulosa cells of PCOS patients. In conclusion, our findings shed fresh light on the roles of immune infiltration, cuproptosis, and m7G alternations in PCOS. We also provide a reliable biomarker for the pathological classification of PCOS patients.
Collapse
Affiliation(s)
- Yuemeng Zhao
- Acupuncture and Moxibustion Department, Bao'an District Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong Province, People's Republic of China
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People's Republic of China
| | - Liying Liu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People's Republic of China
| | - Jianheng Hao
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People's Republic of China
| | - Haijun Wang
- Acupuncture and Tuina School, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi Province, People's Republic of China
| | - Yuxia Cao
- Acupuncture and Tuina School, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi Province, People's Republic of China
| | - Ying Lan
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People's Republic of China
| | - Laixi Ji
- Acupuncture and Moxibustion Department, Bao'an District Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong Province, People's Republic of China
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People's Republic of China
- Acupuncture and Tuina School, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi Province, People's Republic of China
| |
Collapse
|
14
|
Zhang S, Wang H. Targeting the lung tumour stroma: harnessing nanoparticles for effective therapeutic interventions. J Drug Target 2024:1-27. [PMID: 39356091 DOI: 10.1080/1061186x.2024.2410462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/27/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024]
Abstract
Lung cancer remains an influential global health concern, necessitating the development of innovative therapeutic strategies. The tumour stroma, which is known as tumour microenvironment (TME) has a central impact on tumour expansion and treatment resistance. The stroma of lung tumours consists of numerous cells and molecules that shape an environment for tumour expansion. This environment not only protects tumoral cells against immune system attacks but also enables tumour stroma to attenuate the action of antitumor drugs. This stroma consists of stromal cells like cancer-associated fibroblasts (CAFs), suppressive immune cells, and cytotoxic immune cells. Additionally, the presence of stem cells, endothelial cells and pericytes can facilitate tumour volume expansion. Nanoparticles are hopeful tools for targeted drug delivery because of their extraordinary properties and their capacity to devastate biological obstacles. This review article provides a comprehensive overview of contemporary advancements in targeting the lung tumour stroma using nanoparticles. Various nanoparticle-based approaches, including passive and active targeting, and stimuli-responsive systems, highlighting their potential to improve drug delivery efficiency. Additionally, the role of nanotechnology in modulating the tumour stroma by targeting key components such as immune cells, extracellular matrix (ECM), hypoxia, and suppressive elements in the lung tumour stroma.
Collapse
Affiliation(s)
- Shushu Zhang
- Cancer Center (Oncology) Department, the Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Hui Wang
- Cancer Center (Oncology) Department, the Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
15
|
Zhu L, Ao L, Guo Z, Yang Y, Wang Z, Gu Z, Xin Y, Zhou L, Zhang L. Recombinant canstatin inhibits the progression of hepatocellular carcinoma by repressing the HIF-1α/VEGF signaling pathway. Biomed Pharmacother 2024; 179:117423. [PMID: 39260328 DOI: 10.1016/j.biopha.2024.117423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024] Open
Abstract
Hepatocellular carcinoma (HCC), a hypervascular tumor, is the most frequent primary malignant tumor of the liver. Angiogenesis inhibitors, such as endogenous angiogenesis inhibitors, are essential for HCC therapy and have generated significant interest owing to their safety, efficacy, and multitargeting attributes. Canstatin is an angiogenesis inhibitor derived from the basement membrane and exerts anti-tumor effects. However, the inhibitory effects and underlying mechanisms of action of canstatin on HCC remain unclear. Therefore, in this study, HepG2 and Huh7 cells were used to investigate the inhibitory effects of recombinant canstatin on HCC cells. Subsequently, the biosafety and inhibitory effects of recombinant canstatin on tumor growth were investigated in a xenograft animal model of liver cancer. Canstatin inhibited the growth of liver cancer cells by regulating their proliferation, apoptosis, and migration. Additionally, it suppressed the occurrence and progression of HCC by modulating the HIF-1α/VEGF signaling pathway. In mice, canstatin exerted no discernible harmful side effects and suppressed the growth of HCC subcutaneous xenograft tumors. Overall, our findings shed light on the molecular pathways underlying canstatin-induced HCC cell death that may help develop novel HCC treatments.
Collapse
Affiliation(s)
- Lingyu Zhu
- Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; JITRI Future Food Technol Res Inst Co Ltd, Yixing 214200, China
| | - Long Ao
- Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; JITRI Future Food Technol Res Inst Co Ltd, Yixing 214200, China
| | - Zitao Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuliang Yang
- Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; JITRI Future Food Technol Res Inst Co Ltd, Yixing 214200, China
| | - Zilong Wang
- Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; JITRI Future Food Technol Res Inst Co Ltd, Yixing 214200, China
| | - Zhenghua Gu
- Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; JITRI Future Food Technol Res Inst Co Ltd, Yixing 214200, China
| | - Yu Xin
- Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; JITRI Future Food Technol Res Inst Co Ltd, Yixing 214200, China
| | - Leyuan Zhou
- Department of Radiation Oncology, the Fourth Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Liang Zhang
- Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; JITRI Future Food Technol Res Inst Co Ltd, Yixing 214200, China.
| |
Collapse
|
16
|
Liu XZ, Tai Y, Hou YB, Cao S, Han J, Li MY, Zuo HX, Xing Y, Jin X, Ma J. Parthenolide Inhibits Synthesis and Promotes Degradation of Programmed Cell Death Ligand 1 and Enhances T Cell Tumor-Killing Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21013-21029. [PMID: 39264009 DOI: 10.1021/acs.jafc.4c04916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Parthenolide is a germacrane sesquiterpene lactone separated from the traditional medicinal plant feverfew. Previous studies have shown that parthenolide possesses many pharmacological activities, involving anti-inflammatory and anticancer activities. However, the antitumor mechanism of parthenolide has not been fully elucidated. Thus, we investigate the potential antitumor mechanisms of parthenolactone. We predicted through network pharmacology that parthenolide may target HIF-1α to interfere with the occurrence and development of cancer. We found that parthenolide inhibited PD-L1 protein synthesis through mTOR/p70S6K/4EBP1/eIF4E and RAS/RAF/MEK/MAPK signaling pathways and promoted PD-L1 protein degradation through the lysosomal pathway, thereby inhibiting PD-L1 expression. Immunoprecipitation and Western blotting results demonstrated that parthenolide inhibited PD-L1 expression by suppressing HIF-1α and RAS cooperatively. We further proved that parthenolide inhibited cell proliferation, migration, invasion, and tube formation via down-regulating PD-L1. Moreover, parthenolide increased the effect of T cells to kill tumor cells. In vivo xenograft assays further demonstrated that parthenolide suppressed the growth of tumor xenografts. Collectively, we report for the first time that parthenolide enhanced T cell tumor-killing activity and suppressed cell proliferation, migration, invasion, and tube formation by PD-L1. The current study provides new insight for the development of parthenolide as a novel anticancer drug targeting PD-L1.
Collapse
Affiliation(s)
- Xin Zhe Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Yi Tai
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Yu Bao Hou
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Shen Cao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Jing Han
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Ming Yue Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Hong Xiang Zuo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Yue Xing
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Xuejun Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Juan Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| |
Collapse
|
17
|
Wei Z, Li J, Zhong L, Yang D, Li W, Chen W, Zhou H, He Y, Song W, Wang B, Zeng L. DDR1 Drives Malignant Progression of Gastric Cancer by Suppressing HIF-1α Ubiquitination and Degradation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308395. [PMID: 39024501 PMCID: PMC11425230 DOI: 10.1002/advs.202308395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 06/07/2024] [Indexed: 07/20/2024]
Abstract
The extracellular matrix (ECM) has been demonstrated to be dysregulated and crucial for malignant progression in gastric cancer (GC), but the mechanism is not well understood. Here, that discoidin domain receptor 1 (DDR1), a principal ECM receptor, is recognized as a key driver of GC progression is reported. Mechanistically, DDR1 directly interacts with the PAS domain of hypoxia-inducible factor-1α (HIF-1α), suppresses its ubiquitination and subsequently strengthens its transcriptional regulation of angiogenesis. Additionally, DDR1 upregulation in GC cells promotes actin cytoskeleton reorganization by activating HIF-1α/ Ras Homolog Family Member A (RhoA)/Rho-associated protein kinase 1 (ROCK1) signaling, which in turn enhances the metastatic capacity. Pharmacological inhibition of DDR1 suppresses GC progression and angiogenesis in patient-derived xenograft (PDX) and organoid models. Taken together, this work first indicates the effects of the DDR1-HIF-1α axis on GC progression and reveals the related mechanisms, providing experimental evidence for DDR1 as a therapeutic target for GC.
Collapse
Affiliation(s)
- Zhewei Wei
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Sun Yat‐sen University58 Zhongshan 2nd RoadGuangzhouGuangdong510080China
| | - Jin Li
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer ResearchScientific Research CenterThe BiobankThe Seventh Affiliated Hospital of Sun Yat‐Sen UniversityNo. 628 Zhenyuan RoadShenzhenGuangdong518107China
| | - Li Zhong
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer ResearchScientific Research CenterThe BiobankThe Seventh Affiliated Hospital of Sun Yat‐Sen UniversityNo. 628 Zhenyuan RoadShenzhenGuangdong518107China
| | - Dongjie Yang
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer ResearchScientific Research CenterThe BiobankThe Seventh Affiliated Hospital of Sun Yat‐Sen UniversityNo. 628 Zhenyuan RoadShenzhenGuangdong518107China
| | - Wuguo Li
- Laboratory Animal CenterThe First Affiliated HospitalSun Yat‐sen University58 Zhongshan 2nd RoadGuangzhou510080China
| | - Wei Chen
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer ResearchScientific Research CenterThe BiobankThe Seventh Affiliated Hospital of Sun Yat‐Sen UniversityNo. 628 Zhenyuan RoadShenzhenGuangdong518107China
| | - Hao Zhou
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer ResearchScientific Research CenterThe BiobankThe Seventh Affiliated Hospital of Sun Yat‐Sen UniversityNo. 628 Zhenyuan RoadShenzhenGuangdong518107China
| | - Yulong He
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer ResearchScientific Research CenterThe BiobankThe Seventh Affiliated Hospital of Sun Yat‐Sen UniversityNo. 628 Zhenyuan RoadShenzhenGuangdong518107China
| | - Wu Song
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Sun Yat‐sen University58 Zhongshan 2nd RoadGuangzhouGuangdong510080China
| | - Boyan Wang
- Reproductive Medicine CenterThe First Affiliated Hospital of Sun Yat‐sen University58 Zhongshan 2nd RoadGuangzhouGuangdong510080China
| | - Leli Zeng
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer ResearchScientific Research CenterThe BiobankThe Seventh Affiliated Hospital of Sun Yat‐Sen UniversityNo. 628 Zhenyuan RoadShenzhenGuangdong518107China
| |
Collapse
|
18
|
Shi D, Ren Y, Liu Y, Yan S, Zhang Q, Hong C, Yang X, Zhao H, Zheng C, Zhao Y, Yang X. Temperature-sensitive nanogels combined with polyphosphate and cisplatin for the enhancement of tumor artery embolization by coagulation activation. Acta Biomater 2024; 185:240-253. [PMID: 39025390 DOI: 10.1016/j.actbio.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/04/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Transcatheter arterial chemoembolization (TACE) is the first-line therapy for hepatocellular carcinoma (HCC). However, the exacerbated hypoxia microenvironment induces tumor relapse and metastasis post-TACE. Here, temperature-sensitive block polymer complexed with polyphosphate-cisplatin (Pt-P@PND) was prepared for the enhancement of tumor artery embolization by coagulation activation. After supra-selective infusion into the tumor vessels, Pt-P@PND nanogels performed efficient embolization of tumor arteries by sol-gel transition at body temperature. Meanwhile, coagulation cascade was evoked to form blood clots in the peripheral arteries inaccessible to the nanogels by released PolyP. The blood clots-filled hydrogel networks composed of gel and clots showed a denser structure and higher modulus, thereby achieving long-term embolization of all levels of tumor arteries. Pt-P@PND nanogels efficiently inhibited tumor growth and reduced the expression of HIF-1α, VEGF, CD31, and MMP-9 on VX2 tumor-bearing rabbit model. The released Nitro-Pt stimulated the immunogenic cell death of tumor cells, thus enhancing the antitumor immune response to suppress tumor relapse and metastasis post-TACE. It is hoped that Pt-P@PND nanogels can be developed as a promising embolic agent with procoagulant activity for enhancing the antitumor immune response through a combination of embolism, coagulation, and chemotherapy. STATEMENT OF SIGNIFICANCE: Clinical embolic agents, such as Lipiodol and polyvinyl alcohol (PVA) microspheres, are limited by their rapid elimination or larger size, thus lead to incomplete embolization of trans-catheter arterial chemoembolization (TACE). Herein, temperature-sensitive Pt-P@PND nanogels were developed to achieve long-term embolization of all levels of tumor arteries by gel/clot generation. The released Nitro-Pt induced immunogenic cell death in tumor cells, which improved the antitumor immune microenvironment by the maturation of DCs and lymphocytic infiltration. Pt-P@PND nanogels successfully inhibited tumor growth and activated an antitumor immune response to curb the recurrence and metastasis of residual tumor cells both in VX2 tumor-bearing rabbit model and 4T1 tumor-bearing mouse model. These findings suggested that Pt-P@PND could be developed as an ideal embolic agent for clinical TACE treatment.
Collapse
Affiliation(s)
- Dingwen Shi
- National Engineering Research Center for Nanomedicine, Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Yanqiao Ren
- Department of Radiology, Union Hospital, Tongji Medical College, Hubei Province Key Laboratory of Molecular Imaging, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yiming Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Hubei Province Key Laboratory of Molecular Imaging, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Siqi Yan
- National Engineering Research Center for Nanomedicine, Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Qingqing Zhang
- National Engineering Research Center for Nanomedicine, Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Can Hong
- National Engineering Research Center for Nanomedicine, Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Xin Yang
- National Engineering Research Center for Nanomedicine, Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Hao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, PR China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Hubei Province Key Laboratory of Molecular Imaging, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Yanbing Zhao
- National Engineering Research Center for Nanomedicine, Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| |
Collapse
|
19
|
Alherz FA, El-Masry TA, Oriquat GA, Elekhnawy E, Al-Shaalan NH, Gaballa MMS, El Zahaby EI, El-Nagar MMF. Hesperidin Nanoformulation: A Potential Strategy for Reducing Doxorubicin-Induced Renal Damage via the Sirt-1/HIF1-α/VEGF/NF-κB Signaling Cascade. Pharmaceuticals (Basel) 2024; 17:1144. [PMID: 39338308 PMCID: PMC11435365 DOI: 10.3390/ph17091144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Hesperidin (Hes) functions as a strong antioxidant and anti-inflammatory to guard against damage to the heart, liver, and kidneys. Nevertheless, due to its restricted solubility and bioavailability, a delivery method is required for it to reach a specific organ. In this study, ion gelation was used to synthesize a chitosan/hesperidin nanoformulation. Numerous characterization techniques, such as zeta potential, particle size, XRD, TEM, SEM, and FTIR analyses, were used to corroborate the synthesis of hesperidin nanoparticles (Hes-NPs). Male albino mice were given a pretreatment dose of 100 mg/kg, PO, of Hes or Hes-NPs, which was administered daily for 14 days before the induction of doxorubicin nephrotoxicity on the 12th day. Kidney function (urea and creatinine levels) was measured. Lipid peroxidation (MDA) and antioxidant enzyme (CAT and SOD) activities were estimated. TNF-α, IL-1β, and VEGF content; histopathological examination of kidney tissue; and immunohistochemical staining of NF-κB, Caspase-3, BAX, Bcl-2, and TGF-β1 were evaluated. The gene expressions of Sirt-1, Bcl-2, VEGF, HIF1-α, and Kim-1 were also considered. The results showed that pretreatment with Hes or Hes-NPs reduced doxorubicin's nephrotoxic effects, with Hes-NPs showing the greatest reduction. Kidney enzyme and MDA content were lowered in response to the Hes or Hes-NP pretreatment, whereas antioxidant enzyme activities were increased. Hes or Hes-NP pretreatment suppressed the levels of TNF-α, IL-1β, VEGF, NF-κB, Caspase-3, BAX, and TGF-β1; however, pretreatment increased Bcl-2 protein levels. Furthermore, the gene expressions of Sirt-1, Bcl-2, VEGF, HIF1-α, and Kim-1 were considerably higher with Hes-NP than with Hes treatment. These results suggest that Hes-NP treatment might reduce DOX-induced nephrotoxicity in mice via modulating Sirt-1/HIF1-α/VEGF/NF-κB signaling to provide antioxidant, anti-inflammatory, and anti-apoptotic effects.
Collapse
Affiliation(s)
- Fatemah A. Alherz
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Thanaa A. El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| | - Ghaleb A. Oriquat
- Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan;
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| | - Nora Hamad Al-Shaalan
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Mohamed M. S. Gaballa
- Department of Pathology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt;
| | - Enas I. El Zahaby
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 35712, Egypt;
| | - Maysa M. F. El-Nagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| |
Collapse
|
20
|
Álvarez-González E, Sierra LM. Tricarboxylic Acid Cycle Relationships with Non-Metabolic Processes: A Short Story with DNA Repair and Its Consequences on Cancer Therapy Resistance. Int J Mol Sci 2024; 25:9054. [PMID: 39201738 PMCID: PMC11355010 DOI: 10.3390/ijms25169054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Metabolic changes involving the tricarboxylic acid (TCA) cycle have been linked to different non-metabolic cell processes. Among them, apart from cancer and immunity, emerges the DNA damage response (DDR) and specifically DNA damage repair. The oncometabolites succinate, fumarate and 2-hydroxyglutarate (2HG) increase reactive oxygen species levels and create pseudohypoxia conditions that induce DNA damage and/or inhibit DNA repair. Additionally, by influencing DDR modulation, they establish direct relationships with DNA repair on at least four different pathways. The AlkB pathway deals with the removal of N-alkylation DNA and RNA damage that is inhibited by fumarate and 2HG. The MGMT pathway acts in the removal of O-alkylation DNA damage, and it is inhibited by the silencing of the MGMT gene promoter by 2HG and succinate. The other two pathways deal with the repair of double-strand breaks (DSBs) but with opposite effects: the FH pathway, which uses fumarate to help with the repair of this damage, and the chromatin remodeling pathway, in which oncometabolites inhibit its repair by impairing the homologous recombination repair (HRR) system. Since oncometabolites inhibit DNA repair, their removal from tumor cells will not always generate a positive response in cancer therapy. In fact, their presence contributes to longer survival and/or sensitization against tumor therapy in some cancer patients.
Collapse
Affiliation(s)
- Enol Álvarez-González
- Departamento de Biología Funcional, Área de Genética, University of Oviedo, C/Julián Clavería s/n, 33006 Oviedo, Spain;
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Avda. HUCA s/n, 33011 Oviedo, Spain
| | - Luisa María Sierra
- Departamento de Biología Funcional, Área de Genética, University of Oviedo, C/Julián Clavería s/n, 33006 Oviedo, Spain;
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Avda. HUCA s/n, 33011 Oviedo, Spain
| |
Collapse
|
21
|
He K, Long X, Jiang H, Qin C. The differential impact of iron on ferroptosis, oxidative stress, and inflammatory reaction in head-kidney macrophages of yellow catfish (Pelteobagrus fulvidraco) with and without ammonia stress. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 157:105184. [PMID: 38643939 DOI: 10.1016/j.dci.2024.105184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Ammonia toxicity in fish is closely related to ferroptosis, oxidative stress, and inflammatory responses. Iron is an essential trace element that plays a key role in many biological processes for cells and organisms, including ferroptosis, oxidative stress response, and inflammation. This study aimed to investigate the effect of iron on indicators of fish exposed to ammonia, specifically on the three aspects mentioned above. The head kidney macrophages of yellow catfish were randomly assigned to one of four groups: CON (normal control), AM (0.046 mg L-1 total ammonia nitrogen), Fe (20 μg mL-1 FeSO4), and Fe + AM (20 μg mL-1 FeSO4, 0.046 mg L-1 total ammonia nitrogen). The cells were pretreated with FeSO4 for 6 h followed by ammonia for 24 h. The study found that iron supplementation led to an excessive accumulation of iron and ROS in macrophages, but it did not strongly induce ferroptosis, oxidative stress, or inflammatory responses. This was supported by a decrease in T-AOC, and the downregulation of SOD, as well as an increase in GSH levels and the upregulation of TFR1, CAT and Nrf2. Furthermore, the mRNA expression of HIF-1, p53 and the anti-inflammatory M2 macrophage marker Arg-1 were upregulated. The results also showed that iron supplementation increased the progression of some macrophages from early apoptosis to late apoptotic cells. However, the combined treatment of iron and ammonia resulted in a stronger intracellular ferroptosis, oxidative stress, and inflammatory reaction compared to either treatment alone. Additionally, there was a noticeable increase in necrotic cells in the Fe + AM and AM groups. These findings indicate that the biological functions of iron in macrophages of fish may vary inconsistently in the presence or absence of ammonia stress.
Collapse
Affiliation(s)
- Kewei He
- Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education (Guizhou University), Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Xinran Long
- Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education (Guizhou University), Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Haibo Jiang
- Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education (Guizhou University), Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China; College of Biosystems Engineering and Food Science (BEFS), Zhejiang University, Hangzhou, 310058, China.
| | - Chuanjie Qin
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, 641112, China
| |
Collapse
|
22
|
Lei KF, Pai PC, Liu H. Development of a Folding Paper System To Enable the Analysis of Gene Profile of Short- and Long-Distance Cancer Cell Migration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38931-38941. [PMID: 38959088 DOI: 10.1021/acsami.4c05170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
In cancer metastasis, where mortality rates remain high despite advancements in medical treatments, understanding the molecular pathways and cellular dynamics underlying tumor spread is critical for devising more effective therapeutic strategies. Here, a folding paper system was proposed and developed to mimic native tumor microenvironment. This system, composed of 7 stacked layers of paper enclosed in a holder, allows for the culture of cancer cells under conditions mimicking those found in solid tumors, including limited oxygen and nutrients. Because of the migratory capabilities of cancer cells, the cells in the center layer could migrated to outer layers of the paper stack, enabling the differentiation of cells based on their migratory potential. Subsequent gene expression analysis, conducted through RT-PCR and RNA sequencing, revealed significant correlations between cancer cell migration distance and the expression of genes associated with hypoxia, metabolism, ATP production, and cellular process. Moreover, our study identified cells with aggressive phenotypic traits from the outer layers of the paper stack, highlighting the potential of this system for enabling the study of aggressive cancer cell characteristics. Validation of the folding paper system against clinical carcinoma tissue demonstrated its ability to faithfully mimic the native tumor microenvironment. Overall, our findings underscore the utility of the folding paper system as a valuable tool for investigating and identifying critical molecular pathways involved in cancer metastasis.
Collapse
Affiliation(s)
- Kin Fong Lei
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Radiation Oncology, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Electrical & Electronic Engineering, Yonsei University, Seoul 03722, Korea
| | - Ping-Ching Pai
- Department of Radiation Oncology, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Hsuan Liu
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Division of Hematology-Oncology, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| |
Collapse
|
23
|
McDermott JG, Goodlett BL, Creed HA, Navaneethabalakrishnan S, Rutkowski JM, Mitchell BM. Inflammatory Alterations to Renal Lymphatic Endothelial Cell Gene Expression in Mouse Models of Hypertension. Kidney Blood Press Res 2024; 49:588-604. [PMID: 38972305 PMCID: PMC11345939 DOI: 10.1159/000539721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 06/02/2024] [Indexed: 07/09/2024] Open
Abstract
INTRODUCTION Hypertension (HTN) is a major cardiovascular disease that can cause and be worsened by renal damage and inflammation. We previously reported that renal lymphatic endothelial cells (LECs) increase in response to HTN and that augmenting lymphangiogenesis in the kidneys reduces blood pressure and renal pro-inflammatory immune cells in mice with various forms of HTN. Our aim was to evaluate the specific changes that renal LECs undergo in HTN. METHODS We performed single-cell RNA sequencing. Using the angiotensin II-induced and salt-sensitive mouse models of HTN, we isolated renal CD31+ and podoplanin+ cells. RESULTS Sequencing of these cells revealed three distinct cell types with unique expression profiles, including LECs. The number and transcriptional diversity of LECs increased in samples from mice with HTN, as demonstrated by 597 differentially expressed genes (p < 0.01), 274 significantly enriched pathways (p < 0.01), and 331 regulons with specific enrichment in HTN LECs. These changes demonstrate a profound inflammatory response in renal LECs in HTN, leading to an increase in genes and pathways associated with inflammation-driven growth and immune checkpoint activity in LECs. CONCLUSION These results reinforce and help to further explain the benefits of renal LECs and lymphangiogenesis in HTN.
Collapse
Affiliation(s)
- Justin G. McDermott
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807
| | - Bethany L. Goodlett
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807
| | - Heidi A. Creed
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807
| | | | - Joseph M. Rutkowski
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807
| | - Brett M. Mitchell
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807
| |
Collapse
|
24
|
Xie J, Zhang Z. Recent Advances and Therapeutic Implications of 2-Oxoglutarate-Dependent Dioxygenases in Ischemic Stroke. Mol Neurobiol 2024; 61:3949-3975. [PMID: 38041714 DOI: 10.1007/s12035-023-03790-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/08/2023] [Indexed: 12/03/2023]
Abstract
Ischemic stroke is a common disease with a high disability rate and mortality, which brings heavy pressure on families and medical insurance. Nowadays, the golden treatments for ischemic stroke in the acute phase mainly include endovascular therapy and intravenous thrombolysis. Some drugs are used to alleviate brain injury in patients with ischemic stroke, such as edaravone and 3-n-butylphthalide. However, no effective neuroprotective drug for ischemic stroke has been acknowledged. 2-Oxoglutarate-dependent dioxygenases (2OGDDs) are conserved and common dioxygenases whose activities depend on O2, Fe2+, and 2OG. Most 2OGDDs are expressed in the brain and are essential for the development and functions of the brain. Therefore, 2OGDDs likely play essential roles in ischemic brain injury. In this review, we briefly elucidate the functions of most 2OGDDs, particularly the effects of regulations of 2OGDDs on various cells in different phases after ischemic stroke. It would also provide promising potential therapeutic targets and directions of drug development for protecting the brain against ischemic injury and improving outcomes of ischemic stroke.
Collapse
Affiliation(s)
- Jian Xie
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
25
|
Wang T, Zhu G, Wang B, Hu M, Gong C, Tan K, Jiang L, Zhu X, Geng Y, Li L. Activation of Hypoxia Inducible Factor-1 Alpha-Mediated DNA Methylation Enzymes (DNMT3a and TET2) Under Hypoxic Conditions Regulates S100A6 Transcription to Promote Lung Cancer Cell Growth and Metastasis. Antioxid Redox Signal 2024; 41:138-151. [PMID: 38299557 DOI: 10.1089/ars.2023.0397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Aims: This research was aimed at investigating the effects of hypoxia inducible factor-1 alpha (HIF-1α)-mediated DNA methylation enzymes (ten-eleven translocase-2 [TET2] and DNA methyltransferase-3a [DNMT3a]) under hypoxic conditions on S100A6 transcription, thereby promoting the growth and metastasis of lung cancer cells. Methods: The expression of HIF-1α or S100A6 in lung cancer cells was interfered with under normoxic and hypoxic conditions, and the cell proliferative, migratory, and invasive properties were assessed. The mechanism of HIF-1α-regulated TET2 and DNMT3 effects on S100A6 transcription under hypoxic conditions was further investigated. Results: Functionally, S100A6 over-expression promoted lung cancer cell proliferation and metastasis. S100A6 over-expression reversed the inhibitory effects of HIF-1α interference on the proliferation and metastasis of lung cancer cells. S100A6 was induced to express in an HIF-1α-dependent manner under hypoxic conditions, and silencing S100A6 or HIF-1α suppressed lung cancer cell proliferation and metastasis under hypoxic conditions. Further, The Cancer Genome Atlas-lung adenocarcinoma database analysis revealed that S100A6 mRNA levels had a negative correlation with methylation levels. Mechanistically, CpG hypomethylation status in the S100A6 promoter hypoxia response element had an association with HIF-1α induction. TET2 was enriched in S100A6 promoter region of lung cancer cells under hypoxic conditions, whereas DNMT3a enrichment was reduced in S100A6 promoter region. HIF-1α-mediated S100A6 activation was linked to DNMT3a-associated epigenetic inactivation and TET2 activation. Innovation: The activation of HIF-1α-mediated DNA methylation enzymes under hypoxic conditions regulated S100A6 transcription, thereby promoting lung cancer cell growth and metastasis. Conclusion: In lung cancer progression, hypoxia-induced factor HIF-1α combined with DNA methylation modifications co-regulates S100A6 transcriptional activation and promotes lung cancer cell growth and metastasis.
Collapse
Affiliation(s)
- Tengfei Wang
- The Department of Thoracic Surgery; Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou, China
| | - Genbao Zhu
- General Clinical Research Center; Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou, China
| | - Bo Wang
- The Department of Thoracic Surgery; Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou, China
| | - Mengxue Hu
- General Clinical Research Center; Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou, China
| | - Chen Gong
- General Clinical Research Center; Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou, China
| | - Kemeng Tan
- General Clinical Research Center; Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou, China
| | - La Jiang
- General Clinical Research Center; Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou, China
| | - Xiaohong Zhu
- General Clinical Research Center; Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou, China
| | - Yuliu Geng
- The Department of Thoracic Surgery; Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou, China
| | - Lili Li
- General Clinical Research Center; Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou, China
| |
Collapse
|
26
|
Jin L, Zhou S, Zhao S, Long J, Huang Z, Zhou J, Zhang Y. Early short-term hypoxia promotes epidermal cell migration by activating the CCL2-ERK1/2 pathway and epithelial-mesenchymal transition during wound healing. BURNS & TRAUMA 2024; 12:tkae017. [PMID: 38887221 PMCID: PMC11182653 DOI: 10.1093/burnst/tkae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/05/2024] [Indexed: 06/20/2024]
Abstract
Background Due to vasculature injury and increased oxygen consumption, the early wound microenvironment is typically in a hypoxic state. We observed enhanced cell migration ability under early short-term hypoxia. CCL2 belongs to the CC chemokine family and was found to be increased in early hypoxic wounds and enriched in the extracellular signal-regulated kinase (ERK)1/2 pathway in our previous study. However, the underlying mechanism through which the CCL2-ERK1/2 pathway regulates wound healing under early short-term hypoxia remains unclear. Activation of epithelial-mesenchymal transition (EMT) is a key process in cancer cell metastasis, during which epithelial cells acquire the characteristics of mesenchymal cells and enhance cell motility and migration ability. However, the relationship between epithelial cell migration and EMT under early short-term hypoxia has yet to be explored. Methods HaCaT cells were cultured to verify the effect of early short-term hypoxia on migration through cell scratch assays. Lentiviruses with silenced or overexpressed CCL2 were used to explore the relationship between CCL2 and migration under short-term hypoxia. An acute full-thickness cutaneous wound rat model was established with the application of an ERK inhibitor to reveal the hidden role of the ERK1/2 pathway in the early stage of wound healing. The EMT process was verified in all the above experiments through western blotting. Results In our study, we found that short-term hypoxia promoted cell migration. Mechanistically, hypoxia promoted cell migration through mediating CCL2. Overexpression of CCL2 via lentivirus promoted cell migration, while silencing CCL2 via lentivirus inhibited cell migration and the production of related downstream proteins. In addition, we found that CCL2 was enriched in the ERK1/2 pathway, and the application of an ERK inhibitor in vivo and in vitro verified the upstream and downstream relationships between the CCL2 pathway and ERK1/2. Western blot results both in vivo and in vitro demonstrated that early short-term hypoxia promotes epidermal cell migration by activating the CCL2-ERK1/2 pathway and EMT during wound healing. Conclusions Our work demonstrated that hypoxia in the early stage serves as a stimulus for triggering wound healing through activating the CCL2-ERK1/2 pathway and EMT, which promote epidermal cell migration and accelerate wound closure. These findings provide additional detailed insights into the mechanism of wound healing and new targets for clinical treatment.
Collapse
Affiliation(s)
- Linbo Jin
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Shiqi Zhou
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Shihan Zhao
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Junhui Long
- Department of Dermatology, Southwest Hospital Jiangbei Area (The 958th hospital of Chinese People’s Liberation Army), Chongqing, China
| | - Zhidan Huang
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Junli Zhou
- Department of Burn and Plastic Surgery, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, China
| | - Yiming Zhang
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| |
Collapse
|
27
|
Yang JX, Chuang YC, Tseng JC, Liu YL, Lai CY, Lee AYL, Huang CYF, Hong YR, Chuang TH. Tumor promoting effect of PDLIM2 downregulation involves mitochondrial ROS, oncometabolite accumulations and HIF-1α activation. J Exp Clin Cancer Res 2024; 43:169. [PMID: 38880883 PMCID: PMC11181580 DOI: 10.1186/s13046-024-03094-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND Cancer is characterized by dysregulated cellular metabolism. Thus, understanding the mechanisms underlying these metabolic alterations is important for developing targeted therapies. In this study, we investigated the pro-tumoral effect of PDZ and LIM domain 2 (PDLIM2) downregulation in lung cancer growth and its association with the accumulation of mitochondrial ROS, oncometabolites and the activation of hypoxia-inducible factor-1 (HIF-1) α in the process. METHODS Databases and human cancer tissue samples were analyzed to investigate the roles of PDLIM2 and HIF-1α in cancer growth. DNA microarray and gene ontology enrichment analyses were performed to determine the cellular functions of PDLIM2. Seahorse assay, flow cytometric analysis, and confocal microscopic analysis were employed to study mitochondrial functions. Oncometabolites were analyzed using liquid chromatography-mass spectrometry (LC-MS). A Lewis lung carcinoma (LLC) mouse model was established to assess the in vivo function of PDLIM2 and HIF-1α. RESULTS The expression of PDLIM2 was downregulated in lung cancer, and this downregulation correlated with poor prognosis in patients. PDLIM2 highly regulated genes associated with mitochondrial functions. Mechanistically, PDLIM2 downregulation resulted in NF-κB activation, impaired expression of tricarboxylic acid (TCA) cycle genes particularly the succinate dehydrogenase (SDH) genes, and mitochondrial dysfunction. This disturbance contributed to the accumulation of succinate and other oncometabolites, as well as the buildup of mitochondrial reactive oxygen species (mtROS), leading to the activation of hypoxia-inducible factor 1α (HIF-1α). Furthermore, the expression of HIF-1α was increased in all stages of lung cancer. The expression of PDLIM2 and HIF-1α was reversely correlated in lung cancer patients. In the animal study, the orally administered HIF-1α inhibitor, PX-478, significantly reduces PDLIM2 knockdown-promoted tumor growth. CONCLUSION These findings shed light on the complex action of PDLIM2 on mitochondria and HIF-1α activities in lung cancer, emphasizing the role of HIF-1α in the tumor-promoting effect of PDLIM2 downregulation. Additionally, they provide new insights into a strategy for precise targeted treatment by suggesting that HIF-1α inhibitors may serve as therapy for lung cancer patients with PDLIM2 downregulation.
Collapse
Affiliation(s)
- Jing-Xing Yang
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Yu-Chen Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Jen-Chih Tseng
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Yi-Ling Liu
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Chao-Yang Lai
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, 41354, Taiwan
| | - Alan Yueh-Luen Lee
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Chi-Ying F Huang
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Yi-Ren Hong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan.
- Department of Life Sciences, National Central University, Zhongli District, Taoyuan City, 32001, Taiwan.
| |
Collapse
|
28
|
Shaban NZ, Hegazy WA, Abu-Serie MM, Talaat IM, Awad OM, Habashy NH. Seedless black Vitis vinifera polyphenols suppress hepatocellular carcinoma in vitro and in vivo by targeting apoptosis, cancer stem cells, and proliferation. Biomed Pharmacother 2024; 175:116638. [PMID: 38688169 DOI: 10.1016/j.biopha.2024.116638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/04/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is an aggressive tumor and one of the most challenging cancers to treat. Here, we evaluated the in vitro and in vivo ameliorating impacts of seedless black Vitis vinifera (VV) polyphenols on HCC. Following the preparation of the VV crude extract (VVCE) from seedless VV (pulp and skin), three fractions (VVF1, VVF2, and VVF3) were prepared. The anticancer potencies of the prepared fractions, compared to 5-FU, were assessed against HepG2 and Huh7 cells. In addition, the effects of these fractions on p-dimethylaminoazobenzene-induced HCC in mice were evaluated. The predicted impacts of selected phenolic constituents of VV fractions on the activity of essential HCC-associated enzymes (NADPH oxidase "NADPH-NOX2", histone deacetylase 1 "HDAC1", and sepiapterin reductase "SepR") were analyzed using molecular docking. The results showed that VVCE and its fractions induced apoptosis and collapsed CD133+ stem cells in the studied cancer cell lines with an efficiency greater than 5-FU. VVF1 and VVF2 exhibited the most effective anticancer fractions in vitro; therefore, we evaluated their influences in mice. VVF1 and VVF2 improved liver morphology and function, induced apoptosis, and lowered the fold expression of various crucial genes that regulate cancer stem cells and other vital pathways for HCC progression. For most of the examined parameters, VVF1 and VVF2 had higher potency than 5-FU, and VVF1 showed more efficiency than VVF2. The selected phenolic compounds displayed competitive inhibitory action on NADPH-NOX2, HDAC1, and SepR. In conclusion, these findings declare that VV polyphenolic fractions, particularly VVF1, could be promising safe anti-HCC agents.
Collapse
Affiliation(s)
- Nadia Z Shaban
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| | - Walaa A Hegazy
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| | - Marwa M Abu-Serie
- Department of Medical Biotechnology, Genetic Engineering, and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria 21934, Egypt
| | - Iman M Talaat
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt; Clinical Sciences Department, College of Medicine, University of Sharjah, United Arab Emirates.
| | - Olfat M Awad
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| | - Noha H Habashy
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| |
Collapse
|
29
|
Gao C, Song XD, Chen FH, Wei GL, Guo CY. The protective effect of natural medicines in rheumatoid arthritis via inhibit angiogenesis. Front Pharmacol 2024; 15:1380098. [PMID: 38881875 PMCID: PMC11176484 DOI: 10.3389/fphar.2024.1380098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/10/2024] [Indexed: 06/18/2024] Open
Abstract
Rheumatoid arthritis is a chronic immunological disease leading to the progressive bone and joint destruction. Angiogenesis, accompanied by synovial hyperplasia and inflammation underlies joint destruction. Delaying or even blocking synovial angiogenesis has emerged as an important target of RA treatment. Natural medicines has a long history of treating RA, and numerous reports have suggested that natural medicines have a strong inhibitory activity on synovial angiogenesis, thereby improving the progression of RA. Natural medicines could regulate the following signaling pathways: HIF/VEGF/ANG, PI3K/Akt pathway, MAPKs pathway, NF-κB pathway, PPARγ pathway, JAK2/STAT3 pathway, etc., thereby inhibiting angiogenesis. Tripterygium wilfordii Hook. f. (TwHF), sinomenine, and total glucoside of Paeonia lactiflora Pall. Are currently the most representative of all natural products worthy of development and utilization. In this paper, the main factors affecting angiogenesis were discussed and different types of natural medicines that inhibit angiogenesis were systematically summarized. Their specific anti-angiogenesis mechanisms are also reviewed which aiming to provide new perspective and options for the management of RA by targeting angiogenesis.
Collapse
Affiliation(s)
- Chang Gao
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Jiangxi, Ganzhou, China
| | - Xiao-Di Song
- Gannan Medical University, Jiangxi, Ganzhou, China
| | - Fang-Hui Chen
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Jiangxi, Ganzhou, China
| | - Gui-Lin Wei
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Jiangxi, Ganzhou, China
| | - Chun-Yu Guo
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Jiangxi, Ganzhou, China
| |
Collapse
|
30
|
Nakazawa T, Morimoto T, Maeoka R, Yamada K, Matsuda R, Nakamura M, Nishimura F, Yamada S, Park YS, Tsujimura T, Nakagawa I. Characterization of HIF-1α Knockout Primary Human Natural Killer Cells Including Populations in Allogeneic Glioblastoma. Int J Mol Sci 2024; 25:5896. [PMID: 38892084 PMCID: PMC11173110 DOI: 10.3390/ijms25115896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/23/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
Enhancing immune cell functions in tumors remains a major challenge in cancer immunotherapy. Natural killer cells (NK) are major innate effector cells with broad cytotoxicity against tumors. Accordingly, NK cells are ideal candidates for cancer immunotherapy, including glioblastoma (GBM). Hypoxia is a common feature of solid tumors, and tumor cells and normal cells adapt to the tumor microenvironment by upregulating the transcription factor hypoxia-inducible factor (HIF)-1α, which can be detrimental to anti-tumor effector immune cell function, including that of NK cells. We knocked out HIF-1α in human primary NK cells using clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 9 (Cas9). Then, cellular characterizations were conducted in normoxic and hypoxic conditions. Electroporating two HIF-1α-targeting guide RNA-Cas9 protein complexes inhibited HIF-1α expression in expanded NK cells. HIF-1α knockout human NK cells, including populations in hypoxic conditions, enhanced the growth inhibition of allogeneic GBM cells and induced apoptosis in GBM-cell-derived spheroids. RNA-sequencing revealed that the cytotoxicity of HIF-1α knockout NK cells could be related to increased perforin and TNF expression. The results demonstrated that HIF-1α knockout human NK cells, including populations, enhanced cytotoxicity in an environment mimicking the hypoxic conditions of GBM. CRISPR-Cas9-mediated HIF-1α knockout NK cells, including populations, could be a promising immunotherapeutic alternative in patients with GBM.
Collapse
Affiliation(s)
- Tsutomu Nakazawa
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan; (T.M.); (R.M.); (K.Y.); (R.M.); (M.N.); (F.N.); (S.Y.); (Y.-S.P.); (I.N.)
- Clinic Grandsoul Nara, Uda 633-2221, Japan;
- Grandsoul Research Institute for Immunology, Inc., Uda 633-2221, Japan
| | - Takayuki Morimoto
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan; (T.M.); (R.M.); (K.Y.); (R.M.); (M.N.); (F.N.); (S.Y.); (Y.-S.P.); (I.N.)
| | - Ryosuke Maeoka
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan; (T.M.); (R.M.); (K.Y.); (R.M.); (M.N.); (F.N.); (S.Y.); (Y.-S.P.); (I.N.)
| | - Kengo Yamada
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan; (T.M.); (R.M.); (K.Y.); (R.M.); (M.N.); (F.N.); (S.Y.); (Y.-S.P.); (I.N.)
| | - Ryosuke Matsuda
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan; (T.M.); (R.M.); (K.Y.); (R.M.); (M.N.); (F.N.); (S.Y.); (Y.-S.P.); (I.N.)
| | - Mitsutoshi Nakamura
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan; (T.M.); (R.M.); (K.Y.); (R.M.); (M.N.); (F.N.); (S.Y.); (Y.-S.P.); (I.N.)
- Clinic Grandsoul Nara, Uda 633-2221, Japan;
| | - Fumihiko Nishimura
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan; (T.M.); (R.M.); (K.Y.); (R.M.); (M.N.); (F.N.); (S.Y.); (Y.-S.P.); (I.N.)
| | - Shuichi Yamada
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan; (T.M.); (R.M.); (K.Y.); (R.M.); (M.N.); (F.N.); (S.Y.); (Y.-S.P.); (I.N.)
| | - Young-Soo Park
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan; (T.M.); (R.M.); (K.Y.); (R.M.); (M.N.); (F.N.); (S.Y.); (Y.-S.P.); (I.N.)
| | - Takahiro Tsujimura
- Clinic Grandsoul Nara, Uda 633-2221, Japan;
- Grandsoul Research Institute for Immunology, Inc., Uda 633-2221, Japan
| | - Ichiro Nakagawa
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan; (T.M.); (R.M.); (K.Y.); (R.M.); (M.N.); (F.N.); (S.Y.); (Y.-S.P.); (I.N.)
| |
Collapse
|
31
|
Singrang N, Nopparat C, Panmanee J, Govitrapong P. Melatonin Inhibits Hypoxia-Induced Alzheimer's Disease Pathogenesis by Regulating the Amyloidogenic Pathway in Human Neuroblastoma Cells. Int J Mol Sci 2024; 25:5225. [PMID: 38791263 PMCID: PMC11121645 DOI: 10.3390/ijms25105225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Stroke and Alzheimer's disease (AD) are prevalent age-related diseases; however, the relationship between these two diseases remains unclear. In this study, we aimed to investigate the ability of melatonin, a hormone produced by the pineal gland, to alleviate the effects of ischemic stroke leading to AD by observing the pathogenesis of AD hallmarks. We utilized SH-SY5Y cells under the conditions of oxygen-glucose deprivation (OGD) and oxygen-glucose deprivation and reoxygenation (OGD/R) to establish ischemic stroke conditions. We detected that hypoxia-inducible factor-1α (HIF-1α), an indicator of ischemic stroke, was highly upregulated at both the protein and mRNA levels under OGD conditions. Melatonin significantly downregulated both HIF-1α mRNA and protein expression under OGD/R conditions. We detected the upregulation of β-site APP-cleaving enzyme 1 (BACE1) mRNA and protein expression under both OGD and OGD/R conditions, while 10 µM of melatonin attenuated these effects and inhibited beta amyloid (Aβ) production. Furthermore, we demonstrated that OGD/R conditions were able to activate the BACE1 promoter, while melatonin inhibited this effect. The present results indicate that melatonin has a significant impact on preventing the aberrant development of ischemic stroke, which can lead to the development of AD, providing new insight into the prevention of AD and potential stroke treatments.
Collapse
Affiliation(s)
| | - Chutikorn Nopparat
- Innovative Learning Center, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Jiraporn Panmanee
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | | |
Collapse
|
32
|
Zhi S, Chen C, Huang H, Zhang Z, Zeng F, Zhang S. Hypoxia-inducible factor in breast cancer: role and target for breast cancer treatment. Front Immunol 2024; 15:1370800. [PMID: 38799423 PMCID: PMC11116789 DOI: 10.3389/fimmu.2024.1370800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Globally, breast cancer stands as the most prevalent form of cancer among women. The tumor microenvironment of breast cancer often exhibits hypoxia. Hypoxia-inducible factor 1-alpha, a transcription factor, is found to be overexpressed and activated in breast cancer, playing a pivotal role in the anoxic microenvironment by mediating a series of reactions. Hypoxia-inducible factor 1-alpha is involved in regulating downstream pathways and target genes, which are crucial in hypoxic conditions, including glycolysis, angiogenesis, and metastasis. These processes significantly contribute to breast cancer progression by managing cancer-related activities linked to tumor invasion, metastasis, immune evasion, and drug resistance, resulting in poor prognosis for patients. Consequently, there is a significant interest in Hypoxia-inducible factor 1-alpha as a potential target for cancer therapy. Presently, research on drugs targeting Hypoxia-inducible factor 1-alpha is predominantly in the preclinical phase, highlighting the need for an in-depth understanding of HIF-1α and its regulatory pathway. It is anticipated that the future will see the introduction of effective HIF-1α inhibitors into clinical trials, offering new hope for breast cancer patients. Therefore, this review focuses on the structure and function of HIF-1α, its role in advancing breast cancer, and strategies to combat HIF-1α-dependent drug resistance, underlining its therapeutic potential.
Collapse
Affiliation(s)
| | | | | | | | - Fancai Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Shujun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
33
|
Forma A, Grunwald A, Zembala P, Januszewski J, Brachet A, Zembala R, Świątek K, Baj J. Micronutrient Status and Breast Cancer: A Narrative Review. Int J Mol Sci 2024; 25:4968. [PMID: 38732186 PMCID: PMC11084730 DOI: 10.3390/ijms25094968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Breast cancer is one of the most common cancers worldwide, at the same time being one of the most prevalent causes of women's death. Many factors such as alcohol, weight fluctuations, or hormonal replacement therapy can potentially contribute to breast cancer development and progression. Another important factor in breast cancer onset includes micronutrient status. In this narrative review, we analyzed 23 micronutrients and their possible influence on breast cancer onset and progression. Further, the aim of this study was to investigate the impact of micronutrient status on the prevention of breast cancer and its possible influence on various therapeutic pathways. We researched meta-analyses, systemic and narrative reviews, retrospective studies, as well as original studies on human and animal models. The results of these studies indicate a possible correlation between the different levels of micronutrients and a decreased risk of breast cancer as well as a better survival rate. However, further studies are necessary to establish adequate doses of supplementation of the chosen micronutrients and the exact mechanisms of micronutrient impact on breast cancer therapy.
Collapse
Affiliation(s)
- Alicja Forma
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (A.G.); (A.B.)
| | - Arkadiusz Grunwald
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (A.G.); (A.B.)
| | - Patryk Zembala
- Faculty of Medicine, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland;
| | - Jacek Januszewski
- Department of Correct, Clinical and Imaging Anatomy, Chair of Fundamental Sciences, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (J.J.); (K.Ś.); (J.B.)
| | - Adam Brachet
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (A.G.); (A.B.)
| | - Roksana Zembala
- Faculty of Medicine, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-938 Warsaw, Poland;
| | - Kamila Świątek
- Department of Correct, Clinical and Imaging Anatomy, Chair of Fundamental Sciences, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (J.J.); (K.Ś.); (J.B.)
| | - Jacek Baj
- Department of Correct, Clinical and Imaging Anatomy, Chair of Fundamental Sciences, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (J.J.); (K.Ś.); (J.B.)
| |
Collapse
|
34
|
Dai A, Zhang X, Wang X, Liu G, Wang Q, Yu F. Transcription factors in chimeric antigen receptor T-cell development. Hum Cell 2024; 37:571-581. [PMID: 38436882 DOI: 10.1007/s13577-024-01040-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is a new and innovative approach to treating cancers that has shown promising results in the treatment of lymphoma. However, it has been found to be less effective in the treatment of solid tumors. To overcome the limitation, researchers have explored the use of combined CAR-T therapy with other complementary regimens that target specific genes or biomarkers, which would enhance the synergistic therapeutic effects. Transcription factors (TFs) have been identified as potential markers that can regulate gene expression in CAR-T cells to enhance their cytotoxicity and safety. TFs are known to bind DNA specifically and recruit cofactor proteins to regulate the expression of target genes. By targeting TFs, it is possible to improve the anti-tumor response of CAR-T cells by altering their phenotype and transcriptional map, thereby increasing their effector function, such as reducing the exhaustion, enhancing the survival, and cytotoxicity of CAR-T cells. This review summarizes the application of transcription factors in CART therapy to enhance the synergistic therapeutic effect of CAR-T cells in the treatment of solid tumors and improve their anti-tumor responses.
Collapse
Affiliation(s)
- Anran Dai
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Xiangzhi Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaoyan Wang
- Department of Gastroenterology, Suqian First People's Hospital, Suqian, 223800, Jiangsu, China
| | - Guodong Liu
- Department of General Surgery, Suqian First People's Hospital, Suqian, 223800, Jiangsu, China
| | - Qiang Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Feng Yu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
35
|
Ma Y, Zong H, Pan P, Shang H, Yang X. The CREB1/WNK1 axis promotes the tumorigenesis of ovarian cancer via regulating HIF-1. Exp Cell Res 2024; 438:114006. [PMID: 38599542 DOI: 10.1016/j.yexcr.2024.114006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/07/2024] [Accepted: 03/15/2024] [Indexed: 04/12/2024]
Abstract
The aim of this study was to explore the functions and molecular mechanisms of the WNK lysine deficient protein kinase 1 (WNK1) in the development of ovarian cancer. Firstly, loss- and gain-of-function assays were carried out and subsequently cell proliferation, apoptosis, invasion and migration were detected. Furthermore, WNK1 action on glucose uptake, lactate production and adenosine triphosphate (ATP) level were assessed. The roles of WNK1 on cisplatin resistance were explored using CCK-8, colony formation, and flow cytometry in vitro. Immunohistochemistry, Western blot and qRT-PCR were conducted to determine the protein and mRNA expression. Additionally, tumor growth in vivo was also monitored. We found that the overexpression of WNK1 predicted a bad prognosis of ovarian cancer patients. WNK1 enhanced the malignant behavior and facilitated glycolysis of ovarian cancer cells. Moreover, WNK1 increased cisplatin resistance in ovarian cancer cells. Mechanistically, we found that WNK1 expression was promoted by CREB1 at the transcriptional level. And CREB1 could facilitate ovarian cancer cells malignant behavior through target upregulating WNK1. Besides, we also showed that WNK1 facilitated the malignant behavior by accelerating HIF-1 expression. In xenograft tumor tissues, the downregulation of WNK1 significantly reduced HIF-1α expression. These data demonstrated that the CREB1/WNK1 axis could promote the tumorigenesis of ovarian cancer via accelerating HIF-1 expression, suggesting that the CREB1/WNK1 axis could be a potential target during the therapy of ovarian cancer.
Collapse
Affiliation(s)
- Yifei Ma
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, PR China; Department of Obstetrics and Gynecology, Jinan Central Hospital, Jinan, 250013, Shandong, PR China
| | - Hui Zong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, PR China
| | - Pan Pan
- Department of Pathology, Jinan Central Hospital, Jinan, 250013, Shandong, PR China
| | - Hui Shang
- Department of Obstetrics and Gynecology, Jinan Central Hospital, Jinan, 250013, Shandong, PR China
| | - Xingsheng Yang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, PR China.
| |
Collapse
|
36
|
Kazama R, Sakai S. Effect of cell adhesiveness of Cell Dome shell on enclosed HeLa cells. J Biosci Bioeng 2024; 137:313-320. [PMID: 38307767 DOI: 10.1016/j.jbiosc.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/17/2023] [Accepted: 01/06/2024] [Indexed: 02/04/2024]
Abstract
The Cell Dome is a dome-shaped structure (diameter: 1 mm, height: 270 μm) with cells enclosed within a cavity, covered by a hemispherical hydrogel shell, and immobilized on a glass plate. Given that the cells within Cell Dome are in contact with the inner walls of the hydrogel shell, the properties of the shell are anticipated to influence cell behavior. To date, the impact of the hydrogel shell properties on the enclosed cells has not been investigated. In this study, we explored the effects of the cell adhesiveness of hydrogel shell on the behavior of enclosed cancer cells. Hydrogel shells with varying degrees of cell adhesiveness were fabricated using aqueous solutions containing either an alginate derivative with phenolic hydroxyl moieties exclusively or a mixture of alginate and gelatin derivatives with phenolic hydroxyl moieties. Hydrogel formation was mediated by horseradish peroxidase. We used the HeLa human cervical cancer cell line, which expresses fucci2, a cell cycle marker, to observe cell behavior. Cells cultured in hydrogel shells with cell adhesiveness proliferated along the inner wall of the hydrogel shell. Conversely, cells in hydrogel shells without cell adhesiveness grew uniformly at the bottom of the cavities. Furthermore, cells in non-adhesive hydrogel shells had a higher percentage of cells in the G1/G0 phase compared to those in adhesive shells and exhibited increased resistance to mitomycin hydrochloride when the cavities became filled with cells. These results highlight the need to consider the cell adhesiveness of the hydrogel shell when selecting materials for constructing Cell Dome.
Collapse
Affiliation(s)
- Ryotaro Kazama
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| | - Shinji Sakai
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| |
Collapse
|
37
|
Tan C, Chen L, Guan X, Huang W, Feng Y, Li Z, Wu L, Huang X, Ouyang Q, Liu S, Huang Y, Hu J. Redox proteomics of PANC-1 cells reveals the significance of HIF-1 signaling protein oxidation in pancreatic ductal adenocarcinoma pathogenesis. J Transl Med 2024; 22:287. [PMID: 38493183 PMCID: PMC10944602 DOI: 10.1186/s12967-024-05068-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Protein cysteine oxidation is substantially involved in various biological and pathogenic processes, but its implications in pancreatic cancer development remains poorly understood. METHODS AND RESULTS In this study, we performed a global characterization of protein oxidation targets in PDAC cells through iodoTMT-based quantitative proteomics, which identified over 4300 oxidized cysteine sites in more than 2100 proteins in HPDE6c7 and PANC-1 cells. Among them, 1715 cysteine residues were shown to be differentially oxidized between HPDE6c7 and PANC-1 cells. Also, charged amino acids including aspartate, glutamate and lysine were significantly overrepresented in flanking sequences of oxidized cysteines. Differentially oxidized proteins in PANC-1 cells were enriched in multiple cancer-related biological processes and signaling pathways. Specifically, the HIF-1 signaling proteins exhibited significant oxidation alterations in PANC-1 cells, and the reduced PHD2 oxidation in human PDAC tissues was correlated with lower survival time in pancreatic cancer patients. CONCLUSION These investigations provided new insights into protein oxidation-regulated signaling and biological processes during PDAC pathogenesis, which might be further explored for pancreatic cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Chaochao Tan
- Department of Clinical Laboratory, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, China
- Tumor Immunity Research Center of Hunan Provincial Geriatric Institute, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, China
| | - Lichun Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiaoyu Guan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Wenyi Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yinhong Feng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ziyi Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ling Wu
- Department of Clinical Laboratory, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, China
| | - Xiangping Huang
- Department of Clinical Laboratory, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, China
| | - Qianhui Ouyang
- Department of Clinical Laboratory, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, China
| | - Sixiang Liu
- Department of Emergency, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, 410006, Hunan, China
| | - Ying Huang
- Department of Emergency, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, 410006, Hunan, China.
| | - Jiliang Hu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400032, China.
| |
Collapse
|
38
|
Chen H, Hou S, Zhang H, Zhou B, Xi H, Li X, Lufeng Z, Guo Q. MiR-375 impairs breast cancer cell stemness by targeting the KLF5/G6PD signaling axis. ENVIRONMENTAL TOXICOLOGY 2024. [PMID: 38470012 DOI: 10.1002/tox.24204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 03/13/2024]
Abstract
Recurrence of breast cancer may be due to the presence of breast cancer stem cells (BCSC). Abnormal tumor cell growth is closely associated with increased reactive oxygen species (ROS) and disruption of redox homeostasis, and BCSCs exhibit low levels of ROS. The detailed mechanism between the low levels of ROS in BCSCs and their maintenance of stemness characteristics has not been reported. A growing number of studies have shown that tumor development is often accompanied by metabolic reprogramming, which is an important hallmark of tumor cells. As the first rate-limiting enzyme of pentose phosphate pathway (PPP), the expression of G6PD is precisely regulated in tumor cells, and there is a certain correlation between PPP and BCSCs. MiR-375 has been shown to inhibit stem cell-like properties in breast cancer, but the exact mechanism is not clear. Here, KLF5, as a transcription factor, was identified to bind to the promoter of G6PD to promote its expression, whereas miR-375 inhibited the expression of KLF5 by binding to the 3'UTR region of KLF5 mRNA and thus reduced the expression of G6PD expression, inhibits PPP to reduce NADPH, and increases ROS levels in breast cancer cells, thereby weakening breast cancer cell stemness. Our study reveals the specific mechanism by which miR-375 targets the KLF5/G6PD signaling axis to diminish the stemness of breast cancer cells, providing a therapeutic strategy against BCSCs.
Collapse
Affiliation(s)
- Haitao Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Shanshan Hou
- Department of Pharmacy, Zhejiang Pharmaceutical University, Ningbo, People's Republic of China
| | - Hongwei Zhang
- Department of Anesthesiology, Hepatobiliary Surgery, Neonatology, The First Affiliated Hospital of Xinxiang Medical University, Wei Hui, China
| | - Bing Zhou
- Department of Anesthesiology, Hepatobiliary Surgery, Neonatology, The First Affiliated Hospital of Xinxiang Medical University, Wei Hui, China
| | - Huifang Xi
- Department of Anesthesiology, Hepatobiliary Surgery, Neonatology, The First Affiliated Hospital of Xinxiang Medical University, Wei Hui, China
| | - Xiaofang Li
- Department of Anesthesiology, Hepatobiliary Surgery, Neonatology, The First Affiliated Hospital of Xinxiang Medical University, Wei Hui, China
| | - Zheng Lufeng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Qianqian Guo
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, People's Republic of China
| |
Collapse
|
39
|
Li Y, Yu H, Han X, Pan Y. Analyses of hypoxia-related risk factors and clinical relevance in breast cancer. Front Oncol 2024; 14:1350426. [PMID: 38500661 PMCID: PMC10946248 DOI: 10.3389/fonc.2024.1350426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/12/2024] [Indexed: 03/20/2024] Open
Abstract
Introduction Hypoxia plays an important role in the heterogeneity, relapse, metastasis, and drug resistance of breast cancer. In this study, we explored the hypoxia-related biological signatures in different subtypes of breast cancer and identified the key prognostic factors by bioinformatics methods. Methods Based on The Cancer Genome Atlas (TCGA) Breast Cancer datasets, we divided the samples into immune-activated/suppressed populations by single-sample gene set enrichment analysis (ssGSEA) and then used hierarchical clustering to further identify hypoxic/non-hypoxic populations from the immune-suppressed samples. A hypoxia related risk model of breast cancer was constructed. Results Nuclear factor interleukin-3 regulated (NFIL3), serpin family E member 1 (SERPINE1), FOS, biglycan (BGN), epidermal growth factor receptor (EGFR), and sushi-repeat-containing protein, X-linked (SRPX) were identified as key hypoxia-related genes. Margin status, American Joint Committee on Cancer (AJCC) stage, hypoxia status, estrogen receptor/progesterone receptor (ER/PR) status, NFIL3, SERPINE1, EGFR, and risk score were identified as independent prognostic indicators for breast cancer patients. The 3- and 5-year survival curves of the model and immunohistochemical staining on the breast cancer microarray verified the statistical significance and feasibility of our model. Among the different molecular types of breast cancer, ER/PR+ and HER2+ patients might have higher hypoxia-related risk scores. ER/PR-negative samples demonstrated more activated immune-related pathways and better response to most anticancer agents. Discussion Our study revealed a novel risk model and potential feasible prognostic factors for breast cancer and might provide new perspectives for individual breast cancer treatment.
Collapse
Affiliation(s)
- Yan Li
- Department of Clinical Oncology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Haiyang Yu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xinghua Han
- Department of Clinical Oncology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yueyin Pan
- Department of Clinical Oncology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
40
|
Hu R, Lan J, Zhang D, Shen W. Nanotherapeutics for prostate cancer treatment: A comprehensive review. Biomaterials 2024; 305:122469. [PMID: 38244344 DOI: 10.1016/j.biomaterials.2024.122469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/22/2024]
Abstract
Prostate cancer (PCa) is the most prevalent solid organ malignancy and seriously affects male health. The adverse effects of prostate cancer therapeutics can cause secondary damage to patients. Nanotherapeutics, which have special targeting abilities and controlled therapeutic release profiles, may serve as alternative agents for PCa treatment. At present, many nanotherapeutics have been developed to treat PCa and have shown better treatment effects in animals than traditional therapeutics. Although PCa nanotherapeutics are highly attractive, few successful cases have been reported in clinical practice. To help researchers design valuable nanotherapeutics for PCa treatment and avoid useless efforts, herein, we first reviewed the strategies and challenges involved in prostate cancer treatment. Subsequently, we presented a comprehensive review of nanotherapeutics for PCa treatment, including their targeting methods, controlled release strategies, therapeutic approaches and mechanisms. Finally, we proposed the future prospects of nanotherapeutics for PCa treatment.
Collapse
Affiliation(s)
- Ruimin Hu
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jin Lan
- Department of Ultrasound, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Dinglin Zhang
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Wenhao Shen
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
41
|
Wu J, Ji H, Li T, Guo H, Xu H, Zhu J, Tian J, Gao M, Wang X, Zhang A. Targeting the prostate tumor microenvironment by plant-derived natural products. Cell Signal 2024; 115:111011. [PMID: 38104704 DOI: 10.1016/j.cellsig.2023.111011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/31/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Prostate cancer is among the most common malignancies for men, with limited therapy options for last stages of the tumor. There are some different options for treatment and control of prostate tumor growth. However, targeting some specific molecules and cells within tumors has been attracted interests in recent years. The tumor microenvironment (TME) has an important role in the initiation of various malignancies, which can also expand the progression of tumor and facilitate invasion of malignant cells. By regulating immune responses and distinct changes in the metabolism of cells in the tumor, TME has substantial effects in the resistance of cancer cells to therapy. TME in various solid cancers like prostate cancer includes various cells, including cancer cells, supportive stromal cells, immunosuppressive cells, and anticancer inflammatory cells. Natural products including herbal-derived agents and also other natural compounds have been well studied for their anti-tumor potentials. These compounds may modulate various signaling pathways involved in TME, such as immune responses, the metabolism of cells, epigenetics, angiogenesis, and extracellular matrix (ECM). This paper provides a review of the current knowledge of prostate TME and complex interactions in this environment. Additionally, the potential use of natural products and also nanoparticles loaded with natural products as therapeutic adjuvants on different cells and therapeutic targets within prostate TME will be discussed.
Collapse
Affiliation(s)
- Jiacheng Wu
- Department of Urology, Affiliated Tumor Hospital of Nantong University & Nantong Tumor Hospital, 226361, China
| | - Hao Ji
- Department of Urology, Affiliated Tumor Hospital of Nantong University & Nantong Tumor Hospital, 226361, China
| | - Tiantian Li
- Department of Urology, Affiliated Tumor Hospital of Nantong University & Nantong Tumor Hospital, 226361, China
| | - Haifeng Guo
- Department of Urology, Affiliated Tumor Hospital of Nantong University & Nantong Tumor Hospital, 226361, China
| | - HaiFei Xu
- Department of Urology, Affiliated Tumor Hospital of Nantong University & Nantong Tumor Hospital, 226361, China
| | - Jinfeng Zhu
- Department of Urology, Affiliated Tumor Hospital of Nantong University & Nantong Tumor Hospital, 226361, China
| | - Jiale Tian
- Department of Urology, Affiliated Tumor Hospital of Nantong University & Nantong Tumor Hospital, 226361, China
| | - Mingde Gao
- Department of Urology, Affiliated Tumor Hospital of Nantong University & Nantong Tumor Hospital, 226361, China
| | - Xiaolin Wang
- Department of Urology, Affiliated Tumor Hospital of Nantong University & Nantong Tumor Hospital, 226361, China.
| | - Aihua Zhang
- The operating room of Affiliated Tumor Hospital of Nantong University & Nantong Tumor Hospital, 226361, China.
| |
Collapse
|
42
|
Fakhri S, Moradi SZ, Faraji F, Kooshki L, Webber K, Bishayee A. Modulation of hypoxia-inducible factor-1 signaling pathways in cancer angiogenesis, invasion, and metastasis by natural compounds: a comprehensive and critical review. Cancer Metastasis Rev 2024; 43:501-574. [PMID: 37792223 DOI: 10.1007/s10555-023-10136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023]
Abstract
Tumor cells employ multiple signaling mediators to escape the hypoxic condition and trigger angiogenesis and metastasis. As a critical orchestrate of tumorigenic conditions, hypoxia-inducible factor-1 (HIF-1) is responsible for stimulating several target genes and dysregulated pathways in tumor invasion and migration. Therefore, targeting HIF-1 pathway and cross-talked mediators seems to be a novel strategy in cancer prevention and treatment. In recent decades, tremendous efforts have been made to develop multi-targeted therapies to modulate several dysregulated pathways in cancer angiogenesis, invasion, and metastasis. In this line, natural compounds have shown a bright future in combating angiogenic and metastatic conditions. Among the natural secondary metabolites, we have evaluated the critical potential of phenolic compounds, terpenes/terpenoids, alkaloids, sulfur compounds, marine- and microbe-derived agents in the attenuation of HIF-1, and interconnected pathways in fighting tumor-associated angiogenesis and invasion. This is the first comprehensive review on natural constituents as potential regulators of HIF-1 and interconnected pathways against cancer angiogenesis and metastasis. This review aims to reshape the previous strategies in cancer prevention and treatment.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Farahnaz Faraji
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leila Kooshki
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6714415153, Iran
| | - Kassidy Webber
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL, 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL, 34211, USA.
| |
Collapse
|
43
|
Liao M, Yao D, Wu L, Luo C, Wang Z, Zhang J, Liu B. Targeting the Warburg effect: A revisited perspective from molecular mechanisms to traditional and innovative therapeutic strategies in cancer. Acta Pharm Sin B 2024; 14:953-1008. [PMID: 38487001 PMCID: PMC10935242 DOI: 10.1016/j.apsb.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 03/17/2024] Open
Abstract
Cancer reprogramming is an important facilitator of cancer development and survival, with tumor cells exhibiting a preference for aerobic glycolysis beyond oxidative phosphorylation, even under sufficient oxygen supply condition. This metabolic alteration, known as the Warburg effect, serves as a significant indicator of malignant tumor transformation. The Warburg effect primarily impacts cancer occurrence by influencing the aerobic glycolysis pathway in cancer cells. Key enzymes involved in this process include glucose transporters (GLUTs), HKs, PFKs, LDHs, and PKM2. Moreover, the expression of transcriptional regulatory factors and proteins, such as FOXM1, p53, NF-κB, HIF1α, and c-Myc, can also influence cancer progression. Furthermore, lncRNAs, miRNAs, and circular RNAs play a vital role in directly regulating the Warburg effect. Additionally, gene mutations, tumor microenvironment remodeling, and immune system interactions are closely associated with the Warburg effect. Notably, the development of drugs targeting the Warburg effect has exhibited promising potential in tumor treatment. This comprehensive review presents novel directions and approaches for the early diagnosis and treatment of cancer patients by conducting in-depth research and summarizing the bright prospects of targeting the Warburg effect in cancer.
Collapse
Affiliation(s)
- Minru Liao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dahong Yao
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China
| | - Lifeng Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chaodan Luo
- Department of Psychology, University of Southern California, Los Angeles, CA 90089, USA
| | - Zhiwen Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jin Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Bo Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
44
|
Kumano K, Nakahashi H, Louphrasitthiphol P, Kuroda Y, Miyazaki Y, Shimomura O, Hashimoto S, Akashi Y, Mathis BJ, Kim J, Owada Y, Goding CR, Oda T. Hypoxia at 3D organoid establishment selects essential subclones within heterogenous pancreatic cancer. Front Cell Dev Biol 2024; 12:1327772. [PMID: 38374892 PMCID: PMC10875002 DOI: 10.3389/fcell.2024.1327772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/18/2024] [Indexed: 02/21/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is especially hypoxic and composed of heterogeneous cell populations containing hypoxia-adapted cells. Hypoxia as a microenvironment of PDAC is known to cause epithelial-mesenchymal transition (EMT) and resistance to therapy. Therefore, cells adapted to hypoxia possess malignant traits that should be targeted for therapy. However, current 3D organoid culture systems are usually cultured under normoxia, losing hypoxia-adapted cells due to selectivity bias at the time of organoid establishment. To overcome any potential selection bias, we focused on oxygen concentration during the establishment of 3D organoids. We subjected identical PDAC surgical samples to normoxia (O2 20%) or hypoxia (O2 1%), yielding glandular and solid organoid morphology, respectively. Pancreatic cancer organoids established under hypoxia displayed higher expression of EMT-related proteins, a Moffitt basal-like subtype transcriptome, and higher 5-FU resistance in contrast to organoids established under normoxia. We suggest that hypoxia during organoid establishment efficiently selects for hypoxia-adapted cells possibly responsible for PDAC malignant traits, facilitating a fundamental source for elucidating and developing new treatment strategies against PDAC.
Collapse
Affiliation(s)
- Koichiro Kumano
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiromitsu Nakahashi
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Pakavarin Louphrasitthiphol
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Yukihito Kuroda
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yoshihiro Miyazaki
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Osamu Shimomura
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Shinji Hashimoto
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yoshimasa Akashi
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Bryan J. Mathis
- International Medical Center, University of Tsukuba Hospital, Tsukuba, Japan
| | - Jaejeong Kim
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yohei Owada
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Colin R. Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Tatsuya Oda
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
45
|
Jayaraman S, Veeraraghavan VP, Natarajan SR, Jasmine S. Exploring the therapeutic potential of curcumin in oral squamous cell carcinoma (HSC-3 cells): Molecular insights into hypoxia-mediated angiogenesis. Pathol Res Pract 2024; 254:155130. [PMID: 38277750 DOI: 10.1016/j.prp.2024.155130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/28/2024]
Abstract
BACKGROUND Oral cancer represents a substantial global health burden, often associate with hypoxia-induced angiogenesis as a critical factor in its progression. Curcumin, a naturally occurring bioactive compounds, has gained increasing attention for its potential anticancer properties. OBJECTIVE To assess the impact of curcumin on oral cancer, particularly its role in modulating HIF-1α-mediated angiogenesis in HSC-3 cells. METHODS Our investigation involved multiple experimental approaches, including MTT assay, aerobic glycolysis by metabolic kit, cell cycle, and apoptosis assessment via flow cytometry. Furthermore, we employed molecular docking techniques to examine the interactions between curcumin and key angiogenesis related proteins, including HIF-1α, VEGF-B, MMP-3, and STAT3. RESULTS Our results demonstrate that curcumin exerts significant effects on the cell survivability, cell cycle regulation, and apoptosis induction in oral cancer cells. These effects were particularly pronounced under the conditions of HIF-1α mediated angiogenesis. Computational binding analysis revealed strong binding interactions with curcumin and the selected proteins, implying a plausible mechanism through which curcumin may modulate the angiogenic pathways in oral cancer. CONCLUSION Our research sheds light on the diverse effects of curcumin on oral cancer cells, emphasizing its potential as a promising therapeutic tool for addressing hypoxia-induced angiogenesis. However, further investigation is essential to comprehensively understand the molecular mechanisms underlying these effects in in vitro models. This deeper comprehension is crucial for translating these findings into clinical applications aimed at improving oral cancer treatment.
Collapse
Affiliation(s)
- Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, SaveethaUniversity, Chennai 600 077, India
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, SaveethaUniversity, Chennai 600 077, India.
| | - Sathan Raj Natarajan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, SaveethaUniversity, Chennai 600 077, India
| | - Sharmila Jasmine
- Department of Oral Maxillofacial Surgery, Rajas Dental College and Hospital, Kavalkinaru, Tirunelveli 627105, Tamil Nadu, India
| |
Collapse
|
46
|
Riaz F, Zhang J, Pan F. Forces at play: exploring factors affecting the cancer metastasis. Front Immunol 2024; 15:1274474. [PMID: 38361941 PMCID: PMC10867181 DOI: 10.3389/fimmu.2024.1274474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024] Open
Abstract
Metastatic disease, a leading and lethal indication of deaths associated with tumors, results from the dissemination of metastatic tumor cells from the site of primary origin to a distant organ. Dispersion of metastatic cells during the development of tumors at distant organs leads to failure to comply with conventional treatments, ultimately instigating abrupt tissue homeostasis and organ failure. Increasing evidence indicates that the tumor microenvironment (TME) is a crucial factor in cancer progression and the process of metastatic tumor development at secondary sites. TME comprises several factors contributing to the initiation and progression of the metastatic cascade. Among these, various cell types in TME, such as mesenchymal stem cells (MSCs), lymphatic endothelial cells (LECs), cancer-associated fibroblasts (CAFs), myeloid-derived suppressor cells (MDSCs), T cells, and tumor-associated macrophages (TAMs), are significant players participating in cancer metastasis. Besides, various other factors, such as extracellular matrix (ECM), gut microbiota, circadian rhythm, and hypoxia, also shape the TME and impact the metastatic cascade. A thorough understanding of the functions of TME components in tumor progression and metastasis is necessary to discover new therapeutic strategies targeting the metastatic tumor cells and TME. Therefore, we reviewed these pivotal TME components and highlighted the background knowledge on how these cell types and disrupted components of TME influence the metastatic cascade and establish the premetastatic niche. This review will help researchers identify these altered components' molecular patterns and design an optimized, targeted therapy to treat solid tumors and restrict metastatic cascade.
Collapse
Affiliation(s)
- Farooq Riaz
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Jing Zhang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Fan Pan
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| |
Collapse
|
47
|
Cai M, Zhao J, Ding Q, Wei J. Oncometabolite 2-hydroxyglutarate regulates anti-tumor immunity. Heliyon 2024; 10:e24454. [PMID: 38293535 PMCID: PMC10826830 DOI: 10.1016/j.heliyon.2024.e24454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
"Oncometabolite" 2-hydroxyglutarate (2-HG) is an aberrant metabolite found in tumor cells, exerting a pivotal influence on tumor progression. Recent studies have unveiled its impact on the proliferation, activation, and differentiation of anti-tumor T cells. Moreover, 2-HG regulates the function of innate immune components, including macrophages, dendritic cells, natural killer cells, and the complement system. Elevated levels of 2-HG hinder α-KG-dependent dioxygenases (α-KGDDs), contributing to tumorigenesis by disrupting epigenetic regulation, genome integrity, hypoxia-inducible factors (HIF) signaling, and cellular metabolism. The chiral molecular structure of 2-HG produces two enantiomers: D-2-HG and L-2-HG, each with distinct origins and biological functions. Efforts to inhibit D-2-HG and leverage the potential of L-2-HG have demonstrated efficacy in cancer immunotherapy. This review delves into the metabolism, biological functions, and impacts on the tumor immune microenvironment (TIME) of 2-HG, providing a comprehensive exploration of the intricate relationship between 2-HG and antitumor immunity. Additionally, we examine the potential clinical applications of targeted therapy for 2-HG, highlighting recent breakthroughs as well as the existing challenges.
Collapse
Affiliation(s)
- Mengyuan Cai
- Department of Pharmacy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Jianyi Zhao
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Qiang Ding
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Jifu Wei
- Department of Pharmacy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| |
Collapse
|
48
|
Mi S, Cai S, Xue M, Wu W. HIF-1α/METTL1/m 7G axis is involved in CRC response to hypoxia. Biochem Biophys Res Commun 2024; 693:149385. [PMID: 38118310 DOI: 10.1016/j.bbrc.2023.149385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 12/22/2023]
Abstract
BACKGROUND In recent years, many studies have confirmed that hypoxia and hypoxia inducible factor (HIF)-1α drive the development of colorectal cancer (CRC). HIF-1α also modulates epitranscriptomic remodeling to regulate cancer development. However, the mechanism by which RNA methylation is altered under hypoxic conditions and the underlying regulatory mechanisms in CRC remain unclear. METHODS Here, seven common types of modifications of mRNA and tRNA were quantitated using liquid chromatography-tandem mass spectrometry. To validate the robustness of the profiling data, modifications that were consistently altered across the three CRC cell lines under hypoxia were validated via dot blot analysis. Then, 10 enzymes that could regulate the abundance of three RNA modifications in tRNA were measured in CRC cells after hypoxia treatment using quantitative real-time polymerase chain reaction. Furthermore, the regulatory role of HIF-1α in the expression of methyltransferase 1 (METTL1) under hypoxic conditions was confirmed using METTL1 promoter activity assays and HIF-1α small interfering RNA (siRNA). The binding capacity of HIF-1α to each hypoxia response element (HRE) in the promoter of METTL1 was investigated by performing Chromatin immunoprecipitation assay (ChIP). RESULTS Abundance of RNA modifications was altered more consistently and significantly in tRNA than in mRNA under hypoxic conditions. In addition, the abundance of N7-methyleguanosine (m7G) modification in tRNA decreased significantly under hypoxic conditions. As a methyltransferase of the m7G modification in tRNA, the expression of METTL1 mRNA was drastically downregulated under hypoxic conditions. Mechanistically, suppression of HIF-1α by siRNA upregulated the METTL1 promoter activity. Furthermore, ChIP showed that HIF-1α could bind with an HRE in the promoter region of METTL1, indicating that METTL1 is a direct target of HIF-1α in CRC cells under hypoxic conditions. CONCLUSIONS Our study revealed that the abundance of the m7G modification in tRNA was drastically reduced in CRC cells dependent on the HIF-1α-mediated inhibition of METTL1 transcription under hypoxic conditions.
Collapse
Affiliation(s)
- Shuyi Mi
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Shangwen Cai
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Meng Xue
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Institute of Gastroenterology, Zhejiang University, Hangzhou, China.
| | - Weiquan Wu
- Cancer Center, Department of Gastroenterology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
49
|
Vargova D, Kolková Z, Dargaj J, Bris L, Luptak J, Dankova Z, Franova S, Svihra J, Slávik P, Sutovska M. Analysis of HIF-1α expression and genetic polymorphisms in human clear cell renal cell carcinoma. Pathol Oncol Res 2024; 29:1611444. [PMID: 38273861 PMCID: PMC10808674 DOI: 10.3389/pore.2023.1611444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/05/2023] [Indexed: 01/27/2024]
Abstract
Introduction: Clear cell renal cell carcinoma (ccRCC) is mostly diagnosed incidentally and has relatively high recurrence rates. Alterations in VHL/HIF and mTOR pathways are commonly present in ccRCC. The present study attempted to identify potential diagnostic markers at the biochemical and molecular level. Methods: In total, 54 subjects (36 patients with ccRCC and 18 cancer-free controls) were enrolled. ELISA was used to measure the levels of HIF-1α in the tumor and healthy kidney tissue. The association between five selected SNPs (rs779805, rs11549465, rs2057482, rs2295080 and rs701848) located in genes of pathologically relevant pathways (VHL/HIF and mTOR) and the risk of ccRCC in the Slovak cohort was studied using real-time PCR. Results: Significant differences in HIF-1α tissue levels were observed between the tumor and healthy kidney tissue (p < 0.001). In the majority (69%) of cases, the levels of HIF-1α were higher in the kidney than in the tumor. Furthermore, the concentration of HIF-1α in the tumor showed a significant positive correlation with CCL3 and IL-1β (p (R2) 0.007 (0.47); p (R2) 0.011 (0.38). No relationship between intratumoral levels of HIF-1α and clinical tumor characteristics was observed. Rs11549465, rs2057482 in the HIF1A gene did not correlate with the expression of HIF-1α either in the tumor or in the normal kidney. None of the selected SNPs has influenced the susceptibility to ccRCC. Conclusion: More research is neccesary to elucidate the role of HIF-1α in the pathogenesis of ccRCC and the association between selected SNPs and susceptibility to this cancer.
Collapse
Affiliation(s)
- Daniela Vargova
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Zuzana Kolková
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Jan Dargaj
- Department of Urology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, and University Hospital Martin, Martin, Slovakia
| | - Lukas Bris
- Department of Urology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, and University Hospital Martin, Martin, Slovakia
| | - Jan Luptak
- Department of Urology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, and University Hospital Martin, Martin, Slovakia
| | - Zuzana Dankova
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Sona Franova
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Jan Svihra
- Department of Urology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, and University Hospital Martin, Martin, Slovakia
| | - Pavol Slávik
- Department of Pathological Anatomy, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, and University Hospital Martin, Martin, Slovakia
| | - Martina Sutovska
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
50
|
Hseu JH, Lin YA, Pandey S, Vadivalagan C, Ali A, Chen SJ, Way TD, Yang HL, Hseu YC. Antrodia salmonea suppresses epithelial-mesenchymal transition/metastasis and Warburg effects by inhibiting Twist and HIF-1α expression in Twist-overexpressing head and neck squamous cell carcinoma cells. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117030. [PMID: 37572931 DOI: 10.1016/j.jep.2023.117030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Antrodia salmonea (AS), linked to the genus Taiwanofungus, is a medicinal fungus, and exhibits anti-inflammatory, anti-oxidant, and tumor inhibiting properties. AIM OF THE STUDY In this study, we investigated the metabolic reprogramming and anti-metastasis/epithelial-mesenchymal transition (EMT) effects of AS exposure in Twist-overexpressing head and neck squamous cell carcinoma (HNSCC, OECM-1 and FaDu-Twist) cells. MATERIALS AND METHODS MTT assay, Western blot, migration/invasion assay, immunofluorescence, glucose uptake assay, lactate assay, oxygen consumption rate (OCR)/Extracellular acidification rate (ECAR) assay, Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometry (LC-ESI-MS), and qRT-PCR experimental techniques were used to evaluate the therapeutic potential of AS treatment in HNSCC cells. RESULTS This study showed that AS exhibits anti-EMT and anti-metastatic effects as well as metabolic reprogramming in Twist-overexpressing HNSCC cells. AS exposure inhibited Twist and hypoxia-inducible factor-1α (HIF-1α) protein and/or mRNA expression in Twist-overexpressing OECM-1 and FaDu-Twist cells. AS markedly suppressed EMT by enhancing the expression of E-cadherin; while the N-cadherin was suppressed. Furthermore, glucose uptake and lactate accumulation, together with HIF-1α-regulated glycolysis genes were diminished by AS in OECM-1 cells. AS decreased the ECAR, and enhanced the OCR together with basal respiration, ATP production, maximal respiration, and spare respiratory capacity under normoxia and hypoxia (CoCl2) in OECM-1 cells. There was a marked reduction in the level of glycolytic intermediate's; while TCA cycle metabolites were increased by AS treatment in OECM-1 cells. CONCLUSIONS We concluded that AS treatment suppresses EMT/metastasis and Warburg effects through Twist and HIF-1α inhibition in Twist-overexpressing HNSCC cells.
Collapse
Affiliation(s)
- Jhih-Hsuan Hseu
- Department of Dermatology, China Medical University Hospital, Taichung, 404327, Taiwan
| | - Yi-An Lin
- Institute of Nutrition, College of Health Care, China Medical University, Taichung, 406040, Taiwan
| | - Sudhir Pandey
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, 406040, Taiwan
| | - Chithravel Vadivalagan
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, 48109, United States
| | - Asif Ali
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, Jammu and Kashmir, 190005, India
| | - Siang-Jyun Chen
- Institute of Nutrition, College of Health Care, China Medical University, Taichung, 406040, Taiwan
| | - Tzong-Der Way
- Department of Life Sciences, China Medical University, Taichung, 406040, Taiwan
| | - Hsin-Ling Yang
- Institute of Nutrition, College of Health Care, China Medical University, Taichung, 406040, Taiwan.
| | - You-Cheng Hseu
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, 406040, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, 413305, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung, 404333, Taiwan; Research Center of Chinese Herbal Medicine, China Medical University, Taichung, 404333, Taiwan.
| |
Collapse
|