1
|
Dorna D, Grabowska A, Paluszczak J. Natural products modulating epigenetic mechanisms by affecting histone methylation/demethylation: Targeting cancer cells. Br J Pharmacol 2025; 182:2137-2158. [PMID: 37700551 DOI: 10.1111/bph.16237] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023] Open
Abstract
Many natural products can exert anticancer or chemopreventive activity by interfering with the cellular epigenetic machinery. Many studies indicate the relevance of affecting DNA methylation and histone acetylation, however the influence on the mechanisms related to histone methylation are often overlooked. This may be associated with the lagging evidence that changes in the action of histone methylation writers and erasers, and subsequent alterations in the profile of histone methylation are causally related with carcinogenesis. Recent animal studies have shown that targeting histone methylation/demethylation affects the course of experimentally induced carcinogenesis. Existing data suggest that numerous natural compounds from different chemical groups, including green tea polyphenols and other flavonoids, curcuminoids, stilbene derivatives, phenolic acids, isothiocyanates, alkaloids and terpenes, can affect the expression and activity of crucial enzymes involved in the methylation and demethylation of histone lysine and arginine residues. These activities have been associated with the modulation of cancer-related gene expression and functional changes, including reduced cell proliferation and migration, and enhanced apoptosis in various cancer models. Most studies focused on the modulation of the expression and/or activity of two proteins - EZH2 (a H3K27 methyltransferase) and LSD1 (lysine demethylase 1A - a H3K4/9 demethylase), or the effects on the global levels of histone methylation caused by the phytochemicals, but data regarding other histone methyltransferases or demethylases are scarce. While the field remains relatively unexplored, this review aims to explore the impact of natural products on the enzymes related to histone methylation/demethylation, showing their relevance to carcinogenesis and cancer progression. LINKED ARTICLES: This article is part of a themed issue Natural Products and Cancer: From Drug Discovery to Prevention and Therapy. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.10/issuetoc.
Collapse
Affiliation(s)
- Dawid Dorna
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznań, Poland
| | - Adriana Grabowska
- Department of Molecular Neurooncology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Jarosław Paluszczak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
2
|
Ma Y, Lv W, Guo Y, Yin T, Bai Y, Liu Z, Chen C, WenjuanYang, Feng J, Qian W, Tang R, Su Y, Shan S, Dong H, Bao Y, Qu L. Histone demethylases in autophagy and inflammation. Cell Commun Signal 2025; 23:24. [PMID: 39806430 PMCID: PMC11727796 DOI: 10.1186/s12964-024-02006-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
Autophagy dysfunction is associated with changes in autophagy-related genes. Various factors are connected to autophagy, and the mechanism regulating autophagy is highly complicated. Epigenetic changes, such as aberrant expression of histone demethylase, are actively associated not only with oncogenesis but also with inflammatory responses. Among post-translational modifications, histone lysine methylation holds significant importance. There are over 30 members of histone lysine demethylases (KDMs), which act as epigenetic regulators in physiological processes and diseases. Importantly, KDMs are abnormally expressed in the regulation of cellular autophagy and inflammation, representing a crucial mechanism affecting inflammation-related diseases. This article reviewed the function of KDMs proteins in autophagy and inflammation. Specifically, It focused on the specific regulatory mechanisms underlying the activation or inhibition of autophagy, as well as their abnormal expression in inflammatory responses. By analyzing each KDM in epigenetic modification, this review provides a reliable theoretical basis for clinical decision marking regarding autophagy abnormalities and inflammatory diseases.
Collapse
Affiliation(s)
- Yaoyao Ma
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Hubei, 437000, China
- School of Basic Medical Sciences, Hubei University of Science and Technology, Hubei, 437000, China
| | - Wenting Lv
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China
| | - Yi Guo
- School of Basic Medical Sciences, Hubei University of Science and Technology, Hubei, 437000, China
| | - Tong Yin
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China
| | - Yujie Bai
- Department of Scientific Research and Education, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330000, China
| | - Ziqi Liu
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China
| | - Chao Chen
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - WenjuanYang
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China
| | - Jiayi Feng
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China
| | - Wenbin Qian
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Hubei, 437000, China
| | - Ruiling Tang
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Hubei, 437000, China
| | - Yanting Su
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Hubei, 437000, China
| | - Shigang Shan
- School of Public Health and Nursing, Hubei University of Science and Technology, Hubei, 437000, China
| | - Huifen Dong
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China.
| | - Yongfen Bao
- School of Basic Medical Sciences, Hubei University of Science and Technology, Hubei, 437000, China.
| | - Lihua Qu
- School of Basic Medical Sciences, Hubei University of Science and Technology, Hubei, 437000, China.
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China.
| |
Collapse
|
3
|
Hersey P, Tseng H, Alavi S, Tiffen J. X and Y Differences in Melanoma Survival Between the Sexes. Pigment Cell Melanoma Res 2025; 38:e13194. [PMID: 39180225 PMCID: PMC11681842 DOI: 10.1111/pcmr.13194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/03/2024] [Accepted: 08/06/2024] [Indexed: 08/26/2024]
Abstract
Marked differences in survival from melanoma are noted between men and women that cannot be accounted for by behavioral differences. We and others have provided evidence that this difference may be due to increased expression of immune-related genes from the second X chromosome because of failure of X inactivation. In the present review, we have examined evidence for the contrary view that survival differences are due to weaker immune responses in males. One reason for this may be the loss of Y chromosomes (LOY), particularly in older males. The genes involved may have direct roles in immune responses or be noncoding RNAs that regulate both sex and autosomal genes involved in immune responses or tumor growth. Loss of the KDM6C and KDM5D demethylases appeared to common genes involved. The second factor appears to be the activation of androgen receptors (AR) on melanoma cells that increase their invasiveness and growth. Induction of T-cell exhaustion by AR that limits immune responses against melanoma appeared a common finding. The development of treatments to overcome effects related to gene loss on Y poses challenges, but several avenues related to AR signaling appear worthy of further study in the treatment of metastatic disease.
Collapse
Affiliation(s)
- Peter Hersey
- Melanoma Immunology and Oncology Program, the Centenary InstituteUniversity of SydneyCamperdownNew South WalesAustralia
- Melanoma Institute AustraliaSydneyNew South WalesAustralia
- Faculty of Medicine and Health, School of Medical SciencesUniversity of SydneyCamperdownNew South WalesAustralia
| | - Hsin‐Yi Tseng
- Melanoma Epigenetics Lab, the Centenary InstituteUniversity of SydneyCamperdownNew South WalesAustralia
| | - Sara Alavi
- Melanoma Epigenetics Lab, the Centenary InstituteUniversity of SydneyCamperdownNew South WalesAustralia
| | - Jessamy Tiffen
- Melanoma Institute AustraliaSydneyNew South WalesAustralia
- Faculty of Medicine and Health, School of Medical SciencesUniversity of SydneyCamperdownNew South WalesAustralia
- Melanoma Epigenetics Lab, the Centenary InstituteUniversity of SydneyCamperdownNew South WalesAustralia
| |
Collapse
|
4
|
Al-Diab O, Sünkel C, Blanc E, Catar RA, Ashraf MI, Zhao H, Wang P, Rinschen MM, Fritsche-Guenther R, Grahammer F, Bachmann S, Beule D, Kirwan JA, Rajewsky N, Huber TB, Gürgen D, Kusch A. Sex-specific molecular signature of mouse podocytes in homeostasis and in response to pharmacological challenge with rapamycin. Biol Sex Differ 2024; 15:72. [PMID: 39278930 PMCID: PMC11404044 DOI: 10.1186/s13293-024-00647-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/30/2024] [Indexed: 09/18/2024] Open
Abstract
BACKGROUND Sex differences exist in the prevalence and progression of major glomerular diseases. Podocytes are the essential cell-type in the kidney which maintain the physiological blood-urine barrier, and pathological changes in podocyte homeostasis are critical accelerators of impairment of kidney function. However, sex-specific molecular signatures of podocytes under physiological and stress conditions remain unknown. This work aimed at identifying sexual dimorphic molecular signatures of podocytes under physiological condition and pharmacologically challenged homeostasis with mechanistic target of rapamycin (mTOR) inhibition. mTOR is a crucial regulator involved in a variety of physiological and pathological stress responses in the kidney and inhibition of this pathway may therefore serve as a general stress challenger to get fundamental insights into sex differences in podocytes. METHODS The genomic ROSAmT/mG-NPHS2 Cre mouse model was used which allows obtaining highly pure podocyte fractions for cell-specific molecular analyses, and vehicle or pharmacologic treatment with the mTOR inhibitor rapamycin was performed for 3 weeks. Subsequently, deep RNA sequencing and proteomics were performed of the isolated podocytes to identify intrinsic sex differences. Studies were supplemented with metabolomics from kidney cortex tissues. RESULTS Although kidney function and morphology remained normal in all experimental groups, RNA sequencing, proteomics and metabolomics revealed strong intrinsic sex differences in the expression levels of mitochondrial, translation and structural transcripts, protein abundances and regulation of metabolic pathways. Interestingly, rapamycin abolished prominent sex-specific clustering of podocyte gene expression and induced major changes only in male transcriptome. Several sex-biased transcription factors could be identified as possible upstream regulators of these sexually dimorphic responses. Concordant to transcriptomics, metabolomic changes were more prominent in males. Remarkably, high number of previously reported kidney disease genes showed intrinsic sexual dimorphism and/or different response patterns towards mTOR inhibition. CONCLUSIONS Our results highlight remarkable intrinsic sex-differences and sex-specific response patterns towards pharmacological challenged podocyte homeostasis which might fundamentally contribute to sex differences in kidney disease susceptibilities and progression. This work provides rationale and an in-depth database for novel targets to be tested in specific kidney disease models to advance with sex-specific treatment strategies.
Collapse
Affiliation(s)
- Ola Al-Diab
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Christin Sünkel
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str 28, 10115, Berlin, Germany
| | - Eric Blanc
- Core Unit Bioinformatics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Rusan Ali Catar
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Muhammad Imtiaz Ashraf
- Department of Surgery, Experimental Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Hongfan Zhao
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Pinchao Wang
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Markus M Rinschen
- III. Department of Medicine, University Hospital Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Raphaela Fritsche-Guenther
- Metabolomics Platform, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Lindenberger Weg 80, 10117, Berlin, Germany
| | - Florian Grahammer
- III. Department of Medicine, University Hospital Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Sebastian Bachmann
- Institute of Functional Anatomy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Jennifer A Kirwan
- Metabolomics Platform, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Lindenberger Weg 80, 10117, Berlin, Germany
| | - Nikolaus Rajewsky
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str 28, 10115, Berlin, Germany
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Hospital Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Dennis Gürgen
- Experimental Pharmacology & Oncology Berlin-Buch GmbH, 13125 Berlin-Buch, Germany
| | - Angelika Kusch
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- BIH Biomedical Innovation Academy (BIA), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
5
|
Wang J, Wang S, Yang H, Wang R, Shi K, Liu Y, Dou L, Yu H. Methyltransferase like-14 suppresses growth and metastasis of non-small-cell lung cancer by decreasing LINC02747. Cancer Sci 2024; 115:2931-2946. [PMID: 38888105 PMCID: PMC11462971 DOI: 10.1111/cas.16254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024] Open
Abstract
Multiple epigenetic regulatory mechanisms exert critical roles in tumor development, and understanding the interactions and impact of diverse epigenetic modifications on gene expression in cancer is crucial for the development of precision medicine. We found that methyltransferase-like 14 (METTL14) was significantly downregulated in non-small-cell lung cancer (NSCLC) tissues. Functional experiments demonstrated that overexpression of METTL14 inhibited the proliferation and migration of NSCLC cells both in vivo and in vitro, and the colorimetric m6A quantification assay also showed that knockdown of METTL14 notably reduced global m6A modification levels in NSCLC cells. By using the methylated-RNA immunoprecipitation-qPCR and dual-luciferase reporter assays, we verified that long noncoding RNA LINC02747 was a target of METTL14 and was regulated by METTL14-mediated m6A modification, and silencing LINC02747 inhibited the malignant progression of NSCLC by modulating the PI3K/Akt and CDK4/Cyclin D1 signaling pathway. Further studies revealed that overexpression of METTL14 promoted m6A methylation and accelerated the decay of LINC02747 mRNA via increased recognition of the "GAACU" binding site by YTHDC2. Additionally, histone demethylase lysine-specific histone demethylase 5B (KDM5B) mediated the demethylation of histone H3 lysine 4 tri-methylation (H3K4me3) in the METTL14 promoter region and repressed its transcription. In summary, KDM5B downregulated METTL14 expression at the transcriptional level in a H3K4me3-dependent manner, while METTL14 modulated LINC02747 expression via m6A modification. Our results demonstrate a synergy of multiple mechanisms in regulating the malignant phenotype of NSCLC, revealing the complex regulation involved in the occurrence and development of cancer.
Collapse
Affiliation(s)
- Jiemin Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life SciencesInner Mongolia UniversityHohhotInner MongoliaChina
| | - Shu Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life SciencesInner Mongolia UniversityHohhotInner MongoliaChina
| | - Haopeng Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life SciencesInner Mongolia UniversityHohhotInner MongoliaChina
| | - Ruixuan Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life SciencesInner Mongolia UniversityHohhotInner MongoliaChina
| | - Kesong Shi
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life SciencesInner Mongolia UniversityHohhotInner MongoliaChina
| | - Yueshi Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life SciencesInner Mongolia UniversityHohhotInner MongoliaChina
| | - Le Dou
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life SciencesInner Mongolia UniversityHohhotInner MongoliaChina
| | - Haiquan Yu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life SciencesInner Mongolia UniversityHohhotInner MongoliaChina
| |
Collapse
|
6
|
Li TW, Park Y, Watters EG, Wang X, Zhou D, Fiches GN, Wu Z, Badley AD, Sacha JB, Ho WZ, Santoso NG, Qi J, Zhu J. KDM5A/B contribute to HIV-1 latent infection and survival of HIV-1 infected cells. Antiviral Res 2024; 228:105947. [PMID: 38925368 PMCID: PMC11927087 DOI: 10.1016/j.antiviral.2024.105947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/22/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
Combinational antiretroviral therapy (cART) suppresses human immunodeficiency virus type 1 (HIV-1) viral replication and pathogenesis in acquired immunodeficiency syndrome (AIDS) patients. However, HIV-1 remains in the latent stage of infection by suppressing viral transcription, which hinders an HIV-1 cure. One approach for an HIV-1 cure is the "shock and kill" strategy. The strategy focuses on reactivating latent HIV-1, inducing the viral cytopathic effect and facilitating the immune clearance for the elimination of latent HIV-1 reservoirs. Here, we reported that the H3K4 trimethylation (H3K4me3)-specific demethylase KDM5A/B play a role in suppressing HIV-1 Tat/LTR-mediated viral transcription in HIV-1 latent cells. Furthermore, we evaluated the potential of KDM5-specific inhibitor JQKD82 as an HIV-1 "shock and kill" agent. Our results showed that JQKD82 increases the H3K4me3 level at HIV-1 5' LTR promoter regions, HIV-1 reactivation, and the cytopathic effects in an HIV-1-latent T cell model. In addition, we identified that the combination of JQKD82 and AZD5582, a non-canonical NF-κB activator, generates a synergistic impact on inducing HIV-1 lytic reactivation and cell death in the T cell. The latency-reversing potency of the JQKD82 and AZD5582 pair was also confirmed in peripheral blood mononuclear cells (PBMCs) isolated from HIV-1 aviremic patients and in an HIV-1 latent monocyte. In latently infected microglia (HC69) of the brain, either deletion or inhibition of KDM5A/B results in a reversal of the HIV-1 latency. Overall, we concluded that KDM5A/B function as a host repressor of the HIV-1 lytic reactivation and thus promote the latency and the survival of HIV-1 infected reservoirs.
Collapse
Affiliation(s)
- Tai-Wei Li
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Youngmin Park
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Emily G Watters
- Department of Microbiology, College of Arts and Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Xu Wang
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Dawei Zhou
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Guillaume N Fiches
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Zhenyu Wu
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Andrew D Badley
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN, 55902, USA
| | - Jonah B Sacha
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA; Vaccine and Gene Therapy Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Wen-Zhe Ho
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Netty G Santoso
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Jun Qi
- Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
| | - Jian Zhu
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA; Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
7
|
Brown LK, Kanagasabai T, Li G, Celada SI, Rumph JT, Adunyah SE, Stewart LV, Chen Z. Co-targeting SKP2 and KDM5B inhibits prostate cancer progression by abrogating AKT signaling with induction of senescence and apoptosis. Prostate 2024; 84:877-887. [PMID: 38605532 DOI: 10.1002/pros.24706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/08/2024] [Accepted: 03/29/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Prostate cancer (PCa) is the second-leading cause of cancer mortalities in the United States and is the most commonly diagnosed malignancy in men. While androgen deprivation therapy (ADT) is the first-line treatment option to initial responses, most PCa patients invariably develop castration-resistant PCa (CRPC). Therefore, novel and effective treatment strategies are needed. The goal of this study was to evaluate the anticancer effects of the combination of two small molecule inhibitors, SZL-P1-41 (SKP2 inhibitor) and PBIT (KDM5B inhibitor), on PCa suppression and to delineate the underlying molecular mechanisms. METHODS Human CRPC cell lines, C4-2B and PC3 cells, were treated with small molecular inhibitors alone or in combination, to assess effects on cell proliferation, migration, senescence, and apoptosis. RESULTS SKP2 and KDM5B showed an inverse regulation at the translational level in PCa cells. Cells deficient in SKP2 showed an increase in KDM5B protein level, compared to that in cells expressing SKP2. By contrast, cells deficient in KDM5B showed an increase in SKP2 protein level, compared to that in cells with KDM5B intact. The stability of SKP2 protein was prolonged in KDM5B depleted cells as measured by cycloheximide chase assay. Cells deficient in KDM5B were more vulnerable to SKP2 inhibition, showing a twofold greater reduction in proliferation compared to cells with KDM5B intact (p < 0.05). More importantly, combined inhibition of KDM5B and SKP2 significantly decreased proliferation and migration of PCa cells as compared to untreated controls (p < 0.005). Mechanistically, combined inhibition of KDM5B and SKP2 in PCa cells abrogated AKT activation, resulting in an induction of both cellular senescence and apoptosis, which was measured via Western blot analysis and senescence-associated β-galactosidase (SA-β-Gal) staining. CONCLUSIONS Combined inhibition of KDM5B and SKP2 was more effective at inhibiting proliferation and migration of CRPC cells, and this regimen would be an ideal therapeutic approach of controlling CRPC malignancy.
Collapse
Affiliation(s)
- LaKendria K Brown
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
| | - Thanigaivelan Kanagasabai
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, USA
| | - Guoliang Li
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
| | - Sherly I Celada
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
| | - Jelonia T Rumph
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, Tennessee, USA
| | - Samuel E Adunyah
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
| | - LaMonica V Stewart
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
| | - Zhenbang Chen
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
| |
Collapse
|
8
|
Chen YC, Gowda K, Amin S, Schell TD, Sharma AK, Robertson GP. Pharmacological agents targeting drug-tolerant persister cells in cancer. Pharmacol Res 2024; 203:107163. [PMID: 38569982 PMCID: PMC11734664 DOI: 10.1016/j.phrs.2024.107163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/05/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Current cancer therapy can be effective, but the development of drug resistant disease is the usual outcome. These drugs can eliminate most of the tumor burden but often fail to eliminate the rare, "Drug Tolerant Persister" (DTP) cell subpopulations in residual tumors, which can be referred to as "Persister" cells. Therefore, novel therapeutic agents specifically targeting or preventing the development of drug-resistant tumors mediated by the remaining persister cells subpopulations are needed. Since approximately ninety percent of cancer-related deaths occur because of the eventual development of drug resistance, identifying, and dissecting the biology of the persister cells is essential for the creation of drugs to target them. While there remains uncertainty surrounding all the markers identifying DTP cells in the literature, this review summarizes the drugs and therapeutic approaches that are available to target the persister cell subpopulations expressing the cellular markers ATP-binding cassette sub-family B member 5 (ABCB5), CD133, CD271, Lysine-specific histone demethylase 5 (KDM5), and aldehyde dehydrogenase (ALDH). Persister cells expressing these markers were selected as the focus of this review because they have been found on cells surviving following drug treatments that promote recurrent drug resistant cancer and are associated with stem cell-like properties, including self-renewal, differentiation, and resistance to therapy. The limitations and obstacles facing the development of agents targeting these DTP cell subpopulations are detailed, with discussion of potential solutions and current research areas needing further exploration.
Collapse
Affiliation(s)
- Yu-Chi Chen
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Krishne Gowda
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Shantu Amin
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Todd D Schell
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Arun K Sharma
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Gavin P Robertson
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Pathology, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Dermatology, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA, USA; The Pennsylvania State University Melanoma and Skin Cancer Center, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Penn State Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, PA, USA.
| |
Collapse
|
9
|
Huang J, Jin S, Guo R, Wu W, Yang C, Qin Y, Chen Q, He X, Qu J, Yang Z. Histone lysine demethylase KDM5B facilitates proliferation and suppresses apoptosis in human acute myeloid leukemia cells through the miR-140-3p/BCL2 axis. RNA (NEW YORK, N.Y.) 2024; 30:435-447. [PMID: 38296629 PMCID: PMC10946434 DOI: 10.1261/rna.079865.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/21/2024] [Indexed: 02/02/2024]
Abstract
The histone lysine demethylase KDM5B is frequently up-regulated in various human cancer cells. However, its expression and functional role in human acute myeloid leukemia (AML) cells remain unclear. Here, we found that the expression level of KDM5B is high in primary human AML cells. We have demonstrated that knocking down KDM5B leads to apoptosis and impairs proliferation in primary human AML and some human AML cell lines. We further identified miR-140-3p as a downstream target gene of KDM5B. KDM5B expression was inversely correlated with the miR-140-3p level in primary human AML cells. Molecular studies showed that silencing KDM5B enhanced H3K4 trimethylation (H3K4me3) at the promoter of miR-140-3p, leading to high expression of miR-140-3p, which in turn inhibited B-cell CLL/lymphoma 2 (BCL2) expression. Finally, we demonstrate that the defective proliferation induced by KDM5B knockdown (KD) can be rescued with the miR-140-3p inhibitor or enhanced by combining KDM5B KD with a BCL2 inhibitor. Altogether, our data support the conclusion that KDM5B promotes tumorigenesis in human AML cells through the miR-140-3p/BCL2 axis. Targeting the KDM5B/miR-140-3p/BCL2 pathway may hold therapeutic promise for treating human AML.
Collapse
Affiliation(s)
- Jiaojuan Huang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuiling Jin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Rongqun Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wei Wu
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Chengxuan Yang
- Department of Galactophore, Xinxiang First People's Hospital, Xinxiang 453000, China
| | - Yali Qin
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qingchuan Chen
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ximiao He
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Qu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhenhua Yang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
10
|
Terao M, Yamashita Y, Takada Y, Itoh Y, Suzuki T. Structural optimization of a lysine demethylase 5 inhibitor for improvement of its cellular activity. Bioorg Med Chem 2024; 98:117579. [PMID: 38168630 DOI: 10.1016/j.bmc.2023.117579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/05/2024]
Abstract
Lysine demethylase 5 (KDM5) subfamily proteins are important in epigenetic gene regulation. They are involved in the growth and drug resistance of cancer cells. Therefore, KDM5s are potential cancer therapeutic targets, and their inhibitors hold promise as anti-cancer drugs. Several KDM5 inhibitors, including KDM5-C49 (2a), have exhibited potent KDM5-inhibitory activities in in vitro enzyme assays. However, they do not show enough cellular activity despite being converted to their prodrugs. We hypothesized that their poor lipophilicity should prevent them from sufficiently penetrating the cell membrane, and introducing more lipophilic groups should improve cellular activities. In this study, we investigated 2a and KDM5-C70 (3a), a prodrug of 2a, and attempted to improve its cellular activity by replacing the N,N-dimethyl amino group of 3a with more lipophilic groups. N-Butyl, N-methyl amino compound 2e exhibited potent and selective KDM5-inhibitory activity equal to that of 2a. Furthermore, the cell membrane permeability of 3e, an ethyl ester prodrug of 2e, was six times higher than that of 3a in a parallel artificial membrane permeation assay. In addition, western blot analysis indicated that treating human lung cancer A549 cells with 3e increased histone methylation levels more strongly than that with 3a. Thus, we identified compound 3e as a more cell-active KDM5 inhibitor that has sufficient cell membrane permeability.
Collapse
Affiliation(s)
- Mitsuhiro Terao
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Yasunobu Yamashita
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan.
| | - Yuri Takada
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Yukihiro Itoh
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Takayoshi Suzuki
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan.
| |
Collapse
|
11
|
Berkholz J, Schmitt A, Fragasso A, Schmid AC, Munz B. Smyd1: Implications for novel approaches in rhabdomyosarcoma therapy. Exp Cell Res 2024; 434:113863. [PMID: 38097153 DOI: 10.1016/j.yexcr.2023.113863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/19/2023]
Abstract
Rhabdomyosarcoma (RMS), a tumor that consists of poorly differentiated skeletal muscle cells, is the most common soft-tissue sarcoma in children. Despite considerable progress within the last decades, therapeutic options are still limited, warranting the need for novel approaches. Recent data suggest deregulation of the Smyd1 protein, a sumoylation target as well as H3K4me2/3 methyltransferase and transcriptional regulator in myogenesis, and its binding partner skNAC, in RMS cells. Here, we show that despite the fact that most RMS cells express at least low levels of Smyd1 and skNAC, failure to upregulate expression of these genes in reaction to differentiation-promoting signals can always be observed. While overexpression of the Smyd1 gene enhances many aspects of RMS cell differentiation and inhibits proliferation rate and metastatic potential of these cells, functional integrity of the putative Smyd1 sumoylation motif and its SET domain, the latter being crucial for HMT activity, appear to be prerequisites for most of these effects. Based on these findings, we explored the potential for novel RMS therapeutic strategies, employing small-molecule compounds to enhance Smyd1 activity. In particular, we tested manipulation of (a) Smyd1 sumoylation, (b) stability of H3K4me2/3 marks, and (c) calpain activity, with calpains being important targets of Smyd1 in myogenesis. We found that specifically the last strategy might represent a promising approach, given that suitable small-molecule compounds will be available for clinical use in the future.
Collapse
Affiliation(s)
- Janine Berkholz
- Charité - University Medicine Berlin, Institute of Physiology, Charitéplatz 1, D-10117, Berlin, Germany
| | - Angelika Schmitt
- University Hospital Tübingen, Medical Clinic, Department of Sports Medicine, Hoppe-Seyler-Str. 6, D-72076, Tübingen, Germany
| | - Annunziata Fragasso
- University Hospital Tübingen, Medical Clinic, Department of Sports Medicine, Hoppe-Seyler-Str. 6, D-72076, Tübingen, Germany
| | - Anna-Celina Schmid
- University Hospital Tübingen, Medical Clinic, Department of Sports Medicine, Hoppe-Seyler-Str. 6, D-72076, Tübingen, Germany
| | - Barbara Munz
- University Hospital Tübingen, Medical Clinic, Department of Sports Medicine, Hoppe-Seyler-Str. 6, D-72076, Tübingen, Germany; Interfaculty Research Institute for Sport and Physical Activity, Eberhard Karls University of Tübingen, D-72074 / D-72076, Tübingen, Germany.
| |
Collapse
|
12
|
Cao Y, Wu C, Ma L. Lysine demethylase 5B (KDM5B): A key regulator of cancer drug resistance. J Biochem Mol Toxicol 2024; 38:e23587. [PMID: 38014925 DOI: 10.1002/jbt.23587] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/17/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023]
Abstract
Chemoresistance, a roadblock in the chemotherapy process, has been impeding its effective treatment. KDM5B, a member of the histone demethylase family, has been crucial in the emergence and growth of malignancies. More significantly, KDM5B has recently been linked closely to cancer's resistance to chemotherapy. In this review, we explain the biological properties of KDM5B, its function in the emergence and evolution of cancer treatment resistance, and our hopes for future drug resistance-busting combinations involving KDM5B and related targets or medications.
Collapse
Affiliation(s)
- Yaquan Cao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Chunli Wu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Liying Ma
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardio-Cerebrovascular Drug, China Meheco Topfond Pharmaceutical Company, Zhumadian, China
| |
Collapse
|
13
|
Fanoodi A, Maharati A, Akhlaghipour I, Rahimi HR, Moghbeli M. MicroRNAs as the critical regulators of tumor angiogenesis in liver cancer. Pathol Res Pract 2023; 251:154913. [PMID: 37931431 DOI: 10.1016/j.prp.2023.154913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023]
Abstract
Liver cancer is one of the most common malignancies in human digestive system. Despite the recent therapeutic methods, there is a high rate of mortality among liver cancer patients. Late diagnosis in the advanced tumor stages can be one of the main reasons for the poor prognosis in these patients. Therefore, investigating the molecular mechanisms of liver cancer can be helpful for the early stage tumor detection and treatment. Vascular expansion in liver tumors can be one of the important reasons for poor prognosis and aggressiveness. Therefore, anti-angiogenic drugs are widely used in liver cancer patients. MicroRNAs (miRNAs) have key roles in the regulation of angiogenesis in liver tumors. Due to the high stability of miRNAs in body fluids, these factors are widely used as the non-invasive diagnostic and prognostic markers in cancer patients. Regarding, the importance of angiogenesis during liver tumor growth and invasion, in the present review, we discussed the role of miRNAs in regulation of angiogenesis in these tumors. It has been reported that miRNAs mainly exert an anti-angiogenic function by regulation of tumor microenvironment, transcription factors, and signaling pathways in liver tumors. This review can be an effective step to suggest the miRNAs for the non-invasive early detection of malignant and invasive liver tumors.
Collapse
Affiliation(s)
- Ali Fanoodi
- Student Research Committee, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Rahimi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
14
|
Wang D, Zhang Y, Liao Z, Ge H, Güngör C, Li Y. KDM5 family of demethylases promotes CD44-mediated chemoresistance in pancreatic adenocarcinomas. Sci Rep 2023; 13:18250. [PMID: 37880235 PMCID: PMC10600175 DOI: 10.1038/s41598-023-44536-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023] Open
Abstract
A growing body of evidence suggests that the histone demethylase-lysine demethylase 5 (KDM5) family is associated with drug resistance in cancer cells. However, it is still not clear whether KDM5 family members promote chemotherapy resistance in pancreatic ductal adenocarcinomas (PDAC). Comprehensive bioinformatics analysis was performed to investigate the prognostic value, and functional mechanisms of KDM5 family members in PDAC. The effects of KDM5 family members on drug resistance in PDAC cells and the relationship with CD44, as a stem cell marker, were explored by gene knockout and overexpression strategies. Finally, our findings were validated by functional experiments such as cell viability, colony formation and invasion assays. We found that the expression of KDM5A/C was significantly higher in gemcitabine-resistant cells than in sensitive cells, consistent with the analysis of the GSCALite database. The knockdown of KDM5A/C in PDAC cells resulted in diminished drug resistance, less cell colonies and reduced invasiveness, while KDM5A/C overexpression showed the opposite effect. Of note, the expression of KDM5A/C changed accordingly with the knockdown of CD44. In addition, members of the KDM5 family function in a variety of oncogenic pathways, including PI3K/AKT and Epithelial-Mesenchymal Transition. In conclusion, KDM5 family members play an important role in drug resistance and may serve as new biomarkers or potential therapeutic targets in PDAC patients.
Collapse
Affiliation(s)
- Dan Wang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yingjun Zhang
- Hunan Engineering and Technology Research Center for Agricultural Big Data Analysis and Decision-Making, Hunan Agricultural University, Changsha, China
| | - Zhouning Liao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
- Division of Translational Immunology, III, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Heming Ge
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cenap Güngör
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yuqiang Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
- NHC Key Laboratory of Cancer Proteomics and Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
15
|
Han D, Schaffner SH, Davies JP, Benton ML, Plate L, Nordman JT. BRWD3 promotes KDM5 degradation to maintain H3K4 methylation levels. Proc Natl Acad Sci U S A 2023; 120:e2305092120. [PMID: 37722046 PMCID: PMC10523488 DOI: 10.1073/pnas.2305092120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/11/2023] [Indexed: 09/20/2023] Open
Abstract
Histone modifications are critical for regulating chromatin structure and gene expression. Dysregulation of histone modifications likely contributes to disease states and cancer. Depletion of the chromatin-binding protein BRWD3 (Bromodomain and WD repeat-containing protein 3), a known substrate-specificity factor of the Cul4-DDB1 E3 ubiquitin ligase complex, results in increased H3K4me1 (H3 lysine 4 monomethylation) levels. The underlying mechanism linking BRWD3 and H3K4 methylation, however, has yet to be defined. Here, we show that depleting BRWD3 not only causes an increase in H3K4me1 levels but also causes a decrease in H3K4me3 (H3 lysine 4 trimethylation) levels, indicating that BRWD3 influences H3K4 methylation more broadly. Using immunoprecipitation coupled to quantitative mass spectrometry, we identified an interaction between BRWD3 and the H3K4-specific lysine demethylase 5 (KDM5/Lid), an enzyme that removes tri- and dimethyl marks from H3K4. Moreover, analysis of ChIP-seq (chromatin immunoprecipitation sequencing) data revealed that BRWD3 and KDM5 are significantly colocalized throughout the genome and H3K4me3 are highly enriched at BRWD3 binding sites. We show that BRWD3 promotes K48-linked polyubiquitination and degradation of KDM5 and that KDM5 degradation is dependent on both BRWD3 and Cul4. Critically, depleting KDM5 fully restores altered H3K4me3 levels and partially restores H3K4me1 levels upon BRWD3 depletion. Together, our results demonstrate that BRWD3 regulates KDM5 activity to balance H3K4 methylation levels.
Collapse
Affiliation(s)
- Dongsheng Han
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37212
| | | | - Jonathan P. Davies
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37212
| | | | - Lars Plate
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37212
- Department of Chemistry, Vanderbilt University, Nashville, TN37212
| | - Jared T. Nordman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37212
| |
Collapse
|
16
|
Xiao C, Fan T, Zheng Y, Tian H, Deng Z, Liu J, Li C, He J. H3K4 trimethylation regulates cancer immunity: a promising therapeutic target in combination with immunotherapy. J Immunother Cancer 2023; 11:e005693. [PMID: 37553181 PMCID: PMC10414074 DOI: 10.1136/jitc-2022-005693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 08/10/2023] Open
Abstract
With the advances in cancer immunity regulation and immunotherapy, the effects of histone modifications on establishing antitumor immunological ability are constantly being uncovered. Developing combination therapies involving epigenetic drugs (epi-drugs) and immune checkpoint blockades or chimeric antigen receptor-T cell therapies are promising to improve the benefits of immunotherapy. Histone H3 lysine 4 trimethylation (H3K4me3) is a pivotal epigenetic modification in cancer immunity regulation, deeply involved in modulating tumor immunogenicity, reshaping tumor immune microenvironment, and regulating immune cell functions. However, how to integrate these theoretical foundations to create novel H3K4 trimethylation-based therapeutic strategies and optimize available therapies remains uncertain. In this review, we delineate the mechanisms by which H3K4me3 and its modifiers regulate antitumor immunity, and explore the therapeutic potential of the H3K4me3-related agents combined with immunotherapies. Understanding the role of H3K4me3 in cancer immunity will be instrumental in developing novel epigenetic therapies and advancing immunotherapy-based combination regimens.
Collapse
Affiliation(s)
- Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingjing Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
17
|
Lenda B, Żebrowska-Nawrocka M, Turek G, Balcerczak E. Zinc Finger E-Box Binding Homeobox Family: Non-Coding RNA and Epigenetic Regulation in Gliomas. Biomedicines 2023; 11:biomedicines11051364. [PMID: 37239035 DOI: 10.3390/biomedicines11051364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Gliomas are the most common malignant brain tumours. Among them, glioblastoma (GBM) is a grade four tumour with a median survival of approximately 15 months and still limited treatment options. Although a classical epithelial to mesenchymal transition (EMT) is not the case in glioma due to its non-epithelial origin, the EMT-like processes may contribute largely to the aggressive and highly infiltrative nature of these tumours, thus promoting invasive phenotype and intracranial metastasis. To date, many well-known EMT transcription factors (EMT-TFs) have been described with clear, biological functions in glioma progression. Among them, EMT-related families of molecules such as SNAI, TWIST and ZEB are widely cited, well-established oncogenes considering both epithelial and non-epithelial tumours. In this review, we aimed to summarise the current knowledge with a regard to functional experiments considering the impact of miRNA and lncRNA as well as other epigenetic modifications, with a main focus on ZEB1 and ZEB2 in gliomas. Although we explored various molecular interactions and pathophysiological processes, such as cancer stem cell phenotype, hypoxia-induced EMT, tumour microenvironment and TMZ-resistant tumour cells, there is still a pressing need to elucidate the molecular mechanisms by which EMT-TFs are regulated in gliomas, which will enable researchers to uncover novel therapeutic targets as well as improve patients' diagnosis and prognostication.
Collapse
Affiliation(s)
- Bartosz Lenda
- Laboratory of Molecular Diagnostics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, BRaIN Laboratories, Medical University of Lodz, Czechoslowacka 4, 92-216 Lodz, Poland
| | - Marta Żebrowska-Nawrocka
- Laboratory of Molecular Diagnostics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, BRaIN Laboratories, Medical University of Lodz, Czechoslowacka 4, 92-216 Lodz, Poland
| | - Grzegorz Turek
- Department of Neurosurgery, Bródnowski Masovian Hospital, Kondratowicza 8, 03-242 Warsaw, Poland
| | - Ewa Balcerczak
- Laboratory of Molecular Diagnostics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, BRaIN Laboratories, Medical University of Lodz, Czechoslowacka 4, 92-216 Lodz, Poland
| |
Collapse
|
18
|
Yang FF, Xu XL, Hu T, Liu JQ, Zhou JZ, Ma LY, Liu HM. Lysine-Specific Demethylase 1 Promises to Be a Novel Target in Cancer Drug Resistance: Therapeutic Implications. J Med Chem 2023; 66:4275-4293. [PMID: 37014989 DOI: 10.1021/acs.jmedchem.2c01527] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
Chemotherapy, targeted therapy, and immunotherapy are effective against most tumors, but drug resistance remains a barrier to successful treatment. Lysine-specific demethylase 1 (LSD1), a member of histone demethylation modifications, can regulate invasion, metastasis, apoptosis, and immune escape of tumor cells, which are associated with tumorigenesis and tumor progression. Recent studies suggest that LSD1 ablation regulates resensitivity of tumor cells to anticarcinogens containing immune checkpoint inhibitors (ICIs) via multiple upstream and downstream pathways. In this review, we describe the recent findings about LSD1 biology and its role in the development and progression of cancer drug resistance. Further, we summarize LSD1 inhibitors that have a reversal or resensitive effect on drug resistance and discuss the possibility of targeting LSD1 in combination with other agents to surmount resistance.
Collapse
Affiliation(s)
- Fei-Fei Yang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xue-Li Xu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ting Hu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jian-Quan Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jin-Zhu Zhou
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Li-Ying Ma
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
- Key Laboratory of Cardio-Cerebrovascular Drug, China Meheco Topfond Pharmaceutical Company, Zhumadian 463000, China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
19
|
Bonnici J, Oueini R, Salah E, Johansson C, Schofield CJ, Kawamura A. The catalytic domains of all human KDM5 JmjC demethylases catalyse N-methyl arginine demethylation. FEBS Lett 2023; 597:933-946. [PMID: 36700827 PMCID: PMC10952680 DOI: 10.1002/1873-3468.14586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/13/2022] [Accepted: 12/28/2022] [Indexed: 01/27/2023]
Abstract
The demethylation of Nε -methyllysine residues on histones by Jumonji-C lysine demethylases (JmjC-KDMs) has been established. A subset of JmjC-KDMs has also been reported to have Nω -methylarginine residue demethylase (RDM) activity. Here, we describe biochemical screening studies, showing that the catalytic domains of all human KDM5s (KDM5A-KDM5D), KDM4E and, to a lesser extent, KDM4A/D, have both KDM and RDM activities with histone peptides. Ras GTPase-activating protein-binding protein 1 peptides were shown to be RDM substrates for KDM5C/D. No RDM activity was observed with KDM1A and the other JmjC-KDMs tested. The results highlight the potential of JmjC-KDMs to catalyse reactions other than Nε -methyllysine demethylation. Although our study is limited to peptide fragments, the results should help guide biological studies investigating JmjC functions.
Collapse
Affiliation(s)
- Joanna Bonnici
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of OxfordUK
- Chemistry – School of Natural and Environmental SciencesNewcastle UniversityUK
| | - Razanne Oueini
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of OxfordUK
| | - Eidarus Salah
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of OxfordUK
| | - Catrine Johansson
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of OxfordUK
- Botnar Research Centre, NIHR Oxford Biomedical Research UnitUniversity of OxfordUK
| | - Christopher J. Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of OxfordUK
| | - Akane Kawamura
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of OxfordUK
- Chemistry – School of Natural and Environmental SciencesNewcastle UniversityUK
| |
Collapse
|
20
|
Han D, Schaffner SH, Davies JP, Lauren Benton M, Plate L, Nordman JT. BRWD3 promotes KDM5 degradation to maintain H3K4 methylation levels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534572. [PMID: 37034668 PMCID: PMC10081218 DOI: 10.1101/2023.03.28.534572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Histone modifications are critical for regulating chromatin structure and gene expression. Dysregulation of histone modifications likely contributes to disease states and cancer. Depletion of the chromatin-binding protein BRWD3, a known substrate-specificity factor of the Cul4-DDB1 E3 ubiquitin ligase complex, results in increased in H3K4me1 levels. The underlying mechanism linking BRWD3 and H3K4 methylation, however, has yet to be defined. Here, we show that depleting BRWD3 not only causes an increase in H3K4me1 levels, but also causes a decrease in H3K4me3 levels, indicating that BRWD3 influences H3K4 methylation more broadly. Using immunoprecipitation coupled to quantitative mass spectrometry, we identified an interaction between BRWD3 and the H3K4-specific demethylase 5 (KDM5/Lid), an enzyme that removes tri- and di- methyl marks from H3K4. Moreover, analysis of ChIP-seq data revealed that BRWD3 and KDM5 are significantly co- localized throughout the genome and that sites of H3K4me3 are highly enriched at BRWD3 binding sites. We show that BRWD3 promotes K48-linked polyubiquitination and degradation of KDM5 and that KDM5 degradation is dependent on both BRWD3 and Cul4. Critically, depleting KDM5 fully restores altered H3K4me3 levels and partially restores H3K4me1 levels upon BRWD3 depletion. Together, our results demonstrate that BRWD3 regulates KDM5 activity to balance H3K4 methylation levels.
Collapse
Affiliation(s)
- Dongsheng Han
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37212, USA
| | | | - Jonathan P. Davies
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37212, USA
| | | | - Lars Plate
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37212, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37212, USA
| | - Jared T. Nordman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37212, USA
| |
Collapse
|
21
|
Chen TM, Huang CM, Setiawan SA, Hsieh MS, Sheen CC, Yeh CT. KDM5D Histone Demethylase Identifies Platinum-Tolerant Head and Neck Cancer Cells Vulnerable to Mitotic Catastrophe. Int J Mol Sci 2023; 24:ijms24065310. [PMID: 36982384 PMCID: PMC10049674 DOI: 10.3390/ijms24065310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a major contributor to cancer incidence globally and is currently managed by surgical resection followed by adjuvant chemoradiotherapy. However, local recurrence is the major cause of mortality, indicating the emergence of drug-tolerant persister cells. A specific histone demethylase, namely lysine-specific demethylase 5D (KDM5D), is overexpressed in diverse types of cancers and involved in cancer cell cycle regulation. However, the role of KDM5D in the development of cisplatin-tolerant persister cells remains unexplored. Here, we demonstrated that KDM5D contributes to the development of persister cells. Aurora Kinase B (AURKB) disruption affected the vulnerability of persister cells in a mitotic catastrophe–dependent manner. Comprehensive in silico, in vitro, and in vivo experiments were performed. KDM5D expression was upregulated in HNSCC tumor cells, cancer stem cells, and cisplatin-resistant cells with biologically distinct signaling alterations. In an HNSCC cohort, high KDM5D expression was associated with a poor response to platinum treatment and early disease recurrence. KDM5D knockdown reduced the tolerance of persister cells to platinum agents and caused marked cell cycle deregulation, including the loss of DNA damage prevention, and abnormal mitosis-enhanced cell cycle arrest. By modulating mRNA levels of AURKB, KDM5D promoted the generation of platinum-tolerant persister cells in vitro, leading to the identification of the KDM5D/AURKB axis, which regulates cancer stemness and drug tolerance of HNSCC. Treatment with an AURKB inhibitor, namely barasertib, resulted in a lethal consequence of mitotic catastrophe in HNSCC persister cells. The cotreatment of cisplatin and barasertib suppressed tumor growth in the tumor mouse model. Thus, KDM5D might be involved in the development of persister cells, and AURKB disruption can overcome tolerance to platinum treatment in HNSCC.
Collapse
Affiliation(s)
- Tsung-Ming Chen
- Department of Otolaryngology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan;
- Department of Otolaryngology-Head and Neck Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Chih-Ming Huang
- Department of Otolaryngology, Taitung Mackay Memorial Hospital, Taitung City 950408, Taiwan;
- Department of Nursing, Tajen University, Pingtung 90741, Taiwan
| | - Syahru Agung Setiawan
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan;
- Department of Medical Research & Education, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Ming-Shou Hsieh
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei City 110, Taiwan;
- Department of Dentistry, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan
- Department of Periodontics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Chih-Chi Sheen
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei City 110, Taiwan;
- Department of Dentistry, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan
- Department of Periodontics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Correspondence: (C.-C.S.); (C.-T.Y.); Tel.: +886-2-249-0088 (ext. 8885) (C.-C.S.); +886-2-249-0088 (ext. 8881) (C.-T.Y.); Fax: +886-2-2248-0900 (C.-C.S.); +886-2-2248-0900 (C.-T.Y.)
| | - Chi-Tai Yeh
- Department of Medical Research & Education, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Continuing Education Program of Food Biotechnology Applications, College of Science and Engineering, National Taitung University, Taitung 95092, Taiwan
- Correspondence: (C.-C.S.); (C.-T.Y.); Tel.: +886-2-249-0088 (ext. 8885) (C.-C.S.); +886-2-249-0088 (ext. 8881) (C.-T.Y.); Fax: +886-2-2248-0900 (C.-C.S.); +886-2-2248-0900 (C.-T.Y.)
| |
Collapse
|
22
|
Rosenthal AC, Munoz JL, Villasboas JC. Clinical advances in epigenetic therapies for lymphoma. Clin Epigenetics 2023; 15:39. [PMID: 36871057 PMCID: PMC9985856 DOI: 10.1186/s13148-023-01452-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 02/19/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Advances in understanding of cancer biology, genomics, epigenomics, and immunology have resulted in development of several therapeutic options that expand cancer care beyond traditional chemotherapy or radiotherapy, including individualized treatment strategies, novel treatments based on monotherapies or combination therapy to reduce toxicities, and implementation of strategies for overcoming resistance to anticancer therapy. RESULTS This review covers the latest applications of epigenetic therapies for treatment of B cell, T cell, and Hodgkin lymphomas, highlighting key clinical trial results with monotherapies and combination therapies from the main classes of epigenetic therapies, including inhibitors of DNA methyltransferases, protein arginine methyltransferases, enhancer of zeste homolog 2, histone deacetylases, and the bromodomain and extraterminal domain. CONCLUSION Epigenetic therapies are emerging as an attractive add-on to traditional chemotherapy and immunotherapy regimens. New classes of epigenetic therapies promise low toxicity and may work synergistically with other cancer treatments to overcome drug resistance mechanisms.
Collapse
Affiliation(s)
- Allison C Rosenthal
- Division of Hematology, Medical Oncology, Mayo Clinic, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA.
| | - Javier L Munoz
- Division of Hematology, Medical Oncology, Mayo Clinic, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA
| | - J C Villasboas
- Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| |
Collapse
|
23
|
Zhang Z, Tan Y, Huang C, Wei X. Redox signaling in drug-tolerant persister cells as an emerging therapeutic target. EBioMedicine 2023; 89:104483. [PMID: 36827719 PMCID: PMC9982619 DOI: 10.1016/j.ebiom.2023.104483] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
Drug-tolerant persister (DTP) cells have attracted significant interest, given their predominant role in treatment failure. In this respect, DTP cells reportedly survive after anticancer drug exposure, and their DNA repair mechanisms are altered to enhance adaptive mutation, accounting for the emergence of drug-resistant mutations. DTP cells resume proliferation upon treatment withdrawal and are responsible for cancer relapse. Current evidence suggests that DTP cells mediate redox signaling-mediated cellular homeostasis by developing various adaptive mechanisms, especially metabolic reprogramming that promotes mitochondrial oxidative respiration and a robust antioxidant process. There is an increasing consensus that disrupting redox homeostasis by intervening with redox signaling is theoretically a promising therapeutic strategy for targeting these sinister cells. In this review, we provide a comprehensive overview of the characteristics of DTP cells and the underlying mechanisms involved in redox signaling, aiming to provide a unique perspective on potential therapeutic applications based on their vulnerabilities to redox regulation.
Collapse
Affiliation(s)
- Zhe Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, PR China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Yunhan Tan
- West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
24
|
Walker RR, Rentia Z, Chiappinelli KB. Epigenetically programmed resistance to chemo- and immuno-therapies. Adv Cancer Res 2023; 158:41-71. [PMID: 36990538 PMCID: PMC10184181 DOI: 10.1016/bs.acr.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Resistance to cancer treatments remains a major barrier in developing cancer cures. While promising combination chemotherapy treatments and novel immunotherapies have improved patient outcomes, resistance to these treatments remains poorly understood. New insights into the dysregulation of the epigenome show how it promotes tumor growth and resistance to therapy. By altering control of gene expression, tumor cells can evade immune cell recognition, ignore apoptotic cues, and reverse DNA damage induced by chemotherapies. In this chapter, we summarize the data on epigenetic remodeling during cancer progression and treatment that enable cancer cell survival and describe how these epigenetic changes are being targeted clinically to overcome resistance.
Collapse
Affiliation(s)
- Reddick R Walker
- The George Washington University Cancer Center (GWCC), Washington, DC, United States; Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, United States
| | - Zainab Rentia
- The George Washington University Cancer Center (GWCC), Washington, DC, United States
| | - Katherine B Chiappinelli
- The George Washington University Cancer Center (GWCC), Washington, DC, United States; Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, United States.
| |
Collapse
|
25
|
Hao F. Entanglement of Methylation Changes and cGAS-STING Signaling in Non-Small-Cell Lung Cancer. Comb Chem High Throughput Screen 2023; 26:224-235. [PMID: 35585823 DOI: 10.2174/1386207325666220517095503] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/03/2022] [Accepted: 03/12/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND cGAS-STING signaling has been primarily discovered as an important DNA sensing machinery, bridging innate immunity and adaptive immunity. Beyond its antiviral response, recent evidence expanded its complicated role in cancer therapy. METHODS UALCAN, The TCGA Wander, GEPIA, SMART, TIMER, Kaplan-Meier plotter, TCGA Data, and cBioPortal were utilized in the investigation. RESULTS We evaluated the expression of four key molecules (MB21D1, TMEM173, TBK1, and IRF3) in the cGAS-STING pathway and found that the TMEM173 gene was significantly downregulated in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). Not only immunostimulatory cells but also regulatory T cells were triggered by the DNA sensing pathway. With gene enrichment analysis, we revealed that cell cycle and mechanotransduction/cytoskeleton signals were most closely connected with cGAS-STING signal alterations in non-small-cell lung cancer (NSCLC). cGAS-STING signaling was robustly correlated with methylation changes, especially histone H3K4 lysine demethylase KDM5s. Transient activation of cGAS-STING was found to exert tumor surveillance effect, and inhibition of STING signaling co-opt elevated KDM5 demethylases might inadvertently worsen clinical outcomes. CONCLUSION cGAS-STING signaling and KDM5 demethylases have the potential to be used as targets for evaluating an effective immune response in the tumor microenvironment.
Collapse
Affiliation(s)
- Fang Hao
- Department of Oncology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
26
|
Zhang SM, Cao J, Yan Q. KDM5 Lysine Demethylases in Pathogenesis, from Basic Science Discovery to the Clinic. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1433:113-137. [PMID: 37751138 DOI: 10.1007/978-3-031-38176-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The histone lysine demethylase 5 (KDM5) family proteins are Fe2+ and α-ketoglutarate-dependent dioxygenases, with jumonji C (JmjC) domain as their catalytic core and several plant homeodomains (PHDs) to bind different histone methylation marks. These enzymes are capable of demethylating tri-, di- and mono-methylated lysine 4 in histone H3 (H3K4me3/2/1), the key epigenetic marks for active chromatin. Thus, this H3K4 demethylase family plays critical roles in cell fate determination during development as well as malignant transformation. KDM5 demethylases have both oncogenic and tumor suppressive functions in a cancer type-dependent manner. In solid tumors, KDM5A/B are generally oncogenic, whereas KDM5C/D have tumor suppressive roles. Their involvement in de-differentiation, cancer metastasis, drug resistance, and tumor immunoevasion indicated that KDM5 family proteins are promising drug targets for cancer therapy. Significant efforts from both academia and industry have led to the development of potent and selective KDM5 inhibitors for preclinical experiments and phase I clinical trials. However, a better understanding of the roles of KDM5 demethylases in different physiological and pathological conditions is critical for further developing KDM5 modulators for clinical applications.
Collapse
Affiliation(s)
- Shang-Min Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Jian Cao
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA.
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
| | - Qin Yan
- Department of Pathology, Yale Cancer Center, Yale Stem Cell Center, Yale Center for Immuno-Oncology, Yale Center for Research on Aging, Yale School of Medicine, P.O. Box 208023, New Haven, CT, 06520-8023, USA.
| |
Collapse
|
27
|
Hoekstra M, Ridgeway NH, Biggar KK. Characterization of KDM5 lysine demethylase family substrate preference and identification of novel substrates. J Biochem 2022; 173:31-42. [PMID: 36205465 DOI: 10.1093/jb/mvac081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/21/2022] [Accepted: 10/03/2022] [Indexed: 12/29/2022] Open
Abstract
The KDM5/JARID1 sub-family are 2-oxoglutarate and Fe(II)-dependent lysine-specific histone demethylases that are characterized by their Jumonji catalytic domains. The KDM5 family is known to remove tri-/di-methyl modifications from lysine-4 of histone H3 (i.e. H3-K4me2/3), a mark associated with active gene expression. As a result, studies to date have revolved around the influence of KDM5 on disease through their ability to regulate H3-K4me2/3. Recent evidence demonstrates that KDM5 may influence disease beyond H3-K4 demethylation, making it critical to further investigate KDM5-mediated demethylation of non-histone proteins. To help identify potential non-histone substrates for the KDM5 family, we developed a library of 180 permutated peptide substrates, with sequences that are systematically altered from the wild-type H3-K4me3 substrate. From this library, we characterized recombinant KDM5A/B/C/D substrate preference and developed recognition motifs for each KDM5 demethylase. The recognition motifs developed were used to predict potential substrates for KDM5A/B/C/D and profiled to generate a list of high-ranking and medium/low-ranking substrates for further in vitro validation. Through this approach, we identified 66 high-ranking substrates in which KDM5 demethylases displayed significant in vitro activity towards.
Collapse
Affiliation(s)
- Matthew Hoekstra
- Institute of Biochemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada.,Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Nashira H Ridgeway
- Institute of Biochemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada.,Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Kyle K Biggar
- Institute of Biochemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada.,Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
28
|
Comprehensive analyses of prognostic biomarkers and immune infiltrates among histone lysine demethylases (KDMs) in hepatocellular carcinoma. Cancer Immunol Immunother 2022; 71:2449-2467. [DOI: 10.1007/s00262-022-03167-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/31/2022] [Indexed: 10/18/2022]
|
29
|
Diao W, Zheng J, Li Y, Wang J, Xu S. Targeting histone demethylases as a potential cancer therapy (Review). Int J Oncol 2022; 61:103. [PMID: 35801593 DOI: 10.3892/ijo.2022.5393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/15/2022] [Indexed: 11/06/2022] Open
Abstract
Post‑translational modifications of histones by histone demethylases have an important role in the regulation of gene transcription and are implicated in cancers. Recently, the family of lysine (K)‑specific demethylase (KDM) proteins, referring to histone demethylases that dynamically regulate histone methylation, were indicated to be involved in various pathways related to cancer development. To date, numerous studies have been conducted to explore the effects of KDMs on cancer growth, metastasis and drug resistance, and a majority of KDMs have been indicated to be oncogenes in both leukemia and solid tumors. In addition, certain KDM inhibitors have been developed and have become the subject of clinical trials to explore their safety and efficacy in cancer therapy. However, most of them focus on hematopoietic malignancy. This review summarizes the effects of KDMs on tumor growth, drug resistance and the current status of KDM inhibitors in clinical trials.
Collapse
Affiliation(s)
- Wenfei Diao
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Jiabin Zheng
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Yong Li
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Junjiang Wang
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Songhui Xu
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
30
|
Fard GH, Moinipoor Z, Anastasova-Ivanova S, Iqbal HM, Dwek MV, Getting S, Keshavarz T. Development of chitosan, pullulan, and alginate based drug-loaded nano-emulsions as a potential malignant melanoma delivery platform. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
31
|
Belhajova M, Podhorska N, Vicha A, Eckschlager T. KDM5B expression in cisplatin resistant neuroblastoma cell lines. Oncol Lett 2022; 24:365. [DOI: 10.3892/ol.2022.13485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/21/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Marie Belhajova
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, 15006 Prague, Czech Republic
| | - Natalia Podhorska
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, 15006 Prague, Czech Republic
| | - Ales Vicha
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, 15006 Prague, Czech Republic
| | - Tomas Eckschlager
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, 15006 Prague, Czech Republic
| |
Collapse
|
32
|
Liu H, Lin J, Zhou W, Moses R, Dai Z, Kossenkov AV, Drapkin R, Bitler BG, Karakashev S, Zhang R. KDM5A Inhibits Antitumor Immune Responses Through Downregulation of the Antigen-Presentation Pathway in Ovarian Cancer. Cancer Immunol Res 2022; 10:1028-1038. [PMID: 35726891 PMCID: PMC9357105 DOI: 10.1158/2326-6066.cir-22-0088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/31/2022] [Accepted: 05/26/2022] [Indexed: 02/05/2023]
Abstract
The extent to which effector CD8+ T cells infiltrate into tumors is one of the major predictors of clinical outcome for patients with epithelial ovarian cancer (EOC). Immune cell infiltration into EOC is a complex process that could be affected by the epigenetic makeup of the tumor. Here, we have demonstrated that a lysine 4 histone H3 (H3K4) demethylase, (lysine-specific demethylase 5A; KDM5A) impairs EOC infiltration by immune cells and inhibits antitumor immune responses. Mechanistically, we found that KDM5A silenced genes involved in the antigen processing and presentation pathway. KDM5A inhibition restored the expression of genes involved in the antigen-presentation pathway in vitro and promoted antitumor immune responses mediated by CD8+ T cells in vivo in a syngeneic EOC mouse model. A negative correlation between expression of KDM5A and genes involved in the antigen processing and presentation pathway such as HLA-A and HLA-B was observed in the majority of cancer types. In summary, our results establish KDM5A as a regulator of CD8+ T-cell infiltration of tumors and demonstrate that KDM5A inhibition may provide a novel therapeutic strategy to boost antitumor immune responses.
Collapse
Affiliation(s)
- Heng Liu
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Jianhuang Lin
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Wei Zhou
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Renyta Moses
- Cell and Molecular Biology Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhongping Dai
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Andrew V. Kossenkov
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Ronny Drapkin
- Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin G. Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, The University of Colorado, Aurora, CO 13001, USA
| | - Sergey Karakashev
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA,Corresponding authors: Rugang Zhang, Ph.D., 3601 Spruce Street, Philadelphia, PA 19104; Phone: 215-495-6840;.; Sergey Karakashev, Ph.D., 3601 Spruce Street, Philadelphia, PA 19104; Phone: 215-707-8901;
| | - Rugang Zhang
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA,Corresponding authors: Rugang Zhang, Ph.D., 3601 Spruce Street, Philadelphia, PA 19104; Phone: 215-495-6840;.; Sergey Karakashev, Ph.D., 3601 Spruce Street, Philadelphia, PA 19104; Phone: 215-707-8901;
| |
Collapse
|
33
|
Pavlenko E, Ruengeler T, Engel P, Poepsel S. Functions and Interactions of Mammalian KDM5 Demethylases. Front Genet 2022; 13:906662. [PMID: 35899196 PMCID: PMC9309374 DOI: 10.3389/fgene.2022.906662] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/06/2022] [Indexed: 12/26/2022] Open
Abstract
Mammalian histone demethylases of the KDM5 family are mediators of gene expression dynamics during developmental, cellular differentiation, and other nuclear processes. They belong to the large group of JmjC domain containing, 2-oxoglutarate (2-OG) dependent oxygenases and target methylated lysine 4 of histone H3 (H3K4me1/2/3), an epigenetic mark associated with active transcription. In recent years, KDM5 demethylases have gained increasing attention due to their misregulation in many cancer entities and are intensively explored as therapeutic targets. Despite these implications, the molecular basis of KDM5 function has so far remained only poorly understood. Little is known about mechanisms of nucleosome recognition, the recruitment to genomic targets, as well as the local regulation of demethylase activity. Experimental evidence suggests close physical and functional interactions with epigenetic regulators such as histone deacetylase (HDAC) containing complexes, as well as the retinoblastoma protein (RB). To understand the regulation of KDM5 proteins in the context of chromatin, these interactions have to be taken into account. Here, we review the current state of knowledge on KDM5 function, with a particular emphasis on molecular interactions and their potential implications. We will discuss and outline open questions that need to be addressed to better understand histone demethylation and potential demethylation-independent functions of KDM5s. Addressing these questions will increase our understanding of histone demethylation and allow us to develop strategies to target individual KDM5 enzymes in specific biological and disease contexts.
Collapse
Affiliation(s)
- Egor Pavlenko
- University of Cologne, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital, Cologne, Germany
| | - Till Ruengeler
- University of Cologne, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital, Cologne, Germany
| | - Paulina Engel
- University of Cologne, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital, Cologne, Germany
| | - Simon Poepsel
- University of Cologne, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- *Correspondence: Simon Poepsel,
| |
Collapse
|
34
|
Liu C, Zhou X, Jin J, Zhu Q, Li L, Yin Q, Xu T, Gu W, Ma F, Yang R. The Association Between Breast Cancer and Blood-Based Methylation of CD160, ISYNA1 and RAD51B in the Chinese Population. Front Genet 2022; 13:927519. [PMID: 35812748 PMCID: PMC9261985 DOI: 10.3389/fgene.2022.927519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/23/2022] [Indexed: 12/25/2022] Open
Abstract
Recent studies have identified DNA methylation signatures in the white blood cells as potential biomarkers for breast cancer (BC) in the European population. Here, we investigated the association between BC and blood-based methylation of cluster of differentiation 160 (CD160), inositol-3-phosphate synthase 1 (ISYNA1) and RAD51 paralog B (RAD51B) genes in the Chinese population. Peripheral blood samples were collected from two independent case-control studies with a total of 272 sporadic early-stage BC cases (76.5% at stage I&II) and 272 cancer-free female controls. Mass spectrometry was applied to quantitatively measure the levels of DNA methylation. The logistic regression and non-parametric tests were used for the statistical analyses. In contrast to the protective effects reported in European women, we reported the blood-based hypomethylation in CD160, ISYNA1 and RAD51B as risk factors for BC in the Chinese population (CD160_CpG_3, CD160_CpG_4/cg20975414, ISYNA1_CpG_2, RAD51B_CpG_3 and RAD51B_CpG_4; odds ratios (ORs) per -10% methylation ranging from 1.08 to 1.67, p < 0.05 for all). Moreover, hypomethylation of CD160, ISYNA1 and RAD51B was significantly correlated with age, BC subtypes including estrogen receptor (ER)-negative BC tumors, triple negative tumors, BC cases with larger size, advanced stages and more lymph node involvement. Our results supported the report in European women that BC is associated with altered methylation of CD160, ISYNA1 and RAD51B in the peripheral blood, although the effects are opposite in the Chinese population. The difference between the two populations may be due to variant genetic background or life styles, implicating that the validations of epigenetic biomarkers in variant ethnic groups are warranted.
Collapse
Affiliation(s)
- Chunlan Liu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiajie Zhou
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jialie Jin
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qiang Zhu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lixi Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qiming Yin
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Tian Xu
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Wanjian Gu
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Rongxi Yang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
- *Correspondence: Rongxi Yang,
| |
Collapse
|
35
|
Deák G, Cook AG. Missense Variants Reveal Functional Insights Into the Human ARID Family of Gene Regulators. J Mol Biol 2022; 434:167529. [PMID: 35257783 PMCID: PMC9077328 DOI: 10.1016/j.jmb.2022.167529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/10/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022]
Abstract
Missense variants are alterations to protein coding sequences that result in amino acid substitutions. They can be deleterious if the amino acid is required for maintaining structure or/and function, but are likely to be tolerated at other sites. Consequently, missense variation within a healthy population can mirror the effects of negative selection on protein structure and function, such that functional sites on proteins are often depleted of missense variants. Advances in high-throughput sequencing have dramatically increased the sample size of available human variation data, allowing for population-wide analysis of selective pressures. In this study, we developed a convenient set of tools, called 1D-to-3D, for visualizing the positions of missense variants on protein sequences and structures. We used these tools to characterize human homologues of the ARID family of gene regulators. ARID family members are implicated in multiple cancer types, developmental disorders, and immunological diseases but current understanding of their mechanistic roles is incomplete. Combined with phylogenetic and structural analyses, our approach allowed us to characterise sites important for protein-protein interactions, histone modification recognition, and DNA binding by the ARID proteins. We find that comparing missense depletion patterns among paralogs can reveal sub-functionalization at the level of domains. We propose that visualizing missense variants and their depletion on structures can serve as a valuable tool for complementing evolutionary and experimental findings.
Collapse
Affiliation(s)
- Gauri Deák
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, United Kingdom. https://twitter.com/GauriDeak
| | - Atlanta G Cook
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, United Kingdom.
| |
Collapse
|
36
|
Kumar VE, Nambiar R, De Souza C, Nguyen A, Chien J, Lam KS. Targeting Epigenetic Modifiers of Tumor Plasticity and Cancer Stem Cell Behavior. Cells 2022; 11:cells11091403. [PMID: 35563709 PMCID: PMC9102449 DOI: 10.3390/cells11091403] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 02/01/2023] Open
Abstract
Tumor heterogeneity poses one of the greatest challenges to a successful treatment of cancer. Tumor cell populations consist of different subpopulations that have distinct phenotypic and genotypic profiles. Such variability poses a challenge in successfully targeting all tumor subpopulations at the same time. Relapse after treatment has been previously explained using the cancer stem cell model and the clonal evolution model. Cancer stem cells are an important subpopulation of tumor cells that regulate tumor plasticity and determine therapeutic resistance. Tumor plasticity is controlled by genetic and epigenetic changes of crucial genes involved in cancer cell survival, growth and metastasis. Targeting epigenetic modulators associated with cancer stem cell survival can unlock a promising therapeutic approach in completely eradicating cancer. Here, we review various factors governing epigenetic dysregulation of cancer stem cells ranging from the role of epigenetic mediators such as histone and DNA methyltransferases, histone deacetylases, histone methyltransferases to various signaling pathways associated with cancer stem cell regulation. We also discuss current treatment regimens targeting these factors and other promising inhibitors in clinical trials.
Collapse
Affiliation(s)
- Vigneshwari Easwar Kumar
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA 95817, USA; (V.E.K.); (R.N.); (C.D.S.); (A.N.); (K.S.L.)
| | - Roshni Nambiar
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA 95817, USA; (V.E.K.); (R.N.); (C.D.S.); (A.N.); (K.S.L.)
| | - Cristabelle De Souza
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA 95817, USA; (V.E.K.); (R.N.); (C.D.S.); (A.N.); (K.S.L.)
- Department of Stem Cell Research and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Audrey Nguyen
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA 95817, USA; (V.E.K.); (R.N.); (C.D.S.); (A.N.); (K.S.L.)
| | - Jeremy Chien
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA 95817, USA; (V.E.K.); (R.N.); (C.D.S.); (A.N.); (K.S.L.)
- Department of Obstetrics and Gynecology, UC Davis Medical Center, Sacramento, CA 95817, USA
- Correspondence:
| | - Kit S. Lam
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA 95817, USA; (V.E.K.); (R.N.); (C.D.S.); (A.N.); (K.S.L.)
| |
Collapse
|
37
|
The Emerging Significance of Histone Lysine Demethylases as Prognostic Markers and Therapeutic Targets in Head and Neck Cancers. Cells 2022; 11:cells11061023. [PMID: 35326475 PMCID: PMC8946939 DOI: 10.3390/cells11061023] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
Epigenetic aberrations, associated with altered DNA methylation profiles and global changes in the level of histone modifications, are commonly detected in head and neck squamous cell carcinomas (HNSCC). Recently, histone lysine demethylases have been implicated in the pathogenesis of HNSCC and emerged as potential molecular targets. Histone lysine demethylases (KDMs) catalyze the removal of methyl groups from lysine residues in histones. By affecting the methylation of H3K4, H3K9, H3K27, or H3K36, these enzymes take part in transcriptional regulation, which may result in changes in the level of expression of tumor suppressor genes and protooncogenes. KDMs are involved in many biological processes, including cell cycle control, senescence, DNA damage response, and heterochromatin formation. They are also important regulators of pluripotency. The overexpression of most KDMs has been observed in HNSCC, and their inhibition affects cell proliferation, apoptosis, cell motility, invasiveness, and stemness. Of all KDMs, KDM1, KDM4, KDM5, and KDM6 proteins are currently regarded as the most promising prognostic and therapeutic targets in head and neck cancers. The aim of this review is to present up-to-date knowledge on the significance of histone lysine demethylases in head and neck carcinogenesis and to discuss the possibility of using them as prognostic markers and pharmacological targets in patients’ treatment.
Collapse
|
38
|
Liu KL, Yin YW, Lu BS, Niu YL, Wang DD, Shi B, Zhang H, Guo PY, Yang Z, Li W. E2F6/KDM5C promotes SF3A3 expression and bladder cancer progression through a specific hypomethylated DNA promoter. Cancer Cell Int 2022; 22:109. [PMID: 35248043 PMCID: PMC8897952 DOI: 10.1186/s12935-022-02475-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/18/2022] [Indexed: 12/01/2022] Open
Abstract
Background Abnormal expression of splicing factor 3A subunit 3 (SF3A3), a component of the spliceosome, has been confirmed to be related to the occurrence and development of various cancers. However, the expression and function of SF3A3 in bladder cancer (BC) remains unclear. Methods The SF3A3 mRNA and protein level were measured in clinical samples and cell lines by quantitative real-time PCR, Western blot and immunofluorescence staining. Evaluate the clinical correlation between SF3A3 expression and clinicopathological characteristics through statistical analysis in BC patients. The function of SF3A3 in BC cells was determined in vitro using MTT and colony analysis. Co-immunoprecipitation (CoIP) assay was used to detected E2F6 and KDM5C interaction. Luciferase reporter and chromatin immunoprecipitation (ChIP) were used to examine the relationship between E2F6/KDM5C and SF3A3 expression. Results In the present study, we demonstrated that expression of SF3A3 was elevated in BC tissue compared to the normal bladder tissue. Importantly, the upregulation of SF3A3 in patients was correlated with poor prognosis. Additionally, overexpression of SF3A3 promoted while depletion of SF3A3 reduced the growth of BC cells in vivo and in vitro. Data from the TCGA database and clinical samples revealed that hypomethylation of the DNA promoter leads to high expression of SF3A3 in BC tissue. We found that upregulation of lysine-specific demethylase 5C (KDM5C) promotes SF3A3 expression via hypomethylation of the DNA promoter. The transcription factor E2F6 interacts with KDM5C, recruits KDM5C to the SF3A3 promoter, and demethylates the GpC island of H3K4me2, leading to high SF3A3 expression and BC progression. Conclusions The results demonstrated that depletion of the KDM5C/SF3A3 prevents the growth of BC in vivo and in vitro. The E2F6/KDM5C/SF3A3 pathway may be a potential therapeutic target for BC treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02475-4.
Collapse
|
39
|
Identification of the Cysteine Protease Legumain as a Potential Chronic Hypoxia-Specific Multiple Myeloma Target Gene. Cells 2022; 11:cells11020292. [PMID: 35053409 PMCID: PMC8773999 DOI: 10.3390/cells11020292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 02/05/2023] Open
Abstract
Multiple myeloma (MM) is the second most common hematologic malignancy, which is characterized by clonal proliferation of neoplastic plasma cells in the bone marrow. This microenvironment is characterized by low oxygen levels (1–6% O2), known as hypoxia. For MM cells, hypoxia is a physiologic feature that has been described to promote an aggressive phenotype and to confer drug resistance. However, studies on hypoxia are scarce and show little conformity. Here, we analyzed the mRNA expression of previously determined hypoxia markers to define the temporal adaptation of MM cells to chronic hypoxia. Subsequent analyses of the global proteome in MM cells and the stromal cell line HS-5 revealed hypoxia-dependent regulation of proteins, which directly or indirectly upregulate glycolysis. In addition, chronic hypoxia led to MM-specific regulation of nine distinct proteins. One of these proteins is the cysteine protease legumain (LGMN), the depletion of which led to a significant growth disadvantage of MM cell lines that is enhanced under hypoxia. Thus, herein, we report a methodologic strategy to examine MM cells under physiologic hypoxic conditions in vitro and to decipher and study previously masked hypoxia-specific therapeutic targets such as the cysteine protease LGMN.
Collapse
|
40
|
Liu C, Zheng Z, Li W, Tang D, Zhao L, He Y, Li H. Inhibition of KDM5A attenuates cisplatin-induced hearing loss via regulation of the MAPK/AKT pathway. Cell Mol Life Sci 2022; 79:596. [PMID: 36396833 PMCID: PMC9672031 DOI: 10.1007/s00018-022-04565-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/19/2022]
Abstract
The study aimed to investigate the potential role of lysine-specific demethylase 5A (KDM5A) in cisplatin-induced ototoxicity. The effect of the KDM5A inhibitor CPI-455 was assessed by apoptosis assay, immunofluorescence, flow cytometry, seahorse respirometry assay, and auditory brainstem response test. RNA sequencing, qRT-PCR, and CUT&Tag assays were used to explore the mechanism underlying CPI-455-induced protection. Our results demonstrated that the expression of KDM5A was increased in cisplatin-injured cochlear hair cells compared with controls. CPI-455 treatment markedly declined KDM5A and elevated H3K4 trimethylation levels in cisplatin-injured cochlear hair cells. Moreover, CPI-455 effectively prevented the death of hair cells and spiral ganglion neurons and increased the number of ribbon synapses in a cisplatin-induced ototoxicity mouse model both in vitro and in vivo. In HEI-OC1 cells, KDM5A knockdown reduced reactive oxygen species accumulation and improved mitochondrial membrane potential and oxidative phosphorylation under cisplatin-induced stress. Mechanistically, through transcriptomics and epigenomics analyses, a set of apoptosis-related genes, including Sos1, Sos2, and Map3k3, were regulated by CPI-455. Altogether, our findings indicate that inhibition of KDM5A may represent an effective epigenetic therapeutic target for preventing cisplatin-induced hearing loss.
Collapse
Affiliation(s)
- Chang Liu
- Department of ENT Institute and Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 83 Fenyang Road, Shanghai, 200031 China ,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031 People’s Republic of China
| | - Zhiwei Zheng
- Department of ENT Institute and Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 83 Fenyang Road, Shanghai, 200031 China ,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031 People’s Republic of China
| | - Wen Li
- Department of ENT Institute and Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 83 Fenyang Road, Shanghai, 200031 China ,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031 People’s Republic of China
| | - Dongmei Tang
- Department of ENT Institute and Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 83 Fenyang Road, Shanghai, 200031 China ,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031 People’s Republic of China
| | - Liping Zhao
- Department of ENT Institute and Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 83 Fenyang Road, Shanghai, 200031 China ,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031 People’s Republic of China
| | - Yingzi He
- Department of ENT Institute and Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 83 Fenyang Road, Shanghai, 200031 China ,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031 People’s Republic of China
| | - Huawei Li
- Department of ENT Institute and Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 83 Fenyang Road, Shanghai, 200031 China ,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031 People’s Republic of China ,Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032 People’s Republic of China ,The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032 People’s Republic of China
| |
Collapse
|
41
|
Kakoo A, Al-Attar M, Rasheed T. Exonic variants in multiple myeloma patients associated with relapsed/ refractory and response to bortezomib regimens. Saudi J Biol Sci 2022; 29:610-614. [PMID: 35002457 PMCID: PMC8716956 DOI: 10.1016/j.sjbs.2021.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 11/30/2022] Open
Abstract
Novel treatment in multiple myeloma represented by proteasome inhibitors, immunomodulatory drugs and monoclonal antibodies have produced a deep response. However, relapses are possible, and all classes of drugs are refractory to patients. Next-generation sequencing has improved our understanding of the multiple myeloma genome related to drug resistance and has discovered many genomic variants. Therefore, this study was conducted to investigate new variants associated with drug resistance in MM patients who relapsed and refractory to bortezomib regimen and daratumumab treatment using next-generation sequencing for whole-exome sequencing. Peripheral blood samples were collected in EDTA tubes from six patients; four were in relapsed and refractory to bortezomib regimens and daratumumab; two patients responded to bortezomib regimens. Whole-exome sequencing was performed by the MGI-DNBSEQ-G400 instrument. We identified 21 variants in multiple myeloma patients. Seventeen variants were found in relapsed and refractory multiple myeloma in 11 genes (GNAQ, PMS1, CREB1, NSUNS2, PIK3CG, ROS1, PMS2, FIT4, KDM5A, STK11 and ZFHX3). And four variants were identified in two patients with response to bortezomib regimens in 4 genes (RAF1, CREB1, ZFHX3 and INSR). We have observed several genetic variants in many genes that may have been associated with the poor prognosis and poor response to treatment in these patients. These values should be further confirmed in large sample studies using the RNA-seq technique to identify genome expression.
Collapse
Key Words
- BCL-2, B-cell lymphoma 2
- BWA, Burrows-Wheeler Aligner
- GATK, Genome Analysis Toolkit
- IGV, Integrative Genomic Viewer
- MAPK, mitogen-activated protein
- MCL-1, myeloid cell leukaemia-1
- MM, multiple myeloma
- MMR, mismatch repair
- Multiple myeloma
- M−CSF, macrophage colony-stimulating factor
- NF-кB, nuclear factor kappa B
- NGS, Next-generation sequence
- Next-generation sequencing
- RANKL, receptor activator of nuclear factors-кB ligand
- RTKs, tyrosine kinases receptors
- SNP, single nucleotide polymorphism
- VEGF-C, vascular endothelial growth factors receptors
- VUS, variant unknown significant
- WES, whole exome sequence
- drug resistance
Collapse
Affiliation(s)
- Ashraf Kakoo
- Department- College of Science, Salahaddin University, Erbil, Iraq
| | - Mustafa Al-Attar
- Department- College of Science, Salahaddin University, Erbil, Iraq
| | - Taban Rasheed
- Department- College of Science, Salahaddin University, Erbil, Iraq
| |
Collapse
|
42
|
Yang GJ, Wu J, Miao L, Zhu MH, Zhou QJ, Lu XJ, Lu JF, Leung CH, Ma DL, Chen J. Pharmacological inhibition of KDM5A for cancer treatment. Eur J Med Chem 2021; 226:113855. [PMID: 34555614 DOI: 10.1016/j.ejmech.2021.113855] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 12/15/2022]
Abstract
Lysine-specific demethylase 5A (KDM5A, also named RBP2 or JARID1A) is a demethylase that can remove methyl groups from histones H3K4me1/2/3. It is aberrantly expressed in many cancers, where it impedes differentiation and contributes to cancer cell proliferation, cell metastasis and invasiveness, drug resistance, and is associated with poor prognosis. Pharmacological inhibition of KDM5A has been reported to significantly attenuate tumor progression in vitro and in vivo in a range of solid tumors and acute myeloid leukemia. This review will present the structural aspects of KDM5A, its role in carcinogenesis, a comparison of currently available approaches for screening KDM5A inhibitors, a classification of KDM5A inhibitors, and its potential as a drug target in cancer therapy.
Collapse
Affiliation(s)
- Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Jia Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macao SAR, 999078, China
| | - Liang Miao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Ming-Hui Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Qian-Jin Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Xin-Jiang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macao SAR, 999078, China.
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong, 999077, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
43
|
Schäfer G, Bednarova N, Heidenreich A, Klocker H, Heidegger I. KDM5D predicts response to docetaxel chemotherapy in metastatic castration resistant prostate cancer patients. Transl Androl Urol 2021; 10:3946-3952. [PMID: 34804837 PMCID: PMC8575572 DOI: 10.21037/tau-20-1084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/21/2021] [Indexed: 12/26/2022] Open
Abstract
Background The administration of docetaxel chemotherapy is one therapeutic option to delay disease progression and increase overall survival in metastatic castration resistant prostate cancer (mCRPC). However, about 15% of patients are primary resistant to chemotherapy and hence would benefit from an alternative mCRPC treatment. Despite intensive research, there are no robust clinical validated biomarkers to predict mCRPC therapy response. Thus, the aim of the study was to determine KDM5D expression in archival radical prostatectomy specimens of patients medicated with docetaxel at time of mCRPC development in order to correlate KMD5D expression with treatment response. Methods We used in situ hybridization (ISH) (RNA scope 2.5 HD) to determine KDM5D expression in tissue samples of 28 prostate cancer patients. KDM5D status was correlated to chemotherapy response (PSA and radiographic response). Results Data revealed that KDM5D is significantly overexpressed in tumor cells (P<0.0001) but also in benign cells (P<0.02) of those patients who responded to chemotherapy compared to non-responders. Conclusions To summarize, KDM5D is a promising novel biomarker predicting response to docetaxel chemotherapy already at the time of localized disease and thus potentially avoiding metastatic biopsies in the mCRPC stage of disease.
Collapse
Affiliation(s)
- Georg Schäfer
- Department of Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nikola Bednarova
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Axel Heidenreich
- Department of Urology, Uro-Oncology, Robot-Assisted and Specialized Urological Surgery, University Hospital Cologne, Cologne, Germany
| | - Helmut Klocker
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Isabel Heidegger
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
44
|
Hao F. Systemic Profiling of KDM5 Subfamily Signature in Non-Small-Cell Lung Cancer. Int J Gen Med 2021; 14:7259-7275. [PMID: 34737620 PMCID: PMC8558507 DOI: 10.2147/ijgm.s329733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/14/2021] [Indexed: 11/23/2022] Open
Abstract
Background Despite improvements in diagnosis and treatment, lung cancer is one of the most lethal human diseases, with a dismal 5-year relative survival rate of only 5% for patients diagnosed with advanced metastatic disease. Accumulating evidence supports that epigenetic aberration of histone demethylase-KDM5 subfamily is linked to human pan-cancer. However, the detailed functions of KDM5 proteins in lung cancer, especially in non-small-cell lung cancer (NSCLC), remain poorly understand. Methods UALCAN, GEPIA, Kaplan-Meier plotter, cBioPortal, TIMER, TISIDB, and STRING databases were utilized in this investigation. Results We detected varying degrees of gene mutations of KDM5 subfamily members and found that KDM5B/C were remarkably overexpressed in LUAD and LUSC compared to normal tissues. Different from KDM5D, positive relationship was shown between overall survival and mRNA expression of KDM5A/B/C in lung cancer. We determined that KDM5A/B/C expression levels were positively correlated with CD4+ T cells infiltration, especially immunological markers of Tregs and Th17 cells. Moreover, LUAD and LUSC were separately rich in inflammatory and wound healing subtypes after immunogenomics analyzing with respect to KDM5 subfamily overexpression. And with their 120 co-expressed genes, we revealed that nucleocytoplasmic transport and cellular protein localization-related genes were closely connected to KDM5 subfamily alterations, next to chromatin remodeling genes. Conclusion We formulated the immune-infiltrating and prognostic value of KDM5 subfamily and highlighted its promising role in immune-inflammatory interaction with tumour microenvironment in NSCLC.
Collapse
Affiliation(s)
- Fang Hao
- Department of Oncology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| |
Collapse
|
45
|
Tariq A, Rehman HM, Mateen RM, Ali M, Mutahir Z, Afzal MS, Sajjad M, Gul R, Saleem M. A computer aided drug discovery based discovery of lead-like compounds against KDM5A for cancers using pharmacophore modeling and high-throughput virtual screening. Proteins 2021; 90:645-657. [PMID: 34642975 DOI: 10.1002/prot.26262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/17/2021] [Accepted: 10/03/2021] [Indexed: 12/11/2022]
Abstract
KDM5A over-expression mediates cancer cell proliferation and promotes resistance toward chemotherapy through epigenetic modifications. As its complete mechanism of action is still unknown, there is no KDM5A specific drug available at clinical level. In the current study, lead compounds for KDM5A were determined through pharmacophore modeling and high-throughput virtual screening from Asinex libraries containing 0.5 million compounds. These virtual hits were further evaluated and filtered for ADMET properties. Finally, 726 compounds were used for docking analysis against KDM5A. On the basis of docking score, 10 top-ranked compounds were selected and further evaluated for non-central nervous system (CNS) and CNS drug-like properties. Among these compounds, N-{[(7-Methyl-4-oxo-1,2,3,4-tetrahydrocyclopenta [c] chromen-9-yl) oxy]acetyl}-l-phenylalanine (G-score: -11.363 kcal/mol) was estimated to exhibit non-CNS properties while 2-(3,4-Dimethoxy-phenyl)-7-methoxy-chromen-4-one (G-score: -7.977 kcal/mol) was evaluated as CNS compound. Docked complexes of both compounds were finally selected for molecular dynamic simulation to examine the stability. This study concluded that both these compounds can serve as lead compounds in the quest of finding therapeutic agents against KDM5A associated cancers.
Collapse
Affiliation(s)
- Asma Tariq
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Punjab, Pakistan
| | - Hafiz Muzzammel Rehman
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Punjab, Pakistan
| | - Rana Muhammad Mateen
- Department of Life sciences, School of Science, University of Management and Technology, Lahore, Punjab, Pakistan
| | - Moazzam Ali
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Punjab, Pakistan
| | - Zeeshan Mutahir
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Punjab, Pakistan
| | - Muhammad Sohail Afzal
- Department of Life sciences, School of Science, University of Management and Technology, Lahore, Punjab, Pakistan
| | - Muhammad Sajjad
- School of Biological Sciences, University of the Punjab, Lahore, Punjab, Pakistan
| | - Roquyya Gul
- Faculty of Life Sciences, Gulab Devi Educational Complex, Lahore, Punjab, Pakistan
| | - Mahjabeen Saleem
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Punjab, Pakistan
| |
Collapse
|
46
|
Alarcón T, Sardanyés J, Guillamon A, Menendez JA. Bivalent chromatin as a therapeutic target in cancer: An in silico predictive approach for combining epigenetic drugs. PLoS Comput Biol 2021; 17:e1008408. [PMID: 34153035 PMCID: PMC8248646 DOI: 10.1371/journal.pcbi.1008408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 07/01/2021] [Accepted: 04/26/2021] [Indexed: 11/28/2022] Open
Abstract
Tumour cell heterogeneity is a major barrier for efficient design of targeted anti-cancer therapies. A diverse distribution of phenotypically distinct tumour-cell subpopulations prior to drug treatment predisposes to non-uniform responses, leading to the elimination of sensitive cancer cells whilst leaving resistant subpopulations unharmed. Few strategies have been proposed for quantifying the variability associated to individual cancer-cell heterogeneity and minimizing its undesirable impact on clinical outcomes. Here, we report a computational approach that allows the rational design of combinatorial therapies involving epigenetic drugs against chromatin modifiers. We have formulated a stochastic model of a bivalent transcription factor that allows us to characterise three different qualitative behaviours, namely: bistable, high- and low-gene expression. Comparison between analytical results and experimental data determined that the so-called bistable and high-gene expression behaviours can be identified with undifferentiated and differentiated cell types, respectively. Since undifferentiated cells with an aberrant self-renewing potential might exhibit a cancer/metastasis-initiating phenotype, we analysed the efficiency of combining epigenetic drugs against the background of heterogeneity within the bistable sub-ensemble. Whereas single-targeted approaches mostly failed to circumvent the therapeutic problems represented by tumour heterogeneity, combinatorial strategies fared much better. Specifically, the more successful combinations were predicted to involve modulators of the histone H3K4 and H3K27 demethylases KDM5 and KDM6A/UTX. Those strategies involving the H3K4 and H3K27 methyltransferases MLL2 and EZH2, however, were predicted to be less effective. Our theoretical framework provides a coherent basis for the development of an in silico platform capable of identifying the epigenetic drugs combinations best-suited to therapeutically manage non-uniform responses of heterogenous cancer cell populations.
Collapse
Affiliation(s)
- Tomás Alarcón
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Centre de Recerca Matemàtica, Cerdanyola del Vallès, Spain
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | | | - Antoni Guillamon
- Centre de Recerca Matemàtica, Cerdanyola del Vallès, Spain
- Departament de Matemàtiques, EPSEB, Universitat Politècnica de Catalunya, Barcelona, Spain
- Institut de Matemàtiques de la UPC-BarcelonaTech (IMTech), Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Javier A. Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain
- Girona Biomedical Research Institute, Salt, Girona, Spain
| |
Collapse
|
47
|
You JH, Lee J, Roh JL. Mitochondrial pyruvate carrier 1 regulates ferroptosis in drug-tolerant persister head and neck cancer cells via epithelial-mesenchymal transition. Cancer Lett 2021; 507:40-54. [PMID: 33741422 DOI: 10.1016/j.canlet.2021.03.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023]
Abstract
Cancer cells evolve to survive as 'persister cells' resistant to various chemotherapeutic agents. Persister cancer cells retain mesenchymal traits that are vulnerable to ferroptosis by iron-dependent accumulation of lethal lipid peroxidation. Regulation of the KDM5A-MPC1 axis might shift cancer cells to have mesenchymal traits via epithelial-mesenchymal transition process. Therefore, we examined the therapeutic potentiality of KDM5A-MPC1 axis regulation in promoting ferroptosis in erlotinib-tolerant persister head and neck cancer cells (erPCC). ErPCC acquired mesenchymal traits and disabled antioxidant program that were more vulnerable to ferroptosis inducers of RSL3, ML210, sulfasalazine, and erastin. GPX4 and xCT suppression caused increased sensitivity to ferroptosis in vivo models of GPX4 genetic silencing. KDM5A expression increased and MPC1 expression decreased in erPCC. KDM5A inhibition increased MPC1 expression and decreased sensitivity to ferroptosis inducers in erPCC. MPC1 suppression increased vulnerability to ferroptosis in vitro and in vivo by retaining mesenchymal traits and glutaminolysis. Low expression of MPC1 was associated with low overall survival from the TCGA data. Our data suggest that regulation of the KDM5A-MPC1 axis contributes to promoting cancer ferroptosis susceptibility.
Collapse
Affiliation(s)
- Ji Hyeon You
- Department of Otorhinolaryngology-Head Neck Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Jaewang Lee
- Department of Otorhinolaryngology-Head Neck Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head Neck Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea.
| |
Collapse
|
48
|
Sterling J, Menezes SV, Abbassi RH, Munoz L. Histone lysine demethylases and their functions in cancer. Int J Cancer 2021; 148:2375-2388. [PMID: 33128779 DOI: 10.1002/ijc.33375] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/29/2022]
Abstract
Histone lysine demethylases (KDMs) are enzymes that remove the methylation marks on lysines in nucleosomes' histone tails. These changes in methylation marks regulate gene transcription during both development and malignant transformation. Depending on which lysine residue is targeted, the effect of a given KDM on gene transcription can be either activating or repressing, and KDMs can regulate the expression of both oncogenes and tumour suppressors. Thus, the functions of KDMs can be regarded as both oncogenic and tumour suppressive, contingent on cell context and the enzyme isoform. Finally, KDMs also demethylate nonhistone proteins and have a variety of demethylase-independent functions. These epigenetic and other mechanisms that KDMs control make them important regulators of malignant tumours. Here, we present an overview of eight KDM subfamilies, their most-studied lysine targets and selected recent data on their roles in cancer stem cells, tumour aggressiveness and drug tolerance.
Collapse
Affiliation(s)
- Jayden Sterling
- School of Medical Sciences and Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Sharleen V Menezes
- School of Medical Sciences and Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Ramzi H Abbassi
- School of Medical Sciences and Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Lenka Munoz
- School of Medical Sciences and Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
49
|
Oner E, Kotmakci M, Baird AM, Gray SG, Debelec Butuner B, Bozkurt E, Kantarci AG, Finn SP. Development of EphA2 siRNA-loaded lipid nanoparticles and combination with a small-molecule histone demethylase inhibitor in prostate cancer cells and tumor spheroids. J Nanobiotechnology 2021; 19:71. [PMID: 33685469 PMCID: PMC7938557 DOI: 10.1186/s12951-021-00781-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/22/2021] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND siRNAs hold a great potential for cancer therapy, however, poor stability in body fluids and low cellular uptake limit their use in the clinic. To enhance the bioavailability of siRNAs in tumors, novel, safe, and effective carriers are needed. RESULTS Here, we developed cationic solid lipid nanoparticles (cSLNs) to carry siRNAs targeting EphA2 receptor tyrosine kinase (siEphA2), which is overexpressed in many solid tumors including prostate cancer. Using DDAB cationic lipid instead of DOTMA reduced nanoparticle size and enhanced both cellular uptake and gene silencing in prostate cancer cells. DDAB-cSLN showed better cellular uptake efficiency with similar silencing compared to commercial transfection reagent (Dharmafect 2). After verifying the efficacy of siEphA2-loaded nanoparticles, we further evaluated a potential combination with a histone lysine demethylase inhibitor, JIB-04. Silencing EphA2 by siEphA2-loaded DDAB-cSLN did not affect the viability (2D or 3D culture), migration, nor clonogenicity of PC-3 cells alone. However, upon co-administration with JIB-04, there was a decrease in cellular responses. Furthermore, JIB-04 decreased EphA2 expression, and thus, silencing by siEphA2-loaded nanoparticles was further increased with co-treatment. CONCLUSIONS We have successfully developed a novel siRNA-loaded lipid nanoparticle for targeting EphA2. Moreover, preliminary results of the effects of JIB-04, alone and in combination with siEphA2, on prostate cancer cells and prostate cancer tumor spheroids were presented for the first time. Our delivery system provides high transfection efficiency and shows great promise for targeting other genes and cancer types in further in vitro and in vivo studies.
Collapse
Affiliation(s)
- Ezgi Oner
- Department of Histopathology and Morbid Anatomy, Sir Patrick Dun Translational Research Lab, St. James's Hospital, Dublin, Ireland.,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey.,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Izmir Katip Celebi University, Balatcik, Izmir, Turkey
| | - Mustafa Kotmakci
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey
| | - Anne-Marie Baird
- Department of Histopathology and Morbid Anatomy, Sir Patrick Dun Translational Research Lab, St. James's Hospital, Dublin, Ireland.,Thoracic Oncology Research Group, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland.,Department of Clinical Medicine, Trinity College Dublin, Dublin, Ireland
| | - Steven G Gray
- Thoracic Oncology Research Group, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland.,Department of Clinical Medicine, Trinity College Dublin, Dublin, Ireland
| | - Bilge Debelec Butuner
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey
| | - Emir Bozkurt
- Department of Genetics and Bioengineering, Faculty of Engineering, Izmir University of Economics, Balcova, Izmir, Turkey
| | - Ayse Gulten Kantarci
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey
| | - Stephen P Finn
- Department of Histopathology and Morbid Anatomy, Sir Patrick Dun Translational Research Lab, St. James's Hospital, Dublin, Ireland. .,Thoracic Oncology Research Group, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland. .,Department of Histopathology, Labmed Directorate, St. James's Hospital, Dublin, Ireland. .,Cancer Molecular Diagnostics, Labmed Directorate, St. James's Hospital, Dublin, Ireland.
| |
Collapse
|
50
|
Ma YS, Wu TM, Qian B, Liu YS, Ding H, Fan MM, Liu JB, Yu F, Wang HM, Shi Y, Gu LP, Li L, Tian LL, Wang PY, Wang GR, Wu ZJ, Zou QF, Ling CC, Fu D. KDM5A silencing transcriptionally suppresses the FXYD3-PI3K/AKT axis to inhibit angiogenesis in hepatocellular cancer via miR-433 up-regulation. J Cell Mol Med 2021; 25:4040-4052. [PMID: 33621431 PMCID: PMC8051710 DOI: 10.1111/jcmm.16371] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 01/17/2021] [Accepted: 02/01/2021] [Indexed: 01/06/2023] Open
Abstract
Hepatocellular cancer (HCC) has been reported to belong to one of the highly vascularized solid tumours accompanied with angiogenesis of human umbilical vein endothelial cells (HUVECs). KDM5A, an attractive drug target, plays a critical role in diverse physiological processes. Thus, this study aims to investigate its role in angiogenesis and underlying mechanisms in HCC. ChIP‐qPCR was utilized to validate enrichment of H3K4me3 and KDM5A on the promotor region of miR‐433, while dual luciferase assay was carried out to confirm the targeting relationship between miR‐433 and FXYD3. Scratch assay, transwell assay, Edu assay, pseudo‐tube formation assay and mice with xenografted tumours were conducted to investigate the physiological function of KDM5A‐miR‐433‐FXYD3‐PI3K‐AKT axis in the progression of HCC after loss‐ and gain‐function assays. KDM5A p‐p85 and p‐AKT were highly expressed but miR‐433 was down‐regulated in HCC tissues and cell lines. Depletion of KDM5A led to reduced migrative, invasive and proliferative capacities in HCC cells, including growth and a lowered HUVEC angiogenic capacity in vitro. Furthermore, KDM5A suppressed the expression of miR‐433 by demethylating H3K4me3 on its promoterregion. miR‐433 negatively targeted FXYD3. Depleting miR‐433 or re‐expressing FXYD3 restores the reduced migrative, invasive and proliferative capacities, and lowers the HUVEC angiogenic capacity caused by silencing KDM5A. Therefore, KDM5A silencing significantly suppresses HCC tumorigenesis in vivo, accompanied with down‐regulated miR‐433 and up‐regulated FXYD3‐PI3K‐AKT axis in tumour tissues. Lastly, KDM5A activates the FXYD3‐PI3K‐AKT axis to enhance angiogenesis in HCC by suppressing miR‐433.
Collapse
Affiliation(s)
- Yu-Shui Ma
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Radiology, The Forth Affiliated Hospital of Anhui Medical University, Hefei, China.,Cancer Institute, Nantong Tumor Hospital, Nantong, China
| | - Ting-Miao Wu
- Department of Radiology, The Forth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bin Qian
- Department of General Surgery, Shanghai Eighth People's Hospital, Shanghai, China
| | - Yu-Shan Liu
- Department of Pathology, Nantong Tumor Hospital, Nantong, China
| | - Hua Ding
- Department of Radiotherapy, Nantong Tumor Hospital, Nantong, China
| | - Ming-Ming Fan
- Department of Biliary Surgery IV, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Ji-Bin Liu
- Cancer Institute, Nantong Tumor Hospital, Nantong, China
| | - Fei Yu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui-Min Wang
- Cancer Institute, Nantong Tumor Hospital, Nantong, China
| | - Yi Shi
- Cancer Institute, Nantong Tumor Hospital, Nantong, China
| | - Li-Peng Gu
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liu Li
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lin-Lin Tian
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Pei-Yao Wang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Gao-Ren Wang
- Department of Radiotherapy, Nantong Tumor Hospital, Nantong, China
| | - Zhi-Jun Wu
- Department of Oncology, Nantong Second People's Hospital, Nantong, China
| | - Qi-Fei Zou
- Department of Biliary Surgery IV, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Chang-Chun Ling
- Department of General Surgery, The Affiliated Hospital of Nantong University, Nantong, China
| | - Da Fu
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Radiology, The Forth Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|