1
|
Gillani R, Collins RL, Crowdis J, Garza A, Jones JK, Walker M, Sanchis-Juan A, Whelan CW, Pierce-Hoffman E, Talkowski ME, Brand H, Haigis K, LoPiccolo J, AlDubayan SH, Gusev A, Crompton BD, Janeway KA, Van Allen EM. Rare germline structural variants increase risk for pediatric solid tumors. Science 2025; 387:eadq0071. [PMID: 39745975 DOI: 10.1126/science.adq0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/25/2024] [Indexed: 01/04/2025]
Abstract
Pediatric solid tumors are a leading cause of childhood disease mortality. In this work, we examined germline structural variants (SVs) as risk factors for pediatric extracranial solid tumors using germline genome sequencing of 1765 affected children, their 943 unaffected parents, and 6665 adult controls. We discovered a sex-biased association between very large (>1 megabase) germline chromosomal abnormalities and increased risk of solid tumors in male children. The overall impact of germline SVs was greatest in neuroblastoma, where we uncovered burdens of ultrarare SVs that cause loss of function of highly expressed, mutationally constrained genes, as well as noncoding SVs predicted to disrupt chromatin domain boundaries. Collectively, we estimate that rare germline SVs explain 1.1 to 5.6% of pediatric cancer liability, establishing them as an important component of disease predisposition.
Collapse
Affiliation(s)
- Riaz Gillani
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Boston Children's Hospital, Boston, MA, USA
| | - Ryan L Collins
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Amanda Garza
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jill K Jones
- Harvard Medical School, Boston, MA, USA
- Boston Children's Hospital, Boston, MA, USA
- Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA, USA
| | - Mark Walker
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alba Sanchis-Juan
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Christopher W Whelan
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Emma Pierce-Hoffman
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michael E Talkowski
- Harvard Medical School, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Harrison Brand
- Harvard Medical School, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kevin Haigis
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jaclyn LoPiccolo
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Saud H AlDubayan
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- College of Medicine, King Saudi bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Alexander Gusev
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Brian D Crompton
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Boston Children's Hospital, Boston, MA, USA
| | - Katherine A Janeway
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Boston Children's Hospital, Boston, MA, USA
| | - Eliezer M Van Allen
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
2
|
KATIB YOUSEF, MULLA NASSER. Epidemiological and clinical characteristics of lung cancer in Saudi Arabia: a retrospective study in single oncology center. Oncol Res 2024; 32:1803-1809. [PMID: 39449814 PMCID: PMC11497172 DOI: 10.32604/or.2024.052358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/29/2024] [Indexed: 10/26/2024] Open
Abstract
Background Lung cancer (LC) is one of the most common neoplastic diseases and a leading cause of death in Saudi Arabia. Its incidence in Saudi Arabia has increased by more than 3% within two decades. Our study aimed to describe the epidemiological and genetic landscapes of LC in Al-Madinah city in Saudi Arabia. Methods A retrospective analysis was conducted on the medical records of 65 patients diagnosed with lung cancer between 2015 and 2021 at a single medical oncology center in Al-Madinah city of Saudi Arabia. Results The mean patients' age was 59.2 years, with 50 (76.9%) males and 15 (23.1%) females; 37 (57%) smokers, and 28 (43%) non-smokers. The number of cases per year has increased gradually over six years from 2015 (n = 3) to 2020 (n = 13). The most prevalent histopathological diagnosis was non-small cell lung cancer (NSCLC) (n = 58, 89%) followed by small cell lung cancer (SCLC) (n = 5, 7.8%). NSCLC was frequently more common in smokers while squamous cell carcinoma was more frequent in non-smokers. Around 89% (n = 58) of the cases were diagnosed in late stage IV and the most common metastatic sites were to pleura and lymph nodes (n = 32, 49.2%). Program Death Legend-1 (PDL-1) was fairly expressed in 7/10 (70%) patients. Epidermal Growth Factor Receptor (EGFR) was mutated in 5/17 (29%) patients. Other mutations detected include Anaplastic Lymphoma Kinase (ALK) and phosphatidylinositol 3-kinase (PIK3C) mutations in two patients. Conclusions Our study revealed that lung cancer is a significant burden in Al-Madinah city of Saudi Arabia. If the risk factors are not controlled, the number of cases may increase considerably. Health education about the risk factors and cancer prevention helps in early lung cancer detection.
Collapse
Affiliation(s)
- YOUSEF KATIB
- Department of Radiology, College of Medicine, Taibah University, Madinah, 42353, Saudi Arabia
| | - NASSER MULLA
- Department of Internal Medicine, College of Medicine, Taibah University, Madinah, 42353, Saudi Arabia
| |
Collapse
|
3
|
Long E, Yin J, Shin JH, Li Y, Li B, Kane A, Patel H, Sun X, Wang C, Luong T, Xia J, Han Y, Byun J, Zhang T, Zhao W, Landi MT, Rothman N, Lan Q, Chang YS, Yu F, Amos CI, Shi J, Lee JG, Kim EY, Choi J. Context-aware single-cell multiomics approach identifies cell-type-specific lung cancer susceptibility genes. Nat Commun 2024; 15:7995. [PMID: 39266564 PMCID: PMC11392933 DOI: 10.1038/s41467-024-52356-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 09/03/2024] [Indexed: 09/14/2024] Open
Abstract
Genome-wide association studies (GWAS) identified over fifty loci associated with lung cancer risk. However, underlying mechanisms and target genes are largely unknown, as most risk-associated variants might regulate gene expression in a context-specific manner. Here, we generate a barcode-shared transcriptome and chromatin accessibility map of 117,911 human lung cells from age/sex-matched ever- and never-smokers to profile context-specific gene regulation. Identified candidate cis-regulatory elements (cCREs) are largely cell type-specific, with 37% detected in one cell type. Colocalization of lung cancer candidate causal variants (CCVs) with these cCREs combined with transcription factor footprinting prioritize the variants for 68% of the GWAS loci. CCV-colocalization and trait relevance score indicate that epithelial and immune cell categories, including rare cell types, contribute to lung cancer susceptibility the most. A multi-level cCRE-gene linking system identifies candidate susceptibility genes from 57% of the loci, where most loci display cell-category-specific target genes, suggesting context-specific susceptibility gene function.
Collapse
Affiliation(s)
- Erping Long
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinhu Yin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Ju Hye Shin
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yuyan Li
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bolun Li
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Alexander Kane
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Harsh Patel
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Xinti Sun
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cong Wang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Thong Luong
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jun Xia
- Department of Biomedical Sciences, Creighton University, Omaha, NE, USA
| | - Younghun Han
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Jinyoung Byun
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Wei Zhao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Yoon Soo Chang
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Fulong Yu
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jin Gu Lee
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Eun Young Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Jiyeon Choi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
4
|
Long E, Patel H, Golden A, Antony M, Yin J, Funderburk K, Feng J, Song L, Hoskins JW, Amundadottir LT, Hung RJ, Amos CI, Shi J, Rothman N, Lan Q, Choi J. High-throughput characterization of functional variants highlights heterogeneity and polygenicity underlying lung cancer susceptibility. Am J Hum Genet 2024; 111:1405-1419. [PMID: 38906146 PMCID: PMC11267514 DOI: 10.1016/j.ajhg.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/23/2024] Open
Abstract
Genome-wide association studies (GWASs) have identified numerous lung cancer risk-associated loci. However, decoding molecular mechanisms of these associations is challenging since most of these genetic variants are non-protein-coding with unknown function. Here, we implemented massively parallel reporter assays (MPRAs) to simultaneously measure the allelic transcriptional activity of risk-associated variants. We tested 2,245 variants at 42 loci from 3 recent GWASs in East Asian and European populations in the context of two major lung cancer histological types and exposure to benzo(a)pyrene. This MPRA approach identified one or more variants (median 11 variants) with significant effects on transcriptional activity at 88% of GWAS loci. Multimodal integration of lung-specific epigenomic data demonstrated that 63% of the loci harbored multiple potentially functional variants in linkage disequilibrium. While 22% of the significant variants showed allelic effects in both A549 (adenocarcinoma) and H520 (squamous cell carcinoma) cell lines, a subset of the functional variants displayed a significant cell-type interaction. Transcription factor analyses nominated potential regulators of the functional variants, including those with cell-type-specific expression and those predicted to bind multiple potentially functional variants across the GWAS loci. Linking functional variants to target genes based on four complementary approaches identified candidate susceptibility genes, including those affecting lung cancer cell growth. CRISPR interference of the top functional variant at 20q13.33 validated variant-to-gene connections, including RTEL1, SOX18, and ARFRP1. Our data provide a comprehensive functional analysis of lung cancer GWAS loci and help elucidate the molecular basis of heterogeneity and polygenicity underlying lung cancer susceptibility.
Collapse
Affiliation(s)
- Erping Long
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Harsh Patel
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Alyxandra Golden
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Michelle Antony
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jinhu Yin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Karen Funderburk
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - James Feng
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Lei Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jason W Hoskins
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Laufey T Amundadottir
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jiyeon Choi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
5
|
Motsinger-Reif AA, Reif DM, Akhtari FS, House JS, Campbell CR, Messier KP, Fargo DC, Bowen TA, Nadadur SS, Schmitt CP, Pettibone KG, Balshaw DM, Lawler CP, Newton SA, Collman GW, Miller AK, Merrick BA, Cui Y, Anchang B, Harmon QE, McAllister KA, Woychik R. Gene-environment interactions within a precision environmental health framework. CELL GENOMICS 2024; 4:100591. [PMID: 38925123 PMCID: PMC11293590 DOI: 10.1016/j.xgen.2024.100591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/26/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024]
Abstract
Understanding the complex interplay of genetic and environmental factors in disease etiology and the role of gene-environment interactions (GEIs) across human development stages is important. We review the state of GEI research, including challenges in measuring environmental factors and advantages of GEI analysis in understanding disease mechanisms. We discuss the evolution of GEI studies from candidate gene-environment studies to genome-wide interaction studies (GWISs) and the role of multi-omics in mediating GEI effects. We review advancements in GEI analysis methods and the importance of large-scale datasets. We also address the translation of GEI findings into precision environmental health (PEH), showcasing real-world applications in healthcare and disease prevention. Additionally, we highlight societal considerations in GEI research, including environmental justice, the return of results to participants, and data privacy. Overall, we underscore the significance of GEI for disease prediction and prevention and advocate for integrating the exposome into PEH omics studies.
Collapse
Affiliation(s)
- Alison A Motsinger-Reif
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Durham, NC, USA.
| | - David M Reif
- Predictive Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Farida S Akhtari
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - John S House
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - C Ryan Campbell
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Kyle P Messier
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Durham, NC, USA; Predictive Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - David C Fargo
- Office of the Director, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Tiffany A Bowen
- Office of the Director, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Srikanth S Nadadur
- Exposure, Response, and Technology Branch, Division of Extramural Research and Training, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Charles P Schmitt
- Office of the Scientific Director, Office of Data Science, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Kristianna G Pettibone
- Program Analysis Branch, Division of Extramural Research and Training, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - David M Balshaw
- Office of the Director, National Institute of Environmental Health Sciences, Durham, NC, USA; Division of Extramural Research and Training, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Cindy P Lawler
- Genes, Environment, and Health Branch, Division of Extramural Research and Training, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Shelia A Newton
- Office of Scientific Coordination, Planning and Evaluation, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Gwen W Collman
- Office of the Director, National Institute of Environmental Health Sciences, Durham, NC, USA; Office of Scientific Coordination, Planning and Evaluation, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Aubrey K Miller
- Office of Scientific Coordination, Planning and Evaluation, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - B Alex Merrick
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Yuxia Cui
- Exposure, Response, and Technology Branch, Division of Extramural Research and Training, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Benedict Anchang
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Quaker E Harmon
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Kimberly A McAllister
- Genes, Environment, and Health Branch, Division of Extramural Research and Training, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Rick Woychik
- Office of the Director, National Institute of Environmental Health Sciences, Durham, NC, USA
| |
Collapse
|
6
|
Cheng Y, Zhang C, Li Q, Yang X, Chen W, He K, Chen M. MTF1 genetic variants are associated with lung cancer risk in the Chinese Han population. BMC Cancer 2024; 24:778. [PMID: 38943058 PMCID: PMC11212402 DOI: 10.1186/s12885-024-12516-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 06/13/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Metal-regulatory transcription factor 1 (MTF1), a conserved metal-binding transcription factor in eukaryotes, regulates the proliferation of cancer cells by activating downstream target genes and then participates in the formation and progression of tumors, including lung cancer (LC). The expression level of MTF1 is down-regulated in LC, and high expression of MTF1 is associated with a good prognosis of LC. However, the association between MTF1 polymorphism and LC risk has not been explored. METHODS The genotyping of MTF1 Single nucleotide polymorphisms (SNPs) including rs473279, rs28411034, rs28411352, and rs3748682 was identified by the Agena MassARRAY system among 670 healthy controls and 670 patients with LC. The odds ratio (OR) and 95% confidence intervals (CI) were calculated by logistics regression to assess the association of these SNPs with LC risk. RESULTS MTF1 rs28411034 (OR 1.22, 95% CI 1.03-1.45, p = 0.024) and rs3748682 (OR 1.24, 95% CI 1.04-1.47, p = 0.014) were associated with higher LC susceptibility overall. Moreover, the effect of rs28411034 and rs3748682 on LC susceptibility was observed in males, subjects with body mass index (BMI) ≥ 24 kg/m2, smokers, drinkers, and patients with lung squamous carcinoma (OR and 95% CI > 1, p < 0.05). Besides, rs28411352 (OR 0.73, 95% CI 0.55-0.97, p = 0.028,) showed protective effect for reduced LC risk in drinkers. CONCLUSIONS We were first who reported that rs28411034 and rs3748682 tended to be relevant to increased LC susceptibility among the Chinese Han population. These results of this study could help to recognize the pathogenic mechanisms of the MTF1 gene in LC progress.
Collapse
Affiliation(s)
- Yujing Cheng
- Department of Respiratory Medicine, The First Affiliated Hospital of School of Medicine of Xi'an Jiaotong University, Yanta District, No. 277, Yanta West Road, Xi'an, 710061, Shaanxi, China
- Department of Blood Transfusion, The First People's Hospital of Yunnan Province, The Afiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China
| | - Chan Zhang
- Department of Blood Transfusion, The First People's Hospital of Yunnan Province, The Afiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China
| | - Qi Li
- Department of Blood Transfusion, The First People's Hospital of Yunnan Province, The Afiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China
| | - Xin Yang
- Department of Blood Transfusion, The First People's Hospital of Yunnan Province, The Afiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China
| | - Wanlu Chen
- Department of Blood Transfusion, The First People's Hospital of Yunnan Province, The Afiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China
| | - KunHua He
- Department of Blood Transfusion, The First People's Hospital of Qujing City, Qujing, 655099, Yunnan, China
| | - Mingwei Chen
- Department of Respiratory Medicine, The First Affiliated Hospital of School of Medicine of Xi'an Jiaotong University, Yanta District, No. 277, Yanta West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
7
|
Yang DW, Miller JA, Xue WQ, Tang M, Lei L, Zheng Y, Diao H, Wang TM, Liao Y, Wu YX, Zheng XH, Zhou T, Li XZ, Zhang PF, Chen XY, Yu X, Li F, Ji M, Sun Y, He YQ, Jia WH. Polygenic risk-stratified screening for nasopharyngeal carcinoma in high-risk endemic areas of China: a cost-effectiveness study. Front Public Health 2024; 12:1375533. [PMID: 38756891 PMCID: PMC11097958 DOI: 10.3389/fpubh.2024.1375533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
Background Nasopharyngeal carcinoma (NPC) has an extremely high incidence rate in Southern China, resulting in a severe disease burden for the local population. Current EBV serologic screening is limited by false positives, and there is opportunity to integrate polygenic risk scores for personalized screening which may enhance cost-effectiveness and resource utilization. Methods A Markov model was developed based on epidemiological and genetic data specific to endemic areas of China, and further compared polygenic risk-stratified screening [subjects with a 10-year absolute risk (AR) greater than a threshold risk underwent EBV serological screening] to age-based screening (EBV serological screening for all subjects). For each initial screening age (30-34, 35-39, 40-44, 45-49, 50-54, 55-59, 60-64, and 65-69 years), a modeled cohort of 100,000 participants was screened until age 69, and then followed until age 79. Results Among subjects aged 30 to 54 years, polygenic risk-stratified screening strategies were more cost-effective than age-based screening strategies, and almost comprised the cost-effectiveness efficiency frontier. For men, screening strategies with a 1-year frequency and a 10-year absolute risk (AR) threshold of 0.7% or higher were cost-effective, with an incremental cost-effectiveness ratio (ICER) below the willingness to pay (¥203,810, twice the local per capita GDP). Specifically, the strategies with a 10-year AR threshold of 0.7% or 0.8% are the most cost-effective strategies, with an ICER ranging from ¥159,752 to ¥201,738 compared to lower-cost non-dominated strategies on the cost-effectiveness frontiers. The optimal strategies have a higher probability (29.4-35.8%) of being cost-effective compared to other strategies on the frontier. Additionally, they reduce the need for nasopharyngoscopies by 5.1-27.7% compared to optimal age-based strategies. Likewise, for women aged 30-54 years, the optimal strategy with a 0.3% threshold showed similar results. Among subjects aged 55 to 69 years, age-based screening strategies were more cost-effective for men, while no screening may be preferred for women. Conclusion Our economic evaluation found that the polygenic risk-stratified screening could improve the cost-effectiveness among individuals aged 30-54, providing valuable guidance for NPC prevention and control policies in endemic areas of China.
Collapse
Affiliation(s)
- Da-Wei Yang
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jacob A. Miller
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH, United States
| | - Wen-Qiong Xue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | | | - Lin Lei
- Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Yuming Zheng
- Wuzhou Red Cross Hospital, Wuzhou, Guangxi, China
| | - Hua Diao
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Tong-Min Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan-Xia Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Hui Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ting Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xi-Zhao Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Pei-Fen Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xue-Yin Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xia Yu
- Cancer Research Institute of Zhongshan City, Zhongshan Hospital of Sun Yat-sen University, Zhongshan, China
| | - Fugui Li
- Cancer Research Institute of Zhongshan City, Zhongshan Hospital of Sun Yat-sen University, Zhongshan, China
| | - Mingfang Ji
- Cancer Research Institute of Zhongshan City, Zhongshan Hospital of Sun Yat-sen University, Zhongshan, China
| | - Ying Sun
- Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yong-Qiao He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wei-Hua Jia
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
8
|
Ciofiac CM, Mămuleanu M, Florescu LM, Gheonea IA. CT Imaging Patterns in Major Histological Types of Lung Cancer. Life (Basel) 2024; 14:462. [PMID: 38672733 PMCID: PMC11051469 DOI: 10.3390/life14040462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/23/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Lung cancer ranks as the second most prevalent cancer globally and is the primary contributor to neoplastic-related deaths. The approach to its treatment relies on both tumour staging and histological type determination. Data indicate that the prognosis of lung cancer is strongly linked to its clinical stage, underscoring the importance of early diagnosis in enhancing patient outcomes. Consequently, the choice of an appropriate diagnostic method holds significant importance in elevating both the early detection rate and prognosis of lung cancer. This paper aims to assess computer tomography features specific to the most common lung cancer types (adenocarcinoma, squamous cell carcinomas and small cell lung cancer). Data were collected retrospectively from CT scans of 58 patients pathologically diagnosed with lung cancer. The following CT features were evaluated and recorded for each case: location, margins, structure, lymph node involvement, cavitation, vascular bundle-thickening, bronchial obstruction, and pleural involvement. Squamous cell carcinoma (SQCC) and small cell lung cancer (SCLC) showed a higher incidence of central location, while adenocarcinoma (ADC) showed a significant predilection for a peripheral location. Internal cavitation was mostly observed in SQCC, and a solid structure was observed in almost all cases of ADC. These features can provide information about the prognosis of the patient, considering that NSCLCs are more frequent but tend to demonstrate positive results for targetable driver mutations, such as EGFR, thereby increasing the overall survival. In addition, SCLC presents with early distant spreads, which limits the opportunity to investigate the evolution of tumorigenesis and gene alterations at early stages but can have a rapidly positively response to chemotherapy. The location of the lung cancer exhibits distinct forecasts, with several studies suggesting that peripheral lung tumours offer a more favourable prognosis. Cavity formation appears correlate with a poorer prognosis. Histopathological analysis is the gold standard for diagnosing the type of lung cancer; however, using CT scanning for the purpose of a rough, but fast, preliminary diagnosis has the potential to shorten the waiting time for treatment by helping clinicians and patients to know more about the diagnosis and prognosis.
Collapse
Affiliation(s)
| | - Mădălin Mămuleanu
- Department of Automatic Control and Electronics, University of Craiova, 200585 Craiova, Romania
| | - Lucian Mihai Florescu
- Department of Radiology and Medical Imaging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (L.M.F.); (I.A.G.)
| | - Ioana Andreea Gheonea
- Department of Radiology and Medical Imaging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (L.M.F.); (I.A.G.)
| |
Collapse
|
9
|
Samuel G, Hardcastle F, Lucassen A. Advocating for a Context Specific Approach to Tackle Inequities. THE AMERICAN JOURNAL OF BIOETHICS : AJOB 2024; 24:109-111. [PMID: 38394004 DOI: 10.1080/15265161.2024.2303168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
|
10
|
Cheng J, Zhou L, Wang H. Symbiotic microbial communities in various locations of the lung cancer respiratory tract along with potential host immunological processes affected. Front Cell Infect Microbiol 2024; 14:1296295. [PMID: 38371298 PMCID: PMC10873922 DOI: 10.3389/fcimb.2024.1296295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/18/2024] [Indexed: 02/20/2024] Open
Abstract
Lung cancer has the highest mortality rate among all cancers worldwide. The 5-year overall survival rate for non-small cell lung cancer (NSCLC) is estimated at around 26%, whereas for small cell lung cancer (SCLC), the survival rate is only approximately 7%. This disease places a significant financial and psychological burden on individuals worldwide. The symbiotic microbiota in the human body has been significantly associated with the occurrence, progression, and prognosis of various diseases, such as asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis. Studies have demonstrated that respiratory symbiotic microorganisms and their metabolites play a crucial role in modulating immune function and contributing to the pathophysiology of lung cancer through their interactions with the host. In this review, we provide a comprehensive overview of the microbial characteristics associated with lung cancer, with a focus on the respiratory tract microbiota from different locations, including saliva, sputum, bronchoalveolar lavage fluid (BALF), bronchial brush samples, and tissue. We describe the respiratory tract microbiota's biodiversity characteristics by anatomical region, elucidating distinct pathological features, staging, metastasis, host chromosomal mutations, immune therapies, and the differentiated symbiotic microbiota under the influence of environmental factors. Our exploration investigates the intrinsic mechanisms linking the microbiota and its host. Furthermore, we have also provided a comprehensive review of the immune mechanisms by which microbiota are implicated in the development of lung cancer. Dysbiosis of the respiratory microbiota can promote or inhibit tumor progression through various mechanisms, including DNA damage and genomic instability, activation and regulation of the innate and adaptive immune systems, and stimulation of epithelial cells leading to the upregulation of carcinogenesis-related pathways.
Collapse
Affiliation(s)
- Jiuling Cheng
- Respiratory Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lujia Zhou
- Henan Key Laboratory of Precision Diagnosis of Respiratory Infectious Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Key Laboratory of Precision Diagnosis of Respiratory Infectious Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huaqi Wang
- Respiratory Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
11
|
Tian W, Li LX, Cheng W, Jin HK, Zhang SS. Leukocyte immunoglobulin-like receptor A3 gene deletion in five Chinese populations and protective association with nasopharyngeal carcinoma. Int J Immunogenet 2024; 51:32-38. [PMID: 38015196 DOI: 10.1111/iji.12647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/17/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
Among the thirteen leukocyte Ig-like receptor (LILR) loci located at 19q13.4, LILRA3 is unique in that it encodes a soluble protein lacking the transmembrane and cytoplasmic domains, and a 6.7 kb deletion spanning the first seven exons has been detected in some human individuals. Presently, there is a lack of data about the distribution of LILRA3 gene deletion in more diverse ethnic groups. Also, no previous studies have investigated the correlation between copy number variation (CNV) of LILRA3 and nasopharyngeal carcinoma (NPC). In this study, five populations from China mainland: two Southern Han populations, Hunan (N = 1478) and Guandong (N = 107); one Southeastern Han population, Fujian (N = 439); and two Northern populations, Inner Mongolia Han (N = 104) and Mongol population from Inner Mongolia (N = 158) were investigated for CNV of LILRA3 using polymerase chain reaction-sequence-specific priming (PCR-SSP) method. LILRA3 variants were also examined in a cohort of NPC cases (N = 1142) in Hunan Han population. The five Chinese populations demonstrated northward increase in frequency of the deleted form of LILRA3 gene (LILRA3*Del) (all corrected p values < 0.05). Inter-population comparison also uncovered significant differentiation in the distribution of CNV of LILRA3 among modern human populations. LILRA3*Del was found to confer significantly reduced risk to NPC in Hunan Han population (at allelic level: OR = 0.79, 95% CI = 0.71-0.89, p < 0.0001; at genotype level: OR = 0.63, 95% CI = 0.51-0.79, p < 0.0001). No interaction was found between LILRA3 variants and HLA-A*02:07, HLA-A*11:01, HLA-B*13 and HLA-B*46:01 alleles in susceptibility to NPC. Our study constitutes the first demonstration of LILRA3 gene as a locus linked to NPC susceptibility in a southern Chinese population. Future independent studies in other populations are warranted to confirm the findings reported in this study.
Collapse
Affiliation(s)
- Wei Tian
- Department of Immunology, College of Basic Medical Sciences, Central South University, Changsha, China
- Laboratory of Cellular and Molecular Biology, College of Basic Medical Sciences, Central South University, Changsha, China
| | - Li Xin Li
- Laboratory of Cellular and Molecular Biology, College of Basic Medical Sciences, Central South University, Changsha, China
| | - Wen Cheng
- Department of Immunology, College of Basic Medical Sciences, Central South University, Changsha, China
| | - He Kun Jin
- Department of Radiotherapy, Hunan Cancer Hospital (the affiliated Cancer Hospital of XiangYa School of Medicine of Central South University), Changsha, China
| | - Sha Shuang Zhang
- Laboratory of Cellular and Molecular Biology, College of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
12
|
Zhu M, Lv J, Huang Y, Ma H, Li N, Wei X, Ji M, Ma Z, Song C, Wang C, Dai J, Tan F, Guo Y, Walters R, Millwood IY, Hung RJ, Christiani DC, Yu C, Jin G, Chen Z, Wei Q, Amos CI, Hu Z, Li L, Shen H. Ethnic differences of genetic risk and smoking in lung cancer: two prospective cohort studies. Int J Epidemiol 2023; 52:1815-1825. [PMID: 37676847 DOI: 10.1093/ije/dyad118] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND The role of genetic background underlying the disparity of relative risk of smoking and lung cancer between European populations and East Asians remains unclear. METHODS To assess the role of ethnic differences in genetic factors associated with smoking-related risk of lung cancer, we first constructed ethnic-specific polygenic risk scores (PRSs) to quantify individual genetic risk of lung cancer in Chinese and European populations. Then, we compared genetic risk and smoking as well as their interactions on lung cancer between two cohorts, including the China Kadoorie Biobank (CKB) and the UK Biobank (UKB). We also evaluated the absolute risk reduction over a 5-year period. RESULTS Differences in compositions and association effects were observed between the Chinese-specific PRSs and European-specific PRSs, especially for smoking-related loci. The PRSs were consistently associated with lung cancer risk, but stronger associations were observed in smokers of the UKB [hazard ratio (HR) 1.26 vs 1.15, P = 0.028]. A significant interaction between genetic risk and smoking on lung cancer was observed in the UKB (RERI, 11.39 (95% CI, 7.01-17.94)], but not in the CKB. Obvious higher absolute risk was observed in nonsmokers of the CKB, and a greater absolute risk reduction was found in the UKB (10.95 vs 7.12 per 1000 person-years, P <0.001) by comparing heavy smokers with nonsmokers, especially for those at high genetic risk. CONCLUSIONS Ethnic differences in genetic factors and the high incidence of lung cancer in nonsmokers of East Asian ethnicity were involved in the disparity of smoking-related risk of lung cancer.
Collapse
Affiliation(s)
- Meng Zhu
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Yanqian Huang
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Hongxia Ma
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
- Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing, China
| | - Ni Li
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Chinese Academy of Medical Sciences Key Laboratory for National Cancer Big Data Analysis and Implement, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoxia Wei
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Mengmeng Ji
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Zhimin Ma
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Ci Song
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Cheng Wang
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Juncheng Dai
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Fengwei Tan
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Guo
- Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Robin Walters
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Iona Y Millwood
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - David C Christiani
- Department of Environmental Health, Harvard School of Public Health, Department of Medicine, Harvard Medical School/Massachusetts General Hospital, Boston, USA
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China
| | - Guangfu Jin
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Zhengming Chen
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, USA
| | - Christopher I Amos
- Baylor College of Medicine, Institute for Clinical and Translational Research, Houston, USA
| | - Zhibin Hu
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Hongbing Shen
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
- Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Jiang Y, Zhang Y, Ju C, Zhang R, Li H, Chen F, Zhu Y, Shen S, Wei Y. A cross-disorder study to identify causal relationships, shared genetic variants, and genes across 21 digestive disorders. iScience 2023; 26:108238. [PMID: 37965154 PMCID: PMC10641500 DOI: 10.1016/j.isci.2023.108238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/26/2023] [Accepted: 10/13/2023] [Indexed: 11/16/2023] Open
Abstract
Digestive disorders are a significant contributor to the global burden of disease and seriously affect human quality of life. Research has already confirmed the presence of pleiotropic genetic loci among digestive disorders, and studies have explored shared genetic factors among pan-cancers, including various malignant digestive disorders. However, most cross-phenotype studies within the digestive tract system have been limited to a few traits, with no systematic coverage of common benign and malignant digestive disorders. Here, we analyzed data from the UK Biobank to investigate 21 digestive disorders, exploring the genetic correlations and causal relationships between diseases, as well as the common genetic factors and potential biological pathways driving these relationships. Our findings confirmed the extensive genetic correlation and causal relationship between digestive disorders, providing important insights into the genetic etiology, causality, disease prevention, and clinical treatment of diseases.
Collapse
Affiliation(s)
- Yue Jiang
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yihong Zhang
- Laboratory Medicine Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Can Ju
- Department of Biostatistics, School of Public Health, Center of Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Ruyang Zhang
- Department of Biostatistics, School of Public Health, Center of Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Hui Li
- Department of Gastroenterology, The Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Feng Chen
- Department of Biostatistics, School of Public Health, Center of Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Yefei Zhu
- Laboratory Medicine Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Sipeng Shen
- Department of Biostatistics, School of Public Health, Center of Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Yongyue Wei
- Peking University Center for Public Health and Epidemic Preparedness and Response, Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing 100191, China
| |
Collapse
|
14
|
Long E, Yin J, Shin JH, Li Y, Kane A, Patel H, Luong T, Xia J, Han Y, Byun J, Zhang T, Zhao W, Landi MT, Rothman N, Lan Q, Chang YS, Yu F, Amos C, Shi J, Lee JG, Kim EY, Choi J. Context-aware single-cell multiome approach identified cell-type specific lung cancer susceptibility genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.559336. [PMID: 37808664 PMCID: PMC10557605 DOI: 10.1101/2023.09.25.559336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Genome-wide association studies (GWAS) identified over fifty loci associated with lung cancer risk. However, the genetic mechanisms and target genes underlying these loci are largely unknown, as most risk-associated-variants might regulate gene expression in a context-specific manner. Here, we generated a barcode-shared transcriptome and chromatin accessibility map of 117,911 human lung cells from age/sex-matched ever- and never-smokers to profile context-specific gene regulation. Accessible chromatin peak detection identified cell-type-specific candidate cis-regulatory elements (cCREs) from each lung cell type. Colocalization of lung cancer candidate causal variants (CCVs) with these cCREs prioritized the variants for 68% of the GWAS loci, a subset of which was also supported by transcription factor abundance and footprinting. cCRE colocalization and single-cell based trait relevance score nominated epithelial and immune cells as the main cell groups contributing to lung cancer susceptibility. Notably, cCREs of rare proliferating epithelial cell types, such as AT2-proliferating (0.13%) and basal cells (1.8%), overlapped with CCVs, including those in TERT. A multi-level cCRE-gene linking system identified candidate susceptibility genes from 57% of lung cancer loci, including those not detected in tissue- or cell-line-based approaches. cCRE-gene linkage uncovered that adjacent genes expressed in different cell types are correlated with distinct subsets of coinherited CCVs, including JAML and MPZL3 at the 11q23.3 locus. Our data revealed the cell types and contexts where the lung cancer susceptibility genes are functional.
Collapse
Affiliation(s)
- Erping Long
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Current affiliation: Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinhu Yin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ju Hye Shin
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yuyan Li
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Alexander Kane
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Harsh Patel
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thong Luong
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jun Xia
- Department of Biomedical Sciences, Creighton University, Omaha, NE, USA
| | - Younghun Han
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Jinyoung Byun
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wei Zhao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yoon Soo Chang
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Fulong Yu
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Christopher Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jin Gu Lee
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Young Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jiyeon Choi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
15
|
Teng Y, Huang DQ, Li RX, Yi C, Zhan YQ. Association Between Telomere Length and Risk of Lung Cancer in an Asian Population: A Mendelian Randomization Study. World J Oncol 2023; 14:277-284. [PMID: 37560336 PMCID: PMC10409562 DOI: 10.14740/wjon1624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/19/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Several traditional observational studies and Mendelian randomization (MR) studies have indicated an association between leukocyte telomere length (LTL) and the risk of lung cancer in the European population. However, the results in the Asian population are still unclear. The objective was to reveal the genetic causal association between LTL and the risk of lung cancer in the Asian population. METHODS We conducted a two-sample MR analysis using summary statistics. Instrumental variables (IVs) were obtained from the genome-wide association studies (GWAS) of LTL (n = 23,096) and lung cancer (n = 212,453) of Asian ancestry. We applied the random-effects inverse-variance weighted (IVW) model as the main method. As well, several other models were performed as complementary methods to assess the impact of potential MR assumption violations, including MR-Egger regression, weighted median, and weighted mode models. RESULTS We included eight single-nucleotide polymorphisms (SNPs) as IVs for LTL and found that LTL was significantly associated with the risk of lung cancer in the IVW model (odds ratio (OR): 1.60; 95% confidence interval (CI): 1.31 - 1.97; P = 5.96 × 10-6), which was in line with the results in the weighted median and weighted mode models. However, the relationship was not statistically significant in the MR-Egger regression model (OR: 1.44; 95% CI: 0.92 - 2.26; P = 0.160). Sensitivity analyses indicated the robustness of the results. CONCLUSIONS This two-sample MR study confirmed that longer telomere length significantly increased the risk of lung cancer in the Asian population, which was in accord with findings in the Western population.
Collapse
Affiliation(s)
- Yi Teng
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- These authors contributed equally to this work
| | - Dan Qi Huang
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- These authors contributed equally to this work
| | - Rui Xi Li
- Department of Hepatobiliary and Pancreatic Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, China
- These authors contributed equally to this work
| | - Chao Yi
- Guangming Center for Disease Control and Prevention, Shenzhen, China
| | - Yi Qiang Zhan
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Guan Z, Begg CB, Shen R. Predicting Cancer Risk from Germline Whole-exome Sequencing Data Using a Novel Context-based Variant Aggregation Approach. CANCER RESEARCH COMMUNICATIONS 2023; 3:483-488. [PMID: 36969913 PMCID: PMC10032232 DOI: 10.1158/2767-9764.crc-22-0355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/24/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Many studies have shown that the distributions of the genomic, nucleotide, and epigenetic contexts of somatic variants in tumors are informative of cancer etiology. Recently, a new direction of research has focused on extracting signals from the contexts of germline variants and evidence has emerged that patterns defined by these factors are associated with oncogenic pathways, histologic subtypes, and prognosis. It remains an open question whether aggregating germline variants using meta-features capturing their genomic, nucleotide, and epigenetic contexts can improve cancer risk prediction. This aggregation approach can potentially increase statistical power for detecting signals from rare variants, which have been hypothesized to be a major source of the missing heritability of cancer. Using germline whole-exome sequencing data from the UK Biobank, we developed risk models for 10 cancer types using known risk variants (cancer-associated SNPs and pathogenic variants in known cancer predisposition genes) as well as models that additionally include the meta-features. The meta-features did not improve the prediction accuracy of models based on known risk variants. It is possible that expanding the approach to whole-genome sequencing can lead to gains in prediction accuracy. Significance There is evidence that cancer is partly caused by rare genetic variants that have not yet been identified. We investigate this issue using novel statistical methods and data from the UK Biobank.
Collapse
Affiliation(s)
- Zoe Guan
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Colin B. Begg
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ronglai Shen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
17
|
Yildirim HC, Kupik GE, Mustafayev TZ, Berber T, Yavuz B, Cetinayak O, Akagunduz O, Bıcakcı BC, Arslan SA, Soykut ED, Gundog M, Figen M, Teke F, Canyilmaz E, Birgi SD, Duzova M, İgdem S, Abakay CD, Atasoy B, Kaydihan N, Parvizi M, Uslu GH, Saginc H, Akman F, Ozyar E. A multicenter retrospective analysis of patients with nasopharyngeal carcinoma treated in IMRT era from a nonendemic population: Turkish Society for Radiation Oncology Head and Neck Cancer Group Study (TROD 01-001). Head Neck 2023; 45:1194-1205. [PMID: 36854873 DOI: 10.1002/hed.27333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND We aimed to evaluate patients with nasopharyngeal carcinoma (NPC) in a nonendemic population. METHODS In a national, retrospective, multicenteric study, 563 patients treated with intensity modulated radiotherapy at 22 centers between 2015 and 2020 were analyzed. RESULTS Median age was 48 (9-83), age distribution was bimodal, 74.1% were male, and 78.7% were stage III-IVA. Keratinizing and undifferentiated carcinoma rates were 3.9% and 81.2%. Patients were treated with concomitant chemoradiotherapy (48.9%), or radiotherapy combined with induction chemotherapy (25%) or adjuvant chemotherapy (19.5%). After 34 (6-78) months follow-up, 8.2% locoregional and 8% distant relapse were observed. Three-year overall survival was 89.5% and was lower in patients with age ≥50, male sex, keratinizing histology, T4, N3 and advanced stage (III-IVA). CONCLUSIONS Patients with NPC in Turkey have mixed clinical features of both east and west. Survival outcomes are comparable to other reported series; however, the rate of distant metastases seems to be lower.
Collapse
Affiliation(s)
- Halil Cumhur Yildirim
- Department of Radiation Oncology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Gulnihan Eren Kupik
- Department of Radiation Oncology, Faculty of Medicine, Mugla Sitki Kocman University, Mugla, Turkey
| | - Teuta Zoto Mustafayev
- Department of Radiation Oncology, Faculty of Medicine, Acibadem University, Istanbul, Turkey
| | - Tanju Berber
- Department of Radiation Oncology, Prof Dr. Cemil Tascioglu City Hospital, Istanbul, Turkey
| | - Berrin Yavuz
- Department of Radiation Oncology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Oguz Cetinayak
- Department of Radiation Oncology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Ozlem Akagunduz
- Department of Radiation Oncology, Faculty of Medicine, Ege University, Izmir, Turkey
| | | | | | - Ela Delikgoz Soykut
- Department of Radiation Oncology, Samsun Education and Research Hospital, Samsun, Turkey
| | - Mete Gundog
- Department of Radiation Oncology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Metin Figen
- Department of Radiation Oncology, Sisli Hamidiye Etfal Education and Research Hospital, Istanbul, Turkey
| | - Fatma Teke
- Department of Radiation Oncology, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Emine Canyilmaz
- Department of Radiation Oncology, Faculty of Medicine, Karadeniz Teknik University, Trabzon, Turkey
| | - Sumerya Duru Birgi
- Department of Radiation Oncology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Mursel Duzova
- Department of Radiation Oncology, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - Sefik İgdem
- Department of Radiation Oncology, Gayrettepe Florence Nightingale Hospital, Istanbul Bilim University, Istanbul, Turkey
| | - Candan Demiroz Abakay
- Department of Radiation Oncology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Beste Atasoy
- Department of Radiation Oncology, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Nuri Kaydihan
- Department of Radiation Oncology, Istanbul Bahcelievler Memorial Hospital, Istanbul, Turkey
| | - Murtaza Parvizi
- Department of Radiation Oncology, Manisa City Hospital, Manisa, Turkey
| | - Gonca Hanedan Uslu
- Department of Radiation Oncology, Trabzon Kanuni Education and Research Hospital, Trabzon, Turkey
| | - Halil Saginc
- Department of Radiation Oncology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Fadime Akman
- Department of Radiation Oncology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Enis Ozyar
- Department of Radiation Oncology, Faculty of Medicine, Acibadem University, Istanbul, Turkey
| |
Collapse
|
18
|
Genetic Susceptibility to Hepatocellular Carcinoma in Patients with Chronic Hepatitis Virus Infection. Viruses 2023; 15:v15020559. [PMID: 36851773 PMCID: PMC9964813 DOI: 10.3390/v15020559] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths globally. The risk factors for HCC include chronic hepatitis B and C virus infections, excessive alcohol consumption, obesity, metabolic disease, and aflatoxin exposure. In addition to these viral and environmental risk factors, individual genetic predisposition is a major determinant of HCC risk. Familial clustering of HCC has been observed, and a hereditary factor likely contributes to the risk of HCC development. The familial aggregation may depend on a shared environment and genetic background as well as the interactions of environmental and genetic factors. Genome-wide association studies (GWASs) are one of the most practical tools for mapping the patterns of inheritance for the most common form of genomic variation, single nucleotide polymorphisms. This approach is practical for investigating genetic variants across the human genome, which is affected by thousands of common genetic variants that do not follow Mendelian inheritance. This review article summarizes the academic knowledge of GWAS-identified genetic loci and their association with HCC. We summarize the GWASs in accordance with various chronic hepatitis virus infection statuses. This genetic profiling could be used to identify candidate biomarkers to refine HCC screening and management by enabling individual risk-based personalization and stratification. A more comprehensive understanding of the genetic mechanisms underlying individual predisposition to HCC may lead to improvements in the prevention and early diagnosis of HCC and the development of effective treatment strategies.
Collapse
|
19
|
Xin J, Du M, Gu D, Jiang K, Wang M, Jin M, Hu Y, Ben S, Chen S, Shao W, Li S, Chu H, Zhu L, Li C, Chen K, Ding K, Zhang Z, Shen H, Wang M. Risk assessment for colorectal cancer via polygenic risk score and lifestyle exposure: a large-scale association study of East Asian and European populations. Genome Med 2023; 15:4. [PMID: 36694225 PMCID: PMC9875451 DOI: 10.1186/s13073-023-01156-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The genetic architectures of colorectal cancer are distinct across different populations. To date, the majority of polygenic risk scores (PRSs) are derived from European (EUR) populations, which limits their accurate extrapolation to other populations. Here, we aimed to generate a PRS by incorporating East Asian (EAS) and EUR ancestry groups and validate its utility for colorectal cancer risk assessment among different populations. METHODS A large-scale colorectal cancer genome-wide association study (GWAS), harboring 35,145 cases and 288,934 controls from EAS and EUR populations, was used for the EAS-EUR GWAS meta-analysis and the construction of candidate EAS-EUR PRSs via different approaches. The performance of each PRS was then validated in external GWAS datasets of EAS (727 cases and 1452 controls) and EUR (1289 cases and 1284 controls) ancestries, respectively. The optimal PRS was further tested using the UK Biobank longitudinal cohort of 355,543 individuals and ultimately applied to stratify individual risk attached by healthy lifestyle. RESULTS In the meta-analysis across EAS and EUR populations, we identified 48 independent variants beyond genome-wide significance (P < 5 × 10-8) at previously reported loci. Among 26 candidate EAS-EUR PRSs, the PRS-CSx approach-derived PRS (defined as PRSCSx) that harbored genome-wide variants achieved the optimal discriminatory ability in both validation datasets, as well as better performance in the EAS population compared to the PRS derived from known variants. Using the UK Biobank cohort, we further validated a significant dose-response effect of PRSCSx on incident colorectal cancer, in which the risk was 2.11- and 3.88-fold higher in individuals with intermediate and high PRSCSx than in the low score subgroup (Ptrend = 8.15 × 10-53). Notably, the detrimental effect of being at a high genetic risk could be largely attenuated by adherence to a favorable lifestyle, with a 0.53% reduction in 5-year absolute risk. CONCLUSIONS In summary, we systemically constructed an EAS-EUR PRS to effectively stratify colorectal cancer risk, which highlighted its clinical implication among diverse ancestries. Importantly, these findings also supported that a healthy lifestyle could reduce the genetic impact on incident colorectal cancer.
Collapse
Affiliation(s)
- Junyi Xin
- grid.89957.3a0000 0000 9255 8984Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166 China ,grid.89957.3a0000 0000 9255 8984Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Mulong Du
- grid.89957.3a0000 0000 9255 8984Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166 China ,grid.89957.3a0000 0000 9255 8984Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Dongying Gu
- grid.89957.3a0000 0000 9255 8984Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Kewei Jiang
- grid.411634.50000 0004 0632 4559Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People’s Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, China
| | - Mengyun Wang
- grid.452404.30000 0004 1808 0942Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China ,grid.11841.3d0000 0004 0619 8943Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mingjuan Jin
- grid.13402.340000 0004 1759 700XDepartment of Epidemiology and Biostatistics at School of Public Health, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XCancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yeting Hu
- grid.13402.340000 0004 1759 700XDepartment of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China ,grid.13402.340000 0004 1759 700XCancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shuai Ben
- grid.89957.3a0000 0000 9255 8984Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166 China ,grid.89957.3a0000 0000 9255 8984Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Silu Chen
- grid.89957.3a0000 0000 9255 8984Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166 China ,grid.89957.3a0000 0000 9255 8984Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wei Shao
- grid.89957.3a0000 0000 9255 8984Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166 China ,grid.89957.3a0000 0000 9255 8984Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shuwei Li
- grid.89957.3a0000 0000 9255 8984Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166 China ,grid.89957.3a0000 0000 9255 8984Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Haiyan Chu
- grid.89957.3a0000 0000 9255 8984Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166 China ,grid.89957.3a0000 0000 9255 8984Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Linjun Zhu
- grid.412676.00000 0004 1799 0784Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chen Li
- grid.411634.50000 0004 0632 4559Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People’s Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, China
| | - Kun Chen
- grid.13402.340000 0004 1759 700XDepartment of Epidemiology and Biostatistics at School of Public Health, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XCancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kefeng Ding
- grid.13402.340000 0004 1759 700XDepartment of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China ,grid.13402.340000 0004 1759 700XCancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhengdong Zhang
- grid.89957.3a0000 0000 9255 8984Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166 China ,grid.89957.3a0000 0000 9255 8984Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongbing Shen
- grid.89957.3a0000 0000 9255 8984Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China. .,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China. .,The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.
| |
Collapse
|
20
|
Wang Q, Zeng A, Zhu M, Song L. Dual inhibition of EGFR‑VEGF: An effective approach to the treatment of advanced non‑small cell lung cancer with EGFR mutation (Review). Int J Oncol 2023; 62:26. [PMID: 36601768 PMCID: PMC9851127 DOI: 10.3892/ijo.2023.5474] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/01/2022] [Indexed: 01/04/2023] Open
Abstract
On a global scale, the incidence and mortality rates of lung cancer are gradually increasing year by year. A number of bad habits and environmental factors are associated with lung cancer, including smoking, second‑hand smoke exposure, occupational exposure, respiratory diseases and genetics. At present, low‑dose spiral computed tomography is routinely the first choice in the diagnosis of lung cancer. However, pathological examination is still the gold standard for the diagnosis of lung cancer. Based on the classification and stage of the cancer, treatment options such as surgery, radiotherapy, chemotherapy, targeted therapy and immunotherapy are available. The activation of the EGFR pathway can promote the survival and proliferation of tumor cells, and the VEGF pathway can promote the formation of blood vessels, thereby promoting tumor growth. In non‑small cell lung cancer (NSCLC) with EGFR mutation, EGFR activation can promote tumor growth by promoting VEGF upregulation through a hypoxia‑independent mechanism. The upregulation of VEGF can make tumor cells resistant to EGFR inhibitors. In addition, the expression of the VEGF signal is also affected by other factors. Therefore, the use of a single EGFR inhibitor cannot completely inhibit the expression of the VEGF signal. In order to overcome this problem, the combination of VEGF inhibitors and EGFR inhibitors has become the method of choice. Dual inhibition can not only overcome the resistance of tumor cells to EGFR inhibitors, but also significantly increase the progression‑free survival time of patients with NSCLC. The present review discusses the associations between the EGFR and VEGF pathways, and the characteristics of dual inhibition of the EGFR‑VEGF pathway.
Collapse
Affiliation(s)
- Qian Wang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Anqi Zeng
- Institute of Translational Pharmacology and Clinical Application, Sichuan Academy of Chinese Medical Science, Chengdu, Sichuan 610041, P.R. China
| | - Min Zhu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China,Correspondence to: Dr Linjiang Song or Dr Min Zhu, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, P.R. China, E-mail: , E-mail:
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China,Correspondence to: Dr Linjiang Song or Dr Min Zhu, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, P.R. China, E-mail: , E-mail:
| |
Collapse
|
21
|
Long E, Patel H, Byun J, Amos CI, Choi J. Functional studies of lung cancer GWAS beyond association. Hum Mol Genet 2022; 31:R22-R36. [PMID: 35776125 PMCID: PMC9585683 DOI: 10.1093/hmg/ddac140] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/01/2022] [Accepted: 06/16/2022] [Indexed: 11/14/2022] Open
Abstract
Fourteen years after the first genome-wide association study (GWAS) of lung cancer was published, approximately 45 genomic loci have now been significantly associated with lung cancer risk. While functional characterization was performed for several of these loci, a comprehensive summary of the current molecular understanding of lung cancer risk has been lacking. Further, many novel computational and experimental tools now became available to accelerate the functional assessment of disease-associated variants, moving beyond locus-by-locus approaches. In this review, we first highlight the heterogeneity of lung cancer GWAS findings across histological subtypes, ancestries and smoking status, which poses unique challenges to follow-up studies. We then summarize the published lung cancer post-GWAS studies for each risk-associated locus to assess the current understanding of biological mechanisms beyond the initial statistical association. We further summarize strategies for GWAS functional follow-up studies considering cutting-edge functional genomics tools and providing a catalog of available resources relevant to lung cancer. Overall, we aim to highlight the importance of integrating computational and experimental approaches to draw biological insights from the lung cancer GWAS results beyond association.
Collapse
Affiliation(s)
- Erping Long
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Harsh Patel
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jinyoung Byun
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, 77030, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, 77030, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jiyeon Choi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
22
|
Chen P, Liu Y, Wen Y, Zhou C. Non-small cell lung cancer in China. Cancer Commun (Lond) 2022; 42:937-970. [PMID: 36075878 PMCID: PMC9558689 DOI: 10.1002/cac2.12359] [Citation(s) in RCA: 251] [Impact Index Per Article: 83.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/21/2022] [Accepted: 08/24/2022] [Indexed: 04/08/2023] Open
Abstract
In China, lung cancer is a primary cancer type with high incidence and mortality. Risk factors for lung cancer include tobacco use, family history, radiation exposure, and the presence of chronic lung diseases. Most early-stage non-small cell lung cancer (NSCLC) patients miss the optimal timing for treatment due to the lack of clinical presentations. Population-based nationwide screening programs are of significant help in increasing the early detection and survival rates of NSCLC in China. The understanding of molecular carcinogenesis and the identification of oncogenic drivers dramatically facilitate the development of targeted therapy for NSCLC, thus prolonging survival in patients with positive drivers. In the exploration of immune escape mechanisms, programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) inhibitor monotherapy and PD-1/PD-L1 inhibitor plus chemotherapy have become a standard of care for advanced NSCLC in China. In the Chinese Society of Clinical Oncology's guidelines for NSCLC, maintenance immunotherapy is recommended for locally advanced NSCLC after chemoradiotherapy. Adjuvant immunotherapy and neoadjuvant chemoimmunotherapy will be approved for resectable NSCLC. In this review, we summarized recent advances in NSCLC in China in terms of epidemiology, biology, molecular pathology, pathogenesis, screening, diagnosis, targeted therapy, and immunotherapy.
Collapse
Affiliation(s)
- Peixin Chen
- School of MedicineTongji UniversityShanghai200092P. R. China
- Department of Medical OncologyShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200433P. R. China
| | - Yunhuan Liu
- Department of Respiratory and Critical Care MedicineHuadong HospitalFudan UniversityShanghai200040P. R. China
| | - Yaokai Wen
- School of MedicineTongji UniversityShanghai200092P. R. China
- Department of Medical OncologyShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200433P. R. China
| | - Caicun Zhou
- School of MedicineTongji UniversityShanghai200092P. R. China
- Department of Medical OncologyShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200433P. R. China
| |
Collapse
|
23
|
Ahmed M, Mäkinen VP, Mulugeta A, Shin J, Boyle T, Hyppönen E, Lee SH. Considering hormone-sensitive cancers as a single disease in the UK biobank reveals shared aetiology. Commun Biol 2022; 5:614. [PMID: 35729236 PMCID: PMC9213416 DOI: 10.1038/s42003-022-03554-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 06/02/2022] [Indexed: 11/09/2022] Open
Abstract
Hormone-related cancers, including cancers of the breast, prostate, ovaries, uterine, and thyroid, globally contribute to the majority of cancer incidence. We hypothesize that hormone-sensitive cancers share common genetic risk factors that have rarely been investigated by previous genomic studies of site-specific cancers. Here, we show that considering hormone-sensitive cancers as a single disease in the UK Biobank reveals shared genetic aetiology. We observe that a significant proportion of variance in disease liability is explained by the genome-wide single nucleotide polymorphisms (SNPs), i.e., SNP-based heritability on the liability scale is estimated as 10.06% (SE 0.70%). Moreover, we find 55 genome-wide significant SNPs for the disease, using a genome-wide association study. Pair-wise analysis also estimates positive genetic correlations between some pairs of hormone-sensitive cancers although they are not statistically significant. Our finding suggests that heritable genetic factors may be a key driver in the mechanism of carcinogenesis shared by hormone-sensitive cancers.
Collapse
Affiliation(s)
- Muktar Ahmed
- Australian Centre for Precision Health, University of South Australia, Adelaide, SA, Australia. .,Department of Epidemiology, Faculty of Public Health, Jimma University Institute of Health, Jimma, Ethiopia. .,UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia. .,South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
| | - Ville-Petteri Mäkinen
- Australian Centre for Precision Health, University of South Australia, Adelaide, SA, Australia.,Computational Systems Biology Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Anwar Mulugeta
- Australian Centre for Precision Health, University of South Australia, Adelaide, SA, Australia.,UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia.,South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Jisu Shin
- Australian Centre for Precision Health, University of South Australia, Adelaide, SA, Australia.,UniSA Allied Health & Human Performance, University of South Australia, Adelaide, SA, Australia
| | - Terry Boyle
- Australian Centre for Precision Health, University of South Australia, Adelaide, SA, Australia.,South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,UniSA Allied Health & Human Performance, University of South Australia, Adelaide, SA, Australia
| | - Elina Hyppönen
- Australian Centre for Precision Health, University of South Australia, Adelaide, SA, Australia.,UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia.,South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Sang Hong Lee
- Australian Centre for Precision Health, University of South Australia, Adelaide, SA, Australia. .,South Australian Health and Medical Research Institute, Adelaide, SA, Australia. .,UniSA Allied Health & Human Performance, University of South Australia, Adelaide, SA, Australia.
| |
Collapse
|
24
|
You D, Wang D, Wu Y, Chen X, Shao F, Wei Y, Zhang R, Lange T, Ma H, Xu H, Hu Z, Christiani DC, Shen H, Chen F, Zhao Y. Associations of genetic risk, BMI trajectories, and the risk of non-small cell lung cancer: a population-based cohort study. BMC Med 2022; 20:203. [PMID: 35658861 PMCID: PMC9169327 DOI: 10.1186/s12916-022-02400-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/10/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Body mass index (BMI) has been found to be associated with a decreased risk of non-small cell lung cancer (NSCLC); however, the effect of BMI trajectories and potential interactions with genetic variants on NSCLC risk remain unknown. METHODS Cox proportional hazards regression model was applied to assess the association between BMI trajectory and NSCLC risk in a cohort of 138,110 participants from the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial. One-sample Mendelian randomization (MR) analysis was further used to access the causality between BMI trajectories and NSCLC risk. Additionally, polygenic risk score (PRS) and genome-wide interaction analysis (GWIA) were used to evaluate the multiplicative interaction between BMI trajectories and genetic variants in NSCLC risk. RESULTS Compared with individuals maintaining a stable normal BMI (n = 47,982, 34.74%), BMI trajectories from normal to overweight (n = 64,498, 46.70%), from normal to obese (n = 21,259, 15.39%), and from overweight to obese (n = 4,371, 3.16%) were associated with a decreased risk of NSCLC (hazard ratio [HR] for trend = 0.78, P < 2×10-16). An MR study using BMI trajectory associated with genetic variants revealed no significant association between BMI trajectories and NSCLC risk. Further analysis of PRS showed that a higher GWAS-identified PRS (PRSGWAS) was associated with an increased risk of NSCLC, while the interaction between BMI trajectories and PRSGWAS with the NSCLC risk was not significant (PsPRS= 0.863 and PwPRS= 0.704). In GWIA analysis, four independent susceptibility loci (P < 1×10-6) were found to be associated with BMI trajectories on NSCLC risk, including rs79297227 (12q14.1, located in SLC16A7, Pinteraction = 1.01×10-7), rs2336652 (3p22.3, near CLASP2, Pinteraction = 3.92×10-7), rs16018 (19p13.2, in CACNA1A, Pinteraction = 3.92×10-7), and rs4726760 (7q34, near BRAF, Pinteraction = 9.19×10-7). Functional annotation demonstrated that these loci may be involved in the development of NSCLC by regulating cell growth, differentiation, and inflammation. CONCLUSIONS Our study has shown an association between BMI trajectories, genetic factors, and NSCLC risk. Interestingly, four novel genetic loci were identified to interact with BMI trajectories on NSCLC risk, providing more support for the aetiology research of NSCLC. TRIAL REGISTRATION http://www. CLINICALTRIALS gov , NCT01696968 .
Collapse
Affiliation(s)
- Dongfang You
- Department of Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Danhua Wang
- Department of Public Health and Preventive Medicine, Kangda College of Nanjing Medical University, Lianyungang, 222000, China
| | - Yaqian Wu
- Department of Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Xin Chen
- Department of Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Fang Shao
- Department of Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Yongyue Wei
- Department of Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- China International Cooperation Center for Environment and Human Health, Center for Global Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- The Center of Biomedical Big Data and the Laboratory of Biomedical Big Data, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Ruyang Zhang
- Department of Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- China International Cooperation Center for Environment and Human Health, Center for Global Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- The Center of Biomedical Big Data and the Laboratory of Biomedical Big Data, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Theis Lange
- Section of Biostatistics, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, ØsterFarimagsgade 5, 1353, Copenhagen, Denmark
| | - Hongxia Ma
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Hongyang Xu
- Department of Critical Care Medicine, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Zhibin Hu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, MA, 02115, USA
| | - Hongbing Shen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Feng Chen
- Department of Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China.
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
- China International Cooperation Center for Environment and Human Health, Center for Global Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
- The Center of Biomedical Big Data and the Laboratory of Biomedical Big Data, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| | - Yang Zhao
- Department of Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China.
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
- China International Cooperation Center for Environment and Human Health, Center for Global Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
- The Center of Biomedical Big Data and the Laboratory of Biomedical Big Data, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
25
|
He YQ, Xue WQ, Li DH, Wang TM, Mai ZM, Yang DW, Deng CM, Liao Y, Zhang WL, Xiao RW, Luo L, Diao H, Tong X, Wu Y, Zhang JB, Zhou T, Li XZ, Zhang PF, Zheng XH, Zhang SD, Hu YZ, Tang M, Zheng Y, Cai Y, Chang ET, Zhang Z, Huang G, Cao SM, Liu Q, Feng L, Sun Y, Lung ML, Adami HO, Ye W, Lam TH, Jia WH. Transcriptome-wide association analysis identified candidate susceptibility genes for nasopharyngeal carcinoma. Cancer Commun (Lond) 2022; 42:887-891. [PMID: 35642693 PMCID: PMC9456698 DOI: 10.1002/cac2.12317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/09/2022] [Accepted: 05/25/2022] [Indexed: 11/10/2022] Open
Affiliation(s)
- Yong-Qiao He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Wen-Qiong Xue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Dan-Hua Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Tong-Min Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Zhi-Ming Mai
- School of Public Health, The University of Hong Kong, Hong Kong S.A.R., 999077, P. R. China.,Center for Nasopharyngeal Carcinoma Research, Research Grants Council Area of Excellence Scheme, The University of Hong Kong, Hong Kong S.A.R., 999077, P. R. China.,Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Da-Wei Yang
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
| | - Chang-Mi Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Ying Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Wen-Li Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Ruo-Wen Xiao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Luting Luo
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
| | - Hua Diao
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
| | - Xiating Tong
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
| | - Yanxia Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Jiang-Bo Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Ting Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Xi-Zhao Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Pei-Fen Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Xiao-Hui Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Shao-Dan Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Ye-Zhu Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Minzhong Tang
- Wuzhou Red Cross Hospital, Wuzhou, Guangxi, 543002, P. R. China.,Wuzhou Cancer Center, Wuzhou, Guangxi, 543002, P. R. China
| | - Yuming Zheng
- Wuzhou Red Cross Hospital, Wuzhou, Guangxi, 543002, P. R. China.,Wuzhou Cancer Center, Wuzhou, Guangxi, 543002, P. R. China
| | - Yonglin Cai
- Wuzhou Red Cross Hospital, Wuzhou, Guangxi, 543002, P. R. China.,Wuzhou Cancer Center, Wuzhou, Guangxi, 543002, P. R. China
| | - Ellen T Chang
- Center for Health Sciences, Exponent, Inc., Menlo Park, CA, 94025, Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, 94143, USA
| | - Zhe Zhang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, P. R. China
| | - Guangwu Huang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, P. R. China
| | - Su-Mei Cao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Qing Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Lin Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Ying Sun
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, 510060, P. R. China
| | - Maria Li Lung
- Center for Nasopharyngeal Carcinoma Research, Research Grants Council Area of Excellence Scheme, The University of Hong Kong, Hong Kong S.A.R., 999077, P. R. China.,Department of Clinical Oncology, The University of Hong Kong, Hong Kong S.A.R., 999077, P. R. China
| | - Hans-Olov Adami
- Clinical Effectiveness Group, Institute of Health and Society, University of Oslo, Oslo, 0316, Norway.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Weimin Ye
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, 17177, Sweden.,Department of Epidemiology and Health Statistics & Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, 350122, P. R. China
| | - Tai-Hing Lam
- School of Public Health, The University of Hong Kong, Hong Kong S.A.R., 999077, P. R. China.,Center for Nasopharyngeal Carcinoma Research, Research Grants Council Area of Excellence Scheme, The University of Hong Kong, Hong Kong S.A.R., 999077, P. R. China
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.,School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
| |
Collapse
|
26
|
He YQ, Wang TM, Ji M, Mai ZM, Tang M, Wang R, Zhou Y, Zheng Y, Xiao R, Yang D, Wu Z, Deng C, Zhang J, Xue W, Dong S, Zhan J, Cai Y, Li F, Wu B, Liao Y, Zhou T, Zheng M, Jia Y, Li D, Cao L, Yuan L, Zhang W, Luo L, Tong X, Wu Y, Li X, Zhang P, Zheng X, Zhang S, Hu Y, Qin W, Deng B, Liang X, Fan P, Feng Y, Song J, Xie SH, Chang ET, Zhang Z, Huang G, Xu M, Feng L, Jin G, Bei J, Cao S, Liu Q, Kozlakidis Z, Mai H, Sun Y, Ma J, Hu Z, Liu J, Lung ML, Adami HO, Shen H, Ye W, Lam TH, Zeng YX, Jia WH. A polygenic risk score for nasopharyngeal carcinoma shows potential for risk stratification and personalized screening. Nat Commun 2022; 13:1966. [PMID: 35414057 PMCID: PMC9005522 DOI: 10.1038/s41467-022-29570-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/23/2022] [Indexed: 12/29/2022] Open
Abstract
Polygenic risk scores (PRS) have the potential to identify individuals at risk of diseases, optimizing treatment, and predicting survival outcomes. Here, we construct and validate a genome-wide association study (GWAS) derived PRS for nasopharyngeal carcinoma (NPC), using a multi-center study of six populations (6 059 NPC cases and 7 582 controls), and evaluate its utility in a nested case-control study. We show that the PRS enables effective identification of NPC high-risk individuals (AUC = 0.65) and improves the risk prediction with the PRS incremental deciles in each population (Ptrend ranging from 2.79 × 10-7 to 4.79 × 10-44). By incorporating the PRS into EBV-serology-based NPC screening, the test's positive predictive value (PPV) is increased from an average of 4.84% to 8.38% and 11.91% in the top 10% and 5% PRS, respectively. In summary, the GWAS-derived PRS, together with the EBV test, significantly improves NPC risk stratification and informs personalized screening.
Collapse
Affiliation(s)
- Yong-Qiao He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Tong-Min Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Mingfang Ji
- Cancer Research Institute of Zhongshan City, Zhongshan Hospital of Sun Yat-sen University, Zhongshan, China
| | - Zhi-Ming Mai
- School of Public Health, The University of Hong Kong, Hong Kong S.A.R., China
- Center for Nasopharyngeal Carcinoma Research (CNPCR), The University of Hong Kong, Hong Kong S.A.R., China
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Minzhong Tang
- Wuzhou Red Cross Hospital, Wuzhou, Guangxi, P.R. China
- Wuzhou Cancer Center, Wuzhou, Guangxi, P.R. China
| | - Ruozheng Wang
- Key Laboratory of Cancer Immunotherapy and Radiotherapy, Chinese Academy of Medical Sciences, Ürümqi, Xinjiang Uygur Autonomous Region, 830011, P.R. China
| | - Yifeng Zhou
- Department of Genetics, Medical College of Soochow University, Suzhou, China
| | - Yuming Zheng
- Wuzhou Red Cross Hospital, Wuzhou, Guangxi, P.R. China
- Wuzhou Cancer Center, Wuzhou, Guangxi, P.R. China
| | - Ruowen Xiao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Dawei Yang
- School of Public Health, Sun Yat-sen University, Guangzhou, P.R. China
| | - Ziyi Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Changmi Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Jiangbo Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Wenqiong Xue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Siqi Dong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Jiyun Zhan
- Public Health Service Center of Xiaolan Town, Zhongshan City, Guangdong, China
| | - Yonglin Cai
- Wuzhou Red Cross Hospital, Wuzhou, Guangxi, P.R. China
| | - Fugui Li
- Cancer Research Institute of Zhongshan City, Zhongshan Hospital of Sun Yat-sen University, Zhongshan, China
| | - Biaohua Wu
- Cancer Research Institute of Zhongshan City, Zhongshan Hospital of Sun Yat-sen University, Zhongshan, China
| | - Ying Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Ting Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Meiqi Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Yijing Jia
- School of Public Health, Sun Yat-sen University, Guangzhou, P.R. China
| | - Danhua Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Lianjing Cao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Leilei Yuan
- School of Public Health, Sun Yat-sen University, Guangzhou, P.R. China
| | - Wenli Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Luting Luo
- School of Public Health, Sun Yat-sen University, Guangzhou, P.R. China
| | - Xiating Tong
- School of Public Health, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yanxia Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Xizhao Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Peifen Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Xiaohui Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Shaodan Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Yezhu Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Weiling Qin
- Wuzhou Red Cross Hospital, Wuzhou, Guangxi, P.R. China
| | - Bisen Deng
- Public Health Service Center of Xiaolan Town, Zhongshan City, Guangdong, China
| | - Xuejun Liang
- Public Health Service Center of Xiaolan Town, Zhongshan City, Guangdong, China
| | - Peiwen Fan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Departments of Institute for Cancer Research, The Third Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830011, P.R. China
| | - Yaning Feng
- Key Laboratory of Oncology of Xinjiang Uyghur Autonomous Region, Ürümqi, 830011, China
| | - Jia Song
- Departments of Institute for Cancer Research, The Third Affiliated Teaching Hospital of Xinjiang Medical University, Affiliated Cancer Hospital, Ürümqi, Xinjiang Uyghur Autonomous Region, 830010, P.R. China
| | - Shang-Hang Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Ellen T Chang
- Center for Health Sciences, Exponent, Inc., Menlo Park, CA, USA
- Stanford Cancer Institute, Stanford, CA, USA
| | - Zhe Zhang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Guangwu Huang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Miao Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Lin Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Guangfu Jin
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Jinxin Bei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Sumei Cao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Qing Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Zisis Kozlakidis
- Division of Infection and Immunity, Faculty of Medical Sciences - University College London, London, UK
- International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Haiqiang Mai
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying Sun
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Jun Ma
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Zhibin Hu
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Jianjun Liu
- Human Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Maria Li Lung
- Center for Nasopharyngeal Carcinoma Research (CNPCR), The University of Hong Kong, Hong Kong S.A.R., China
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong S.A.R., China
| | - Hans-Olov Adami
- Clinical Effectiveness Group, Institute of Health and Society, University of Oslo, Oslo, Norway
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Hongbing Shen
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China.
| | - Weimin Ye
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
- Department of Epidemiology and Health Statistics & Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China.
| | - Tai-Hing Lam
- School of Public Health, The University of Hong Kong, Hong Kong S.A.R., China.
- Center for Nasopharyngeal Carcinoma Research (CNPCR), The University of Hong Kong, Hong Kong S.A.R., China.
| | - Yi-Xin Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.
- School of Public Health, Sun Yat-sen University, Guangzhou, P.R. China.
| |
Collapse
|
27
|
Zhang P, Chen PL, Li ZH, Zhang A, Zhang XR, Zhang YJ, Liu D, Mao C. Association of smoking and polygenic risk with the incidence of lung cancer: a prospective cohort study. Br J Cancer 2022; 126:1637-1646. [PMID: 35194190 PMCID: PMC9130319 DOI: 10.1038/s41416-022-01736-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/23/2022] [Accepted: 02/02/2022] [Indexed: 12/24/2022] Open
Abstract
Background Genetic variation increases the risk of lung cancer, but the extent to which smoking amplifies this effect remains unknown. Therefore, we aimed to investigate the risk of lung cancer in people with different genetic risks and smoking habits. Methods This prospective cohort study included 345,794 European ancestry participants from the UK Biobank and followed up for 7.2 [6.5–7.8] years. Results Overall, 26.2% of the participants were former smokers, and 9.8% were current smokers. During follow-up, 1687 (0.49%) participants developed lung cancer. High genetic risk and smoking were independently associated with an increased risk of incident lung cancer. Compared with never-smokers, HR per standard deviation of the PRS increase was 1.16 (95% CI, 1.11–1.22), and HR of heavy smokers (≥40 pack-years) was 17.89 (95% CI, 15.31–20.91). There were no significant interactions between the PRS and the smoking status or pack-years. Population-attributable fraction analysis showed that smoking cessation might prevent 76.4% of new lung cancers. Conclusions Both high genetic risk and smoking were independently associated with higher lung cancer risk, but the increased risk of smoking was much more significant than heredity. The combination of traditional risk factors and additional PRS provides realistic application prospects for precise prevention.
Collapse
Affiliation(s)
- Peidong Zhang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.,The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Pei-Liang Chen
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhi-Hao Li
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Ao Zhang
- State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Xi-Ru Zhang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Yu-Jie Zhang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Dan Liu
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Chen Mao
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China. .,Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
28
|
Lu H, Gao NL, Tong F, Wang J, Li H, Zhang R, Ma H, Yang N, Zhang Y, Wang Y, Liang Z, Zeng H, Chen WH, Dong X. Alterations of the Human Lung and Gut Microbiomes in Non-Small Cell Lung Carcinomas and Distant Metastasis. Microbiol Spectr 2021; 9:e0080221. [PMID: 34787462 PMCID: PMC8597645 DOI: 10.1128/spectrum.00802-21] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/27/2021] [Indexed: 02/08/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related deaths worldwide. Although dysbiosis of the lung and gut microbiota have been associated with NSCLC, their relative contributions are unclear; in addition, their roles in distant metastasis (DM) are still illusive. We recruited in total 121 participants, including 87 newly diagnosed treatment-naive NSCLC patients of various stages and 34 healthy volunteers, and surveyed their fecal and sputum microbiota. We compared the microbial profiles between groups, identified microbial biomarkers, and generated machine learning models for distinguishing healthy individuals from patients with NSCLC and patients of various stages. We found significant perturbations of gut and sputum microbiota in patients with NSCLC and DM. A machine learning model combining both microbiota (combined model) performed better than an individual data set in patient stratification, with the highest area under the curve (AUC) value of 0.896. Sputum and gut microbiota both contributed to the combined model; in most cases, sputum-only models performed similar to the combined models. Several microbial biomarkers were shared by both microbiotas, indicating their similar roles at distinct body sites. Microbial biomarkers of distinct disease stages were mostly shared, suggesting biomarkers for DM could be acquired early. Furthermore, Pseudomonas aeruginosa, a species previously associated with wound infections, was significantly more abundant in brain metastasis, indicating that distinct types of DMs could have different microbes. Our results indicate that alterations of the sputum microbiota have stronger relationships with NSCLC and DM than the gut and strongly support the feasibility of metagenome-based noninvasive disease diagnosis and risk evaluation. (This study has been registered at ClinicalTrials.gov under registration no. NCT03454685). IMPORTANCE Our survey on gut and sputum microbiota revealed that both were significantly disturbed in non-small cell lung cancer (NSCLC) and associated with distant metastasis (DM) while only the sputum microbiota was associated with non-DM NSCLC. The lung microbiota could therefore have a stronger association with (and thus may contribute more to) disease development than the gut microbiota. Mathematic models using both microbiotas performed better in patient stratification than using individual microbiota. Sputum models, however, performed similar to the combined models, suggesting a convenient, noninvasive diagnostic for NSCLC. Microbial biomarkers of distinct disease stages were mostly shared, suggesting that the same set of microbes were underlying disease progression, and the signals for distant metastasis could be acquired at early stages of the disease. Our results strongly support the feasibility of noninvasive diagnosis of NSCLC, including distant metastasis, are of clinical importance, and should warrant further research on the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Hui Lu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na L. Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Tong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaojiao Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huanhuan Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruiguang Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Ma
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nong Yang
- Department of Medical Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yongchang Zhang
- Department of Medical Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Ye Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiwen Liang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Zeng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei-Hua Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Institution of Medical Artificial Intelligence, Binzhou Medical University, Yantai, China
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
29
|
Wang Y, Zhu M, Ma H, Shen H. Polygenic risk scores: the future of cancer risk prediction, screening, and precision prevention. MEDICAL REVIEW (BERLIN, GERMANY) 2021; 1:129-149. [PMID: 37724297 PMCID: PMC10471106 DOI: 10.1515/mr-2021-0025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/13/2021] [Indexed: 09/20/2023]
Abstract
Genome-wide association studies (GWASs) have shown that the genetic architecture of cancers are highly polygenic and enabled researchers to identify genetic risk loci for cancers. The genetic variants associated with a cancer can be combined into a polygenic risk score (PRS), which captures part of an individual's genetic susceptibility to cancer. Recently, PRSs have been widely used in cancer risk prediction and are shown to be capable of identifying groups of individuals who could benefit from the knowledge of their probabilistic susceptibility to cancer, which leads to an increased interest in understanding the potential utility of PRSs that might further refine the assessment and management of cancer risk. In this context, we provide an overview of the major discoveries from cancer GWASs. We then review the methodologies used for PRS construction, and describe steps for the development and evaluation of risk prediction models that include PRS and/or conventional risk factors. Potential utility of PRSs in cancer risk prediction, screening, and precision prevention are illustrated. Challenges and practical considerations relevant to the implementation of PRSs in health care settings are discussed.
Collapse
Affiliation(s)
- Yuzhuo Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Meng Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongxia Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing, China
| | - Hongbing Shen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
30
|
Wu S, Chen D, Snyder MP. Network biology bridges the gaps between quantitative genetics and multi-omics to map complex diseases. Curr Opin Chem Biol 2021; 66:102101. [PMID: 34861483 DOI: 10.1016/j.cbpa.2021.102101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/17/2021] [Accepted: 10/27/2021] [Indexed: 12/27/2022]
Abstract
With advances in high-throughput sequencing technologies, quantitative genetics approaches have provided insights into genetic basis of many complex diseases. Emerging in-depth multi-omics profiling technologies have created exciting opportunities for systematically investigating intricate interaction networks with different layers of biological molecules underlying disease etiology. Herein, we summarized two main categories of biological networks: evidence-based and statistically inferred. These different types of molecular networks complement each other at both bulk and single-cell levels. We also review three main strategies to incorporate quantitative genetics results with multi-omics data by network analysis: (a) network propagation, (b) functional module-based methods, (c) comparative/dynamic networks. These strategies not only aid in elucidating molecular mechanisms of complex diseases but can guide the search for therapeutic targets.
Collapse
Affiliation(s)
- Si Wu
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Dijun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
31
|
Wang L, Si S, Li J, Li Y, Chen X, Xue F, Ren W. Triglyceride-Glucose Index Is Not Associated With Lung Cancer Risk: A Prospective Cohort Study in the UK Biobank. Front Oncol 2021; 11:774937. [PMID: 34869022 PMCID: PMC8635521 DOI: 10.3389/fonc.2021.774937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The triglyceride-glucose (TyG) index is a practical substitute measure for insulin resistance (IR). The relationship between IR and lung cancer has been examined in previous studies; however, the findings have been controversial. In addition, previous studies had small sample sizes. Thus, we systematically examined the association between IR and lung cancer risk based on the UK Biobank with IR measured by the TyG index and further examined the interactions and joint effects for lung cancer. METHODS A total of 324,334 individuals free from any type of cancer at recruitment from the UK Biobank prospective cohort were included. The participants were predominantly between 40 and 70 years old. After adjusting for relevant confounders, multivariable Cox regression models were constructed to examine the relationship between the TyG index and the risk of lung cancer. We also checked the interactions and joint effects using a polygenic risk score (PRS) for lung cancer. RESULTS During a median follow-up of 9 years, 1,593 individuals were diagnosed with lung cancer. No association was found between the TyG index and lung cancer risk after multivariate Cox regression analysis adjusted for risk factors (hazard ratio: 0.91; 95% confidence interval: 0.64-1.18). No interaction or joint effects for genetic risk and the TyG index were observed. CONCLUSION The TyG index was not associated with the risk of lung cancer. Our results provide limited evidence that IR is not correlated with the risk of lung cancer.
Collapse
Affiliation(s)
- Lijie Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Institute for Medical Dataology, Shandong University, Jinan, China
| | - Shucheng Si
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Institute for Medical Dataology, Shandong University, Jinan, China
| | - Jiqing Li
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Institute for Medical Dataology, Shandong University, Jinan, China
| | - Yunxia Li
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Institute for Medical Dataology, Shandong University, Jinan, China
| | - Xiaolu Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Institute for Medical Dataology, Shandong University, Jinan, China
| | - Fuzhong Xue
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Institute for Medical Dataology, Shandong University, Jinan, China
| | - Wangang Ren
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
32
|
Guan Z, Shen R, Begg CB. Exome-Wide Pan-Cancer Analysis of Germline Variants in 8,719 Individuals Finds Little Evidence of Rare Variant Associations. Hum Hered 2021; 86:34-44. [PMID: 34718237 DOI: 10.1159/000519355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 08/30/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Many cancer types show considerable heritability, and extensive research has been done to identify germline susceptibility variants. Linkage studies have discovered many rare high-risk variants, and genome-wide association studies (GWAS) have discovered many common low-risk variants. However, it is believed that a considerable proportion of the heritability of cancer remains unexplained by known susceptibility variants. The "rare variant hypothesis" proposes that much of the missing heritability lies in rare variants that cannot reliably be detected by linkage analysis or GWAS. Until recently, high sequencing costs have precluded extensive surveys of rare variants, but technological advances have now made it possible to analyze rare variants on a much greater scale. OBJECTIVES In this study, we investigated associations between rare variants and 14 cancer types. METHODS We ran association tests using whole-exome sequencing data from The Cancer Genome Atlas (TCGA) and validated the findings using data from the Pan-Cancer Analysis of Whole Genomes Consortium (PCAWG). RESULTS We identified four significant associations in TCGA, only one of which was replicated in PCAWG (BRCA1 and ovarian cancer). CONCLUSIONS Our results provide little evidence in favor of the rare variant hypothesis. Much larger sample sizes may be needed to detect undiscovered rare cancer variants.
Collapse
Affiliation(s)
- Zoe Guan
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Ronglai Shen
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Colin B Begg
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
33
|
Xiao J, Wang Y, Wang Z, Zhang Y, Li Y, Xu C, Xiao M, Wang H, Guo S, Jin L, Wang J, Bao Y, Shang Y, Wu J. The relevance analysis of GSTP1 rs1695 and lung cancer in the Chinese Han population. Int J Biol Markers 2021; 36:48-54. [PMID: 34596453 DOI: 10.1177/17246008211039236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND This study explored the relevance between rs1695 and susceptibility to the lung cancer in the Chinese Han population. Stratification analysis was conducted on the basis of age, gender, smoking status, tumor-related family history, and pathological type to observe relations between rs1695 and susceptibility to lung cancer in the subgroups. METHODS A case-control study was performed with 974 lung cancer patients who were pathologically diagnosed and 1005 healthy cases based on physical examination to analyze the association between rs1695 and the risk of lung cancer. RESULTS The frequencies of the AA, GA, and GG genotypes of rs1695 were 68.4%, 28.7%, and 2.9% in cases and 64.8%, 30.8%, and 4.2% in controls, respectively. After adjustment for age, gender, smoking status, and family history, it appears that the rs1695 G allele decreases the risk of lung cancer (OR = 0.811, 95% CI 0.684-0.961, P = 0.016). Moreover, compared with the AA genotype, the GA + GG genotype decreased lung cancer susceptibility (OR = 0.808, 95% CI 0.663-0.985, P = 0.035) and the GG genotype (OR = 0.591, 95% CI 0.347-0.988, P = 0.048). In a stratified analysis, the risk of lung cancer in the G allele carriers decreased among the males, patients without a tumor-related family history, and patients with lung adenocarcinoma, especially in smokers. CONCLUSION The polymorphism of locus rs1695 is related to the risk of lung cancer and is expected to be a target for the prediction of lung cancer.
Collapse
Affiliation(s)
- Jiang Xiao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yulu Wang
- Department of Emergency, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Zhimin Wang
- Shanghai-MOST key Laboratory of Heath and Disease Genomics, Chinese National Human Genome Center at Shanghai (CHGC) and Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai, China
| | - Yao Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yutao Li
- Ministry of Education Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Chang Xu
- Clinical College of Xiangnan University, Chenzhou, China
| | - Man Xiao
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
| | - Haijian Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Shicheng Guo
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Li Jin
- Ministry of Education Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Jiucun Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Yang Bao
- Department of Cardiothoracic Surgery, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Yan Shang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China.,Department of General Practice, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Junjie Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China.,Ministry of Education Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
34
|
Chang ET, Ye W, Zeng YX, Adami HO. The Evolving Epidemiology of Nasopharyngeal Carcinoma. Cancer Epidemiol Biomarkers Prev 2021; 30:1035-1047. [PMID: 33849968 DOI: 10.1158/1055-9965.epi-20-1702] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/15/2021] [Accepted: 03/26/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The epidemiology of nasopharyngeal carcinoma (NPC) has long been a source of fascination due to the malignancy's striking geographic distribution, the involvement of the oncogenic Epstein-Barr virus (EBV), the unique association with intake of Chinese-style salt-preserved fish, and etiologic heterogeneity by histologic subtype. METHODS This review summarizes the current epidemiologic literature on NPC, highlighting recent results from our population-based case-control study in southern China. RESULTS Findings from our case-control study provide new insight into the epidemiology of NPC, including a diminished role of Chinese-style salt-preserved fish, a profound impact of EBV genetic sequence variation, modest positive associations with passive smoking and household air pollution, and possible effects of oral health and the oral microbiome. Recent findings from other studies include a protective association with infectious mononucleosis, suggesting a causal role of early EBV infection; familial risk conferred by shared genetic variation in the host antibody-mediated immune response to EBV infection; and an unclear association with occupational exposure to formaldehyde. CONCLUSIONS To shed further light on the interplay of environmental, genetic, and viral causes of NPC, large pooled studies must accumulate sufficient cases with detailed exposure data. IMPACT New epidemiologic findings have reshaped the causal model for NPC.
Collapse
Affiliation(s)
- Ellen T Chang
- Center for Health Sciences, Exponent, Inc., Menlo Park, California.
- Department of Cancer Prevention Center, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Weimin Ye
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Yi-Xin Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Beijing Hospital, Beijing, P.R. China
| | - Hans-Olov Adami
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Clinical Effectiveness Group, Institute of Health and Society, University of Oslo, Oslo, Norway
| |
Collapse
|
35
|
Xie J, Zhu M, Ji M, Fan J, Huang Y, Wei X, Jiang X, Xu J, Yin R, Wang Y, Dai J, Jin G, Xu L, Hu Z, Ma H, Shen H. Relationships of sleep traits with lung cancer risk: a prospective cohort study in UK Biobank. Sleep 2021; 44:6211207. [PMID: 33823024 DOI: 10.1093/sleep/zsab089] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/26/2021] [Indexed: 12/16/2022] Open
Abstract
STUDY OBJECTIVES To prospectively investigate the association between sleep traits and lung cancer risk, accounting for the interactions with genetic predisposition of lung cancer. METHODS We included 469,691 individuals free of lung cancer at recruitment from UK Biobank, measuring sleep behaviors with a standardized questionnaire and identifying incident lung cancer cases through linkage to national cancer and death registries. We estimated multivariable adjusted hazard ratios (HR) for lung cancer (2,177 incident cases) across four sleep traits (sleep duration, chronotype, insomnia and snoring), and examined the interaction and joint effects with a lung cancer polygenic risk score. RESULTS A U-shaped association was observed for sleep duration and lung cancer risk, with a 18% higher risk (95% confidence interval (CI): 1.07-1.30) for short sleepers and a 17% higher risk (95%CI: 1.02-1.34) for long sleepers compared with normal sleepers (7-8 h/day). Evening preference was associated with elevated lung cancer risk compared with morning preference (HR: 1.25; 95%CI: 1.07-1.46), but no association was found for insomnia or snoring. Compared to participants with favorable sleep traits and low genetic risk, those with both unfavorable sleep duration (<7 hours or >8 hours) or evening preference and high genetic risk showed the greatest lung cancer risk (HRsleep duration: 1.83; 95%CI: 1.47-2.27; HRchronotype: 1.85; 95%CI: 1.34-2.56). CONCLUSIONS Both unfavorable sleep duration and evening chronotype were associated with increased lung cancer incidence, especially for those with low to moderate genetic risk. These results indicate that sleep behaviors as modifiable risk factors may have potential implications for lung cancer risk.
Collapse
Affiliation(s)
- Junxing Xie
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meng Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personized Medicine, Nanjing Medical University, Nanjing, China.,Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Mengmeng Ji
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jingyi Fan
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yanqian Huang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiaoxia Wei
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiangxiang Jiang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jing Xu
- Department of Thoracic Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rong Yin
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yuzhuo Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Juncheng Dai
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personized Medicine, Nanjing Medical University, Nanjing, China
| | - Guangfu Jin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personized Medicine, Nanjing Medical University, Nanjing, China
| | - Lin Xu
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Zhibin Hu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personized Medicine, Nanjing Medical University, Nanjing, China
| | - Hongxia Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personized Medicine, Nanjing Medical University, Nanjing, China
| | - Hongbing Shen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personized Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
36
|
Qin N, Li Y, Wang C, Zhu M, Dai J, Hong T, Albanes D, Lam S, Tardon A, Chen C, Goodman G, Bojesen SE, Landi MT, Johansson M, Risch A, Wichmann HE, Bickeboller H, Rennert G, Arnold S, Brennan P, Field JK, Shete S, Le Marchand L, Melander O, Brunnstrom H, Liu G, Hung RJ, Andrew A, Kiemeney LA, Zienolddiny S, Grankvist K, Johansson M, Caporaso N, Woll P, Lazarus P, Schabath MB, Aldrich MC, Stevens VL, Jin G, Christiani DC, Hu Z, Amos CI, Ma H, Shen H. Comprehensive functional annotation of susceptibility variants identifies genetic heterogeneity between lung adenocarcinoma and squamous cell carcinoma. Front Med 2021; 15:275-291. [PMID: 32889700 PMCID: PMC8374896 DOI: 10.1007/s11684-020-0779-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 03/05/2020] [Indexed: 12/12/2022]
Abstract
Although genome-wide association studies have identified more than eighty genetic variants associated with non-small cell lung cancer (NSCLC) risk, biological mechanisms of these variants remain largely unknown. By integrating a large-scale genotype data of 15 581 lung adenocarcinoma (AD) cases, 8350 squamous cell carcinoma (SqCC) cases, and 27 355 controls, as well as multiple transcriptome and epigenomic databases, we conducted histology-specific meta-analyses and functional annotations of both reported and novel susceptibility variants. We identified 3064 credible risk variants for NSCLC, which were overrepresented in enhancer-like and promoter-like histone modification peaks as well as DNase I hypersensitive sites. Transcription factor enrichment analysis revealed that USF1 was AD-specific while CREB1 was SqCC-specific. Functional annotation and gene-based analysis implicated 894 target genes, including 274 specifics for AD and 123 for SqCC, which were overrepresented in somatic driver genes (ER = 1.95, P = 0.005). Pathway enrichment analysis and Gene-Set Enrichment Analysis revealed that AD genes were primarily involved in immune-related pathways, while SqCC genes were homologous recombination deficiency related. Our results illustrate the molecular basis of both well-studied and new susceptibility loci of NSCLC, providing not only novel insights into the genetic heterogeneity between AD and SqCC but also a set of plausible gene targets for post-GWAS functional experiments.
Collapse
Affiliation(s)
- Na Qin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yuancheng Li
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Cheng Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
| | - Meng Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Juncheng Dai
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, 211166, China
- China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Tongtong Hong
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892-9304, USA
| | - Stephen Lam
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, BC, V5Z 1L3, Canada
| | - Adonina Tardon
- Faculty of Medicine, University of Oviedo and CIBERESP, Oviedo, 33006, Spain
| | - Chu Chen
- Program in Epidemiology, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109-1024, USA
| | - Gary Goodman
- Public Health Sciences Division, Swedish Cancer Institute, Seattle, WA, 98026, USA
| | - Stig E Bojesen
- Department of Clinical Biochemistry, Copenhagen University Hospital, Copenhagen, DK-1017, Denmark
| | | | - Mattias Johansson
- Genetic Epidemiology Group, International Agency for Research on Cancer, Lyon, 69372, France
| | - Angela Risch
- Cancer Center Cluster Salzburg at PLUS, Department of Molecular Biology, University of Salzburg, Heidelberg, 5020, Austria
| | - H-Erich Wichmann
- Institute of Medical Informatics, Biometry and Epidemiology, Chair of Epidemiology, Ludwig Maximilians University, Munich, Bavaria, 80539, Germany
| | - Heike Bickeboller
- Department of Genetic Epidemiology, University Medical Center Goettingen, Goettingen, 37075, Germany
| | - Gadi Rennert
- Technion Faculty of Medicine, Carmel Medical Center, Haifa, 3448516, Israel
| | - Susanne Arnold
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40506-0054, USA
| | - Paul Brennan
- Genetic Epidemiology Group, International Agency for Research on Cancer, Lyon, 69372, France
| | - John K Field
- Department of Molecular and Clinical Cancer Medicine, Roy Castle Lung Cancer Research Programme, The University of Liverpool Institute of Translational Medicine, Liverpool, L69 7ZX, UK
| | - Sanjay Shete
- Department of Epidemiology, The University of Texas, MD Anderson Cancer Center, Houston, TX, 77079, USA
| | - Loic Le Marchand
- Department of Epidemiology, University of Hawaii Cancer Center, Honolulu, HI, 96813, USA
| | - Olle Melander
- Department of Clinical Sciences, Lund University, BMC F12, 221 84, Lund, Sweden
| | - Hans Brunnstrom
- Department of Clinical Sciences, Lund University, BMC F12, 221 84, Lund, Sweden
| | - Geoffrey Liu
- Epidemiology Division, Princess Margaret Cancer Center, Toronto, ON, M4Y 2H8, Canada
| | - Rayjean J Hung
- Epidemiology Division, Lunenfeld-Tanenbuaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Angeline Andrew
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, 03756, USA
| | - Lambertus A Kiemeney
- Department of Health Evidence, Radboud University Medical Center, Nijmegen, 9101 6500, HB, Germany
| | - Shan Zienolddiny
- National Institute of Occupational Health (STAMI), Oslo, Pb 5330, Norway
| | - Kjell Grankvist
- Department of Medical Biosciences, Umeå University, Umea, 901 87, Sweden
| | - Mikael Johansson
- Department of Radiation Sciences, Umeå University, Umea, 901 87, Sweden
| | - Neil Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, 20850, USA
| | - Penella Woll
- Academic Unit of Clinical Oncology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Philip Lazarus
- College of Pharmacy, Washington State University, Spokane, WA, 99210, USA
| | - Matthew B Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 12902, USA
| | - Melinda C Aldrich
- Department of Thoracic Surgery, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Victoria L Stevens
- Department of Epidemiology Research Program, American Cancer Society, Atlanta, GA, 30303, USA
| | - Guangfu Jin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, 211166, China
- China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - David C Christiani
- China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Department of Environmental Health, Harvard School of Public Health, Department of Medicine, Harvard Medical School/Massachusetts General Hospital, Boston, MA, 02115, USA
| | - Zhibin Hu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China
- China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Christopher I Amos
- Baylor College of Medicine, Institute for Clinical and Translational Research, Houston, TX, 21202, USA
| | - Hongxia Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, 211166, China.
- China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Hongbing Shen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, 211166, China.
- China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
37
|
Song SH, Byun SS. Polygenic risk score for genetic evaluation of prostate cancer risk in Asian populations: A narrative review. Investig Clin Urol 2021; 62:256-266. [PMID: 33943048 PMCID: PMC8100017 DOI: 10.4111/icu.20210124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 12/16/2022] Open
Abstract
Decreasing costs of genetic testing and interest in disease inheritance has changed the landscape of cancer prediction in prostate cancer (PCa), and guidelines now include genetic testing for high-risk groups. Familial and hereditary PCa comprises approximately 20% and 5% of all PCa, respectively. Multifaceted disorders like PCa are caused by a combinatory effect of rare genes of high penetrance and smaller genetic variants of relatively lower effect size. Polygenic risk score (PRS) is a novel tool utilizing PCa-associated single nucleotide polymorphisms (SNPs) identified from genome-wide association study (GWAS) to generate an additive estimate of an individual's lifetime genetic risk for cancer. However, most PRS are developed based on GWAS collected from mainly European populations and do not address ethnic differences in PCa genetics. This review highlights the attempts to generate a PRS tailored to Asian males including data from Korea, China, and Japan, and discuss the clinical implications for prediction of early onset and aggressive PCa.
Collapse
Affiliation(s)
- Sang Hun Song
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Seok Soo Byun
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Medical Device Development, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
38
|
Choi J, Jia G, Wen W, Long J, Zheng W. Evaluating polygenic risk scores in assessing risk of nine solid and hematologic cancers in European descendants. Int J Cancer 2020; 147:3416-3423. [PMID: 32588423 DOI: 10.1002/ijc.33176] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/04/2020] [Accepted: 06/15/2020] [Indexed: 01/04/2023]
Abstract
Genome-wide association studies (GWAS) have identified many genetic risk variants for cancers. The utility of these variants in assessing risk of esophageal, gastric and endometrial cancers, as well as melanoma, glioma, diffuse large B-cell lymphoma, follicular lymphoma, chronic lymphoid leukemia and multiple myeloma, has not been adequately investigated. We constructed a site-specific polygenic risk score (PRS) for each of these nine cancers using their GWAS-identified risk variants. Using data from 400 807 participants of European descent in the UK Biobank, a population-based cohort study, we estimated the hazard ratios of each cancer associated with its PRS using Cox proportional hazard models. During a median follow-up of 5.8 years, 3905 incident cases of these nine cancers were identified in the cohort. The area under the receiver operating characteristic curve ranged from 0.53 to 0.69 for these cancers. Except for esophageal cancer, significant dose-response associations were observed between PRS and cancer risk. Compared to individuals in the middle quintile (40%-60%) at an average risk, those among the highest 5% of the PRS had a twofold elevated risk of melanoma, glioma, follicular lymphoma or multiple myeloma, and a fourfold elevated risk of chronic lymphoid leukemia. Using PRS, 63.0% of the participants could be classified as having an over twofold elevated risk for at least one cancer. The PRS derived using risk variants identified to date by GWAS showed the potential in identifying individuals at a significantly elevated risk of cancer for prevention.
Collapse
Affiliation(s)
- Jungyoon Choi
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Guochong Jia
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
39
|
Zheng M, Wang T, Liao Y, Xue W, He Y, Wu Z, Yang D, Li D, Deng C, Jia Y, Yuan L, Zhang W, Luo L, Tong X, Wu Y, Zhou T, Li X, Tang L, Zhang J, Xia Y, Mu J, Jia W. Nasopharyngeal Epstein-Barr virus DNA loads in high-risk nasopharyngeal carcinoma families: Familial aggregation and host heritability. J Med Virol 2020; 92:3717-3725. [PMID: 32558959 PMCID: PMC7689818 DOI: 10.1002/jmv.26198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022]
Abstract
Nasopharyngeal carcinoma (NPC), the most common head and neck cancer, is characterized by distinct geographic distribution and familial aggregation. Multiple risk factors, including host genetics, environmental factor, and EBV infection, have been linked to the development of NPC, particularly in the familial clustering cases. However, the cause of NPC endemicity remains enigmatic due possibly to the complicated interplay between these risk factors. Recently, positive Epstein-Barr virus (EBV) DNA loads at nasopharyngeal (NP) cavity has been found to reflect NPC development and applied in NPC screening. To examine whether the increased NP EBV loads could aggregate in the families and be affected by host genetics and environmental factor, EBV loads were obtained by 510 NP brushing samples from eligible unaffected individuals, who have two or more relatives affected with NPC, in 116 high-risk NPC families. The correlation of relative pairs was estimated using S.A.G.E. (version 6.4, 2016), and host heritability of NP EBV loads was calculated with variance component models using SOLAR (version 8.4.2, 2019). In result, significant correlations of EBV loads were observed between parent-offspring pairs and sibling-sibling pairs (P < .001), but not in distant kin relationship pairs. Interestingly, after excluding the shared environmental factor within families, host genetics contributes significantly to NP EBV loads with a heritability of 56.41% (P = 1.00 × 10-7 ), and its effect was slightly elevated (68.86%, P = 3.40 × 10-6 ) in families with more NPC cases (≥3). These findings indicate that additional host-genetic variants involved in the EBV local NP mucosal behavior may be especially important for the development of NPC.
Collapse
Affiliation(s)
- Mei‐Qi Zheng
- School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Tong‐Min Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Ying Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Wen‐Qiong Xue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yong‐Qiao He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Zi‐Yi Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Da‐Wei Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Dan‐Hua Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Chang‐Mi Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yi‐Jing Jia
- School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Lei‐Lei Yuan
- School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Wen‐Li Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Lu‐Ting Luo
- School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xia‐Ting Tong
- School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yan‐Xia Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Ting Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xi‐Zhao Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Ling‐Ling Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Jiang‐Bo Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yun‐Fei Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
- Department of Radiation OncologySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Jianbing Mu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthRockvilleMaryland
| | - Wei‐Hua Jia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| |
Collapse
|
40
|
Su ZJ, Lin CC, Pan JH, Zhang JH, Han T, Pan Q. Prediction of Poor Prognosis of HCC by Early Warning Model for Co-Expression of miRNA and mRNA Based on Bioinformatics Analysis. Technol Cancer Res Treat 2020; 19:1533033820959353. [PMID: 33089765 PMCID: PMC7586031 DOI: 10.1177/1533033820959353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective: Hepatocellular Carcinoma (HCC) has the highest mortality rate worldwide with the intractability of its extremely complicated pathogenesis and unclear mechanism. The limited survival highlights the need for the further detection of prognosis for HCC. MicroRNAs (miRNAs) and messenger RNAs (mRNAs) have been identified as regulatory factors and target genes in human cancers, while some studies also found post-transcriptional modification plays a crucial role in the occurrence and development of HCC. The present study aimed to elucidate the prognostic significance of miRNA and mRNA models in HCC. Methods: Data were obtained from The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC), and Gene Expression Omnibus (GEO) databases. The miRNA and mRNA expressions were tested by the Wilcoxon and used funrich software to predict mRNA that might be related to miRNA. Then we determined the intersection with overlapped mRNA and miRNA Venn diagram, and screened out hub gene by using Degree algorithm in Cytoscape software. The COX models, with TCGA data as the training set and ICGC data as the test set, were constructed. All patients were divided into high-risk and low-risk groups. Data on overall survival of different groups were collected and analyzed by Kaplan-Meier method, and independent risk factors affecting prognosis were assessed by Cox analysis. Results: The miRNA and mRNA polygenic risk model showed a good true positive rate. Kaplan-Meier curve and Cox analysis suggested that the high-risk group was associated with poor prognosis, and the risk score could be used as an independent risk factor for HCC. Conclusion: Tumor risk models constructed in this study could effectively predict the prognosis of patients, which is expected to provide a reference for the prognostic stratification and treatment strategy development of HCC.
Collapse
Affiliation(s)
- Zi-Jian Su
- Hepatobiliary surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Chun-Cheng Lin
- Hepatobiliary surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Jian-Hui Pan
- Hepatobiliary surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Jian-Hua Zhang
- Hepatobiliary surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Tao Han
- Department of Oncology, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qunxiong Pan
- Hepatobiliary surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
41
|
Wang Y, Gorlova OY, Gorlov IP, Zhu M, Dai J, Albanes D, Lam S, Tardon A, Chen C, Goodman GE, Bojesen SE, Landi MT, Johansson M, Risch A, Wichmann HE, Bickeboller H, Christiani DC, Rennert G, Arnold SM, Brennan P, Field JK, Shete S, Le Marchand L, Melander O, Brunnstrom H, Liu G, Hung RJ, Andrew AS, Kiemeney LA, Zienolddiny S, Grankvist K, Johansson M, Caporaso NE, Woll PJ, Lazarus P, Schabath MB, Aldrich MC, Stevens VL, Ma H, Jin G, Hu Z, Amos CI, Shen H. Association Analysis of Driver Gene-Related Genetic Variants Identified Novel Lung Cancer Susceptibility Loci with 20,871 Lung Cancer Cases and 15,971 Controls. Cancer Epidemiol Biomarkers Prev 2020; 29:1423-1429. [PMID: 32277007 PMCID: PMC8120681 DOI: 10.1158/1055-9965.epi-19-1085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/10/2019] [Accepted: 04/07/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND A substantial proportion of cancer driver genes (CDG) are also cancer predisposition genes. However, the associations between genetic variants in lung CDGs and the susceptibility to lung cancer have rarely been investigated. METHODS We selected expression-related single-nucleotide polymorphisms (eSNP) and nonsynonymous variants of lung CDGs, and tested their associations with lung cancer risk in two large-scale genome-wide association studies (20,871 cases and 15,971 controls of European descent). Conditional and joint association analysis was performed to identify independent risk variants. The associations of independent risk variants with somatic alterations in lung CDGs or recurrently altered pathways were investigated using data from The Cancer Genome Atlas (TCGA) project. RESULTS We identified seven independent SNPs in five lung CDGs that were consistently associated with lung cancer risk in discovery (P < 0.001) and validation (P < 0.05) stages. Among these loci, rs78062588 in TPM3 (1q21.3) was a new lung cancer susceptibility locus (OR = 0.86, P = 1.65 × 10-6). Subgroup analysis by histologic types further identified nine lung CDGs. Analysis of somatic alterations found that in lung adenocarcinomas, rs78062588[C] allele (TPM3 in 1q21.3) was associated with elevated somatic copy number of TPM3 (OR = 1.16, P = 0.02). In lung adenocarcinomas, rs1611182 (HLA-A in 6p22.1) was associated with truncation mutations of the transcriptional misregulation in cancer pathway (OR = 0.66, P = 1.76 × 10-3). CONCLUSIONS Genetic variants can regulate functions of lung CDGs and influence lung cancer susceptibility. IMPACT Our findings might help unravel biological mechanisms underlying lung cancer susceptibility.
Collapse
Affiliation(s)
- Yuzhuo Wang
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Olga Y Gorlova
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
- Department of Medicine, Epidemiology Section, Institute for Clinical and Translational Research, Baylor Medical College, Houston, Texas
| | - Ivan P Gorlov
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
- Department of Medicine, Epidemiology Section, Institute for Clinical and Translational Research, Baylor Medical College, Houston, Texas
| | - Meng Zhu
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Juncheng Dai
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Stephen Lam
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Adonina Tardon
- Department of Public Health IUOPA, University of Oviedo, ISPA and CIBERESP, Oviedo, Spain
| | - Chu Chen
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Gary E Goodman
- Public Health Sciences Division, Swedish Cancer Institute, Seattle, Washington
| | - Stig E Bojesen
- Department of Clinical Biochemistry, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Mattias Johansson
- Genetic Epidemiology Group, International Agency for Research on Cancer, Lyon, France
| | - Angela Risch
- University of Salzburg, Department of Biosciences, Allergy-Cancer-BioNano Research Centre, Salzburg, Austria
- Division of Epigenomics and Cancer Risk Factors, DKFZ-German Cancer Research Center, Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Heunz-Erich Wichmann
- Institute of Medical Informatics, Biometry and Epidemiology, Chair of Epidemiology, Ludwig Maximilians University, Munich, Bavaria, Germany
- Helmholtz Zentrum Munchen, German Research Center for Environmental Health (GmbH), Institute of Epidemiology, Neuherberg, Germany
- Institute of Medical Statistics and Epidemiology, Technical University Munich, Munich, Germany
| | - Heike Bickeboller
- Department of Genetic Epidemiology, University Medical Center Goettingen, Goettingen, Germany
| | - David C Christiani
- Departments of Environmental Health and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Gad Rennert
- Technion Faculty of Medicine, Carmel Medical Center, Haifa, Israel
| | - Susanne M Arnold
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Paul Brennan
- Genetic Epidemiology Group, International Agency for Research on Cancer, Lyon, France
| | - John K Field
- Molecular and Clinical Cancer Medicine, Roy Castle Lung Cancer Research Programme, The University of Liverpool Institute of Translational Medicine, Liverpool, United Kingdom
| | - Sanjay Shete
- Department of Epidemiology, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Loïc Le Marchand
- Epidemiology Program, University of Hawai'i Cancer Center, Honolulu, Hawai'i
| | - Olle Melander
- Clinical Sciences, Lund University, Lund, Sweden
- Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden
| | | | - Geoffrey Liu
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Rayjean J Hung
- Prosseman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Angeline S Andrew
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Lambertus A Kiemeney
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Kjell Grankvist
- Department of Medical Biosciences, Umeå University, Umea, Sweden
| | | | - Neil E Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Penella J Woll
- Academic Unit of Clinical Oncology, University of Sheffield, Sheffield, United Kingdom
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Matthew B Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Melinda C Aldrich
- Department of Medicine (Division of Genetic Medicine), Vanderbilt University Medical Center, Nashville, Tennessee
| | - Victoria L Stevens
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Hongxia Ma
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Guangfu Jin
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Zhibin Hu
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Christopher I Amos
- Department of Medicine, Epidemiology Section, Institute for Clinical and Translational Research, Baylor Medical College, Houston, Texas.
| | - Hongbing Shen
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
42
|
Tian J, Ying P, Ke J, Zhu Y, Yang Y, Gong Y, Zou D, Peng X, Yang N, Wang X, Mei S, Zhang Y, Wang C, Zhong R, Chang J, Miao X. ANKLE1 N 6 -Methyladenosine-related variant is associated with colorectal cancer risk by maintaining the genomic stability. Int J Cancer 2020; 146:3281-3293. [PMID: 31509622 DOI: 10.1002/ijc.32677] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 09/05/2019] [Indexed: 12/21/2022]
Abstract
The N6 -Methyladenosine (m6 A) modification plays an important role in many biological processes, especially tumor development. However, little is still known about how it affects colorectal cancer (CRC) carcinogenesis. Here, we first systematically investigate the association of variants related to m6 A modification with the CRC risk in 1,062 CRC cases and 2,184 controls by using our exome-wide association data and followed by two replication sets including 7,341 CRC cases and 7,902 controls. The variant rs8100241 located in ANKLE1 was significantly associated with CRC risk (odds ratio = 0.88, 95% confidence interval = 0.84-0.92, p = 4.85 × 10-8 ) in 8,403 cases and 10,086 controls. This variant was previously identified to be associated with the susceptibility of breast cancer with BRCA1 mutation triple negative breast cancer. Further functional analysis indicated that overexpression of the rs8100241[A] allele significantly increased the ANKLE1 m6 A level and facilitated the ANKLE1 protein expression compared to that of rs8100241[G] allele. We further found the ANKLE1 m6 A modification was catalyzed by the "writer" complex (METTL3, METTL14, or WTAP) and recognized by the "reader" YTHDF1. Mechanistically, we found that the ANKLE1 functions as a potential tumor suppressor that inhibits cell proliferation and facilitates the genomic stability. An elevated frequency of micronucleated cells, increased cell proliferation, and colony formation ability were observed when ANKLE1 knockdown. Our study illustrated that the germline missense variant can increase CRC risk by influencing ANKLE1 m6 A level, highlighting a clinical potential of variants-associated m6 A modification as a risk marker for CRC prevention.
Collapse
Affiliation(s)
- Jianbo Tian
- Key Laboratory for Environment and Health (Ministry of Education), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Pingting Ying
- Key Laboratory for Environment and Health (Ministry of Education), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Juntao Ke
- Key Laboratory for Environment and Health (Ministry of Education), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Ying Zhu
- Key Laboratory for Environment and Health (Ministry of Education), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Yang Yang
- Key Laboratory for Environment and Health (Ministry of Education), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Yajie Gong
- Key Laboratory for Environment and Health (Ministry of Education), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Danyi Zou
- Key Laboratory for Environment and Health (Ministry of Education), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Xiating Peng
- Key Laboratory for Environment and Health (Ministry of Education), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Nan Yang
- Key Laboratory for Environment and Health (Ministry of Education), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Xiaoyang Wang
- Key Laboratory for Environment and Health (Ministry of Education), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Shufang Mei
- Key Laboratory for Environment and Health (Ministry of Education), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Yuxing Zhang
- Department of Colorectal Surgery, The Eighth Hospital of Wuhan City, Wuhan, China
| | - Changyi Wang
- Department of Non-Communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Rong Zhong
- Key Laboratory for Environment and Health (Ministry of Education), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Jiang Chang
- Key Laboratory for Environment and Health (Ministry of Education), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Xiaoping Miao
- Key Laboratory for Environment and Health (Ministry of Education), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| |
Collapse
|
43
|
Yang DW, Wang TM, Zhang JB, Li XZ, He YQ, Xiao R, Xue WQ, Zheng XH, Zhang PF, Zhang SD, Hu YZ, Shen GP, Chen M, Sun Y, Jia WH. Genome-wide association study identifies genetic susceptibility loci and pathways of radiation-induced acute oral mucositis. J Transl Med 2020; 18:224. [PMID: 32503578 PMCID: PMC7275566 DOI: 10.1186/s12967-020-02390-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/28/2020] [Indexed: 12/17/2022] Open
Abstract
Background Radiation-induced oral mucositis (OM) is one of the most common acute complications for head and neck cancer. Severe OM is associated with radiation treatment breaks, which harms successful tumor management. Radiogenomics studies have indicated that genetic variants are associated with adverse effects of radiotherapy. Methods A large-scale genome-wide scan was performed in 1467 nasopharyngeal carcinoma patients, including 753 treated with 2D-CRT from Genetic Architecture of the Radiotherapy Toxicity and Prognosis (GARTP) cohort and 714 treated with IMRT (192 from the GARTP and 522 newly recruited). Subgroup analysis by radiotherapy technique was further performed in the top associations. We also performed physical and regulatory mapping of the risk loci and gene set enrichment analysis of the candidate target genes. Results We identified 50 associated genomic loci and 64 genes via positional mapping, expression quantitative trait locus (eQTL) mapping, chromatin interaction mapping and gene-based analysis, and 36 of these loci were replicated in subgroup analysis. Interestingly, one of the top loci located in TNKS, a gene relevant to radiation toxicity, was associated with increased OM risk with OR = 3.72 of the lead SNP rs117157809 (95% CI 2.10–6.57; P = 6.33 × 10−6). Gene set analyses showed that the 64 candidate target genes were enriched in the biological processes of regulating telomere capping and maintenance and telomerase activity (Top P = 7.73 × 10−7). Conclusions These results enhance the biological understanding of radiotherapy toxicity. The association signals enriched in telomere function regulation implicate the potential underlying mechanism and warrant further functional investigation and potential individual radiotherapy applications.
Collapse
Affiliation(s)
- Da-Wei Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,School of Public Health, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Tong-Min Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jiang-Bo Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Xi-Zhao Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Yong-Qiao He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Ruowen Xiao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Wen-Qiong Xue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Xiao-Hui Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Pei-Fen Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Shao-Dan Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Ye-Zhu Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Guo-Ping Shen
- Department of Radiation Oncology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, People's Republic of China
| | - Mingyuan Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Ying Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China. .,School of Public Health, Sun Yat-sen University, Guangzhou, People's Republic of China. .,Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, People's Republic of China.
| |
Collapse
|
44
|
Dai J, Huang M, Amos CI, Hung RJ, Tardon A, Andrew A, Chen C, Christiani DC, Albanes D, Rennert G, Fan J, Goodman G, Liu G, Field JK, Grankvist K, Kiemeney LA, Le Marchand L, Schabath MB, Johansson M, Aldrich MC, Johansson M, Caporaso N, Lazarus P, Lam S, Bojesen SE, Arnold S, Landi MT, Risch A, Wichmann HE, Bickeboller H, Brennan P, Shete S, Melander O, Brunnstrom H, Zienolddiny S, Woll P, Stevens V, Hu Z, Shen H. Genome-wide association study of INDELs identified four novel susceptibility loci associated with lung cancer risk. Int J Cancer 2020; 146:2855-2864. [PMID: 31577861 PMCID: PMC7101262 DOI: 10.1002/ijc.32698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/23/2019] [Accepted: 08/02/2019] [Indexed: 12/24/2022]
Abstract
Genome-wide association studies (GWAS) have identified 45 susceptibility loci associated with lung cancer. Only less than SNPs, small insertions and deletions (INDELs) are the second most abundant genetic polymorphisms in the human genome. INDELs are highly associated with multiple human diseases, including lung cancer. However, limited studies with large-scale samples have been available to systematically evaluate the effects of INDELs on lung cancer risk. Here, we performed a large-scale meta-analysis to evaluate INDELs and their risk for lung cancer in 23,202 cases and 19,048 controls. Functional annotations were performed to further explore the potential function of lung cancer risk INDELs. Conditional analysis was used to clarify the relationship between INDELs and SNPs. Four new risk loci were identified in genome-wide INDEL analysis (1p13.2: rs5777156, Insertion, OR = 0.92, p = 9.10 × 10-8 ; 4q28.2: rs58404727, Deletion, OR = 1.19, p = 5.25 × 10-7 ; 12p13.31: rs71450133, Deletion, OR = 1.09, p = 8.83 × 10-7 ; and 14q22.3: rs34057993, Deletion, OR = 0.90, p = 7.64 × 10-8 ). The eQTL analysis and functional annotation suggested that INDELs might affect lung cancer susceptibility by regulating the expression of target genes. After conducting conditional analysis on potential causal SNPs, the INDELs in the new loci were still nominally significant. Our findings indicate that INDELs could be potentially functional genetic variants for lung cancer risk. Further functional experiments are needed to better understand INDEL mechanisms in carcinogenesis.
Collapse
Affiliation(s)
- Juncheng Dai
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Mingtao Huang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Christopher I Amos
- Department of Medicine, Epidemiology Section, Institute for Clinical and Translational Research, Baylor Medical College, Houston, TX
| | - Rayjean J Hung
- Epidemiology Division, Lunenfeld-Tanenbuaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Adonina Tardon
- Faculty of Medicine, University of Oviedo and CIBERESP, Oviedo, Spain
| | - Angeline Andrew
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH
| | - Chu Chen
- Department of Epidemiology, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - David C Christiani
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Gadi Rennert
- Technion Faculty of Medicine, Carmel Medical Center, Israel Institute of Technology, Haifa, Israel
| | - Jingyi Fan
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Gary Goodman
- Public Health Sciences Division, Swedish Cancer Institute, Seattle, WA
| | - Geoffrey Liu
- Epidemiology Division, Princess Margaret Cancer Center, Toronto, ON, Canada
| | - John K Field
- Roy Castle Lung Cancer Research Programme, Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Kjell Grankvist
- Unit of Clinical Chemistry, Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Lambertus A Kiemeney
- Department of Health Evidence, Radboud University Medical Center, Nijmegen, Germany
| | - Loic Le Marchand
- Department of Epidemiology, University of Hawaii Cancer Center, Honolulu, HI
| | - Matthew B Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Mattias Johansson
- Genetic Epidemiology Group, International Agency for Research on Cancer, Lyon, France
| | - Melinda C Aldrich
- Department of Thoracic Surgery, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN
| | | | - Neil Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Philip Lazarus
- Washington State University College of Pharmacy, Spokane, WA
| | - Stephan Lam
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Stig E Bojesen
- Department of Clinical Biochemistry, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Susanne Arnold
- Markey Cancer Center, University of Kentucky, Lexington, KY
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Angela Risch
- Cancer Center Cluster Salzburg at PLUS, Department of Molecular Biology, University of Salzburg, Heidelberg, Austria
| | - H-Erich Wichmann
- Institute of Medical Informatics, Biometry and Epidemiology, Chair of Epidemiology, Ludwig Maximilians University, Munich, Bavaria, Germany
| | - Heike Bickeboller
- Department of Genetic Epidemiology, University Medical Center Goettingen, Goettingen, Germany
| | - Paul Brennan
- Genetic Epidemiology Group, International Agency for Research on Cancer, Lyon, France
| | - Sanjay Shete
- Department of Epidemiology, University of Texas, MD Anderson Cancer Center, Houston, TX
| | - Olle Melander
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Hans Brunnstrom
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | | | - Penella Woll
- Academic Unit of Clinical Oncology, University of Sheffield, Sheffield, UK
| | - Victoria Stevens
- Epidemiology Research Program, American Cancer Society, Atlanta, GA
| | - Zhibin Hu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Hongbing Shen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
45
|
Li Z, Tang J, Wen W, Wu W, Wang J, Xu J, Yu Y, He Z, Pan X, Wei H, Zhu Y, Hu S, Cao J, Shen H, Que J, Wang W, Zhu Q, Chen L. Systematic analysis of genetic variants in cancer-testis genes identified two novel lung cancer susceptibility loci in Chinese population. J Cancer 2020; 11:1985-1993. [PMID: 32194810 PMCID: PMC7052880 DOI: 10.7150/jca.40002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/25/2019] [Indexed: 12/29/2022] Open
Abstract
Cancer-testis (CT) genes played important roles in the progression of malignant tumors and were recognized as promising therapeutic targets. However, the roles of genetic variants in CT genes in lung cancer susceptibility have not been well depicted. This study aimed to evaluate the associations between genetic variants in CT genes and lung cancer risk in Chinese population. A total of 22,556 qualified SNPs from 268 lung cancer associated CT genes were initially evaluated based on our previous lung cancer GWAS (Genome-wide association studies) with 2,331 cases and 3,077 controls. As a result, 17 candidate SNPs were further genotyped in 1,056 cases and 1,053 controls using Sequenom platform. Two variants (rs6941653, OPRM1, T > C, screening: OR = 1.24, 95%CI: 1.12-1.38, P = 2.40×10-5; validation: OR = 1.18, 95%CI: 1.01-1.37, P = 0.039 and rs402969, NLRP8, C > T, screening: OR = 1.15, 95%CI: 1.04-1.26, P = 0.006; validation: OR = 1.16, 95%CI: 1.02-1.33, P = 0.028) were identified as novel lung cancer susceptibility variants. Stratification analysis indicated that the effect of rs6941653 was stronger in lung squamous cell carcinoma (OR = 1.36) than that in lung adenocarcinoma (OR = 1.15, I2 = 77%, P = 0.04). Finally, functional annotations, differential gene expression analysis, pathway and gene ontology analyses were performed to suggest the potential functions of our identified variants and genes. In conclusion, this study identified two novel lung cancer risk variants in Chinese population and provided deeper insight into the roles of CT genes in lung tumorigenesis.
Collapse
Affiliation(s)
- Zhihua Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jianwei Tang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Wei Wen
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Weibing Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jun Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jing Xu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yue Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhicheng He
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xianglong Pan
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Haixing Wei
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yining Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Shuo Hu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jing Cao
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hongbing Shen
- Department of Epidemiology, Center for Global Health, International Joint Research Center, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center of Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Jun Que
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Wei Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Quan Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Liang Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| |
Collapse
|
46
|
Ji Z, Li Y, Xiang C, Luo X, Yuan P, Long J, Shen N, Shen Y, Deng L, Li J, Cheng L. TERT-rs33963617 and CLPTM1L-rs77518573 reduce the risk of non-small cell lung cancer in Chinese population. Gene 2020; 731:144357. [PMID: 31935503 DOI: 10.1016/j.gene.2020.144357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 10/25/2022]
Abstract
BACKGROUND Genome-wide association studies (GWAS) have identified 5p15.33 as a susceptible locus for lung cancer. However, for non-small cell lung cancer (NSCLC), low-frequency risk variants in this region have not been systematically studied. We intended to explore the associations between low-frequency variants on 5p15.33 and NSCLC using a next-generation sequencing based approach in this study. METHODS We have acquisited the variation spectrum of 400 NSCLC patients on 5p15.33 by sequencing the targeted region before. Candidate variants were primarily selected by restricting the minor allele frequency (MAF 1-5%) and then by comparing their frequency in 400 NSCLC patients with 1008 East Asians from The genome Aggregation Database (gnomAD). The associations between candidate variants and NSCLC were discovered and replicated in two case-control sets: discovery stage with 960 cases and 916 controls, and replication stage with 1596 cases and 1614 controls in total. RESULTS Five low-frequency variants were selected as our candidates and subsequent association analyses showed that 2 polymorphisms were significantly associated with risk of NSCLC, including rs33963617 (OR = 0.63, 95% CI: 0.53-0.76, P = 3.80 × 10-7) in TERT and rs77518573 (OR = 0.73, 95% CI: 0.63-0.84, P = 2.00 × 10-5) in upstream of CLPTM1L. When stratified by histologic subtype, a significant association was only investigated in adenocarcinoma for rs77518573. We also observed an obvious cumulative effect of the two significant variants. CONCLUSIONS We newly identified two NSCLC related variants on chromosome 5p15.33. Both TERT-rs33963617 and CLPTM1L-rs77518573 conferred reduced risk for NSCLC in Chinese Han population.
Collapse
Affiliation(s)
- Zhi Ji
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ying Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Cheng Xiang
- Department of Endocrinology, Xiaogan Central Hospital, Xiaogan 432000, China
| | - Xia Luo
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Peihong Yuan
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jieyi Long
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Na Shen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ying Shen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lingyan Deng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiaoyuan Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Liming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
47
|
Ji P, Ding D, Qin N, Wang C, Zhu M, Li Y, Dai J, Jin G, Hu Z, Shen H, Chen L, Ma H. Systematic analyses of genetic variants in chromatin interaction regions identified four novel lung cancer susceptibility loci. J Cancer 2020; 11:1075-1081. [PMID: 31956354 PMCID: PMC6959073 DOI: 10.7150/jca.35127] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022] Open
Abstract
Genome-wide association studies (GWAS) have reported 45 single-nucleotide polymorphisms (SNPs) that may contribute to the susceptibility of lung cancer, with the majority in non-coding regions. However, no study has ever systematically evaluated the association between SNPs in physical chromatin interaction regions and lung cancer risk. In this study, we integrated the chromatin interaction information (Hi-C data) of lung cancer cell line and conducted a meta-analysis with two Asian GWASs (7,127 cases and 6,818 controls) to evaluate the association of potentially functional SNPs in chromatin interaction regions with lung cancer risk. We identified four novel lung cancer susceptibility loci located at 1q21.1 (rs17160062, P=4.00×10-6), 2p23.3 (rs670343, P=4.87×10-7), 2p15 (rs9309336, P=3.24×10-6) and 17q21.2 (rs9252, P=1.51×10-5) that were significantly associated with lung cancer risk after correction for multiple tests. Functional annotation result indicated that these SNPs may contribute to the development of lung cancer by affecting the availability of transcription factor binding sites. The HaploReg analysis suggested that rs9309336 may affect binding motif of transcription factor Foxp1. Expression quantitative trait loci analysis revealed that rs9309336 and rs17160062 could regulate the expressions of cancer-related genes (PUS10 and CHD1L). Our results revealed that variants in chromatin interaction regions could contribute to the development of lung cancer by regulating the expression of target genes, which providing novel implications for the understanding of functional variants in the development of lung cancer.
Collapse
Affiliation(s)
- Pei Ji
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Dongsheng Ding
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Na Qin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Cheng Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Bioinformatics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Meng Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Yuancheng Li
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Juncheng Dai
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Guangfu Jin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Zhibin Hu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Hongbing Shen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Liang Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongxia Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
48
|
Ke J, Peng X, Mei S, Tian J, Ying P, Yang N, Wang X, Zou D, Yang Y, Zhu Y, Gong Y, Gong J, Zhong R, Chang J, Fang Z, Miao X. Evaluation of polymorphisms in microRNA-binding sites and pancreatic cancer risk in Chinese population. J Cell Mol Med 2019; 24:2252-2259. [PMID: 31880394 PMCID: PMC7011162 DOI: 10.1111/jcmm.14906] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/12/2019] [Accepted: 12/03/2019] [Indexed: 12/20/2022] Open
Abstract
As promising biomarkers and therapy targets, microRNAs (miRNAs) are involved in various physiological and tumorigenic processes. Genetic variants in miRNA‐binding sites can lead to dysfunction of miRNAs and contribute to disease. However, systematic investigation of the miRNA‐related single nucleotide polymorphisms (SNPs) for pancreatic cancer (PC) risk remains elusive. We performed integrative bioinformatics analyses to select 31 SNPs located in miRNA‐target binding sites using the miRNASNP v2.0, a solid database providing miRNA‐related SNPs for genetic research, and investigated their associations with risk of PC in two large case‐control studies totally including 1847 cases and 5713 controls. We observed that the SNP rs3802266 is significantly associated with increased risk of PC (odds ratio (OR) = 1.21, 95% confidence intervals (CI) = 1.11‐1.31, P = 1.29E‐05). Following luciferase reporter gene assays show that rs3802266‐G creates a stronger binding site for miR‐181a‐2‐3p in 3′ untranslated region (3′UTR) of the gene ZHX2. Expression quantitative trait loci (eQTL) analysis suggests that ZHX2 expression is lower in individuals carrying rs3802266‐G with increased PC risk. In conclusion, our findings highlight the involvement of miRNA‐binding SNPs in PC susceptibility and provide new clues for PC carcinogenesis.
Collapse
Affiliation(s)
- Juntao Ke
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiating Peng
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shufang Mei
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianbo Tian
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pingting Ying
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nan Yang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyang Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danyi Zou
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Yang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yajie Gong
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Gong
- College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Rong Zhong
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiang Chang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zemin Fang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Miao
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
49
|
Chang SC, Lan YT, Lin PC, Yang SH, Lin CH, Liang WY, Chen WS, Jiang JK, Lin JK. Patterns of germline and somatic mutations in 16 genes associated with mismatch repair function or containing tandem repeat sequences. Cancer Med 2019; 9:476-486. [PMID: 31769227 PMCID: PMC6970039 DOI: 10.1002/cam4.2702] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/19/2019] [Accepted: 10/28/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND We assumed that targeted next-generation sequencing (NGS) of mismatch repair-associated genes could improve the detection of driving mutations in colorectal cancers (CRC) with microsatellite instability (MSI) and microsatellite alterations at selected tetranucleotide repeats (EMAST) and clarify the somatic mutation patterns of CRC subtypes. MATERIAL AND METHODS DNAs from tumors and white blood cells were obtained from 81 patients with EMAST(+)/MSI-high (MSI-H), 78 patients with EMAST(+)/microsatellite stable (MSS), and 72 patients with EMAST(-)/MSI-H. The germline and somatic mutations were analyzed with a 16-genes NGS panel. RESULTS In total, 284 germline mutations were identified in 161 patients. The most common mutations were in EPCAM (24.8%), MSH6 (24.2%), MLH1 (21.7%), and AXIN2 (21.7%). Germline mutations of AXIN2, POLE, POLD1, and TGFBR2 also resulted in EMAST and MSI. EMAST(+)/MSI-H tumors had a significant higher mutation number (205.9 ± 95.2 mut/MB) than tumors that were only EMAST(+) or MSI-H (118.6 ± 64.2 and 106.2 ± 54.5 mut/MB, respectively; both P < .001). In patients with AXIN2 germline mutations, the number of pathological somatic mutations in the tumors was significantly higher than those without AXIN2 germline mutations (176.7 ± 94.2 mut/MB vs 139.6 ± 85.0 mut/MB, P = .002). CONCLUSION Next-generation sequencing could enhance the detection of familial CRC. The somatic mutation burden might result from not only the affected genes in germline mutations but also through the dysfunction of downstream effectors. The AXIN2 gene might associate with hypermutation in tumors. Further in vitro experiments to confirm the causal relationship is deserved.
Collapse
Affiliation(s)
- Shih-Ching Chang
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Surgery, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yuan-Tzu Lan
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Surgery, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Pei-Ching Lin
- Department of Clinical Pathology, Yang-Ming Branch, Taipei City Hospital, Taipei, Taiwan.,Department of Health and Welfare, University of Taipei, Taipei, Taiwan
| | - Shung-Haur Yang
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,National Yang-Ming University Hospital, Yilan, Taiwan
| | - Chien-Hsing Lin
- Division of Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Wen-Yi Liang
- Department of Pathology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wei-Shone Chen
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Surgery, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jeng-Kai Jiang
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Surgery, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jen-Kou Lin
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Surgery, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
50
|
Cao X, Huang M, Zhu M, Fang R, Ma Z, Jiang T, Dai J, Ma H, Jin G, Shen H, Du J, Xu L, Hu Z. Mendelian randomization study of telomere length and lung cancer risk in East Asian population. Cancer Med 2019; 8:7469-7476. [PMID: 31605466 PMCID: PMC6885879 DOI: 10.1002/cam4.2590] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/04/2019] [Accepted: 09/14/2019] [Indexed: 12/11/2022] Open
Abstract
Associations between telomere length and cancer risk have been investigated in many epidemiological studies, but the results are controversial. These associations may be biased by reverse causation or confounded by environmental exposures. To avoid potential biases, we used Mendelian randomization method to evaluate whether TL is the causal risk factor for lung cancer. We conducted Mendelian randomization analysis in two published East Asian GWAS studies (7127 cases and 6818 controls). We used both weighted genetic risk score and inverse‐variance weighting method to estimate the relationship between TL and lung cancer risk. Nonlinear test also used to detect potential association trends. We observed that increased weight GRS was associated with increased risk of lung cancer (OR = 2.25, 95%CI: 1.81‐2.78, P = 1.18 × 10−13). In different subtypes, weight GRS was significantly associated with lung adenocarcinoma risk (OR = 2.69, 95% CI: 2.11‐3.42, P = 7.20 × 10−16); while lung squamous cell carcinoma showed a marginal association (OR = 1.45, 95% CI = 1.01‐2.10, P = .047). Nonlinear analysis suggested a log‐linear dose‐response relationship between increased weight GRS and lung cancer risk. Our results indicated that longer TL increases lung cancer risk. Those biological mechanisms changes caused by long TL may play an important role in lung carcinogenesis.
Collapse
Affiliation(s)
- Xuguang Cao
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China.,Department of Thoracic and Cardiovascular Surgery, First People's Hospital of Yancheng, Yancheng, China
| | - Mingtao Huang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Meng Zhu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Rui Fang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Zijian Ma
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Tao Jiang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Juncheng Dai
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Hongxia Ma
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Guangfu Jin
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Hongbing Shen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Jiangbo Du
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Lin Xu
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Zhibin Hu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|