1
|
Moertel CL, Hirbe AC, Shuhaiber HH, Bielamowicz K, Sidhu A, Viskochil D, Weber MD, Lokku A, Smith LM, Foreman NK, Hajjar FM, McNall-Knapp RY, Weintraub L, Antony R, Franson AT, Meade J, Schiff D, Walbert T, Ambady P, Bota DA, Campen CJ, Kaur G, Klesse LJ, Maraka S, Moots PL, Nevel K, Bornhorst M, Aguilar-Bonilla A, Chagnon S, Dalvi N, Gupta P, Khatib Z, Metrock LK, Nghiemphu PL, Roberts RD, Robison NJ, Sadighi Z, Stapleton S, Babovic-Vuksanovic D, Gershon TR. ReNeu: A Pivotal, Phase IIb Trial of Mirdametinib in Adults and Children With Symptomatic Neurofibromatosis Type 1-Associated Plexiform Neurofibroma. J Clin Oncol 2025; 43:716-729. [PMID: 39514826 PMCID: PMC11825507 DOI: 10.1200/jco.24.01034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Collaborators] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/16/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024] Open
Abstract
PURPOSE Pharmacologic therapies for neurofibromatosis type 1-associated plexiform neurofibromas (NF1-PNs) are limited; currently, none are US Food and Drug Administration-approved for adults. METHODS ReNeu is an open-label, multicenter, pivotal, phase IIb trial of mirdametinib in 58 adults (≥18 years of age) and 56 children (2 to 17 years of age) with NF1-PN causing significant morbidities. Patients received mirdametinib capsules or tablets for oral suspension (2 mg/m2 twice daily, maximum 4 mg twice daily), regardless of food intake, in 3 weeks on/1 week off 28-day cycles. The primary end point was confirmed objective response rate (ORR; proportion of patients with a ≥20% reduction of target PN volume from baseline on consecutive scans during the 24-cycle treatment phase) assessed by blinded independent central review (BICR) of volumetric magnetic resonance imaging. RESULTS Twenty-four of 58 adults (41%) and 29 of 56 children (52%) had a BICR-confirmed objective response during the 24-cycle treatment phase; in addition, two adults and one child had confirmed responses during long-term follow-up. Median (range) target PN volumetric best response was -41% (-90 to 13) in adults and -42% (-91 to 48) in children. Both cohorts reported significant and clinically meaningful improvement in patient- or parent proxy-reported outcome measures of worst tumor pain severity, pain interference, and health-related quality of life (HRQOL) that began early and were sustained during treatment. The most commonly reported treatment-related adverse events were dermatitis acneiform, diarrhea, and nausea in adults and dermatitis acneiform, diarrhea, and paronychia in children. CONCLUSION In ReNeu, the largest multicenter NF1-PN trial reported to date, mirdametinib treatment demonstrated significant confirmed ORRs by BICR, deep and durable PN volume reductions, and early, sustained, and clinically meaningful improvement in pain and HRQOL. Mirdametinib was well-tolerated in adults and children.
Collapse
Affiliation(s)
| | - Angela C. Hirbe
- Washington University School of Medicine in St Louis, St Louis, MO
| | | | - Kevin Bielamowicz
- The University of Arkansas for Medical Sciences/Arkansas Children's Hospital, Little Rock, AR
| | - Alpa Sidhu
- University of Iowa Hospitals and Clinics, Iowa City, IA
| | | | | | | | | | | | | | | | | | | | | | - Julia Meade
- University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - David Schiff
- University of Virginia Medical Center, Charlottesville, VA
| | - Tobias Walbert
- Henry Ford Health, Wayne State University and Michigan State University, Detroit, MI
| | | | | | - Cynthia J. Campen
- Stanford/Lucile Packard Children's Hospital and Stanford Children's Health, Palo Alto, CA
| | - Gurcharanjeet Kaur
- New York Presbyterian Morgan Stanley Children's Hospital, Columbia University Medical Center, New York, NY
| | - Laura J. Klesse
- University of Texas Southwestern/Children's Health, Dallas, TX
| | | | - Paul L. Moots
- Vanderbilt University Medical Center/Vanderbilt-Ingram Cancer Center, Nashville, TN
| | - Kathryn Nevel
- Indiana University Health/Indiana University School of Medicine, Indianapolis, IL
| | | | | | - Sarah Chagnon
- Children's Hospital of the Kings Daughters, Norfolk, VA
| | - Nagma Dalvi
- Montefiore Medical Center/Children's Hospital at Montefiore, New York City, NY
| | - Punita Gupta
- St Joseph's Regional Medical Center, Paterson, NJ
| | | | | | | | | | | | - Zsila Sadighi
- University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | | |
Collapse
Collaborators
Ahmed Raslan, Alpa Sidhu, Ana Aguilar-Bonilla, Andrea T Franson, Andrew Walter, Angela C Hirbe, Brian Van Tine, Carl Koschmann, Christopher L Moertel, Cynthia Campen, Daniela A Bota, David Schiff, David Viskochil, Dusica Babovic-Vuksanovic, Fouad M Hajjar, Gurcharanjeet Kaur, Hans H Shuhaiber, Jamie K Capal, John Slopis, Jonathan Gill, Julia Meade, Kathryn Nevel, Laura K Metrock, Kevin Bielamowicz, Laura J Klesse, Lauren Weintraub, Leia Nghiemphu, Lindsay Kilburn, Maciej M Mrugala, Mary Lou Schmidt, Miriam Bornhorst, Nagma Dalvi, Nathan J Robison, Nick K Foreman, Paul L Moots, Prakash Ambady, Punita Gupta, Radhika Dhamija, Rene Y McNall-Knapp, Rueben Antony, Ryan D Roberts, Ryan Merrell, Sarah Chagnon, Stacie Stapleton, Stefania Maraka, Timothy R Gershon, Tobias Walbert, Ziad Khatib, Zsila Sadighi,
Collapse
|
2
|
Raut SB, Joly F, Haass NK, Eri R, Canales JJ, Benedek DM, Ursano RJ, Johnson LR. The clinically relevant MEK inhibitor mirdametinib combined with D-cycloserine and prediction error disrupts fear memory in PTSD models. Transl Psychiatry 2024; 14:492. [PMID: 39695081 DOI: 10.1038/s41398-024-03190-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/09/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
This study establishes mirdametinib as the first MEK inhibitor that can undergo clinical development for psychiatric indications such as post-traumatic stress disorder (PTSD). PTSD is characterized by persistent traumatic memories with limited effective treatment options. A body of evidence suggests that memory storage is dynamic and constantly updated through post-retrieval modification a process termed reconsolidation. Although ERK/MAPK signaling plays a central role in fear memory consolidation, no clinically translatable MEK inhibitor has been tested in experimental models or in clinical trials to disrupt this process. Furthermore, there is need to develop pharmacological and behavioral strategies to labilize the memory to make it susceptible for disruption. Here, we disrupted fear memory reconsolidation with the clinically relevant MEK inhibitor mirdametinib in C57BL/6 mice and tested memory destabilization strategies using an auditory fear conditioning paradigm, with drugs administered following reactivation of memory. We found prediction error effective in labilizing weak fear memory and combined D-cycloserine (DCS) and predication error effective in labilizing strong fear memory. Mirdametinib disrupted the weak fear memory and reduced ERK phosphorylation in lateral amygdala when coupled with prediction error at the time of memory reactivation but required coordinated combination of DCS, prediction error and mirdametinib to disrupt strong fear memory. Barnes maze spatial memory test and open field test revealed that mirdametinib did not affect retrieval of other forms (spatial) of long-term memory and locomotor activity. Furthermore, the effect of mirdametinib was specific to reconsolidation as it had no effect on fear memory when given without reactivation. These translational findings identify a new drug that can be adapted for the treatment of PTSD.
Collapse
Affiliation(s)
- Sanket B Raut
- School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Tasmania, TAS, Australia
| | - Fanny Joly
- INSERM U1216, Grenoble Institute of Neurosciences (GIN), University of Grenoble-Alpes (UGA), Grenoble, France
| | - Nikolas K Haass
- Frazer Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Rajaraman Eri
- School of Science, STEM College, RMIT University, Melbourne, VIC, Australia
| | - Juan J Canales
- School of Psychology, Victoria University, Wellington, New Zealand
| | - David M Benedek
- Center for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University School of Medicine, Bethesda, MD, USA
| | - Robert J Ursano
- Center for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University School of Medicine, Bethesda, MD, USA
| | - Luke R Johnson
- School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Tasmania, TAS, Australia.
- Center for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University School of Medicine, Bethesda, MD, USA.
- School of Medicine, University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
3
|
Ntafoulis I, Koolen SLW, van Tellingen O, den Hollander CWJ, Sabel-Goedknegt H, Dijkhuizen S, Haeck J, Reuvers TGA, de Bruijn P, van den Bosch TPP, van Dis V, Gao Z, Dirven CMF, Leenstra S, Lamfers MLM. A Repurposed Drug Selection Pipeline to Identify CNS-Penetrant Drug Candidates for Glioblastoma. Pharmaceuticals (Basel) 2024; 17:1687. [PMID: 39770529 PMCID: PMC11678797 DOI: 10.3390/ph17121687] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Glioblastoma is an aggressive and incurable type of brain cancer. Little progress has been made in the development of effective new therapies in the past decades. The blood-brain barrier (BBB) and drug efflux pumps, which together hamper drug delivery to these tumors, play a pivotal role in the gap between promising preclinical findings and failure in clinical trials. Therefore, selecting drugs that can reach the tumor region in pharmacologically effective concentrations is of major importance. METHODS In the current study, we utilized a drug selection platform to identify candidate drugs by combining in vitro oncological drug screening data and pharmacokinetic (PK) profiles for central nervous system (CNS) penetration using the multiparameter optimization (MPO) score. Furthermore, we developed intracranial patient-derived xenograft (PDX) models that recapitulated the in situ characteristics of glioblastoma and characterized them in terms of vascular integrity, BBB permeability and expression of ATP-binding cassette (ABC) transporters. Omacetaxine mepesuccinate (OMA) was selected as a proof-of-concept drug candidate to validate our drug selection pipeline. RESULTS We assessed OMA's PK profile in three different orthotopic mouse PDX models and found that OMA reaches the brain tumor tissue at concentrations ranging from 2- to 11-fold higher than in vitro IC50 values on patient-derived glioblastoma cell cultures. CONCLUSIONS This study demonstrates that OMA, a drug selected for its in vitro anti-glioma activity and CNS- MPO score, achieves brain tumor tissue concentrations exceeding its in vitro IC50 values in patient-derived glioblastoma cell cultures, as shown in three orthotopic mouse PDX models. We emphasize the importance of such approaches at the preclinical level, highlighting both their significance and limitations in identifying compounds with potential clinical implementation in glioblastoma.
Collapse
Affiliation(s)
- Ioannis Ntafoulis
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands (C.M.F.D.); (S.L.)
| | - Stijn L. W. Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Olaf van Tellingen
- Division of Pharmacology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Chelsea W. J. den Hollander
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands (C.M.F.D.); (S.L.)
| | | | - Stephanie Dijkhuizen
- Department of Neuroscience, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands (Z.G.)
| | - Joost Haeck
- Department of Radiology & Nuclear Medicine, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Thom G. A. Reuvers
- Department of Radiology & Nuclear Medicine, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Molecular Genetics, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Peter de Bruijn
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | | | - Vera van Dis
- Department of Pathology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (T.P.P.v.d.B.)
| | - Zhenyu Gao
- Department of Neuroscience, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands (Z.G.)
| | - Clemens M. F. Dirven
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands (C.M.F.D.); (S.L.)
| | - Sieger Leenstra
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands (C.M.F.D.); (S.L.)
| | - Martine L. M. Lamfers
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands (C.M.F.D.); (S.L.)
| |
Collapse
|
4
|
Sankarapandian V, Rajendran RL, Miruka CO, Sivamani P, Maran BAV, Krishnamoorthy R, Gangadaran P, Ahn BC. A review on tyrosine kinase inhibitors for targeted breast cancer therapy. Pathol Res Pract 2024; 263:155607. [PMID: 39326367 DOI: 10.1016/j.prp.2024.155607] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/09/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024]
Abstract
Breast cancer is a heterogeneous disease with complex molecular pathogenesis. Overexpression of several tyrosine kinase receptors is associated with poor prognosis, therefore, they can be key targets in breast cancer therapy. Tyrosine kinase inhibitors (TKIs) have emerged as leading agents in targeted cancer therapy due to their effectiveness in disrupting key molecular pathways involved in tumor growth. TKIs target various tyrosine kinases, including the human epidermal growth factor receptor 2 (HER2), epidermal growth factor receptor (EGFR), Vascular endothelial growth factor receptor (VEGFR), anaplastic lymphoma kinase (ALK), vascular endothelial growth factor receptor (VEGFR)-associated multi-targets, rearranged during transfection (RET), fibroblast growth factor receptor (FGFR), receptor tyrosine kinase-like orphan signal 1 (ROS1), Mitogen-activated protein kinase (MAPK), and tropomyosin receptor kinase (TRK). These drugs target the tyrosine kinase domain of receptor tyrosine kinases and play a vital role in proliferation and migration of breast cancer cells. Several TKIs, including lapatinib, neratinib, and tucatinib, have been developed and are currently used in clinical settings, often in combination with chemotherapy, endocrine therapy, or other targeted agents. TKIs have demonstrated remarkable benefits in enhancing progression-free and overall survival in patients with breast cancer and have become a standard of care for this population. This review provides an overview of TKIs currently being examined in preclinical studies and clinical trials, especially in combination with drugs approved for breast cancer treatment. TKIs have emerged as a promising therapeutic option for patients with breast cancer and hold potential for treating other breast cancer subtypes. The development of new TKIs and their integration into personalized treatment strategies will continue to shape the future of breast cancer therapy.
Collapse
Affiliation(s)
- Vidya Sankarapandian
- Department of Microbiology and Immunology, Kampala International University, Western Campus, Box 20000, Uganda
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Conrad Ondieki Miruka
- Department of Biochemistry, Kampala International University, Western Campus, Box 20000, Uganda
| | - Poornima Sivamani
- Department of Pharmacology and Clinical pharmacology, Christian Medical College, Vellore 632004, India
| | - Balu Alagar Venmathi Maran
- Graduate School of Integrated Science and Technology, Nagasaki University, 1-14 Bunkyomachi, Nagasaki 852-8521, Japan
| | - Rajapandiyan Krishnamoorthy
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea..
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 41944, Republic of Korea; Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea..
| |
Collapse
|
5
|
Yu Z, Liu W, Wang Z, Chen Y, Yan J, Benet LZ, Zhai S. Is there a possibility that P-glycoprotein reduces reproductive toxicity in males but breast cancer resistance protein does not? Clin Transl Sci 2024; 17:e70027. [PMID: 39356462 PMCID: PMC11446187 DOI: 10.1111/cts.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 10/03/2024] Open
Abstract
In traditional understanding, P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP) are regarded as efflux transporters that can decrease the concentration of their substrates in the testis, thereby reducing reproductive toxicity in males (RTM) and protecting spermatogenesis. However, there is currently no direct pharmacological evidence demonstrating that P-gp and BCRP can reduce the occurrence of drug-induced RTM. In this study, we chose small molecule targeted anti-tumor agents as model drugs and systematically retrieved and collected information on the transporters and RTM for these drugs, followed by correlation analysis. The results showed a lower incidence of RTM for P-gp substrate drugs, which aligns with previous knowledge. Surprisingly, BCRP substrate drugs exhibited higher rates of RTM in various dimensions, contradicting previous notions. This discrepancy may be attributed to the differential distribution and transport directions of P-gp and BCRP on the blood-testis barrier (BTB). For the first time, this study may provide clues that BCRP may facilitate the passage of exogenous compounds across the BTB, increasing the occurrence of RTM, rather than protecting spermatogenesis as traditionally believed. Furthermore, this study provides the first direct verification of the role of P-gp in reducing RTM and protecting spermatogenesis.
Collapse
Affiliation(s)
- Zhiheng Yu
- Pharmacy DepartmentPeking University Third HospitalBeijingChina
- Department of Obstetrics and GynecologyPeking University Third HospitalBeijingChina
| | - Wei Liu
- Pharmacy DepartmentPeking University Third HospitalBeijingChina
| | - Ziyu Wang
- Pharmacy DepartmentPeking University Third HospitalBeijingChina
| | - Yidong Chen
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, National Clinical Research Center for Obstetrics and Gynecology, Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive TechnologyPeking University Third HospitalBeijingChina
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive TechnologyBeijingChina
| | - Jie Yan
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, National Clinical Research Center for Obstetrics and Gynecology, Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive TechnologyPeking University Third HospitalBeijingChina
- State Key Laboratory of Female Fertility PromotionBeijingChina
| | - Leslie Z. Benet
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Suodi Zhai
- Pharmacy DepartmentPeking University Third HospitalBeijingChina
| |
Collapse
|
6
|
Qi X. Advances in antitumour therapy with oncolytic herpes simplex virus combinations. Discov Oncol 2024; 15:302. [PMID: 39046631 PMCID: PMC11269532 DOI: 10.1007/s12672-024-01165-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
Oncolytic Virus (OVs) is an emerging approach to tumour immunity that allows the use of natural or genetically modified viruses to specifically infect and lyse tumour cells without damaging normal cells. Oncolytic herpes simplex virus (oHSV) is one of the more widely researched and applied OVs in the field of oncology, which can directly kill tumour cells to promote anti-tumour immune responses. oHSV is one of the few viruses with good antiviral drugs, so oHSV is also more clinically safe. In recent years, in addition to monotherapy of oHSV in tumours, more and more studies have been devoted to exploring the anti-tumour effects of oHSV in combination with other therapeutic approaches. In this article we describe the progress of oHSV combination therapy against tumours in the nervous system, digestive system, reproductive system and other systems.
Collapse
Affiliation(s)
- Xuejiao Qi
- College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China.
| |
Collapse
|
7
|
Zhang W. Blood-Brain Barrier (BBB)-Crossing Strategies for Improved Treatment of CNS Disorders. Handb Exp Pharmacol 2024; 284:213-230. [PMID: 37528323 DOI: 10.1007/164_2023_689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Blood-brain barrier (BBB) is a special biological property of the brain neurovascular unit (including brain microvessels and capillaries), which facilitates the transport of nutrients into the central nervous system (CNS) and exchanges metabolites but restricts passage of blood-borne neurotoxic substances and drugs/xenobiotics into CNS. BBB plays a crucial role in maintaining the homeostasis and normal physiological functions of CNS but severely impedes the delivery of drugs and biotherapeutics into CNS for treatment of neurological disorders. A variety of technologies have been developed in the past decade for brain drug delivery. Most of these technologies are still in preclinical stage and some are undergoing clinical studies. Only a few have been approved by regulatory agencies for clinical applications. This chapter will overview the strategies and technologies/approaches for brain drug delivery and discuss some of the recent advances in the field.
Collapse
Affiliation(s)
- Wandong Zhang
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada.
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
8
|
Blackwood N, Zetzmann C, Trevino CR. Case report of selumetinib as a novel therapy in a neurofibromatosis type 2-associated ependymoma. Mol Ther Methods Clin Dev 2023; 31:101156. [PMID: 38058737 PMCID: PMC10696461 DOI: 10.1016/j.omtm.2023.101156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
We report partial response (PR) to novel therapy with selumetinib in a patient with neurofibromatosis type 2 (NF2). A 25-year-old male presented with bilateral vestibular schwannomas, spinal cord intramedullary ependymomas, cranial and spinal meningiomas, spinal nerve root mixed schwannoma-neurofibromas, and peripheral nerve sheath tumors. He tested negative for germline NF2, SWItch/sucrose non-fermentable-related matrix-associated actin-dependent regulator of chromatin subfamily B member 1 (SMARCB1), and leucine zipper-like transcription regulator 1 (LZTR1) mutations. Molecular analysis of a resected cervical spine schwannoma-neurofibroma demonstrated an isolated somatic SMARCB1 mutation. Due to progression of all tumors, he was treated medically with both everolimus (10 mg/day) and selumetinib (25 mg/kg twice a day), but he rapidly transitioned to selumetinib monotherapy due to everolimus toxicity. 3 months of treatment resulted in PR in one spinal ependymoma and stable disease in other tumors. This PR was quantified by the differences in units of intensity in pre- and post-treatment magnetic resonance image. To the best of our knowledge, this is the first reported case for using selumetinib in NF2-associated tumors or ependymomas.
Collapse
Affiliation(s)
- Nigel Blackwood
- Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Christopher Zetzmann
- Tulane University School of Medicine, Department of Radiology, 1415 Tulane Avenue, New Orleans, LA 70112, USA
| | - Christopher R. Trevino
- Tulane University School of Medicine, Department of Medicine/Section of Hematology-Medical Oncology, 1430 Tulane Avenue, #8078, New Orleans, LA 70112, USA
| |
Collapse
|
9
|
Ghanem P, Fatteh M, Kamson DO, Balan A, Chang M, Tao J, Blakeley J, Canzoniero J, Grossman SA, Marrone K, Schreck KC, Anagnostou V. Druggable genomic landscapes of high-grade gliomas. Front Med (Lausanne) 2023; 10:1254955. [PMID: 38143440 PMCID: PMC10749203 DOI: 10.3389/fmed.2023.1254955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/06/2023] [Indexed: 12/26/2023] Open
Abstract
Background Despite the putatively targetable genomic landscape of high-grade gliomas, the long-term survival benefit of genomically-tailored targeted therapies remains discouraging. Methods Using glioblastoma (GBM) as a representative example of high-grade gliomas, we evaluated the clonal architecture and distribution of hotspot mutations in 388 GBMs from the Cancer Genome Atlas (TCGA). Mutations were matched with 54 targeted therapies, followed by a comprehensive evaluation of drug biochemical properties in reference to the drug's clinical efficacy in high-grade gliomas. We then assessed clinical outcomes of a cohort of patients with high-grade gliomas with targetable mutations reviewed at the Johns Hopkins Molecular Tumor Board (JH MTB; n = 50). Results Among 1,156 sequence alterations evaluated, 28.6% represented hotspots. While the frequency of hotspot mutations in GBM was comparable to cancer types with actionable hotspot alterations, GBMs harbored a higher fraction of subclonal mutations that affected hotspots (7.0%), compared to breast cancer (4.9%), lung cancer (4.4%), and melanoma (1.4%). In investigating the biochemical features of targeted therapies paired with recurring alterations, we identified a trend toward higher lipid solubility and lower IC50 in GBM cell lines among drugs with clinical efficacy. The drugs' half-life, molecular weight, surface area and binding to efflux transporters were not associated with clinical efficacy. Among the JH MTB cohort of patients with IDH1 wild-type high-grade gliomas who received targeted therapies, trametinib monotherapy or in combination with dabrafenib conferred radiographic partial response in 75% of patients harboring BRAF or NF1 actionable mutations. Cabozantinib conferred radiographic partial response in two patients harboring a MET and a PDGFRA/KDR amplification. Patients with IDH1 wild-type gliomas that harbored actionable alterations who received genotype-matched targeted therapy had longer progression-free (PFS) and overall survival (OS; 7.37 and 14.72 respectively) than patients whose actionable alterations were not targeted (2.83 and 4.2 months respectively). Conclusion While multiple host, tumor and drug-related features may limit the delivery and efficacy of targeted therapies for patients with high-grade gliomas, genotype-matched targeted therapies confer favorable clinical outcomes. Further studies are needed to generate more data on the impact of biochemical features of targeted therapies on their clinical efficacy for high-grade gliomas.
Collapse
Affiliation(s)
- Paola Ghanem
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Johns Hopkins Molecular Tumor Board, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Maria Fatteh
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Johns Hopkins Molecular Tumor Board, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - David Olayinka Kamson
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Archana Balan
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Johns Hopkins Molecular Tumor Board, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Michael Chang
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jessica Tao
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Johns Hopkins Molecular Tumor Board, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jaishri Blakeley
- The Johns Hopkins Molecular Tumor Board, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jenna Canzoniero
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Johns Hopkins Molecular Tumor Board, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Stuart A. Grossman
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Johns Hopkins Molecular Tumor Board, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kristen Marrone
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Karisa C. Schreck
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Johns Hopkins Molecular Tumor Board, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Valsamo Anagnostou
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Johns Hopkins Molecular Tumor Board, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
10
|
Picciolini S, Rodà F, Gualerzi A, Mangolini V, Forleo L, Mangolini A, Sesana S, Antoniou A, Re F, Seneci P, Bedoni M. SPRi analysis of molecular interactions of mApoE-functionalized liposomes as drug delivery systems for brain diseases. Analyst 2023; 148:6070-6077. [PMID: 37904570 DOI: 10.1039/d3an01507f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
The application of liposomes (LPs) to central nervous system disorders could represents a turning point in the therapy and quality of life of patients. Indeed, LPs have demonstrated their ability to cross the blood-brain barrier (BBB) and, as a consequence, to enhance the therapeutics delivery into the brain. Some approaches for BBB crossing involve the modification of LP surfaces with biologically active ligands. Among them, the Apolipoprotein E-modified peptide (mApoE) has been used for several LP-based nanovectors under investigation. In this study, we propose Surface Plasmon Resonance imaging (SPRi) for the characterization of multifunctionalized LPs for Glioblastoma treatment. LPs were functionalized with mApoE and with a metallo-protease sensitive lipopeptide to deliver and guarantee the localized release of an encapsulated drug in diseased areas. The SPRi analysis was optimized in order to evaluate the binding affinity between LPs and mApoE receptors, finding that mApoE-LPs generated SPRi signals referred to interactions between mApoE and receptors mainly present in the brain. Moreover, a significant binding between LPs and VCAM-1 (endothelial receptor) was observed, whereas LPs did not interact significantly with peripheral receptors expressed on monocytes and lymphocytes. SPRi results confirmed not only the presence of mApoE on LP surfaces, but also its binding affinity, thanks to the specific interaction with selected receptors. In conclusion, the high sensitivity and the multiplexing capability associated with the low volumes of sample required and the minimal sample preparation, make SPRi an excellent technique for the characterization of multifunctionalized nanoparticles-based formulations.
Collapse
Affiliation(s)
| | - Francesca Rodà
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Milano, Italy.
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Alice Gualerzi
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Milano, Italy.
| | - Valentina Mangolini
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Milano, Italy.
- Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, Brescia, Italy
| | - Luana Forleo
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Milano, Italy.
| | | | - Silvia Sesana
- School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Antonia Antoniou
- Chemistry Department, Università Statale di, Milano, Milano, Italy
| | - Francesca Re
- School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro, Italy
| | | | - Marzia Bedoni
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Milano, Italy.
| |
Collapse
|
11
|
Schulz JA, Hartz AMS, Bauer B. ABCB1 and ABCG2 Regulation at the Blood-Brain Barrier: Potential New Targets to Improve Brain Drug Delivery. Pharmacol Rev 2023; 75:815-853. [PMID: 36973040 PMCID: PMC10441638 DOI: 10.1124/pharmrev.120.000025] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
The drug efflux transporters ABCB1 and ABCG2 at the blood-brain barrier limit the delivery of drugs into the brain. Strategies to overcome ABCB1/ABCG2 have been largely unsuccessful, which poses a tremendous clinical problem to successfully treat central nervous system (CNS) diseases. Understanding basic transporter biology, including intracellular regulation mechanisms that control these transporters, is critical to solving this clinical problem.In this comprehensive review, we summarize current knowledge on signaling pathways that regulate ABCB1/ABCG2 at the blood-brain barrier. In Section I, we give a historical overview on blood-brain barrier research and introduce the role that ABCB1 and ABCG2 play in this context. In Section II, we summarize the most important strategies that have been tested to overcome the ABCB1/ABCG2 efflux system at the blood-brain barrier. In Section III, the main component of this review, we provide detailed information on the signaling pathways that have been identified to control ABCB1/ABCG2 at the blood-brain barrier and their potential clinical relevance. This is followed by Section IV, where we explain the clinical implications of ABCB1/ABCG2 regulation in the context of CNS disease. Lastly, in Section V, we conclude by highlighting examples of how transporter regulation could be targeted for therapeutic purposes in the clinic. SIGNIFICANCE STATEMENT: The ABCB1/ABCG2 drug efflux system at the blood-brain barrier poses a significant problem to successful drug delivery to the brain. The article reviews signaling pathways that regulate blood-brain barrier ABCB1/ABCG2 and could potentially be targeted for therapeutic purposes.
Collapse
Affiliation(s)
- Julia A Schulz
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| | - Anika M S Hartz
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| |
Collapse
|
12
|
Damayanti NP, Saadatzadeh MR, Dobrota E, Ordaz JD, Bailey BJ, Pandya PH, Bijangi-Vishehsaraei K, Shannon HE, Alfonso A, Coy K, Trowbridge M, Sinn AL, Zhang ZY, Gallagher RI, Wulfkuhle J, Petricoin E, Richardson AM, Marshall MS, Lion A, Ferguson MJ, Balsara KE, Pollok KE. Establishment and characterization of patient-derived xenograft of a rare pediatric anaplastic pleomorphic xanthoastrocytoma (PXA) bearing a CDC42SE2-BRAF fusion. Sci Rep 2023; 13:9163. [PMID: 37280243 PMCID: PMC10244396 DOI: 10.1038/s41598-023-36107-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 05/30/2023] [Indexed: 06/08/2023] Open
Abstract
Pleomorphic xanthoastrocytoma (PXA) is a rare subset of primary pediatric glioma with 70% 5-year disease free survival. However, up to 20% of cases present with local recurrence and malignant transformation into more aggressive type anaplastic PXA (AXPA) or glioblastoma. The understanding of disease etiology and mechanisms driving PXA and APXA are limited, and there is no standard of care. Therefore, development of relevant preclinical models to investigate molecular underpinnings of disease and to guide novel therapeutic approaches are of interest. Here, for the first time we established, and characterized a patient-derived xenograft (PDX) from a leptomeningeal spread of a patient with recurrent APXA bearing a novel CDC42SE2-BRAF fusion. An integrated -omics analysis was conducted to assess model fidelity of the genomic, transcriptomic, and proteomic/phosphoproteomic landscapes. A stable xenoline was derived directly from the patient recurrent tumor and maintained in 2D and 3D culture systems. Conserved histology features between the PDX and matched APXA specimen were maintained through serial passages. Whole exome sequencing (WES) demonstrated a high degree of conservation in the genomic landscape between PDX and matched human tumor, including small variants (Pearson's r = 0.794-0.839) and tumor mutational burden (~ 3 mutations/MB). Large chromosomal variations including chromosomal gains and losses were preserved in PDX. Notably, chromosomal gain in chromosomes 4-9, 17 and 18 and loss in the short arm of chromosome 9 associated with homozygous 9p21.3 deletion involving CDKN2A/B locus were identified in both patient tumor and PDX sample. Moreover, chromosomal rearrangement involving 7q34 fusion; CDC42SE-BRAF t (5;7) (q31.1, q34) (5:130,721,239, 7:140,482,820) was identified in the PDX tumor, xenoline and matched human tumor. Transcriptomic profile of the patient's tumor was retained in PDX (Pearson r = 0.88) and in xenoline (Pearson r = 0.63) as well as preservation of enriched signaling pathways (FDR Adjusted P < 0.05) including MAPK, EGFR and PI3K/AKT pathways. The multi-omics data of (WES, transcriptome, and reverse phase protein array (RPPA) was integrated to deduce potential actionable pathways for treatment (FDR < 0.05) including KEGG01521, KEGG05202, and KEGG05200. Both xenoline and PDX were resistant to the MEK inhibitors trametinib or mirdametinib at clinically relevant doses, recapitulating the patient's resistance to such treatment in the clinic. This set of APXA models will serve as a preclinical resource for developing novel therapeutic regimens for rare anaplastic PXAs and pediatric high-grade gliomas bearing BRAF fusions.
Collapse
Affiliation(s)
- Nur P Damayanti
- Neuro-Oncology Program, Pediatric Neurosurgery, Department of Neurosurgery, Indiana University, Indianapolis, IN, 46202, USA
- Department of Neurosurgery, Indiana University, Indianapolis, IN, 46202, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
| | - M Reza Saadatzadeh
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Erika Dobrota
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Josue D Ordaz
- Department of Neurosurgery, Indiana University, Indianapolis, IN, 46202, USA
| | - Barbara J Bailey
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana University Simon Comprehensive Cancer Center Preclinical Modeling and Therapeutics Core, Indianapolis, USA
| | - Pankita H Pandya
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Khadijeh Bijangi-Vishehsaraei
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Translational Research Integrated Biology Laboratory/Indiana Pediatric Biobank, Riley Children Hospital, Indianapolis, IN, 46202, USA
| | - Harlan E Shannon
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | | | - Kathy Coy
- Indiana University Simon Comprehensive Cancer Center Preclinical Modeling and Therapeutics Core, Indianapolis, USA
| | - Melissa Trowbridge
- Indiana University Simon Comprehensive Cancer Center Preclinical Modeling and Therapeutics Core, Indianapolis, USA
| | - Anthony L Sinn
- Indiana University Simon Comprehensive Cancer Center Preclinical Modeling and Therapeutics Core, Indianapolis, USA
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, IN, 47907, USA
| | - Rosa I Gallagher
- Center for Applied Proteomics and Molecular Medicine, Institute for Biomedical Innovation, George Mason University, Manassas, VA, 20110, USA
| | - Julia Wulfkuhle
- Center for Applied Proteomics and Molecular Medicine, Institute for Biomedical Innovation, George Mason University, Manassas, VA, 20110, USA
| | - Emanuel Petricoin
- Center for Applied Proteomics and Molecular Medicine, Institute for Biomedical Innovation, George Mason University, Manassas, VA, 20110, USA
| | - Angela M Richardson
- Department of Neurosurgery, Indiana University, Indianapolis, IN, 46202, USA
- Indiana University Simon Comprehensive Cancer Center Preclinical Modeling and Therapeutics Core, Indianapolis, USA
| | - Mark S Marshall
- Pediatric Cancer Precision Genomics Program, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Alex Lion
- Division of Pediatric Hematology-Oncology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Michael J Ferguson
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
- Pediatric Cancer Precision Genomics Program, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Division of Pediatric Hematology-Oncology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Karl E Balsara
- Neuro-Oncology Program, Pediatric Neurosurgery, Department of Neurosurgery, Indiana University, Indianapolis, IN, 46202, USA.
- Department of Neurosurgery, University of Oklahoma School of Medicine, Oklahoma City, OH, 73104, USA.
| | - Karen E Pollok
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA.
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Indiana University Simon Comprehensive Cancer Center Preclinical Modeling and Therapeutics Core, Indianapolis, USA.
- Pediatric Cancer Precision Genomics Program, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
13
|
Wu Y, Walker JR, Westberg M, Ning L, Monje M, Kirkland TA, Lin MZ, Su Y. Kinase-Modulated Bioluminescent Indicators Enable Noninvasive Imaging of Drug Activity in the Brain. ACS CENTRAL SCIENCE 2023; 9:719-732. [PMID: 37122464 PMCID: PMC10141594 DOI: 10.1021/acscentsci.3c00074] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Indexed: 05/03/2023]
Abstract
Aberrant kinase activity contributes to the pathogenesis of brain cancers, neurodegeneration, and neuropsychiatric diseases, but identifying kinase inhibitors that function in the brain is challenging. Drug levels in blood do not predict efficacy in the brain because the blood-brain barrier prevents entry of most compounds. Rather, assessing kinase inhibition in the brain requires tissue dissection and biochemical analysis, a time-consuming and resource-intensive process. Here, we report kinase-modulated bioluminescent indicators (KiMBIs) for noninvasive longitudinal imaging of drug activity in the brain based on a recently optimized luciferase-luciferin system. We develop an ERK KiMBI to report inhibitors of the Ras-Raf-MEK-ERK pathway, for which no bioluminescent indicators previously existed. ERK KiMBI discriminates between brain-penetrant and nonpenetrant MEK inhibitors, reveals blood-tumor barrier leakiness in xenograft models, and reports MEK inhibitor pharmacodynamics in native brain tissues and intracranial xenografts. Finally, we use ERK KiMBI to screen ERK inhibitors for brain efficacy, identifying temuterkib as a promising brain-active ERK inhibitor, a result not predicted from chemical characteristics alone. Thus, KiMBIs enable the rapid identification and pharmacodynamic characterization of kinase inhibitors suitable for treating brain diseases.
Collapse
Affiliation(s)
- Yan Wu
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
- Department
of Neurobiology, Stanford University, Stanford, California 94305, United States
| | - Joel R. Walker
- Promega
Biosciences LLC, San Luis Obispo, California 93401, United States
| | - Michael Westberg
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
- Department
of Neurobiology, Stanford University, Stanford, California 94305, United States
- Department
of Chemistry, Aarhus University, Aarhus 8000, Denmark
| | - Lin Ning
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
- Department
of Neurobiology, Stanford University, Stanford, California 94305, United States
| | - Michelle Monje
- Department
of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305, United States
- Howard Hughes
Medical Institute, Stanford University, Stanford, California 94305, United States
| | - Thomas A. Kirkland
- Promega
Biosciences LLC, San Luis Obispo, California 93401, United States
| | - Michael Z. Lin
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
- Department
of Neurobiology, Stanford University, Stanford, California 94305, United States
- Department
of Pediatrics, Stanford University, Stanford, California 94305, United States
- Department
of Chemical and Systems Biology, Stanford
University, Stanford, California 94305, United States
| | - Yichi Su
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
- Department
of Neurobiology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
14
|
Nakayama-Kitamura K, Shigemoto-Mogami Y, Toyoda H, Mihara I, Moriguchi H, Naraoka H, Furihata T, Ishida S, Sato K. Usefulness of a humanized tricellular static transwell blood-brain barrier model as a microphysiological system for drug development applications. - A case study based on the benchmark evaluations of blood-brain barrier microphysiological system. Regen Ther 2023; 22:192-202. [PMID: 36891355 PMCID: PMC9988422 DOI: 10.1016/j.reth.2023.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/21/2023] [Accepted: 02/08/2023] [Indexed: 03/06/2023] Open
Abstract
Microphysiological system (MPS), a new technology for in vitro testing platforms, have been acknowledged as a strong tool for drug development. In the central nervous system (CNS), the blood‒brain barrier (BBB) limits the permeation of circulating substances from the blood vessels to the brain, thereby protecting the CNS from circulating xenobiotic compounds. At the same time, the BBB hinders drug development by introducing challenges at various stages, such as pharmacokinetics/pharmacodynamics (PK/PD), safety assessment, and efficacy assessment. To solve these problems, efforts are being made to develop a BBB MPS, particularly of a humanized type. In this study, we suggested minimal essential benchmark items to establish the BBB-likeness of a BBB MPS; these criteria support end users in determining the appropriate range of applications for a candidate BBB MPS. Furthermore, we examined these benchmark items in a two-dimensional (2D) humanized tricellular static transwell BBB MPS, the most conventional design of BBB MPS with human cell lines. Among the benchmark items, the efflux ratios of P-gp and BCRP showed high reproducibility in two independent facilities, while the directional transports meditated through Glut1 or TfR were not confirmed. We have organized the protocols of the experiments described above as standard operating procedures (SOPs). We here provide the SOPs with the flow chart including entire procedure and how to apply each SOP. Our study is important developmental step of BBB MPS towards the social acceptance, which enable end users to check and compare the performance the BBB MPSs.
Collapse
Key Words
- BBB, blood-brain barrier
- BCRP
- BCRP, Breast cancer resistance protein
- Blood‒brain barrier (BBB)
- CNS, central nervous system
- Glut1, Glucose transporter 1
- HASTR, Human astrocytes
- HBMEC, Human brain microvascular endothelial cells
- HBPC, Human brain pericyte
- LC-MS/MS, Liquid chromatography with tandem mass spectrometry
- LY, Lucifer yellow
- MPS, Microphysiological system
- Microphysiological system (MPS)
- P-gp
- P-gp, P-glycoprotein
- TEER, Trans-endothelial electrical resistance
- TfR, Transferrin receptor
Collapse
Affiliation(s)
- Kimiko Nakayama-Kitamura
- Laboratory of Neuropharmacology, Division of Pharmacology, National Institute of Health Science, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa, Japan
| | - Yukari Shigemoto-Mogami
- Laboratory of Neuropharmacology, Division of Pharmacology, National Institute of Health Science, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa, Japan
| | - Hiroko Toyoda
- Stem Cell Evaluation Technology Research Association, Grande Building 8F, 2-26-9 Hatchobori, Chuo-ku, Tokyo 104-0032, Japan
| | - Ikue Mihara
- Stem Cell Evaluation Technology Research Association, Grande Building 8F, 2-26-9 Hatchobori, Chuo-ku, Tokyo 104-0032, Japan
| | - Hiroyuki Moriguchi
- Stem Cell Evaluation Technology Research Association, Grande Building 8F, 2-26-9 Hatchobori, Chuo-ku, Tokyo 104-0032, Japan
| | - Hitoshi Naraoka
- Stem Cell Evaluation Technology Research Association, Grande Building 8F, 2-26-9 Hatchobori, Chuo-ku, Tokyo 104-0032, Japan
| | - Tomomi Furihata
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 Japan
| | - Seiichi Ishida
- Laboratory of Neuropharmacology, Division of Pharmacology, National Institute of Health Science, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa, Japan.,Division of Applied Life Science, Graduate School of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto City, Kumamoto, Japan
| | - Kaoru Sato
- Laboratory of Neuropharmacology, Division of Pharmacology, National Institute of Health Science, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa, Japan
| |
Collapse
|
15
|
Fudaba H, Wakimoto H. Oncolytic virus therapy for malignant gliomas: entering the new era. Expert Opin Biol Ther 2023; 23:269-282. [PMID: 36809883 DOI: 10.1080/14712598.2023.2184256] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
INTRODUCTION To overcome the challenge of treating malignant brain tumors, oncolytic viruses (OVs) represent an innovative therapeutic approach, featuring unique mechanisms of action. The recent conditional approval of the oncolytic herpes simplex virus G47Δ as a therapeutic for malignant brain tumors marked a significant milestone in the long history of OV development in neuro-oncology. AREAS COVERED This review summarizes the results of recently completed and active clinical studies that investigate the safety and efficacy of different OV types in patients with malignant gliomas. The changing landscape of the OV trial design includes expansion of subjects to newly diagnosed tumors and pediatric populations. A variety of delivery methods and new routes of administration are vigorously tested to optimize tumor infection and overall efficacy. New therapeutic strategies such as combination with immunotherapies are proposed that take advantage of the characteristics of OV therapy as an immunotherapy. Preclinical studies of OV have been active and aim to translate new OV strategies to the clinic. EXPERT OPINION For the next decade, clinical trials and preclinical and translational research will continue to drive the development of innovative OV treatments for malignant gliomas and benefit patients and define new OV biomarkers.
Collapse
Affiliation(s)
- Hirotaka Fudaba
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Department of Neurosurgery, Oita University Faculty of Medicine, Yufu, Japan
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Houweling M, Abdul UK, Brahm C, Lagerweij T, Heukelom S, Koken PW, Honeywell R, Wedekind LE, Peters GJ, Verheul H, Sminia P, Noske D, Wurdinger T, Westerman BA. Radio-sensitizing effect of MEK inhibition in glioblastoma in vitro and in vivo. J Cancer Res Clin Oncol 2023; 149:297-305. [PMID: 36451044 DOI: 10.1007/s00432-022-04483-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/14/2022] [Indexed: 12/04/2022]
Abstract
INTRODUCTION Glioblastoma (GBM) is an incurable cancer type. New therapeutic options are investigated, including targeting the mitogen-activated protein kinase (MAPK) pathway using MEK inhibitors as radio-sensitizers. In this study, we investigated whether MEK inhibition via PD0325901 leads to radio-sensitization in experimental in vitro and in vivo models of GBM. MATERIALS AND METHODS In vitro, GBM8 multicellular spheroids were irradiated with 3 fractions of 2 Gy, during 5 consecutive days of incubation with either PD0325901 or MEK-162. In vivo, we combined PD0325901 with radiotherapy in the GBM8 orthotopic mouse model, tumor growth was measured weekly by bioluminescence imaging and overall survival and toxicity were assessed. RESULTS Regrowth and viability of spheroids monitored until day 18, showed that both MEK inhibitors had an in vitro radio-sensitizing effect. In vivo, PD0325901 concentrations were relatively constant throughout multiple brain areas and temporal PD0325901-related adverse events such as dermatitis were observed in 4 out of 14 mice (29%). Mice that were treated with radiation alone or combined with PD0325901 had significantly better survival compared to vehicle (both P < 0.005), however, no significant interaction between PD0325901 MEK inhibition and irradiation was observed. CONCLUSION The difference between the radiotherapy-enhancing effect of PD0325901 in vitro and in vivo urges further pharmacodynamic/pharmacokinetic investigation of PD0325901 and possibly other candidate MEK inhibitors.
Collapse
Affiliation(s)
- M Houweling
- Department of Neurosurgery, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - U K Abdul
- Department of Neurosurgery, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - C Brahm
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - T Lagerweij
- Department of Neurosurgery, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - S Heukelom
- Department of Radiation Oncology, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - P W Koken
- Department of Radiation Oncology, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - R Honeywell
- Department Clinical Pharmacology and Pharmacy, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - L E Wedekind
- Department of Neurosurgery, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - G J Peters
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - H Verheul
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - P Sminia
- Department of Radiation Oncology, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - D Noske
- Department of Neurosurgery, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - T Wurdinger
- Department of Neurosurgery, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - B A Westerman
- Department of Neurosurgery, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands.
- Cancer Center Amsterdam, Brain Tumor Center Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Marie S, Frost KL, Hau RK, Martinez-Guerrero L, Izu JM, Myers CM, Wright SH, Cherrington NJ. Predicting disruptions to drug pharmacokinetics and the risk of adverse drug reactions in non-alcoholic steatohepatitis patients. Acta Pharm Sin B 2023; 13:1-28. [PMID: 36815037 PMCID: PMC9939324 DOI: 10.1016/j.apsb.2022.08.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 12/18/2022] Open
Abstract
The liver plays a central role in the pharmacokinetics of drugs through drug metabolizing enzymes and transporters. Non-alcoholic steatohepatitis (NASH) causes disease-specific alterations to the absorption, distribution, metabolism, and excretion (ADME) processes, including a decrease in protein expression of basolateral uptake transporters, an increase in efflux transporters, and modifications to enzyme activity. This can result in increased drug exposure and adverse drug reactions (ADRs). Our goal was to predict drugs that pose increased risks for ADRs in NASH patients. Bibliographic research identified 71 drugs with reported ADRs in patients with liver disease, mainly non-alcoholic fatty liver disease (NAFLD), 54 of which are known substrates of transporters and/or metabolizing enzymes. Since NASH is the progressive form of NAFLD but is most frequently undiagnosed, we identified other drugs at risk based on NASH-specific alterations to ADME processes. Here, we present another list of 71 drugs at risk of pharmacokinetic disruption in NASH, based on their transport and/or metabolism processes. It encompasses drugs from various pharmacological classes for which ADRs may occur when used in NASH patients, especially when eliminated through multiple pathways altered by the disease. Therefore, these results may inform clinicians regarding the selection of drugs for use in NASH patients.
Collapse
Affiliation(s)
- Solène Marie
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Kayla L. Frost
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Raymond K. Hau
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Lucy Martinez-Guerrero
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Jailyn M. Izu
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Cassandra M. Myers
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Stephen H. Wright
- College of Medicine, Department of Physiology, University of Arizona, Tucson, AZ 85724, USA
| | - Nathan J. Cherrington
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA,Corresponding author. Tel.: +1 520 6260219; fax: +1 520 6266944.
| |
Collapse
|
18
|
Thirunavukkarasu MK, Karuppasamy R. Drug repurposing combined with MM/PBSA based validation strategies towards MEK inhibitors screening. J Biomol Struct Dyn 2022; 40:12392-12403. [PMID: 34459701 DOI: 10.1080/07391102.2021.1970629] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Emergence of oncogenic mutations in the MAPK pathway gaining more impact in the recent years. Importantly, MEK is a core element of this pathway as it is easy to inhibit and is a gatekeeper of multiple malignancies. Therefore, we performed in-silico strategy to screen repurposed candidate for MEK protein using a library of 11,808 compounds from different clusters in the DrugBank database. Glide docking, Prime-MM/GBSA and QikProp analysis were implemented to retrieve the hits with high precision. The stability of the binding mode and binding affinity of the resultant hit were explored using molecular dynamic simulations and MM/PBSA approach. The results highlight that Nebivolol (DB04861) not only achieved a stable conformation in the MEK binding pocket but also displayed highest binding affinity than the other molecules investigated in our study. Taken together, we hypothesized that Nebivolol is an excellent candidate for the inhibition of MEK in NSCLC patients in future.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Muthu Kumar Thirunavukkarasu
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Ramanathan Karuppasamy
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
19
|
Li H, He J, Li M, Li K, Pu X, Guo Y. Immune landscape-based machine-learning-assisted subclassification, prognosis, and immunotherapy prediction for glioblastoma. Front Immunol 2022; 13:1027631. [PMID: 36532035 PMCID: PMC9751405 DOI: 10.3389/fimmu.2022.1027631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/15/2022] [Indexed: 12/04/2022] Open
Abstract
Introduction As a malignant brain tumor, glioblastoma (GBM) is characterized by intratumor heterogeneity, a worse prognosis, and highly invasive, lethal, and refractory natures. Immunotherapy has been becoming a promising strategy to treat diverse cancers. It has been known that there are highly heterogeneous immunosuppressive microenvironments among different GBM molecular subtypes that mainly include classical (CL), mesenchymal (MES), and proneural (PN), respectively. Therefore, an in-depth understanding of immune landscapes among them is essential for identifying novel immune markers of GBM. Methods and results In the present study, based on collecting the largest number of 109 immune signatures, we aim to achieve a precise diagnosis, prognosis, and immunotherapy prediction for GBM by performing a comprehensive immunogenomic analysis. Firstly, machine-learning (ML) methods were proposed to evaluate the diagnostic values of these immune signatures, and the optimal classifier was constructed for accurate recognition of three GBM subtypes with robust and promising performance. The prognostic values of these signatures were then confirmed, and a risk score was established to divide all GBM patients into high-, medium-, and low-risk groups with a high predictive accuracy for overall survival (OS). Therefore, complete differential analysis across GBM subtypes was performed in terms of the immune characteristics along with clinicopathological and molecular features, which indicates that MES shows much higher immune heterogeneity compared to CL and PN but has significantly better immunotherapy responses, although MES patients may have an immunosuppressive microenvironment and be more proinflammatory and invasive. Finally, the MES subtype is proved to be more sensitive to 17-AAG, docetaxel, and erlotinib using drug sensitivity analysis and three compounds of AS-703026, PD-0325901, and MEK1-2-inhibitor might be potential therapeutic agents. Conclusion Overall, the findings of this research could help enhance our understanding of the tumor immune microenvironment and provide new insights for improving the prognosis and immunotherapy of GBM patients.
Collapse
|
20
|
de Blank PMK, Gross AM, Akshintala S, Blakeley JO, Bollag G, Cannon A, Dombi E, Fangusaro J, Gelb BD, Hargrave D, Kim A, Klesse LJ, Loh M, Martin S, Moertel C, Packer R, Payne JM, Rauen KA, Rios JJ, Robison N, Schorry EK, Shannon K, Stevenson DA, Stieglitz E, Ullrich NJ, Walsh KS, Weiss BD, Wolters PL, Yohay K, Yohe ME, Widemann BC, Fisher MJ. MEK inhibitors for neurofibromatosis type 1 manifestations: Clinical evidence and consensus. Neuro Oncol 2022; 24:1845-1856. [PMID: 35788692 PMCID: PMC9629420 DOI: 10.1093/neuonc/noac165] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The wide variety of clinical manifestations of the genetic syndrome neurofibromatosis type 1 (NF1) are driven by overactivation of the RAS pathway. Mitogen-activated protein kinase kinase inhibitors (MEKi) block downstream targets of RAS. The recent regulatory approvals of the MEKi selumetinib for inoperable symptomatic plexiform neurofibromas in children with NF1 have made it the first medical therapy approved for this indication in the United States, the European Union, and elsewhere. Several recently published and ongoing clinical trials have demonstrated that MEKi may have potential benefits for a variety of other NF1 manifestations, and there is broad interest in the field regarding the appropriate clinical use of these agents. In this review, we present the current evidence regarding the use of existing MEKi for a variety of NF1-related manifestations, including tumor (neurofibromas, malignant peripheral nerve sheath tumors, low-grade glioma, and juvenile myelomonocytic leukemia) and non-tumor (bone, pain, and neurocognitive) manifestations. We discuss the potential utility of MEKi in related genetic conditions characterized by overactivation of the RAS pathway (RASopathies). In addition, we review practical treatment considerations for the use of MEKi as well as provide consensus recommendations regarding their clinical use from a panel of experts.
Collapse
Affiliation(s)
- Peter M K de Blank
- Department of Pediatrics, University of Cincinnati and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Andrea M Gross
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | | | - Jaishri O Blakeley
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Ashley Cannon
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Eva Dombi
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Jason Fangusaro
- Children's Hospital of Atlanta, Emory University and the Aflac Cancer Center, Atlanta, Georgia, USA
| | - Bruce D Gelb
- Department of Pediatrics and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Darren Hargrave
- Department of Oncology, Great Ormond Street Hospital for Children, London, UK
| | - AeRang Kim
- Center for Neuroscience and Behavioral Medicine and Center for Cancer and Blood Disorders, Children's National Hospital, Washington, DC, USA
| | - Laura J Klesse
- Department of Pediatrics, Division of Hematology/Oncology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Mignon Loh
- Benioff Children's Hospital, University of California San Francisco, San Francisco, California, USA
| | - Staci Martin
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Christopher Moertel
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Roger Packer
- Center for Neuroscience and Behavioral Medicine and Center for Cancer and Blood Disorders, Children's National Hospital, Washington, DC, USA
| | - Jonathan M Payne
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia
| | - Katherine A Rauen
- Department of Pediatrics, University of California Davis, Sacramento, California, USA
| | - Jonathan J Rios
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, Texas, USA
| | - Nathan Robison
- Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Elizabeth K Schorry
- Department of Pediatrics, University of Cincinnati and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Kevin Shannon
- Benioff Children's Hospital, University of California San Francisco, San Francisco, California, USA
| | - David A Stevenson
- Department of Pediatrics, Division of Medical Genetics, Stanford University, Stanford, California, USA
| | - Elliot Stieglitz
- Benioff Children's Hospital, University of California San Francisco, San Francisco, California, USA
| | - Nicole J Ullrich
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Karin S Walsh
- Center for Neuroscience and Behavioral Medicine and Center for Cancer and Blood Disorders, Children's National Hospital, Washington, DC, USA
| | - Brian D Weiss
- Department of Pediatrics, University of Cincinnati and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Pamela L Wolters
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Kaleb Yohay
- Department of Neurology and Pediatrics, New York University Grossman School of Medicine, New York, New York, USA
| | - Marielle E Yohe
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Brigitte C Widemann
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Michael J Fisher
- Division of Oncology, The Children's Hospital of Philadelphia and the University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
21
|
Li F, Bondra KM, Ghilu S, Studebaker A, Liu Q, Michalek JE, Kogiso M, Li XN, Kalapurakal JA, James CD, Burma S, Kurmasheva RT, Houghton PJ. Regulation of TORC1 by MAPK Signaling Determines Sensitivity and Acquired Resistance to Trametinib in Pediatric BRAFV600E Brain Tumor Models. Clin Cancer Res 2022; 28:3836-3849. [PMID: 35797217 PMCID: PMC10230442 DOI: 10.1158/1078-0432.ccr-22-1052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/29/2022] [Accepted: 07/05/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE We investigated why three patient-derived xenograft (PDX) childhood BRAFV600E-mutant brain tumor models are highly sensitive to trametinib. Mechanisms of acquired resistance selected in situ, and approaches to prevent resistance were also examined, which may translate to both low-grade glioma (LGG) molecular subtypes. EXPERIMENTAL DESIGN Sensitivity to trametinib [MEK inhibitor (MEKi)] alone or in combination with rapamycin (TORC1 inhibitor), was evaluated in pediatric PDX models. The effect of combined treatment of trametinib with rapamycin on development of trametinib resistance in vivo was examined. PDX tissue and tumor cells from trametinib-resistant xenografts were characterized. RESULTS In pediatric models TORC1 is activated through ERK-mediated inactivation of the tuberous sclerosis complex (TSC): consequently inhibition of MEK also suppressed TORC1 signaling. Trametinib-induced tumor regression correlated with dual inhibition of MAPK/TORC1 signaling, and decoupling TORC1 regulation from BRAF/MAPK control conferred trametinib resistance. In mice, acquired resistance to trametinib developed within three cycles of therapy in all three PDX models. Resistance to trametinib developed in situ is tumor-cell-intrinsic and the mechanism was tumor line specific. Rapamycin retarded or blocked development of resistance. CONCLUSIONS In these three pediatric BRAF-mutant brain tumors, TORC1 signaling is controlled by the MAPK cascade. Trametinib suppressed both MAPK/TORC1 pathways leading to tumor regression. While low-dose intermittent rapamycin to enhance inhibition of TORC1 only modestly enhanced the antitumor activity of trametinib, it prevented or retarded development of trametinib resistance, suggesting future therapeutic approaches using rapamycin analogs in combination with MEKis that may be therapeutically beneficial in both KIAA1549::BRAF- and BRAFV600E-driven gliomas.
Collapse
Affiliation(s)
- Fuyang Li
- Greehey Children’s Cancer Research Institute, UT Health, San Antonio, Texas
| | - Kathryn M. Bondra
- Greehey Children’s Cancer Research Institute, UT Health, San Antonio, Texas
| | - Samson Ghilu
- Greehey Children’s Cancer Research Institute, UT Health, San Antonio, Texas
| | - Adam Studebaker
- Center for Childhood Cancer and Blood Diseases, Nationwide Children’s Hospital, Columbus, Ohio
| | - Qianqian Liu
- Department of Epidemiology and Biostatistics, UT Health, San Antonio, Texas
| | - Joel E. Michalek
- Department of Epidemiology and Biostatistics, UT Health, San Antonio, Texas
| | - Mari Kogiso
- Department of Pediatrics, Baylor College of Medicine, Texas Children’s Cancer Center, Houston, Texas
| | - Xiao-Nan Li
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - John A. Kalapurakal
- Department of Radiation Oncology and Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - C. David James
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Sandeep Burma
- Department of Neurosurgery, UT Health, San Antonio, Texas
- Department of Biochemistry and Structural Biology, UT Health, San Antonio, Texas
| | | | - Peter J. Houghton
- Greehey Children’s Cancer Research Institute, UT Health, San Antonio, Texas
| |
Collapse
|
22
|
Talloa D, Triarico S, Agresti P, Mastrangelo S, Attinà G, Romano A, Maurizi P, Ruggiero A. BRAF and MEK Targeted Therapies in Pediatric Central Nervous System Tumors. Cancers (Basel) 2022; 14:4264. [PMID: 36077798 PMCID: PMC9454417 DOI: 10.3390/cancers14174264] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
BRAF is a component of the MAPK and PI3K/AKT/mTOR pathways that play a crucial role in cellular proliferation, differentiation, migration, and angiogenesis. Pediatric central nervous system tumors very often show mutations of the MAPK pathway, as demonstrated by next-generation sequencing (NGS), which now has an increasing role in cancer diagnostics. The MAPK mutated pathway in pediatric CNS tumors is the target of numerous drugs, approved or under investigation in ongoing clinical trials. In this review, we describe the main aspects of MAPK and PI3K/AKT/mTOR signaling pathways, with a focus on the alterations commonly involved in tumorigenesis. Furthermore, we reported the main available data about current BRAF and MEK targeted therapies used in pediatric low-grade gliomas (pLLGs), pediatric high-grade gliomas (pHGGs), and other CNS tumors that often present BRAF or MEK mutations. Further molecular stratification and clinical trial design are required for the treatment of pediatric CNS tumors with BRAF and MEK inhibitors.
Collapse
Affiliation(s)
- Dario Talloa
- Scuola di Specializzazione in Pediatria, Università Cattolica del Sacro Cuore, Largo F.sco Vito 1, 00168 Rome, Italy
| | - Silvia Triarico
- UOSD di Oncologia Pediatrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Argo A. Gemelli 8, 00168 Rome, Italy
| | - Pierpaolo Agresti
- Scuola di Specializzazione in Pediatria, Università Cattolica del Sacro Cuore, Largo F.sco Vito 1, 00168 Rome, Italy
| | - Stefano Mastrangelo
- UOSD di Oncologia Pediatrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Argo A. Gemelli 8, 00168 Rome, Italy
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo F.sco Vito 1, 00168 Rome, Italy
| | - Giorgio Attinà
- UOSD di Oncologia Pediatrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Argo A. Gemelli 8, 00168 Rome, Italy
| | - Alberto Romano
- UOSD di Oncologia Pediatrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Argo A. Gemelli 8, 00168 Rome, Italy
| | - Palma Maurizi
- UOSD di Oncologia Pediatrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Argo A. Gemelli 8, 00168 Rome, Italy
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo F.sco Vito 1, 00168 Rome, Italy
| | - Antonio Ruggiero
- UOSD di Oncologia Pediatrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Argo A. Gemelli 8, 00168 Rome, Italy
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo F.sco Vito 1, 00168 Rome, Italy
| |
Collapse
|
23
|
Kamath A, Srinivasamurthy SK, Chowta MN, Ullal SD, Daali Y, Chakradhara Rao US. Role of Drug Transporters in Elucidating Inter-Individual Variability in Pediatric Chemotherapy-Related Toxicities and Response. Pharmaceuticals (Basel) 2022; 15:990. [PMID: 36015138 PMCID: PMC9415926 DOI: 10.3390/ph15080990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Pediatric cancer treatment has evolved significantly in recent decades. The implementation of risk stratification strategies and the selection of evidence-based chemotherapy combinations have improved survival outcomes. However, there is large interindividual variability in terms of chemotherapy-related toxicities and, sometimes, the response among this population. This variability is partly attributed to the functional variability of drug-metabolizing enzymes (DME) and drug transporters (DTS) involved in the process of absorption, distribution, metabolism and excretion (ADME). The DTS, being ubiquitous, affects drug disposition across membranes and has relevance in determining chemotherapy response in pediatric cancer patients. Among the factors affecting DTS function, ontogeny or maturation is important in the pediatric population. In this narrative review, we describe the role of drug uptake/efflux transporters in defining pediatric chemotherapy-treatment-related toxicities and responses. Developmental differences in DTS and the consequent implications are also briefly discussed for the most commonly used chemotherapeutic drugs in the pediatric population.
Collapse
Affiliation(s)
- Ashwin Kamath
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal 575001, India
| | - Suresh Kumar Srinivasamurthy
- Department of Pharmacology, Ras Al Khaimah College of Medical Sciences, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | - Mukta N. Chowta
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal 575001, India
| | - Sheetal D. Ullal
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal 575001, India
| | - Youssef Daali
- Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Uppugunduri S. Chakradhara Rao
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal 575001, India
- CANSEARCH Research Platform in Pediatric Oncology and Hematology, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
24
|
Trippett T, Toledano H, Campbell Hewson Q, Verschuur A, Langevin AM, Aerts I, Howell L, Gallego S, Rossig C, Smith A, Patel D, Pereira LR, Cheeti S, Musib L, Hutchinson KE, Devlin C, Bernardi R, Geoerger B. Cobimetinib in Pediatric and Young Adult Patients with Relapsed or Refractory Solid Tumors (iMATRIX-cobi): A Multicenter, Phase I/II Study. Target Oncol 2022; 17:283-293. [PMID: 35715627 PMCID: PMC9217999 DOI: 10.1007/s11523-022-00888-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 11/29/2022]
Abstract
Background The MAPK pathway is an emerging target across a number of adult and pediatric tumors. Targeting the downstream effector of MAPK, MEK1, is a proposed strategy to control the growth of MAPK-dependent tumors. Objective iMATRIX-cobi assessed the safety, pharmacokinetics, and anti-tumor activity of cobimetinib, a highly selective MEK inhibitor, in children and young adults with relapsed/refractory solid tumors. Patients and Methods This multicenter Phase I/II study enrolled patients aged 6 months to < 30 years with solid tumors with known/expected MAPK pathway involvement. Patients received cobimetinib tablet or suspension formulation on Days 1–21 of a 28-day cycle. Dose escalation followed a rolling 6 design. The primary endpoint was safety; secondary endpoints were pharmacokinetics and anti-tumor activity. Results Of 56 enrolled patients (median age 9 years [range 3–29]), 18 received cobimetinib tablets and 38 cobimetinib suspension. Most common diagnoses were low-grade glioma (LGG; n = 32, including n = 12 in the expansion cohort) and plexiform neurofibroma within neurofibromatosis type 1 (n = 12). Six patients (11 %) experienced dose-limiting toxicities (including five ocular toxicity events), which established a pediatric recommended Phase II dose (RP2D) of 0.8 mg/kg tablet and 1.0 mg/kg suspension. Most frequently reported treatment-related adverse events were gastrointestinal and skin disorders. Steady state mean exposure (Cmax, AUC0–24) of cobimetinib at the RP2D (1.0 mg/kg suspension) was ~ 50 % lower than in adults receiving the approved 60 mg/day dose. Overall response rate was 5.4 % (3/56; all partial responses in patients with LGG). Conclusions The safety profile of cobimetinib in pediatrics was similar to that reported in adults. Clinical activity was observed in LGG patients with known/suspected MAPK pathway activation. Cobimetinib combination regimens may be required to improve response rates in this pediatric population. Clinical Trial Registration ClinicalTrials.gov NCT02639546, registered December 24, 2015. Supplementary Information The online version contains supplementary material available at 10.1007/s11523-022-00888-9.
Collapse
Affiliation(s)
- Tanya Trippett
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Helen Toledano
- Department of Pediatric Hematology-Oncology, Schneider Children's Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Quentin Campbell Hewson
- Department of Paediatric and Adolescent Oncology, The Great North Children's Hospital, Newcastle Upon Tyne, UK
| | - Arnauld Verschuur
- Assistance Publique-Hopitaux de Marseille, Pediatric Oncology, Timone Children's Hospital, Marseille, France
| | | | - Isabelle Aerts
- Oncology Center SIREDO, Institut Curie, PSL Research University, Paris, France
| | - Lisa Howell
- Paediatric Oncology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Soledad Gallego
- Paediatric Oncology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Claudia Rossig
- Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Amy Smith
- Haley Center for Children's Cancer and Blood Disorders, Orlando-Health Arnold Palmer Hospital for Children, Orlando, FL, USA
| | - Darshak Patel
- Product Development, Biometrics, Biostatistics, F. Hoffmann-La Roche Ltd, Mississauga, ON, Canada.,Parexel International Ltd, Ottawa, ON, Canada
| | | | - Sravanthi Cheeti
- Clinical Pharmacology, Genentech, Inc., South San Francisco, CA, USA
| | - Luna Musib
- Clinical Pharmacology, Genentech, Inc., South San Francisco, CA, USA.,Arrivent Biopharma, Newtown Square, PA, USA
| | | | - Clare Devlin
- Product Development Oncology, Roche Products Ltd, Welwyn, UK
| | - Ronald Bernardi
- Product Development Oncology, Genentech, Inc., South San Francisco, CA, USA
| | - Birgit Geoerger
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Center, Université Paris-Saclay, INSERM U1015, Villejuif, France
| |
Collapse
|
25
|
Nguyen LH, Leiser SC, Song D, Brunner D, Roberds SL, Wong M, Bordey A. Inhibition of MEK-ERK signaling reduces seizures in two mouse models of tuberous sclerosis complex. Epilepsy Res 2022; 181:106890. [PMID: 35219048 PMCID: PMC8930622 DOI: 10.1016/j.eplepsyres.2022.106890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 02/02/2022] [Accepted: 02/17/2022] [Indexed: 12/25/2022]
Abstract
Tuberous sclerosis complex (TSC) is a monogenic disorder characterized by hyperactivation of the mTOR signaling pathway and developmental brain malformations leading to intractable epilepsy. Although treatment with the recently approved mTOR inhibitor, everolimus, results in clinically relevant seizure suppression in up to 40% of TSC patients, seizures remain uncontrolled in a large number of cases, underscoring the need to identify novel treatment targets. The MEK-ERK signaling pathway has been found to be aberrantly activated in TSC and inhibition of MEK-ERK activity independently of mTOR rescued neuronal dendrite overgrowth in mice modeling TSC neuropathology. Here, we evaluated the efficacy of MEK-ERK inhibition on seizures in two mouse models of TSC. We found that treatment with the MEK inhibitor PD0325901 (mirdametinib) significantly reduced seizure activity in both TSC mouse models. These findings support inhibiting MEK-ERK activity as a potential alternative strategy to treat seizures in TSC.
Collapse
Affiliation(s)
- Lena H. Nguyen
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA,Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Steven C. Leiser
- Department of Translational EEG, PsychoGenics, Inc., Paramus, NJ, USA
| | - Dekun Song
- Department of Translational EEG, PsychoGenics, Inc., Paramus, NJ, USA
| | | | | | - Michael Wong
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Angelique Bordey
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA; Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
26
|
Zhang R, Huang L, Pan D, Zhang W. Sunitinib induced resistance of endothelial cells by up-regulating P-glycoprotein and PI3K/Akt pathway. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e191102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
| | - Limin Huang
- People’s Hospital of Guizhou Province, China
| | - Di Pan
- Guizhou Medical University, China
| | | |
Collapse
|
27
|
Shaw TK, Paul P. Recent approaches and success of liposome-based nanodrug carriers for the treatment of brain tumor. Curr Drug Deliv 2021; 19:815-829. [PMID: 34961462 DOI: 10.2174/1567201818666211213102308] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/21/2021] [Accepted: 10/12/2021] [Indexed: 11/22/2022]
Abstract
Brain tumors are nothing but a collection of neoplasms originated either from areas within the brain or from systemic metastasized tumors of other organs that have spread to the brain. It is a leading cause of death worldwide. The presence of the blood-brain barrier (BBB), blood-brain tumor barrier (BBTB), and some other factors may limit the entry of many potential therapeutics into the brain tissues in tumor area at the therapeutic concentration required for satisfying effectiveness. Liposomes are taking an active role in delivering many drugs through the BBB into the tumor due to their nanosize and their physiological compatibility. Further, this colloidal carrier can encapsulate both lipophilic and hydrophilic drugs due to its unique structure. The surface of the liposomes can be modified with various ligands that are very specific to the numerous receptors overexpressed onto the BBB as well as onto the diseased tumor surface site (i.e., BBTB) to deliver selective drugs into the tumor site. Moreover, the enhanced permeability and retention (EPR) effect can be an added advantage for nanosize liposomes to concentrate into the tumor microenvironment through relatively leaky vasculature of solid tumor in the brain where no restriction of penetration applies compared to normal BBB. Here in this review, we have tried to compilethe recent advancement along with the associated challenges of liposomes containing different anticancer chemotherapeutics across the BBB/BBTB for the treatment of gliomas that will be very helpful for the readers for better understanding of different trends of brain tumor targeted liposomes-based drug delivery and for pursuing fruitful research on the similar research domain.
Collapse
Affiliation(s)
- Tapan K Shaw
- Department of Pharmaceutical Technology, JIS University, Kolkata, West Bengal. India
| | - Paramita Paul
- Department of Pharmaceutical Technology, University of North Bengal, West Bengal. India
| |
Collapse
|
28
|
Parris JL, Barnoud T, Leu JIJ, Leung JC, Ma W, Kirven NA, Poli ANR, Kossenkov AV, Liu Q, Salvino JM, George DL, Weeraratna AT, Chen Q, Murphy ME. HSP70 inhibition blocks adaptive resistance and synergizes with MEK inhibition for the treatment of NRAS-mutant melanoma. CANCER RESEARCH COMMUNICATIONS 2021; 1:17-29. [PMID: 35187538 PMCID: PMC8849551 DOI: 10.1158/2767-9764.crc-21-0033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
NRAS-mutant melanoma is currently a challenge to treat. This is due to an absence of inhibitors directed against mutant NRAS, along with adaptive and acquired resistance of this tumor type to inhibitors in the MAPK pathway. Inhibitors to MEK (mitogen-activated protein kinase kinase) have shown some promise for NRAS-mutant melanoma. In this work we explored the use of MEK inhibitors for NRAS-mutant melanoma. At the same time we investigated the impact of the brain microenvironment, specifically astrocytes, on the response of a melanoma brain metastatic cell line to MEK inhibition. These parallel avenues led to the surprising finding that astrocytes enhance the sensitivity of melanoma tumors to MEK inhibitors (MEKi). We show that MEKi cause an upregulation of the transcription factor ID3, which confers resistance. This upregulation of ID3 is blocked by conditioned media from astrocytes. We show that silencing ID3 enhances the sensitivity of melanoma to MEK inhibitors, thus mimicking the effect of the brain microenvironment. Moreover, we report that ID3 is a client protein of the chaperone HSP70, and that HSP70 inhibition causes ID3 to misfold and accumulate in a detergent-insoluble fraction in cells. We show that HSP70 inhibitors synergize with MEK inhibitors against NRAS-mutant melanoma, and that this combination significantly enhances the survival of mice in two different models of NRAS-mutant melanoma. These studies highlight ID3 as a mediator of adaptive resistance, and support the combined use of MEK and HSP70 inhibitors for the therapy of NRAS-mutant melanoma. SIGNIFICANCE MEK inhibitors are currently used for NRAS-mutant melanoma, but have shown modest efficacy as single agents. This research shows a synergistic effect of combining HSP70 inhibitors with MEK inhibitors for the treatment of NRAS mutant melanoma.
Collapse
Affiliation(s)
- Joshua L.D. Parris
- Program(s) in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania.,Graduate Group in Cell and Molecular Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Thibaut Barnoud
- Program(s) in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Julia I.-Ju Leu
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Jessica C. Leung
- Program(s) in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Weili Ma
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Nicole A. Kirven
- Program(s) in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Adi Naryana Reddy Poli
- Program(s) in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Andrew V. Kossenkov
- Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania
| | - Qin Liu
- Program(s) in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Joseph M. Salvino
- Program(s) in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Donna L. George
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Ashani T. Weeraratna
- Department of Biochemistry and Molecular Biology, Johns Hopkins University, Baltimore, Maryland 21205
| | - Qing Chen
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Maureen E. Murphy
- Program(s) in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania.,Corresponding Author: Maureen Murphy, The Wistar Institute, 3601 Spruce Street, Room 356, Philadelphia, PA 19104. Phone: 215-495-6870; E-mail:
| |
Collapse
|
29
|
He C, Xu K, Zhu X, Dunphy PS, Gudenas B, Lin W, Twarog N, Hover LD, Kwon CH, Kasper LH, Zhang J, Li X, Dalton J, Jonchere B, Mercer KS, Currier DG, Caufield W, Wang Y, Xie J, Broniscer A, Wetmore C, Upadhyaya SA, Qaddoumi I, Klimo P, Boop F, Gajjar A, Zhang J, Orr BA, Robinson GW, Monje M, Freeman Iii BB, Roussel MF, Northcott PA, Chen T, Rankovic Z, Wu G, Chiang J, Tinkle CL, Shelat AA, Baker SJ. Patient-derived models recapitulate heterogeneity of molecular signatures and drug response in pediatric high-grade glioma. Nat Commun 2021; 12:4089. [PMID: 34215733 PMCID: PMC8253809 DOI: 10.1038/s41467-021-24168-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 05/25/2021] [Indexed: 01/02/2023] Open
Abstract
Pediatric high-grade glioma (pHGG) is a major contributor to cancer-related death in children. In vitro and in vivo disease models reflecting the intimate connection between developmental context and pathogenesis of pHGG are essential to advance understanding and identify therapeutic vulnerabilities. Here we report establishment of 21 patient-derived pHGG orthotopic xenograft (PDOX) models and eight matched cell lines from diverse groups of pHGG. These models recapitulate histopathology, DNA methylation signatures, mutations and gene expression patterns of the patient tumors from which they were derived, and include rare subgroups not well-represented by existing models. We deploy 16 new and existing cell lines for high-throughput screening (HTS). In vitro HTS results predict variable in vivo response to PI3K/mTOR and MEK pathway inhibitors. These unique new models and an online interactive data portal for exploration of associated detailed molecular characterization and HTS chemical sensitivity data provide a rich resource for pediatric brain tumor research.
Collapse
Affiliation(s)
- Chen He
- Department of Developmental Neurobiology, Memphis, TN, USA
| | - Ke Xu
- Center for Applied Bioinformatics, Memphis, TN, USA
- Department of Computational Biology, Memphis, TN, USA
| | - Xiaoyan Zhu
- Department of Developmental Neurobiology, Memphis, TN, USA
| | - Paige S Dunphy
- Department of Developmental Neurobiology, Memphis, TN, USA
- Department of Oncology, Memphis, TN, USA
| | - Brian Gudenas
- Department of Developmental Neurobiology, Memphis, TN, USA
| | - Wenwei Lin
- Department of Chemical Biology and Therapeutics, Memphis, TN, USA
| | - Nathaniel Twarog
- Department of Chemical Biology and Therapeutics, Memphis, TN, USA
| | - Laura D Hover
- Department of Developmental Neurobiology, Memphis, TN, USA
| | | | | | - Junyuan Zhang
- Department of Developmental Neurobiology, Memphis, TN, USA
| | - Xiaoyu Li
- Department of Pathology, Memphis, TN, USA
| | | | | | | | - Duane G Currier
- Department of Chemical Biology and Therapeutics, Memphis, TN, USA
| | - William Caufield
- Preclinical Pharmacokinetics Shared Resource St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yingzhe Wang
- Preclinical Pharmacokinetics Shared Resource St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jia Xie
- Department of Chemical Biology and Therapeutics, Memphis, TN, USA
| | - Alberto Broniscer
- Division of Hematology-Oncology, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | - Paul Klimo
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Frederick Boop
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Jinghui Zhang
- Department of Computational Biology, Memphis, TN, USA
| | | | | | - Michelle Monje
- Department of Neurology, Stanford University, Stanford, CA, USA
| | - Burgess B Freeman Iii
- Preclinical Pharmacokinetics Shared Resource St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | | | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, Memphis, TN, USA
| | - Zoran Rankovic
- Department of Chemical Biology and Therapeutics, Memphis, TN, USA
| | - Gang Wu
- Center for Applied Bioinformatics, Memphis, TN, USA
- Department of Computational Biology, Memphis, TN, USA
| | | | - Christopher L Tinkle
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Anang A Shelat
- Department of Chemical Biology and Therapeutics, Memphis, TN, USA.
| | | |
Collapse
|
30
|
Chernov AN, Alaverdian DA, Galimova ES, Renieri A, Frullanti E, Meloni I, Shamova OV. The phenomenon of multidrug resistance in glioblastomas. Hematol Oncol Stem Cell Ther 2021; 15:1-7. [PMID: 34216549 DOI: 10.1016/j.hemonc.2021.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/30/2021] [Indexed: 12/21/2022] Open
Abstract
The most common and aggressive brain tumor in the adult population is glioblastoma (GBM). The lifespan of patients does not exceed 22 months. One of the reasons for the low effectiveness of GBM treatment is its radioresistance and chemoresistance. In the current review, we discuss the phenomenon of multidrug resistance of GBM in the context of the expression of ABC family transporter proteins and the mechanisms of proliferation, angiogenesis, and recurrence. We focused on the search of molecular targets among growth factors, receptors, signal transduction proteins, microRNAs, transcription factors, proto-oncogenes, tumor suppressor genes, and their single-nucleotide polymorphisms.
Collapse
Affiliation(s)
- Alexandr N Chernov
- Institute of Experimental Medicine, Russian Academy of Medical Sciences, Saint-Petersburg, Russia.
| | - Diana A Alaverdian
- MedicalGenetics, Department of Medical Biotechnologies, University of Siena, Siena, Italy; MedBiotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Elvira S Galimova
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Alessandra Renieri
- MedicalGenetics, Department of Medical Biotechnologies, University of Siena, Siena, Italy; MedBiotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy; Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Elisa Frullanti
- MedicalGenetics, Department of Medical Biotechnologies, University of Siena, Siena, Italy; MedBiotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Ilaria Meloni
- MedicalGenetics, Department of Medical Biotechnologies, University of Siena, Siena, Italy; MedBiotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Olga V Shamova
- Institute of Experimental Medicine, Russian Academy of Medical Sciences, Saint-Petersburg, Russia
| |
Collapse
|
31
|
Huang HJ, Wang HT, Yeh TY, Lin BW, Shiao YJ, Lo YL, Lin AMY. Neuroprotective effect of selumetinib on acrolein-induced neurotoxicity. Sci Rep 2021; 11:12497. [PMID: 34127699 PMCID: PMC8203693 DOI: 10.1038/s41598-021-91507-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/25/2021] [Indexed: 11/09/2022] Open
Abstract
Abnormal accumulation of acrolein, an α, β unsaturated aldehyde has been reported as one pathological cause of the CNS neurodegenerative diseases. In the present study, the neuroprotective effect of selumetinib (a MEK-ERK inhibitor) on acrolein-induced neurotoxicity was investigated in vitro using primary cultured cortical neurons. Incubation of acrolein consistently increased phosphorylated ERK levels. Co-treatment of selumetinib blocked acrolein-induced ERK phosphorylation. Furthermore, selumetinib reduced acrolein-induced increases in heme oxygenase-1 (a redox-regulated chaperone protein) and its transcriptional factor, Nrf-2 as well as FDP-lysine (acrolein-lysine adducts) and α-synuclein aggregation (a pathological biomarker of neurodegeneration). Morphologically, selumetinib attenuated acrolein-induced damage in neurite outgrowth, including neuritic beading and neurite discontinuation. Moreover, selumetinib prevented acrolein-induced programmed cell death via decreasing active caspase 3 (a hallmark of apoptosis) as well as RIP (receptor-interacting protein) 1 and RIP3 (biomarkers for necroptosis). In conclusion, our study showed that selumetinib inhibited acrolein-activated Nrf-2-HO-1 pathway, acrolein-induced protein conjugation and aggregation as well as damage in neurite outgrowth and cell death, suggesting that selumetinib, a MEK-ERK inhibitor, may be a potential neuroprotective agent against acrolein-induced neurotoxicity in the CNS neurodegenerative diseases.
Collapse
Affiliation(s)
- Hui-Ju Huang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsiang-Tsui Wang
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ting-Yu Yeh
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Bo-Wei Lin
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Young-Ji Shiao
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
| | - Yu-Li Lo
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Anya Maan-Yuh Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan. .,Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
32
|
Zhou Z, Tian J, Zhang W, Xiang W, Ming Y, Chen L, Zhou J. Multiple strategies to improve the therapeutic efficacy of oncolytic herpes simplex virus in the treatment of glioblastoma. Oncol Lett 2021; 22:510. [PMID: 33986870 DOI: 10.3892/ol.2021.12771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/29/2021] [Indexed: 11/06/2022] Open
Abstract
Oncolytic viruses have attracted widespread attention as biological anticancer agents that can selectively kill tumor cells without affecting normal cells. Although progress has been made in therapeutic strategies, the prognosis of patients with glioblastoma (GBM) remains poor and no ideal treatment approach has been developed. Recently, oncolytic herpes simplex virus (oHSV) has been considered a promising novel treatment approach for GBM. However, the therapeutic efficacy of oHSV in GBM, with its intricate pathophysiology, remains unsatisfactory due to several obstacles, such as limited replication and attenuated potency of oHSV owing to deletions or mutations in virulence genes, and ineffective delivery of the therapeutic virus. Multiple strategies have attempted to identify the optimal strategy for the successful clinical application of oHSV. Several preclinical trials have demonstrated that engineering novel oHSVs, developing combination therapies and improving methods for delivering oHSV to tumor cells seem to hold promise for improving the efficacy of this virotherapy.
Collapse
Affiliation(s)
- Zhengjun Zhou
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan 646000, P.R. China
| | - Junjie Tian
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan 646000, P.R. China
| | - Wenyan Zhang
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan 646000, P.R. China
| | - Wei Xiang
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan 646000, P.R. China
| | - Yang Ming
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan 646000, P.R. China
| | - Ligang Chen
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan 646000, P.R. China.,Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan 646000, P.R. China.,Neurological Diseases and Brain Function Laboratory, Luzhou, Sichuan 646000, P.R. China
| | - Jie Zhou
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan 646000, P.R. China.,Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan 646000, P.R. China.,Neurological Diseases and Brain Function Laboratory, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
33
|
Li W, Sparidans RW, Martins MLF, El-Lari M, Lebre MC, van Tellingen O, Beijnen JH, Schinkel AH. ABCB1 and ABCG2 Restrict Brain and Testis Accumulation and, Alongside CYP3A, Limit Oral Availability of the Novel TRK Inhibitor Selitrectinib. Mol Cancer Ther 2021; 20:1173-1182. [PMID: 33785654 DOI: 10.1158/1535-7163.mct-20-0705] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/07/2020] [Accepted: 03/12/2021] [Indexed: 11/16/2022]
Abstract
Selitrectinib (BAY2731954; LOXO-195) is a promising oral tropomyosin receptor kinase (TRK) inhibitor currently in phase I/II clinical trials for the treatment of histology-agnostic cancers positive for TRK fusions. With therapeutic resistance eventually developing with first-generation TRK inhibitors, selitrectinib was designed to overcome resistance mediated by acquired kinase domain mutations. Using genetically modified mouse models and pharmacological inhibitors, we investigated the roles of the multidrug efflux transporters ABCB1 and ABCG2, and the drug-metabolizing CYP3A enzyme complex in selitrectinib pharmacokinetics. In vitro, selitrectinib was markedly transported by mouse Abcg2 and human ABCB1, and modestly by human ABCG2. Following oral administration at 10 mg/kg, selitrectinib brain-to-plasma ratios were increased in Abcb1a/1b-/- (twofold) and Abcb1a/1b;Abcg2-/- (5.8-fold) compared with wild-type mice, but not in single Abcg2-/- mice. Testis distribution showed similar results. mAbcb1a/1b and mAbcg2 each restricted the plasma exposure of selitrectinib: With both systems absent oral availability increased by 1.7-fold. Oral administration of the ABCB1/ABCG2 inhibitor elacridar boosted plasma exposure and brain accumulation in wild-type mice to the same levels as seen in Abcb1a/1b;Abcg2-/- mice. In Cyp3a-/- mice, plasma exposure of selitrectinib over 4 hours was increased by 1.4-fold and subsequently reduced by 2.3-fold upon transgenic overexpression of human CYP3A4 in liver and intestine. The relative tissue distribution of selitrectinib remained unaltered. Thus, selitrectinib brain accumulation and oral availability are substantially restricted by ABCB1 and ABCG2, and this can be reversed by pharmacological inhibition. Moreover, oral availability of selitrectinib is limited by CYP3A activity. These insights may be useful to optimize the clinical application of selitrectinib.
Collapse
Affiliation(s)
- Wenlong Li
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Rolf W Sparidans
- Division Pharmacology, Department of Pharmaceutical Sciences, Utrecht University, Faculty of Science, Utrecht, the Netherlands
| | - Margarida L F Martins
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Mujtaba El-Lari
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Maria C Lebre
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Olaf van Tellingen
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jos H Beijnen
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.,Division of Pharmacoepidemiology and Clinical Pharmacology, Department of Pharmaceutical Sciences, Utrecht University, Faculty of Science, Utrecht, the Netherlands.,Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Alfred H Schinkel
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
34
|
Meel MH, Guillén Navarro M, de Gooijer MC, Metselaar DS, Waranecki P, Breur M, Lagerweij T, Wedekind LE, Koster J, van de Wetering MD, Schouten-van Meeteren N, Aronica E, van Tellingen O, Bugiani M, Phoenix TN, Kaspers GJL, Hulleman E. MEK/MELK inhibition and blood-brain barrier deficiencies in atypical teratoid/rhabdoid tumors. Neuro Oncol 2021; 22:58-69. [PMID: 31504799 PMCID: PMC6954444 DOI: 10.1093/neuonc/noz151] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background Atypical teratoid/rhabdoid tumors (AT/RT) are rare, but highly aggressive. These entities are of embryonal origin occurring in the central nervous system (CNS) of young children. Molecularly these tumors are driven by a single hallmark mutation, resulting in inactivation of SMARCB1 or SMARCA4. Additionally, activation of the MAPK signaling axis and preclinical antitumor efficacy of its inhibition have been described in AT/RT. Methods We established and validated a patient-derived neurosphere culture and xenograft model of sonic hedgehog (SHH) subtype AT/RT, at diagnosis and relapse from the same patient. We set out to study the vascular phenotype of these tumors to evaluate the integrity of the blood–brain barrier (BBB) in AT/RT. We also used the model to study combined mitogen-activated protein kinase kinase (MEK) and maternal embryonic leucine zipper kinase (MELK) inhibition as a therapeutic strategy for AT/RT. Results We found MELK to be highly overexpressed in both patient samples of AT/RT and our primary cultures and xenografts. We identified a potent antitumor efficacy of the MELK inhibitor OTSSP167, as well as strong synergy with the MEK inhibitor trametinib, against primary AT/RT neurospheres. Additionally, vascular phenotyping of AT/RT patient material and xenografts revealed significant BBB aberrancies in these tumors. Finally, we show in vivo efficacy of the non-BBB penetrable drugs OTSSP167 and trametinib in AT/RT xenografts, demonstrating the therapeutic implications of the observed BBB deficiencies and validating MEK/MELK inhibition as a potential treatment. Conclusion Altogether, we developed a combination treatment strategy for AT/RT based on MEK/MELK inhibition and identify therapeutically exploitable BBB deficiencies in these tumors.
Collapse
Affiliation(s)
- Michaël H Meel
- Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Miriam Guillén Navarro
- Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Mark C de Gooijer
- Division of Pharmacology/Mouse Cancer Clinic, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Dennis S Metselaar
- Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Piotr Waranecki
- Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Marjolein Breur
- Department of Pathology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Tonny Lagerweij
- Department of Neurosurgery, Neuro-oncology Research Group, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Laurine E Wedekind
- Department of Neurosurgery, Neuro-oncology Research Group, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Jan Koster
- Department of Oncogenomics, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Marianne D van de Wetering
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Pediatric Oncology, Academic Medical Center, Emma Children's Hospital, Amsterdam, Netherlands
| | - Netteke Schouten-van Meeteren
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Pediatric Oncology, Academic Medical Center, Emma Children's Hospital, Amsterdam, Netherlands
| | - Eleonora Aronica
- Department of (Neuro) Pathology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Olaf van Tellingen
- Division of Pharmacology/Mouse Cancer Clinic, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Marianna Bugiani
- Department of Pathology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Timothy N Phoenix
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati/Research in Patient Services, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Gertjan J L Kaspers
- Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Esther Hulleman
- Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| |
Collapse
|
35
|
Weiss BD, Wolters PL, Plotkin SR, Widemann BC, Tonsgard JH, Blakeley J, Allen JC, Schorry E, Korf B, Robison NJ, Goldman S, Vinks AA, Emoto C, Fukuda T, Robinson CT, Cutter G, Edwards L, Dombi E, Ratner N, Packer R, Fisher MJ. NF106: A Neurofibromatosis Clinical Trials Consortium Phase II Trial of the MEK Inhibitor Mirdametinib (PD-0325901) in Adolescents and Adults With NF1-Related Plexiform Neurofibromas. J Clin Oncol 2021; 39:797-806. [PMID: 33507822 PMCID: PMC8078274 DOI: 10.1200/jco.20.02220] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Patients with neurofibromatosis type 1 (NF1) frequently develop plexiform neurofibromas (PNs), which can cause significant morbidity. We performed a phase II trial of the MAPK/ERK kinase inhibitor, mirdametinib (PD-0325901), in patients with NF1 and inoperable PNs. The primary objective was response rate based on volumetric magnetic resonance imaging analysis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Bruce Korf
- University of Alabama-Birmingham, Birmingham, AL
| | | | | | | | - Chie Emoto
- Cincinnati Children's Hospital, Cincinnati, OH
| | | | | | - Gary Cutter
- University of Alabama-Birmingham, Birmingham, AL
| | | | - Eva Dombi
- NCI, Center for Cancer Research, Bethesda, MD
| | | | | | | |
Collapse
|
36
|
Osum SH, Coutts AW, Duerre DJ, Tschida BR, Kirstein MN, Fisher J, Bell WR, Delpuech O, Smith PD, Widemann BC, Moertel CL, Largaespada DA, Watson AL. Selumetinib normalizes Ras/MAPK signaling in clinically relevant neurofibromatosis type 1 minipig tissues in vivo. Neurooncol Adv 2021; 3:vdab020. [PMID: 33978635 PMCID: PMC8095338 DOI: 10.1093/noajnl/vdab020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The MEK1/2 inhibitor selumetinib was recently approved for neurofibromatosis type 1 (NF1)-associated plexiform neurofibromas, but outcomes could be improved and its pharmacodynamic evaluation in other relevant tissues is limited. The aim of this study was to assess selumetinib tissue pharmacokinetics (PK) and pharmacodynamics (PD) using a minipig model of NF1. METHODS WT (n = 8) and NF1 (n = 8) minipigs received a single oral dose of 7.3 mg/kg selumetinib. Peripheral blood mononuclear cells (PBMCs), cerebral cortex, optic nerve, sciatic nerve, and skin were collected for PK analysis and PD analysis of extracellular regulated kinase phosphorylation (p-ERK) inhibition and transcript biomarkers (DUSP6 & FOS). RESULTS Key selumetinib PK parameters aligned with those observed in human patients. Selumetinib concentrations were higher in CNS tissues from NF1 compared to WT animals. Inhibition of ERK phosphorylation was achieved in PBMCs (mean 60% reduction), skin (95%), and sciatic nerve (64%) from all minipigs, whereas inhibition of ERK phosphorylation in cerebral cortex was detected only in NF1 animals (71%). Basal p-ERK levels were significantly higher in NF1 minipig optic nerve compared to WT and were reduced to WT levels (60%) with selumetinib. Modulation of transcript biomarkers was observed in all tissues. CONCLUSIONS Selumetinib reduces MAPK signaling in tissues clinically relevant to NF1, effectively normalizing p-ERK to WT levels in optic nerve but resulting in abnormally low levels of p-ERK in the skin. These results suggest that selumetinib exerts activity in NF1-associated CNS tumors by normalizing Ras/MAPK signaling and may explain common MEK inhibitor-associated dermatologic toxicities.
Collapse
Affiliation(s)
- Sara H Osum
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | | - Mark N Kirstein
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - James Fisher
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - W Robert Bell
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Division of Neuropathology, Department of Lab Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Oona Delpuech
- Oncology R&D, AstraZeneca, Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Paul D Smith
- Oncology R&D, AstraZeneca, Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Brigitte C Widemann
- Pediatric Oncology Branch, Rare Tumor Initiative, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | | | - David A Largaespada
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | | |
Collapse
|
37
|
Clinical Pharmacokinetics and Pharmacodynamics of Selumetinib. Clin Pharmacokinet 2020; 60:283-303. [PMID: 33354735 DOI: 10.1007/s40262-020-00967-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2020] [Indexed: 02/07/2023]
Abstract
Selumetinib, a highly specific mitogen-activated protein kinase 1/2 inhibitor, is approved for children older than 2 years of age with neurofibromatosis 1 who have inoperable plexiform neurofibromas. By selectively binding to mitogen-activated protein kinase 1/2 proteins, selumetinib can arrest the mitogen-activated protein kinase/extracellular signal-regulated kinase signaling pathway that regulates critical cellular responses. Selumetinib has shown promising results as a single agent or in combination with conventional chemotherapy and other targeted therapies both preclinically and clinically, in multiple cancers including pediatric low-grade glioma, non-small cell lung cancer, and melanoma, among others. The pharmacokinetic profiles of selumetinib and its active metabolite N-desmethyl selumetinib have been well characterized in both adults and children. Both compounds exhibited rapid absorption and mean terminal elimination half-lives of about 7.5 h, with minimal accumulation at steady state. Three population pharmacokinetic models have been developed in adults and children, characterizing large inter- and intra-patient variabilities, and identifying significant covariates including food intake on selumetinib absorption, weight metrics, age, co-administration of cytochrome modulators, and Asian ethnicity on selumetinib apparent oral clearance. The most common side effects associated with selumetinib are dermatologic, gastrointestinal toxicities, and fatigue. Most toxicities are mild or moderate, generally tolerated and manageable. Cardiovascular and ocular toxicities remain less frequent but can be potentially more severe and require close monitoring. Overall, selumetinib exhibits a favorable safety profile and pharmacokinetic properties, with promising activity in multiple solid tumors, supporting current and further evaluation in combination with conventional chemotherapy and other targeted agents.
Collapse
|
38
|
Palmer AC, Plana D, Gao H, Korn JM, Yang G, Green J, Zhang X, Velazquez R, McLaughlin ME, Ruddy DA, Kowal C, Muszynski J, Bullock C, Rivera S, Rakiec DP, Elliott G, Fordjour P, Meyer R, Loo A, Kurth E, Engelman JA, Bitter H, Sellers WR, Williams JA, Sorger PK. A Proof of Concept for Biomarker-Guided Targeted Therapy against Ovarian Cancer Based on Patient-Derived Tumor Xenografts. Cancer Res 2020; 80:4278-4287. [PMID: 32747364 DOI: 10.1158/0008-5472.can-19-3850] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/29/2020] [Accepted: 07/29/2020] [Indexed: 12/26/2022]
Abstract
Advanced ovarian cancers are a leading cause of cancer-related death in women and are currently treated with surgery and chemotherapy. This standard of care is often temporarily successful but exhibits a high rate of relapse, after which, treatment options are few. Here we investigate whether biomarker-guided use of multiple targeted therapies, including small molecules and antibody-drug conjugates, is a viable alternative. A panel of patient-derived ovarian cancer xenografts (PDX), similar in genetics and chemotherapy responsiveness to human tumors, was exposed to 21 monotherapies and combination therapies. Three monotherapies and one combination were found to be active in different subsets of PDX. Analysis of gene expression data identified biomarkers associated with responsiveness to each of the three targeted therapies, none of which directly inhibits an oncogenic driver. While no single treatment had as high a response rate as chemotherapy, nearly 90% of PDXs were eligible for and responded to at least one biomarker-guided treatment, including tumors resistant to standard chemotherapy. The distribution of biomarker positivity in The Cancer Genome Atlas data suggests the potential for a similar precision approach in human patients. SIGNIFICANCE: This study exploits a panel of patient-derived xenografts to demonstrate that most ovarian tumors can be matched to effective biomarker-guided treatments.
Collapse
Affiliation(s)
- Adam C Palmer
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts.,Department of Pharmacology, Computational Medicine Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Deborah Plana
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts.,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts.,Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School and MIT, Cambridge, Massachusetts
| | - Hui Gao
- Oncology Disease Area, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Joshua M Korn
- Oncology Disease Area, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Guizhi Yang
- Oncology Disease Area, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - John Green
- Oncology Disease Area, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Xiamei Zhang
- Oncology Disease Area, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Roberto Velazquez
- Oncology Disease Area, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Margaret E McLaughlin
- Oncology Disease Area, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - David A Ruddy
- Oncology Disease Area, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Colleen Kowal
- Oncology Disease Area, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Julie Muszynski
- Oncology Disease Area, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Caroline Bullock
- Oncology Disease Area, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Stacy Rivera
- Oncology Disease Area, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Daniel P Rakiec
- Oncology Disease Area, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - GiNell Elliott
- Oncology Disease Area, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Paul Fordjour
- Oncology Disease Area, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Ronald Meyer
- Oncology Disease Area, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Alice Loo
- Oncology Disease Area, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Esther Kurth
- Oncology Disease Area, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Jeffrey A Engelman
- Oncology Disease Area, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Hans Bitter
- Oncology Disease Area, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - William R Sellers
- Oncology Disease Area, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Juliet A Williams
- Oncology Disease Area, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts.
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts. .,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
39
|
Meel MH, de Gooijer MC, Metselaar DS, Sewing ACP, Zwaan K, Waranecki P, Breur M, Buil LCM, Lagerweij T, Wedekind LE, Twisk JWR, Koster J, Hashizume R, Raabe EH, Montero Carcaboso Á, Bugiani M, Phoenix TN, van Tellingen O, van Vuurden DG, Kaspers GJL, Hulleman E. Combined Therapy of AXL and HDAC Inhibition Reverses Mesenchymal Transition in Diffuse Intrinsic Pontine Glioma. Clin Cancer Res 2020; 26:3319-3332. [PMID: 32165429 DOI: 10.1158/1078-0432.ccr-19-3538] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/04/2020] [Accepted: 03/06/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Diffuse intrinsic pontine glioma (DIPG) is an incurable type of pediatric brain cancer, which in the majority of cases is driven by mutations in genes encoding histone 3 (H3K27M). We here determined the preclinical therapeutic potential of combined AXL and HDAC inhibition in these tumors to reverse their mesenchymal, therapy-resistant, phenotype. EXPERIMENTAL DESIGN We used public databases and patient-derived DIPG cells to identify putative drivers of the mesenchymal transition in these tumors. Patient-derived neurospheres, xenografts, and allografts were used to determine the therapeutic potential of combined AXL/HDAC inhibition for the treatment of DIPG. RESULTS We identified AXL as a therapeutic target and regulator of the mesenchymal transition in DIPG. Combined AXL and HDAC inhibition had a synergistic and selective antitumor effect on H3K27M DIPG cells. Treatment of DIPG cells with the AXL inhibitor BGB324 and the HDAC inhibitor panobinostat resulted in a decreased expression of mesenchymal and stem cell genes. Moreover, this combination treatment decreased expression of DNA damage repair genes in DIPG cells, strongly sensitizing them to radiation. Pharmacokinetic studies showed that BGB324, like panobinostat, crosses the blood-brain barrier. Consequently, treatment of patient-derived DIPG xenograft and murine DIPG allograft-bearing mice with BGB324 and panobinostat resulted in a synergistic antitumor effect and prolonged survival. CONCLUSIONS Combined inhibition of AXL and HDACs in DIPG cells results in a synergistic antitumor effect by reversing their mesenchymal, stem cell-like, therapy-resistant phenotype. As such, this treatment combination may serve as part of a future multimodal therapeutic strategy for DIPG.
Collapse
Affiliation(s)
- Michaël H Meel
- Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Mark C de Gooijer
- Division of Pharmacology/Mouse Cancer Clinic, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Dennis S Metselaar
- Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - A Charlotte P Sewing
- Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Kenn Zwaan
- Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Piotr Waranecki
- Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Marjolein Breur
- Department of Pathology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Levi C M Buil
- Division of Pharmacology/Mouse Cancer Clinic, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Tonny Lagerweij
- Department of Neurosurgery, Neuro-oncology Research Group, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Laurine E Wedekind
- Department of Neurosurgery, Neuro-oncology Research Group, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Jos W R Twisk
- Department of Epidemiology and Biostatistics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Jan Koster
- Department of Oncogenomics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Rintaro Hashizume
- Departments of Neurological Surgery and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Eric H Raabe
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ángel Montero Carcaboso
- Preclinical Therapeutics and Drug Delivery Research Program, Department of Oncology, Hospital Sant Joan de Déu Barcelona, Spain
| | - Marianna Bugiani
- Department of Pathology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Timothy N Phoenix
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati/Research in Patient Services, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Olaf van Tellingen
- Division of Pharmacology/Mouse Cancer Clinic, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Dannis G van Vuurden
- Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Gertjan J L Kaspers
- Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Esther Hulleman
- Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands. .,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| |
Collapse
|
40
|
Preclinical evaluation of binimetinib (MEK162) delivered via polymeric nanocarriers in combination with radiation and temozolomide in glioma. J Neurooncol 2019; 146:239-246. [PMID: 31875307 PMCID: PMC6971148 DOI: 10.1007/s11060-019-03365-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/09/2019] [Indexed: 12/27/2022]
Abstract
Background and purpose Glioblastoma multiforme (GBM) is the most aggressive subtype of malignant gliomas, with an average survival rate of 15 months after diagnosis. More than 90% of all GBMs have activating mutations in the MAPK/ERK pathway. Recently, we showed the allosteric MEK1/2 inhibitor binimetinib (MEK162) to inhibit cell proliferation and to enhance the effect of radiation in preclinical human GBM models. Because the free drug cannot pass the blood–brain barrier (BBB), we investigated the use of nanocarriers for transport of the drug through the BBB and its efficacy when combined with radiotherapy and temozolomide (TMZ) in glioma spheroids. Methods In vitro studies were performed using multicellular U87 human GBM spheroids. Polymeric nanocarriers (polymersomes) were loaded with MEK162. The interaction between nanocarrier delivered MEK162, irradiation and TMZ was studied on the kinetics of spheroid growth and on protein expression in the MAPK/ERK pathway. BBB passaging was evaluated in a transwell system with human cerebral microvascular endothelial (hCMEC/D3) cells. Results MEK162 loaded polymersomes inhibited spheroid growth. A synergistic effect was found in combination with fractionated irradiation and an additive effect with TMZ on spheroid volume reduction. Fluorescent labeled polymersomes were taken up by human cerebral microvascular endothelial cells and passed the BBB in vitro. Conclusion MEK162 loaded polymersomes are taken up by multicellular spheroids. The nanocarrier delivered drug reduced spheroid growth and inhibited its molecular target. MEK162 delivered via polymersomes showed interaction with irradiation and TMZ. The polymersomes crossed the in vitro BBB model and therewith offer exciting challenges ahead for delivery of therapeutics agents to brain tumours.
Collapse
|
41
|
Lee TD, Lee OW, Brimacombe KR, Chen L, Guha R, Lusvarghi S, Tebase BG, Klumpp-Thomas C, Robey RW, Ambudkar SV, Shen M, Gottesman MM, Hall MD. A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein. Mol Pharmacol 2019; 96:629-640. [PMID: 31515284 PMCID: PMC6790066 DOI: 10.1124/mol.119.115964] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 09/06/2019] [Indexed: 12/21/2022] Open
Abstract
The ATP-binding cassette transporter P-glycoprotein (P-gp) is known to limit both brain penetration and oral bioavailability of many chemotherapy drugs. Although US Food and Drug Administration guidelines require that potential interactions of investigational drugs with P-gp be explored, often this information does not enter the literature. In response, we developed a high-throughput screen to identify substrates of P-gp from a series of chemical libraries, testing a total of 10,804 compounds, most of which have known mechanisms of action. We used the CellTiter-Glo viability assay to test library compounds against parental KB-3-1 human cervical adenocarcinoma cells and the colchicine-selected subline KB-8-5-11 that overexpresses P-gp. KB-8-5-11 cells were also tested in the presence of a P-gp inhibitor (tariquidar) to assess reversibility of transporter-mediated resistance. Of the tested compounds, a total of 90 P-gp substrates were identified, including 55 newly identified compounds. Substrates were confirmed using an orthogonal killing assay against human embryonic kidney-293 cells overexpressing P-gp. We confirmed that AT7159 (cyclin-dependent kinase inhibitor), AT9283, (Janus kinase 2/3 inhibitor), ispinesib (kinesin spindle protein inhibitor), gedatolisib (PKI-587, phosphoinositide 3-kinase/mammalian target of rampamycin inhibitor), GSK-690693 (AKT inhibitor), and KW-2478 (heat-shock protein 90 inhibitor) were substrates. In addition, we assessed direct ATPase stimulation. ABCG2 was also found to confer high levels of resistance to AT9283, GSK-690693, and gedatolisib, whereas ispinesib, AT7519, and KW-2478 were weaker substrates. Combinations of P-gp substrates and inhibitors were assessed to demonstrate on-target synergistic cell killing. These data identified compounds whose oral bioavailability or brain penetration may be affected by P-gp. SIGNIFICANCE STATEMENT: The ATP-binding cassette transporter P-glycoprotein (P-gp) is known to be expressed at barrier sites, where it acts to limit oral bioavailability and brain penetration of substrates. In order to identify novel compounds that are transported by P-gp, we developed a high-throughput screen using the KB-3-1 cancer cell line and its colchicine-selected subline KB-8-5-11. We screened the Mechanism Interrogation Plate (MIPE) library, the National Center for Advancing Translational Science (NCATS) pharmaceutical collection (NPC), the NCATS Pharmacologically Active Chemical Toolbox (NPACT), and a kinase inhibitor library comprising 977 compounds, for a total of 10,804 compounds. Of the 10,804 compounds screened, a total of 90 substrates were identified of which 55 were novel. P-gp expression may adversely affect the oral bioavailability or brain penetration of these compounds.
Collapse
Affiliation(s)
- Tobie D Lee
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (T.D.L., O.W.L., K.R.B., L.C., R.G., C.K.-T., M.S., M.D.H.) and Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (S.L., B.G.T., R.W.R., S.V.A., M.M.G.)
| | - Olivia W Lee
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (T.D.L., O.W.L., K.R.B., L.C., R.G., C.K.-T., M.S., M.D.H.) and Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (S.L., B.G.T., R.W.R., S.V.A., M.M.G.)
| | - Kyle R Brimacombe
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (T.D.L., O.W.L., K.R.B., L.C., R.G., C.K.-T., M.S., M.D.H.) and Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (S.L., B.G.T., R.W.R., S.V.A., M.M.G.)
| | - Lu Chen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (T.D.L., O.W.L., K.R.B., L.C., R.G., C.K.-T., M.S., M.D.H.) and Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (S.L., B.G.T., R.W.R., S.V.A., M.M.G.)
| | - Rajarshi Guha
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (T.D.L., O.W.L., K.R.B., L.C., R.G., C.K.-T., M.S., M.D.H.) and Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (S.L., B.G.T., R.W.R., S.V.A., M.M.G.)
| | - Sabrina Lusvarghi
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (T.D.L., O.W.L., K.R.B., L.C., R.G., C.K.-T., M.S., M.D.H.) and Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (S.L., B.G.T., R.W.R., S.V.A., M.M.G.)
| | - Bethilehem G Tebase
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (T.D.L., O.W.L., K.R.B., L.C., R.G., C.K.-T., M.S., M.D.H.) and Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (S.L., B.G.T., R.W.R., S.V.A., M.M.G.)
| | - Carleen Klumpp-Thomas
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (T.D.L., O.W.L., K.R.B., L.C., R.G., C.K.-T., M.S., M.D.H.) and Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (S.L., B.G.T., R.W.R., S.V.A., M.M.G.)
| | - Robert W Robey
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (T.D.L., O.W.L., K.R.B., L.C., R.G., C.K.-T., M.S., M.D.H.) and Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (S.L., B.G.T., R.W.R., S.V.A., M.M.G.)
| | - Suresh V Ambudkar
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (T.D.L., O.W.L., K.R.B., L.C., R.G., C.K.-T., M.S., M.D.H.) and Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (S.L., B.G.T., R.W.R., S.V.A., M.M.G.)
| | - Min Shen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (T.D.L., O.W.L., K.R.B., L.C., R.G., C.K.-T., M.S., M.D.H.) and Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (S.L., B.G.T., R.W.R., S.V.A., M.M.G.)
| | - Michael M Gottesman
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (T.D.L., O.W.L., K.R.B., L.C., R.G., C.K.-T., M.S., M.D.H.) and Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (S.L., B.G.T., R.W.R., S.V.A., M.M.G.)
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (T.D.L., O.W.L., K.R.B., L.C., R.G., C.K.-T., M.S., M.D.H.) and Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (S.L., B.G.T., R.W.R., S.V.A., M.M.G.)
| |
Collapse
|
42
|
Gu L, Ma M, Zhang Y, Zhang L, Zhang S, Huang M, Zhang M, Xin Y, Zheng G, Chen S. Comparative pharmacokinetics of tedizolid in rat plasma and cerebrospinal fluid. Regul Toxicol Pharmacol 2019; 107:104420. [DOI: 10.1016/j.yrtph.2019.104420] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/14/2019] [Accepted: 07/08/2019] [Indexed: 11/15/2022]
|
43
|
Lailler C, Louandre C, Morisse MC, Lhossein T, Godin C, Lottin M, Constans JM, Chauffert B, Galmiche A, Saidak Z. ERK1/2 signaling regulates the immune microenvironment and macrophage recruitment in glioblastoma. Biosci Rep 2019; 39:BSR20191433. [PMID: 31467175 PMCID: PMC6744584 DOI: 10.1042/bsr20191433] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/02/2019] [Accepted: 08/09/2019] [Indexed: 12/28/2022] Open
Abstract
The tumor microenvironment is an important determinant of glioblastoma (GBM) progression and response to treatment. How oncogenic signaling in GBM cells modulates the composition of the tumor microenvironment and its activation is unclear. We aimed to explore the potential local immunoregulatory function of ERK1/2 signaling in GBM. Using proteomic and transcriptomic data (RNA seq) available for GBM tumors from The Cancer Genome Atlas (TCGA), we show that GBM with high levels of phosphorylated ERK1/2 have increased infiltration of tumor-associated macrophages (TAM) with a non-inflammatory M2 polarization. Using three human GBM cell lines in culture, we confirmed the existence of ERK1/2-dependent regulation of the production of the macrophage chemoattractant CCL2/MCP1. In contrast with this positive regulation of TAM recruitment, we found no evidence of a direct effect of ERK1/2 signaling on two other important aspects of TAM regulation by GBM cells: (1) the expression of the immune checkpoint ligands PD-L1 and PD-L2, expressed at high mRNA levels in GBM compared with other solid tumors; (2) the production of the tumor metabolite lactate recently reported to dampen tumor immunity by interacting with the receptor GPR65 present on the surface of TAM. Taken together, our observations suggest that ERK1/2 signaling regulates the recruitment of TAM in the GBM microenvironment. These findings highlight some potentially important particularities of the immune microenvironment in GBM and could provide an explanation for the recent observation that GBM with activated ERK1/2 signaling may respond better to anti-PD1 therapeutics.
Collapse
Affiliation(s)
- Claire Lailler
- Equipe CHIMERE, EA7516, Université de Picardie Jules Verne, Amiens, France
- Laboratoire de Biochimie, Centre de Biologie Humaine, CHU Amiens, France
| | - Christophe Louandre
- Equipe CHIMERE, EA7516, Université de Picardie Jules Verne, Amiens, France
- Laboratoire de Biochimie, Centre de Biologie Humaine, CHU Amiens, France
| | - Mony Chenda Morisse
- Equipe CHIMERE, EA7516, Université de Picardie Jules Verne, Amiens, France
- Laboratoire de Biochimie, Centre de Biologie Humaine, CHU Amiens, France
| | - Thomas Lhossein
- Laboratoire de Biochimie, Centre de Biologie Humaine, CHU Amiens, France
| | - Corinne Godin
- Equipe CHIMERE, EA7516, Université de Picardie Jules Verne, Amiens, France
- Laboratoire de Biochimie, Centre de Biologie Humaine, CHU Amiens, France
| | | | - Jean-Marc Constans
- Equipe CHIMERE, EA7516, Université de Picardie Jules Verne, Amiens, France
- Service de Radiologie, CHU Amiens, France
| | - Bruno Chauffert
- Equipe CHIMERE, EA7516, Université de Picardie Jules Verne, Amiens, France
- Service d'Oncologie Médicale, CHU Amiens, France
| | - Antoine Galmiche
- Equipe CHIMERE, EA7516, Université de Picardie Jules Verne, Amiens, France
- Laboratoire de Biochimie, Centre de Biologie Humaine, CHU Amiens, France
| | - Zuzana Saidak
- Equipe CHIMERE, EA7516, Université de Picardie Jules Verne, Amiens, France
- Laboratoire d'Oncobiologie Moléculaire, Centre de Biologie Humaine, CHU Amiens, France
| |
Collapse
|
44
|
Yoo JY, Swanner J, Otani Y, Nair M, Park F, Banasavadi-Siddegowda Y, Liu J, Jaime-Ramirez AC, Hong B, Geng F, Guo D, Bystry D, Phelphs M, Quadri H, Lee TJ, Kaur B. Oncolytic HSV therapy increases trametinib access to brain tumors and sensitizes them in vivo. Neuro Oncol 2019; 21:1131-1140. [PMID: 31063549 PMCID: PMC7571492 DOI: 10.1093/neuonc/noz079] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Hyperactivation of the RAS-RAF-MEK-ERK signaling pathway is exploited by glioma cells to promote their growth and evade apoptosis. MEK activation in tumor cells can increase replication of ICP34.5-deleted herpes simplex virus type 1 (HSV-1), but paradoxically its activation in tumor-associated macrophages promotes a pro-inflammatory signaling that can inhibit virus replication and propagation. Here we investigated the effect of blocking MEK signaling in conjunction with oncolytic HSV-1 (oHSV) for brain tumors. METHODS Infected glioma cells co-cultured with microglia or macrophages treated with or without trametinib were used to test trametinib effect on macrophages/microglia. Enzyme-linked immunosorbent assay, western blotting, and flow cytometry were utilized to evaluate the effect of the combination therapy. Pharmacokinetic (PK) analysis of mouse plasma and brain tissue was used to evaluate trametinib delivery to the CNS. Intracranial human and mouse glioma-bearing immune deficient and immune competent mice were used to evaluate the antitumor efficacy. RESULT Oncolytic HSV treatment rescued trametinib-mediated feedback reactivation of the mitogen-activated protein kinase signaling pathway in glioma. In vivo, PK analysis revealed enhanced blood-brain barrier penetration of trametinib after oHSV treatment. Treatment by trametinib, a MEK kinase inhibitor, led to a significant reduction in microglia- and macrophage-derived tumor necrosis factor alpha (TNFα) secretion in response to oHSV treatment and increased survival of glioma-bearing mice. Despite the reduced TNFα production observed in vivo, the combination treatment activated CD8+ T-cell mediated immunity and increased survival in a glioma-bearing immune-competent mouse model. CONCLUSION This study provides a rationale for combining oHSV with trametinib for the treatment of brain tumors.
Collapse
Affiliation(s)
- Ji Young Yoo
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas
| | - Jessica Swanner
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas
| | - Yoshihiro Otani
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas
| | - Mitra Nair
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas
| | | | - Yeshavanth Banasavadi-Siddegowda
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas
- Surgical Neurology Branch, NINDS, NIH, Bethesda, Maryland
| | - Joseph Liu
- Department of Neurological Surgery, James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Alena Cristina Jaime-Ramirez
- Department of Neurological Surgery, James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Bangxing Hong
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas
| | - Feng Geng
- Department of Radiation Oncology, James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Deliang Guo
- Department of Radiation Oncology, James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Darlene Bystry
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Mitch Phelphs
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | | | - Tae Jin Lee
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas
| | - Balveen Kaur
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
45
|
Chang R, Tosi U, Voronina J, Adeuyan O, Wu LY, Schweitzer ME, Pisapia DJ, Becher OJ, Souweidane MM, Maachani UB. Combined targeting of PI3K and MEK effector pathways via CED for DIPG therapy. Neurooncol Adv 2019; 1:vdz004. [PMID: 32642647 PMCID: PMC7212917 DOI: 10.1093/noajnl/vdz004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Midline gliomas like diffuse intrinsic pontine glioma (DIPG) carry poor prognosis and lack effective treatment options. Studies have implicated amplifications in the phosphatidylinositol 3-kinase (PI3K) signaling pathway in tumorigenesis; compensatory activation of parallel pathways (eg, mitogen-activated protein kinase [MEK]) may underlie the resistance to PI3K inhibition observed in the clinic. METHODS Three patient-derived cell lines (SU-DIPG-IV, SU-DIPG-XIII, and SF8628) and a mouse-derived brainstem glioma cell line were treated with PI3K (ZSTK474) and MEK (trametinib) inhibitors, alone or in combination. Synergy was analyzed using Chou-Talalay combination index (CI). These agents were also used alone or in combination in a subcutaneous SU-DIPG-XIII tumor model and in an intracranial genetic mouse model of DIPG, given via convection-enhanced delivery (CED). RESULTS We found that these agents abrogate cell proliferation in a dose-dependent manner. Combination treatments were found to be synergistic (CI < 1) across cell lines tested. They also showed significant tumor suppression when given systemically against a subcutaneous DIPG model (alone or in combination) or when given via direct intracranial injection (CED) in a intracranial DIPG mouse model (combination only, median survival 47 vs 35 days post-induction, P = .038). No significant short- or long-term neurotoxicity of ZSTK474 and trametinib delivered via CED was observed. CONCLUSIONS Our data indicate that ZSTK474 and trametinib combinatorial treatment inhibits malignant growth of DIPG cells in vitro and in vivo, prolonging survival. These results suggest a promising new combinatorial approach using CED for DIPG therapy, which warrants further investigation.
Collapse
Affiliation(s)
- Raymond Chang
- Department of Neurosurgery, Weill Cornell Medicine, New York, New York
| | - Umberto Tosi
- Department of Neurosurgery, Weill Cornell Medicine, New York, New York
| | - Julia Voronina
- Department of Neurosurgery, Weill Cornell Medicine, New York, New York
| | - Oluwaseyi Adeuyan
- Department of Neurosurgery, Weill Cornell Medicine, New York, New York
| | - Linda Y Wu
- Department of Neurosurgery, Weill Cornell Medicine, New York, New York
| | | | - David J Pisapia
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Oren J Becher
- Department of Pediatrics, Northwestern University, Chicago, Illinois
- Division of Hematology-Oncology and Stem Cell Transplant, Ann & Robert Lurie Children’s Hospital of Chicago, Chicago, Illinois
| | - Mark M Souweidane
- Department of Neurosurgery, Weill Cornell Medicine, New York, New York
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Uday B Maachani
- Department of Neurosurgery, Weill Cornell Medicine, New York, New York
| |
Collapse
|
46
|
Clairet AL, Boiteux-Jurain M, Curtit E, Jeannin M, Gérard B, Nerich V, Limat S. Interaction between phytotherapy and oral anticancer agents: prospective study and literature review. Med Oncol 2019; 36:45. [PMID: 30993543 DOI: 10.1007/s12032-019-1267-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/26/2019] [Indexed: 12/23/2022]
Abstract
Cancer is becoming more prevalent in elderly patient. Due to polypharmacy, older adults with cancer are predisposed to drug-drug interactions. There is also an increasing interest in the use of complementary and alternative medicine (CAM). Thirty to seventy percent of patients with cancer have used CAM. Through pharmaceutical counseling sessions, we can provide advices on herb-drug interactions (HDI). All the patients seen in pharmaceutical counseling sessions were prospectively included. Information was collected during these sessions: prescribed medication (oral anticancer agents (OAA) and other drugs), CAM (phytotherapy especially), and use of over-the-counter (OTC) drugs. If pharmacist considered an interaction or an intervention clinically relevant, the oncologist was notified. Then, a literature review was realized to identify the potential HDI (no interactions, precautions for use, contraindication). Among 201 pharmacist counseling sessions, it resulted in 104 interventions related to 46 HDI, 28 drug-drug interactions and 30 others (wrong dosage, omission…). To determine HDI, we review 73 medicinal plants which are used by our patients with cancer and 31 OAA. A total of 1829 recommendations were formulated about 59 (75%) medical plants and their interaction with an OAA. Herb-drug interactions should not be ignored by healthcare providers in their management of cancer patients in daily practice.
Collapse
Affiliation(s)
- Anne-Laure Clairet
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, 25000, Besançon, France
| | - Marie Boiteux-Jurain
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France
| | - Elsa Curtit
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, 25000, Besançon, France
- Department of Medical Oncology, University Hospital of Besançon, 25000, Besançon, France
| | - Marie Jeannin
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France
| | - Blandine Gérard
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France
| | - Virginie Nerich
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France.
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, 25000, Besançon, France.
| | - Samuel Limat
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, 25000, Besançon, France
| |
Collapse
|
47
|
Gampa G, Kim M, Mohammad AS, Parrish KE, Mladek AC, Sarkaria JN, Elmquist WF. Brain Distribution and Active Efflux of Three panRAF Inhibitors: Considerations in the Treatment of Melanoma Brain Metastases. J Pharmacol Exp Ther 2019; 368:446-461. [PMID: 30622172 PMCID: PMC6374543 DOI: 10.1124/jpet.118.253708] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/02/2019] [Indexed: 12/15/2022] Open
Abstract
Targeted inhibition of RAF and MEK by molecularly targeted agents has been employed as a strategy to block aberrant mitogen-activated protein kinase (MAPK) signaling in melanoma. While the use of BRAF and MEK inhibitors, either as a single agent or in combination, improved efficacy in BRAF-mutant melanoma, initial responses are often followed by relapse due to acquired resistance. Moreover, some BRAF inhibitors are associated with paradoxical activation of the MAPK pathway, causing the development of secondary malignancies. The use of panRAF inhibitors, i.e., those that target all isoforms of RAF, may overcome paradoxical activation and resistance. The purpose of this study was to perform a quantitative assessment and evaluation of the influence of efflux mechanisms at the blood-brain barrier (BBB), in particular, Abcb1/P-glycoprotein (P-gp) and Abcg2/breast cancer resistance protein (Bcrp), on the brain distribution of three panRAF inhibitors: CCT196969 [1-(3-(tert-butyl)-1-phenyl-1H-pyrazol-5-yl)-3-(2-fluoro-4-((3-oxo-3,4-dihydropyrido[2,3-b]pyrazin-8-yl)oxy)phenyl)urea], LY3009120 1-(3,3-Dimethylbutyl)-3-(2-fluoro-4-methyl-5-(7-methyl-2-(methylamino)pyrido(2,3-d)pyrimidin-6-yl)phenyl)urea, and MLN2480 [4-pyrimidinecarboxamide, 6-amino-5-chloro-N-[(1R)-1-[5-[[[5-chloro-4-(trifluoromethyl)-2-pyridinyl]amino]carbonyl]-2-thiazolyl]ethyl]-]. In vitro studies using transfected Madin-Darby canine kidney II cells indicate that only LY3009120 and MLN2480 are substrates of Bcrp, and none of the three inhibitors are substrates of P-gp. The three panRAF inhibitors show high nonspecific binding in brain and plasma. In vivo studies in mice show that the brain distribution of CCT196969, LY3009120, and MLN2480 is limited, and is enhanced in transgenic mice lacking P-gp and Bcrp. While MLN2480 has a higher brain distribution, LY3009120 exhibits superior in vitro efficacy in patient-derived melanoma cell lines. The delivery of a drug to the site of action residing behind a functionally intact BBB, along with drug potency against the target, collectively play a critical role in determining in vivo efficacy outcomes.
Collapse
Affiliation(s)
- Gautham Gampa
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G., M.K., A.S.M., K.E.P., W.F.E.); and Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., J.N.S.)
| | - Minjee Kim
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G., M.K., A.S.M., K.E.P., W.F.E.); and Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., J.N.S.)
| | - Afroz S Mohammad
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G., M.K., A.S.M., K.E.P., W.F.E.); and Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., J.N.S.)
| | - Karen E Parrish
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G., M.K., A.S.M., K.E.P., W.F.E.); and Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., J.N.S.)
| | - Ann C Mladek
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G., M.K., A.S.M., K.E.P., W.F.E.); and Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., J.N.S.)
| | - Jann N Sarkaria
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G., M.K., A.S.M., K.E.P., W.F.E.); and Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., J.N.S.)
| | - William F Elmquist
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G., M.K., A.S.M., K.E.P., W.F.E.); and Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., J.N.S.)
| |
Collapse
|
48
|
Jin J, Zhao Y, Guo W, Wang B, Wang Y, Liu X, Xu C. Thiocoraline mediates drug resistance in MCF-7 cells via PI3K/Akt/BCRP signaling pathway. Cytotechnology 2019; 71:401-409. [PMID: 30689149 DOI: 10.1007/s10616-019-00301-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 01/19/2019] [Indexed: 01/17/2023] Open
Abstract
Thiocoraline, a depsipeptide bisintercalator with potent antitumor activity, was first isolated from marine actinomycete Micromonospora marina. It possesses an intense toxicity to MCF-7 cells at nanomolar concentrations in a dose-dependent manner evaluated by MTT assay and crystal violet staining. We established a human breast thiocoraline-resistant cancer subline of MCF-7/thiocoraline (MCF-7/T) to investigate the expression variation of breast cancer resistance proteins (BCRP) and its subsequent influence on drug resistance. Colony-forming assay showed that the MCF-7 cells proliferated faster than the MCF-7/T cells in vitro. Western blot analysis demonstrated that thiocoraline increased the phosphorylation of Akt. Additionally, the sensitivity of tumor cells to thiocoraline was reduced with a concurrent rise in phosphorylation level of Akt and of BCRP expression.These studies indicated that thiocoraline probably mediated the drug resistance via PI3K/Akt/BCRP signaling pathway. MK-2206 dihydrochloride, a selective phosphorylation inhibitor of Akt, significantly decreased MCF-7 cell viability under exposure to thiocoraline compared to the control. However, it was not obviously able to decrease MCF-7/T cell viability when cells were exposed to thiocoraline.
Collapse
Affiliation(s)
- Jin Jin
- College of Life Sciences, Zhejiang Sci-Tech University, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang Province, China
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences, Zhejiang Sci-Tech University, No. 2 Road Xiasha District, Hangzhou, 310018, China
| | - Yujia Zhao
- College of Life Sciences, Zhejiang Sci-Tech University, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang Province, China
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences, Zhejiang Sci-Tech University, No. 2 Road Xiasha District, Hangzhou, 310018, China
| | - Wan Guo
- College of Life Sciences, Zhejiang Sci-Tech University, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang Province, China
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences, Zhejiang Sci-Tech University, No. 2 Road Xiasha District, Hangzhou, 310018, China
| | - Bingrong Wang
- College of Life Sciences, Zhejiang Sci-Tech University, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang Province, China
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences, Zhejiang Sci-Tech University, No. 2 Road Xiasha District, Hangzhou, 310018, China
| | - Yigang Wang
- College of Life Sciences, Zhejiang Sci-Tech University, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang Province, China
| | - Xinyuan Liu
- College of Life Sciences, Zhejiang Sci-Tech University, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang Province, China
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chuanlian Xu
- College of Life Sciences, Zhejiang Sci-Tech University, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang Province, China.
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences, Zhejiang Sci-Tech University, No. 2 Road Xiasha District, Hangzhou, 310018, China.
| |
Collapse
|
49
|
de Klerk DJ, Honeywell RJ, Jansen G, Peters GJ. Transporter and Lysosomal Mediated (Multi)drug Resistance to Tyrosine Kinase Inhibitors and Potential Strategies to Overcome Resistance. Cancers (Basel) 2018; 10:503. [PMID: 30544701 PMCID: PMC6315453 DOI: 10.3390/cancers10120503] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 12/17/2022] Open
Abstract
Tyrosine kinase inhibitors are a class of chemotherapeutic drugs that target specific protein kinases. These tyrosine kinase inhibitors constitute a relatively new class of drugs which target for instance Bcr-Abl, Epidermal Growth Factor Receptor (EGFR) and Vascular Endothelial Growth Factor Receptor (VEGFR). Despite some initial successes, the overall therapeutic benefit of tyrosine kinase inhibitors in the clinic has been mixed. Next to mutations in the target, multidrug resistance is a major obstacle for which still no clinically effective strategies have been developed. Major mechanisms of multidrug resistance are mediated by drug efflux transporter proteins. Moreover, there is accumulating evidence that multidrug resistance can also be caused by lysosomal sequestration of drugs, effectively trapping tyrosine kinase inhibitors and preventing them from reaching their target. Lysosomal drug sequestration seems to work together with ATP-binding cassette transporters, increasing the capacity of lysosomes to mediate sequestration. Both membrane efflux transporter proteins and lysosomes present potential therapeutic targets that could reverse multidrug resistance and increase drug efficacy in combination therapy. This review describes both mechanisms and discusses a number of proposed strategies to circumvent or reverse tyrosine kinase inhibitor-related multidrug resistance.
Collapse
Affiliation(s)
- Daniel J de Klerk
- Laboratory Medical Oncology, Amsterdam UMC, VU University Medical Center, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands.
| | - Richard J Honeywell
- Laboratory Medical Oncology, Amsterdam UMC, VU University Medical Center, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands.
| | - Gerrit Jansen
- Rheumatology and Immunology Center-Location VUmc, Amsterdam UMC, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands.
| | - Godefridus J Peters
- Laboratory Medical Oncology, Amsterdam UMC, VU University Medical Center, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands.
| |
Collapse
|
50
|
Meel MH, de Gooijer MC, Guillén Navarro M, Waranecki P, Breur M, Buil LCM, Wedekind LE, Twisk JWR, Koster J, Hashizume R, Raabe EH, Montero Carcaboso A, Bugiani M, van Tellingen O, van Vuurden DG, Kaspers GJL, Hulleman E. MELK Inhibition in Diffuse Intrinsic Pontine Glioma. Clin Cancer Res 2018; 24:5645-5657. [PMID: 30061363 DOI: 10.1158/1078-0432.ccr-18-0924] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/16/2018] [Accepted: 07/24/2018] [Indexed: 11/16/2022]
Abstract
Purpose: Diffuse intrinsic pontine glioma (DIPG) is a highly aggressive pediatric brain tumor, for which no effective therapeutic options currently exist. We here determined the potential of inhibition of the maternal embryonic leucine zipper kinase (MELK) for the treatment of DIPG.Experimental Design: We evaluated the antitumor efficacy of the small-molecule MELK inhibitor OTSSP167 in vitro in patient-derived DIPG cultures, and identified the mechanism of action of MELK inhibition in DIPG by RNA sequencing of treated cells. In addition, we determined the blood-brain barrier (BBB) penetration of OTSSP167 and evaluated its translational potential by treating mice bearing patient-derived DIPG xenografts.Results: This study shows that MELK is highly expressed in DIPG cells, both in patient samples and in relevant in vitro and in vivo models, and that treatment with OTSSP167 strongly decreases proliferation of patient-derived DIPG cultures. Inhibition of MELK in DIPG cells functions through reducing inhibitory phosphorylation of PPARγ, resulting in an increase in nuclear translocation and consequent transcriptional activity. Brain pharmacokinetic analyses show that OTSSP167 is a strong substrate for both MDR1 and BCRP, limiting its BBB penetration. Nonetheless, treatment of Mdr1a/b;Bcrp1 knockout mice carrying patient-derived DIPG xenografts with OTSSP167 decreased tumor growth, induced remissions, and resulted in improved survival.Conclusions: We show a strong preclinical effect of the kinase inhibitor OTSSP167 in the treatment of DIPG and identify the MELK-PPARγ signaling axis as a putative therapeutic target in this disease. Clin Cancer Res; 24(22); 5645-57. ©2018 AACR.
Collapse
Affiliation(s)
- Michaël H Meel
- Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Mark C de Gooijer
- Division of Pharmacology/Mouse Cancer Clinic, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Miriam Guillén Navarro
- Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Piotr Waranecki
- Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Marjolein Breur
- Department of Pathology, VU University Medical Center, Amsterdam, the Netherlands
| | - Levi C M Buil
- Division of Pharmacology/Mouse Cancer Clinic, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Laurine E Wedekind
- Department of Neurosurgery, Neuro-oncology Research Group, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Jos W R Twisk
- Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, the Netherlands
| | - Jan Koster
- Department of Oncogenomics Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Rintaro Hashizume
- Departments of Neurological Surgery, Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Eric H Raabe
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Angel Montero Carcaboso
- Preclinical Therapeutics and Drug Delivery Research Program, Department of Oncology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Marianna Bugiani
- Department of Pathology, VU University Medical Center, Amsterdam, the Netherlands
| | - Olaf van Tellingen
- Division of Pharmacology/Mouse Cancer Clinic, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Dannis G van Vuurden
- Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Gertjan J L Kaspers
- Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Esther Hulleman
- Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands. .,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| |
Collapse
|