1
|
Hynes MC, Watling CZ, Dunneram Y, Key TJ, Perez-Cornago A. Associations of body composition measures with circulating insulin-like growth factor-I, testosterone, and sex hormone-binding globulin concentrations in 16,000 men. Int J Obes (Lond) 2024:10.1038/s41366-024-01633-0. [PMID: 39433891 DOI: 10.1038/s41366-024-01633-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND Adiposity is positively associated with risk of some cancer sites and other health conditions in men; however, it is unclear if endogenous hormones play a role in these associations. We examined how body composition, measured from magnetic resonance imaging (MRI) and common measures of adiposity (e.g., body mass index (BMI)), are related to hormone concentrations in men from the UK Biobank study. METHODS Up to 16,237 men with available body composition data (including visceral, subcutaneous, and liver fat, muscle fat infiltration (MFI), lean tissue, and common adiposity measures) and serum hormone measurements (insulin-like growth factor-I (IGF-I), total testosterone, sex hormone-binding globulin (SHBG), and calculated free testosterone) were included. Multivariable-adjusted linear regression models were used to determine the geometric mean hormone and SHBG concentrations across categories of each exposure. RESULTS Common measurements of adiposity were highly correlated with MRI measures of central and total adiposity (r = 0.76-0.91), although correlations with ectopic fat (liver fat and MFI) were lower (r = 0.43-0.54). Most adiposity measurements showed an inverse U- or J-shaped association with circulating IGF-I and free testosterone; however, MFI was linearly inversely associated, and lean tissue volume was positively associated with both IGF-I and free testosterone concentrations. All body composition measures were inversely associated with total testosterone and SHBG concentrations (relative geometric mean difference between Q5 vs. Q1: 20-30%). CONCLUSION Our results show that common adiposity and most MRI measures of adiposity relate similarly to serum hormone concentrations; however, associations with ectopic fat (particularly MFI) and lean tissue were different.
Collapse
Affiliation(s)
- Matthew C Hynes
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK.
| | - Cody Z Watling
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Yashvee Dunneram
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Timothy J Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Aurora Perez-Cornago
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Rauzier C, Chartrand DJ, Alméras N, Lemieux I, Larose E, Mathieu P, Pibarot P, Lamarche B, Rhéaume C, Poirier P, Després JP, Picard F. Combination of Waist Circumference and Circulating Levels of IGFBP-2 as a Simple Screening Tool for Early Detection of Metabolic Dysfunction-Associated Steatotic Liver Disease. Diabetes Metab Syndr Obes 2024; 17:3335-3341. [PMID: 39252871 PMCID: PMC11382664 DOI: 10.2147/dmso.s466051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/06/2024] [Indexed: 09/11/2024] Open
Abstract
Optimal non-invasive biomarkers for metabolic dysfunction-associated steatotic liver disease (MASLD) remain elusive, especially in the detection of early stages. This study tested in an asymptomatic cohort of 171 men (49.2 ± 8.6 years) and 131 women (51.8 ± 8.5 years) whether waist circumference (WC) and circulating levels of insulin-like growth factor-binding protein 2 (IGFBP-2) could identify individuals with liver fat >5% as assessed by magnetic resonance spectroscopy. Participants with high WC (> 85 or 90 cm for women and men, respectively) and low IGFBP-2 (< 260 or 230 ng/mL for women and men, respectively) were characterized by a higher risk of having MASLD (46.3%, p < 0.0001). Among the 68 individuals with MASLD, 73.5% fell into the subgroup with high WC and low IGFBP-2 concentrations (p < 0.0001). When combined, these markers reached a sensitivity of 73.5% and specificity of 75.2% for MASLD. Thus, WC and plasma IGFBP-2 levels might be useful as a novel, simple, and non-invasive index to support existing tools in the identification of individuals at risk of early-stage MASLD.
Collapse
Affiliation(s)
- Chloé Rauzier
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ) - Université Laval, Québec, QC, Canada
- Faculté de pharmacie, Université Laval, Québec, QC, Canada
| | - Dominic J Chartrand
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ) - Université Laval, Québec, QC, Canada
- Département de kinésiologie, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Natalie Alméras
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ) - Université Laval, Québec, QC, Canada
- Département de kinésiologie, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Isabelle Lemieux
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ) - Université Laval, Québec, QC, Canada
| | - Eric Larose
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ) - Université Laval, Québec, QC, Canada
- Département de médecine, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Patrick Mathieu
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ) - Université Laval, Québec, QC, Canada
- Département de chirurgie, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Philippe Pibarot
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ) - Université Laval, Québec, QC, Canada
- Département de médecine, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Benoît Lamarche
- Centre Nutrition, santé et société (NUTRISS), Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec, QC, Canada
- École de nutrition, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada
| | - Caroline Rhéaume
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ) - Université Laval, Québec, QC, Canada
- Département de médecine familiale et de médecine d'urgence, Faculté de médecine, Université Laval, Québec, QC, Canada
- VITAM - Centre de recherche en santé durable, Québec, QC, Canada
| | - Paul Poirier
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ) - Université Laval, Québec, QC, Canada
- Faculté de pharmacie, Université Laval, Québec, QC, Canada
| | - Jean-Pierre Després
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ) - Université Laval, Québec, QC, Canada
- Département de kinésiologie, Faculté de médecine, Université Laval, Québec, QC, Canada
- VITAM - Centre de recherche en santé durable, Québec, QC, Canada
| | - Frédéric Picard
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ) - Université Laval, Québec, QC, Canada
- Faculté de pharmacie, Université Laval, Québec, QC, Canada
| |
Collapse
|
3
|
Cheng TS, Noor U, Watts E, Pollak M, Wang Y, McKay J, Atkins J, Masala G, Sánchez MJ, Agudo A, Castilla J, Aune D, Colorado-Yohar SM, Manfredi L, Gunter MJ, Pala V, Josefsson A, Key TJ, Smith-Byrne K, Travis RC. Circulating free insulin-like growth factor-I and prostate cancer: a case-control study nested in the European prospective investigation into cancer and nutrition. BMC Cancer 2024; 24:676. [PMID: 38831273 PMCID: PMC11145848 DOI: 10.1186/s12885-023-11425-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/20/2023] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Circulating total insulin-like growth factor-I (IGF-I) is an established risk factor for prostate cancer. However, only a small proportion of circulating IGF-I is free or readily dissociable from IGF-binding proteins (its bioavailable form), and few studies have investigated the association of circulating free IGF-I with prostate cancer risk. METHODS We analyzed data from 767 prostate cancer cases and 767 matched controls nested within the European Prospective Investigation into Cancer and Nutrition cohort, with an average of 14-years (interquartile range = 2.9) follow-up. Matching variables were study center, length of follow-up, age, and time of day and fasting duration at blood collection. Circulating free IGF-I concentration was measured in serum samples collected at recruitment visit (mean age 55 years old; standard deviation = 7.1) using an enzyme-linked immunosorbent assay (ELISA). Conditional logistic regressions were performed to examine the associations of free IGF-I with risk of prostate cancer overall and subdivided by time to diagnosis (≤ 14 and > 14 years), and tumor characteristics. RESULTS Circulating free IGF-I concentrations (in fourths and as a continuous variable) were not associated with prostate cancer risk overall (odds ratio [OR] = 1.00 per 0.1 nmol/L increment, 95% CI: 0.99, 1.02) or by time to diagnosis, or with prostate cancer subtypes, including tumor stage and histological grade. CONCLUSIONS Estimated circulating free IGF-I was not associated with prostate cancer risk. Further research may consider other assay methods that estimate bioavailable IGF-I to provide more insight into the well-substantiated association between circulating total IGF-I and subsequent prostate cancer risk.
Collapse
Affiliation(s)
- Tuck Seng Cheng
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Oxford, OX3 7LF, UK
| | - Urwah Noor
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Oxford, OX3 7LF, UK
| | - Eleanor Watts
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Michael Pollak
- Oncology Department, McGill University and Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada
| | - Ye Wang
- Oncology Department, McGill University and Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada
| | - James McKay
- Genomic Epidemiology Branch, International Agency for Research on Cancer, Lyon, France
| | - Joshua Atkins
- Genomic Epidemiology Branch, International Agency for Research on Cancer, Lyon, France
| | - Giovanna Masala
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Maria-Jose Sánchez
- Escuela Andaluza de Salud Pública (EASP), Granada, 18011, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, 28029, Spain
- Department of Preventive Medicine and Public Health, University of Granada, Granada, 18071, Spain
| | - Antonio Agudo
- Unit of Nutrition and Cancer, Catalan Institute of Oncology - ICO, L'Hospitalet de Llobregat, Barcelona, Spain
- Nutrition and Cancer Group; Epidemiology, Public Health, Cancer Prevention and Palliative Care Program; Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jesús Castilla
- Instituto de Salud Pública de Navarra - IdiSNA, Pamplona, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Dagfinn Aune
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Nutrition, Oslo New University College, Oslo, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital Ullevå, Oslo, Norway
| | - Sandra M Colorado-Yohar
- Department of Epidemiology, Murcia Regional Health Council-IMIB, Murcia, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Research Group on Demography and Health, National Faculty of Public Health, University of Antioquia, Medellín, Colombia
| | - Luca Manfredi
- Centre for Biostatistics, Epidemiology, and Public Health (C-BEPH), Department of Clinical and Biological Sciences, University of Turin, Orbassano, TO, Italy
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC- WHO), Lyon, France
| | - Valeria Pala
- Epidemiology and Prevention Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Andreas Josefsson
- Department of Urology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Center for Molecular Medicin, Umeå University, Umeå, Sweden
- Department of Urology and Andrology, Institute of surgery and perioperative Sciences, Umeå University, Umeå, Sweden
| | - Timothy J Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Oxford, OX3 7LF, UK
| | - Karl Smith-Byrne
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Oxford, OX3 7LF, UK
| | - Ruth C Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Oxford, OX3 7LF, UK.
| |
Collapse
|
4
|
Mathew Thomas V, Chigarira B, Gebrael G, Sayegh N, Tripathi N, Nussenzveig R, Jo Y, Dal E, Galarza Fortuna G, Li H, Sahu KK, Srivastava A, Maughan BL, Agarwal N, Swami U. Differential Tumor Gene Expression Profiling of Patients With Prostate Adenocarcinoma on the Basis of BMI. JCO Precis Oncol 2024; 8:e2300574. [PMID: 38781543 DOI: 10.1200/po.23.00574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/23/2023] [Accepted: 03/18/2024] [Indexed: 05/25/2024] Open
Abstract
PURPOSE An increased BMI is linked to increased prostate adenocarcinoma incidence and mortality. Baseline tumor gene expression profiling (GEP) can provide a comprehensive picture of the biological processes related to treatment response and disease progression. We interrogate and validate the underlying differences in tumor GEP on the basis of BMI in patients with prostate adenocarcinoma. METHODS The inclusion criteria consisted of histologically confirmed prostate adenocarcinoma and the availability of RNA sequencing data obtained from treatment-naïve primary prostate tissue. RNA sequencing was performed by a Clinical Laboratory Improvement Amendments-certified laboratory (Tempus or Caris Life Sciences). The Tempus cohort was used for interrogation and the Caris cohort for validation. Patients were stratified on the basis of BMI at the time of prostate cancer diagnosis: BMI-high (BMIH; BMI ≥30) and BMI-low (BMIL; BMI <30). Differential gene expression analysis between the two cohorts was conducted using the DEseq2 pipeline. The resulting GEPs were further analyzed using Gene Set Enrichment software to identify pathways that exhibited enrichment in each cohort. RESULTS Overall, 102 patients were eligible, with 60 patients in the Tempus cohort (BMIL = 38, BMIH = 22) and 42 patients in the Caris cohort (BMIL = 24, BMIH = 18). Tumor tissues obtained from patients in the BMIL group exhibited higher expression of genes associated with inflammation pathways. BMIH displayed increased expression of genes involved in pathways such as heme metabolism and androgen response. CONCLUSION Our study shows the upregulation of distinct genomic pathways in BMIL compared with BMIH patients with prostate cancer. These hypothesis-generating data could explain different survival outcomes in both groups and guide personalized therapy for men with prostate cancer.
Collapse
Affiliation(s)
- Vinay Mathew Thomas
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Beverly Chigarira
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Georges Gebrael
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Nicolas Sayegh
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Nishita Tripathi
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Roberto Nussenzveig
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Yeonjung Jo
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT
| | - Emre Dal
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Gliceida Galarza Fortuna
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Haoran Li
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Cancer Center, Westwood, KS
| | - Kamal Kant Sahu
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Ayana Srivastava
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Benjamin L Maughan
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Neeraj Agarwal
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Umang Swami
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| |
Collapse
|
5
|
Villumsen BR, Frystyk J, Jørgensen MG, Hørdam B, Borre M. Exergaming Improves Cardiac Risk Factors in Prostate Cancer Patients: A Single-Blinded Randomized Controlled Trial. Games Health J 2024; 13:93-99. [PMID: 37917926 DOI: 10.1089/g4h.2023.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023] Open
Abstract
Purpose: Androgen deprivation therapy (ADT) may induce unfavorable changes in metabolic outcomes, insulin sensitivity, insulin-like growth factors (IGFs), and in serum levels of adipocyte-derived hormones. In this preplanned randomized ancillary study, we aimed to investigate the ability of exercise to counteract alterations in triglyceride, cholesterol, waist circumference, and insulin caused by ADT in men with locally advanced and metastatic prostate cancer (PCa). Materials and Methods: Forty-six PCa patients undergoing treatment were randomized to 12 weeks of 180 minutes of weekly unsupervised home-based exergaming or usual care. Blood glucose, lipids, cholesterol, adiponectin, leptin, insulin sensitivity, and the insulin growth factor axis were measured at baseline, and after 12 and 24 weeks. Biomarkers were analyzed using a linear mixed-effect model of the difference between the groups from baseline to week 24. In addition, blood pressure, body mass index, body weight, and waist circumference were measured at baseline and after 12 weeks/end of intervention and analyzed using adjusted linear regression analysis. Results: After 24 weeks, a significant difference was seen between the intervention and usual care groups in plasma triglyceride (diff: 0.5 mmol/L, P = 0.02) and high-density lipoprotein (HDL; diff: 0.2 mmol/L, P = 0.01) favoring the intervention group, whereas IGF-binding protein-3 (diff: 148 μg/L, P = 0.01) favored the usual care group. The remaining outcomes were unaffected. Conclusion: Improvement in HDL cholesterol could be used as a primary biomarker in future randomized controlled trials investigating the cardiovascular protecting properties of exergaming.
Collapse
Affiliation(s)
- Brigitta R Villumsen
- Department of Urology, Gødstrup Hospital, Herning, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus C, Denmark
| | - Jan Frystyk
- Medical Research Laboratory, Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus C, Denmark
- Department of Endocrinology, Odense University Hospital & Institute of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense C, Denmark
| | - Martin Grønbech Jørgensen
- Department of Geriatrics, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, The Faculty of Medicine, Aalborg University, Denmark
| | - Britta Hørdam
- Department of Political Science, University of Copenhagen, København, Denmark
| | - Michael Borre
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus C, Denmark
- Department of Urology, Aarhus University Hospital, Aarhus N, Denmark
| |
Collapse
|
6
|
Watts EL, Moore SC, Gunter MJ, Chatterjee N. Adiposity and cancer: meta-analysis, mechanisms, and future perspectives. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.16.24302944. [PMID: 38405761 PMCID: PMC10889047 DOI: 10.1101/2024.02.16.24302944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Obesity is a recognised risk factor for many cancers and with rising global prevalence, has become a leading cause of cancer. Here we summarise the current evidence from both population-based epidemiologic investigations and experimental studies on the role of obesity in cancer development. This review presents a new meta-analysis using data from 40 million individuals and reports positive associations with 19 cancer types. Utilising major new data from East Asia, the meta-analysis also shows that the strength of obesity and cancer associations varies regionally, with stronger relative risks for several cancers in East Asia. This review also presents current evidence on the mechanisms linking obesity and cancer and identifies promising future research directions. These include the use of new imaging data to circumvent the methodological issues involved with body mass index and the use of omics technologies to resolve biologic mechanisms with greater precision and clarity.
Collapse
Affiliation(s)
- Eleanor L Watts
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Shady Grove, MD, USA
| | - Steven C Moore
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Shady Grove, MD, USA
| | - Marc J Gunter
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Nilanjan Chatterjee
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, USA
| |
Collapse
|
7
|
Perez-Cornago A, Dunneram Y, Watts EL, Key TJ, Travis RC. Adiposity and risk of prostate cancer death: a prospective analysis in UK Biobank and meta-analysis of published studies. BMC Med 2022; 20:143. [PMID: 35509091 PMCID: PMC9069769 DOI: 10.1186/s12916-022-02336-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/14/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The association of adiposity with prostate cancer specific mortality remains unclear. We examined how adiposity relates to fatal prostate cancer and described the cross-sectional associations of commonly used adiposity measurements with adiposity estimated by imaging in UK Biobank. We also conducted a dose-response meta-analysis to integrate the new data with existing prospective evidence. METHODS 218,237 men from UK Biobank who were free from cancer at baseline were included. Body mass index (BMI), total body fat percentage (using bioimpedance), waist circumference (WC) and waist-to-hip ratio (WHR) were collected at recruitment. Risk of dying from prostate cancer (primary cause) by the different adiposity measurements was estimated using multivariable-adjusted Cox proportional hazards models. Results from this and other prospective cohort studies were combined in a dose-response meta-analysis. RESULTS In UK Biobank, 661 men died from prostate cancer over a mean follow-up of 11.6 years. In the subsample of participants with magnetic resonance imaging and dual-energy X-ray absorptiometry, BMI, body fat percentage and WC were strongly associated with imaging estimates of total and central adiposity (e.g. visceral fat, trunk fat). The hazard ratios (HR) for prostate cancer death were 1.07 (95% confidence interval = 0.97-1.17) per 5 kg/m2 higher BMI, 1.00 (0.94-1.08) per 5% increase in total body fat percentage, 1.06 (0.99-1.14) per 10 cm increase in WC and 1.07 (1.01-1.14) per 0.05 increase in WHR. Our meta-analyses of prospective studies included 19,633 prostate cancer deaths for BMI, 670 for body fat percentage, 3181 for WC and 1639 for WHR, and the combined HRs for dying from prostate cancer for the increments above were 1.10 (1.07-1.12), 1.03 (0.96-1.11), 1.07 (1.03-1.11), and 1.06 (1.01-1.10), respectively. CONCLUSION Overall, we found that men with higher total and central adiposity had similarly higher risks of prostate cancer death, which may be biologically driven and/or due to differences in detection. In either case, these findings support the benefit for men of maintaining a healthy body weight.
Collapse
Affiliation(s)
- Aurora Perez-Cornago
- Nuffield Department of Population Health, Cancer Epidemiology Unit, University of Oxford, OX3 7LF Oxford, UK
| | - Yashvee Dunneram
- Nuffield Department of Population Health, Cancer Epidemiology Unit, University of Oxford, OX3 7LF Oxford, UK
| | - Eleanor L. Watts
- Nuffield Department of Population Health, Cancer Epidemiology Unit, University of Oxford, OX3 7LF Oxford, UK
| | - Timothy J. Key
- Nuffield Department of Population Health, Cancer Epidemiology Unit, University of Oxford, OX3 7LF Oxford, UK
| | - Ruth C. Travis
- Nuffield Department of Population Health, Cancer Epidemiology Unit, University of Oxford, OX3 7LF Oxford, UK
| |
Collapse
|
8
|
Noren Hooten N, Pacheco NL, Smith JT, Evans MK. The accelerated aging phenotype: The role of race and social determinants of health on aging. Ageing Res Rev 2022; 73:101536. [PMID: 34883202 PMCID: PMC10862389 DOI: 10.1016/j.arr.2021.101536] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 11/12/2021] [Accepted: 12/03/2021] [Indexed: 02/06/2023]
Abstract
The pursuit to discover the fundamental biology and mechanisms of aging within the context of the physical and social environment is critical to designing interventions to prevent and treat its complex phenotypes. Aging research is critically linked to understanding health disparities because these inequities shape minority aging, which may proceed on a different trajectory than the overall population. Health disparities are characteristically seen in commonly occurring age-associated diseases such as cardiovascular and cerebrovascular disease as well as diabetes mellitus and cancer. The early appearance and increased severity of age-associated disease among African American and low socioeconomic status (SES) individuals suggests that the factors contributing to the emergence of health disparities may also induce a phenotype of 'premature aging' or 'accelerated aging' or 'weathering'. In marginalized and low SES populations with high rates of early onset age-associated disease the interaction of biologic, psychosocial, socioeconomic and environmental factors may result in a phenotype of accelerated aging biologically similar to premature aging syndromes with increased susceptibility to oxidative stress, premature accumulation of oxidative DNA damage, defects in DNA repair and higher levels of biomarkers of oxidative stress and inflammation. Health disparities, therefore, may be the end product of this complex interaction in populations at high risk. This review will examine the factors that drive both health disparities and the accelerated aging phenotype that ultimately contributes to premature mortality.
Collapse
Affiliation(s)
- Nicole Noren Hooten
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Natasha L Pacheco
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Jessica T Smith
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Michele K Evans
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA.
| |
Collapse
|
9
|
Watts EL, Perez-Cornago A, Doherty A, Allen NE, Fensom GK, Tin Tin S, Key TJ, Travis RC. Physical activity in relation to circulating hormone concentrations in 117,100 men in UK Biobank. Cancer Causes Control 2021; 32:1197-1212. [PMID: 34216337 PMCID: PMC8492588 DOI: 10.1007/s10552-021-01466-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/14/2021] [Indexed: 02/04/2023]
Abstract
PURPOSE Physical activity may reduce the risk of some types of cancer in men. Biological mechanisms may involve changes in hormone concentrations; however, this relationship is not well established. Therefore, we aimed to investigate the associations of physical activity with circulating insulin-like growth factor-I (IGF-I), sex hormone-binding globulin (SHBG, which modifies sex hormone activity), and total and free testosterone concentrations, and the extent these associations might be mediated by body mass index (BMI). METHODS Circulating concentrations of these hormones and anthropometric measurements and self-reported physical activity data were available for 117,100 healthy male UK Biobank participants at recruitment. Objectively measured accelerometer physical activity levels were also collected on average 5.7 years after recruitment in 28,000 men. Geometric means of hormone concentrations were estimated using multivariable-adjusted analysis of variance, with and without adjustment for BMI. RESULTS The associations between physical activity and hormones were modest and similar for objectively measured (accelerometer) and self-reported physical activity. Compared to men with the lowest objectively measured physical activity, men with high physical activity levels had 14% and 8% higher concentrations of SHBG and total testosterone, respectively, and these differences were attenuated to 6% and 3% following adjustment for BMI. CONCLUSION Our results suggest that the associations of physical activity with the hormones investigated are, at most, modest; and following adjustment for BMI, the small associations with SHBG and total testosterone were largely attenuated. Therefore, it is unlikely that changes in these circulating hormones explain the associations of physical activity with risk of cancer either independently or via BMI.
Collapse
Affiliation(s)
- Eleanor L Watts
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Oxford, OX3 7LF, UK.
| | - Aurora Perez-Cornago
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Oxford, OX3 7LF, UK
| | - Aiden Doherty
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Naomi E Allen
- UK Biobank Ltd, Cheadle, Stockport, UK
- National Institute of Health Research Oxford Biomedical Research Centre, Oxford, UK
| | - Georgina K Fensom
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Oxford, OX3 7LF, UK
| | - Sandar Tin Tin
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Oxford, OX3 7LF, UK
| | - Timothy J Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Oxford, OX3 7LF, UK
| | - Ruth C Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Oxford, OX3 7LF, UK
| |
Collapse
|
10
|
Li Q, Liu Y, Sun X, Li H, Cheng C, Liu L, Liu F, Zhou Q, Guo C, Tian G, Qie R, Han M, Huang S, Li L, Wang B, Zhao Y, Ren Y, Zhang M, Hu D, Wu J, Lu J. Dose-response association between adult height and all-cause mortality: a systematic review and meta-analysis of cohort studies. Eur J Public Health 2021; 31:652-658. [PMID: 33236090 DOI: 10.1093/eurpub/ckaa213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND We conducted a systematic review and meta-analysis from published cohort studies to examine the association of adult height and all-cause mortality and to further explore the dose-response association. METHODS PubMed, The Cochrane Library, The Ovid, CNKI, CQVIP and Wanfang databases were searched for articles published from database inception to 6 February 2018. We used the DerSimonian-Laird random-effects model to estimate the quantitative association between adult height and all-cause mortality and the restricted cubic splines to model the dose-response association. RESULTS We included 15 articles, with 1 533 438 death events and 2 854 543 study participants. For each 5-cm height increase below the average, the risk of all-cause mortality was reduced by 7% [relative risk (RR) = 0.93, 95% confidence interval (CI), 0.89-0.97] for men and 5% (RR = 0.95, 95% CI, 0.90-0.99) for women. All-cause mortality had a U-shaped association with adult height, the lowest risk occurring at 174 cm for men and 158 cm for women (both Pnonlinearity < 0.001). Relative to the shortest adult height (147 cm for men and 137 cm for women), men at 174 cm had a 47% lower likelihood of all-cause mortality and women at 158 cm a 33% lower risk of all-cause mortality. CONCLUSIONS Our study suggests that the relation between adult height and all-cause mortality is approximately U-shaped in both men and women.
Collapse
Affiliation(s)
- Quanman Li
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yu Liu
- Study Team of Shenzhen's Sanming Project, The Affiliated Luohu Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - Xizhuo Sun
- Study Team of Shenzhen's Sanming Project, The Affiliated Luohu Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - Honghui Li
- Study Team of Shenzhen's Sanming Project, The Affiliated Luohu Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - Cheng Cheng
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Leilei Liu
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Feiyan Liu
- Department of Preventive Medicine, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - Qionggui Zhou
- Department of Preventive Medicine, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - Chunmei Guo
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Gang Tian
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Ranran Qie
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Minghui Han
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Shengbing Huang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Linlin Li
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Bingyuan Wang
- Institute for the Prevention and Treatment of Chronic Non-communicable Diseases, Henan Provincial Center for Disease Control and Prevention, Zhengzhou, Henan, People's Republic of China
| | - Yang Zhao
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yongcheng Ren
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Ming Zhang
- Department of Preventive Medicine, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - Dongsheng Hu
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Jian Wu
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Jie Lu
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
11
|
Watling CZ, Kelly RK, Tong TYN, Piernas C, Watts EL, Tin Tin S, Knuppel A, Schmidt JA, Travis RC, Key TJ, Perez-Cornago A. Associations of circulating insulin-like growth factor-I with intake of dietary proteins and other macronutrients. Clin Nutr 2021; 40:4685-4693. [PMID: 34237695 PMCID: PMC8345002 DOI: 10.1016/j.clnu.2021.04.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/12/2021] [Accepted: 04/10/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND & AIMS Circulating insulin-like growth factor-I (IGF-I) is associated with the risk of several cancers. Dietary protein intake, particularly dairy protein, may increase circulating IGF-I; however, associations with different protein sources, other macronutrients, and fibre are inconclusive. To investigate the associations between intake of protein, macronutrients and their sources, fibre, and alcohol with serum IGF-I concentrations. METHODS A total of 11,815 participants from UK Biobank who completed ≥4 24-h dietary assessments and had serum IGF-I concentrations measured at baseline were included. Multivariable linear regression was used to assess the cross-sectional associations of macronutrient and fibre intake with circulating IGF-I concentrations. RESULTS Circulating IGF-I concentrations were positively associated with intake of total protein (per 2.5% higher energy intake: 0.56 nmol/L (95% confidence interval: 0.47, 0.66)), milk protein: 1.20 nmol/L (0.90, 1.51), and yogurt protein: 1.33 nmol/L (0.79, 1.86), but not with cheese protein: -0.07 nmol/L (-0.40, 0.25). IGF-I concentrations were also positively associated with intake of fibre (per 5 g/day higher intake: 0.46 nmol/L (0.35, 0.57)) and starch from wholegrains (Q5 vs. Q1: 1.08 nmol/L (0.77, 1.39)), and inversely associated with alcohol consumption (>40 g/day vs <1 g/day: -1.36 nmol/L (-1.00, -1.71)). CONCLUSIONS These results show differing associations with IGF-I concentrations depending on the source of dairy protein, with positive associations with milk and yogurt protein intake but no association with cheese protein. The positive association of fibre and starch from wholegrains with IGF-I warrants further investigation.
Collapse
Affiliation(s)
- Cody Z Watling
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom.
| | - Rebecca K Kelly
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Tammy Y N Tong
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Carmen Piernas
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - Eleanor L Watts
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Sandar Tin Tin
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Anika Knuppel
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Julie A Schmidt
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Ruth C Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Timothy J Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Aurora Perez-Cornago
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
12
|
Insulin-Like Growth Factor-II and Ischemic Stroke-A Prospective Observational Study. Life (Basel) 2021; 11:life11060499. [PMID: 34072372 PMCID: PMC8230196 DOI: 10.3390/life11060499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/25/2022] Open
Abstract
Insulin-like growth factor-II (IGF-II) regulates prenatal brain development, but the role in adult brain function and injury is unclear. Here, we determined whether serum levels of IGF-II (s-IGF-II) are associated with mortality and functional outcome after ischemic stroke (IS). The study population comprised ischemic stroke cases (n = 492) and controls (n = 514) from the Sahlgrenska Academy Study on Ischemic Stroke (SAHLSIS). Functional outcome was evaluated after 3 months and 2 years using the modified Rankin Scale (mRS), and additionally, survival was followed at a minimum of 7 years or until death. S-IGF-II levels were higher in IS cases both in the acute phase and at 3-month follow-up compared to controls (p < 0.05 and p < 0.01, respectively). The lowest quintile of acute s-IGF-II was, compared to the four higher quintiles, associated with an increased risk of post-stroke mortality (median follow-up 10.6 years, crude hazard ratio (HR) 2.34, 95% confidence interval (CI) 1.56–3.49, and fully adjusted HR 1.64, 95% CI 1.02–2.61). In contrast, crude associations with poor functional outcome (mRS 3–6) lost significance after full adjustment for covariates. In conclusion, s-IGF-II was higher in IS cases than in controls, and low acute s-IGF-II was an independent risk marker of increased mortality.
Collapse
|
13
|
Wu DJ. Oversupply of Limiting Cell Resources and the Evolution of Cancer Cells: A Review. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.653622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Cancer prevention is superior to cancer treatment—indeed, understanding and controlling cancer risk is a key question in the fields of applied ecology and evolutionary oncology. Ecological cancer risk models offer the dual benefit of being generalizable across cancer types, and unveiling common mechanisms underlying cancer development and spread. Understanding the biological mechanisms of cancer risk may also guide the design of interventions to prevent cancer. Ecological considerations are central to many of these mechanisms; as one example, the ecologically-based hypothesis of metabolic cancer suppression posits that restricted vascular supply of limiting resources to somatic tissues normally suppresses the evolution of somatic cells toward cancer. Here we present a critical review of published evidence relevant to this hypothesis, and we conclude that there is substantial evidence that cancer risk does increase with an abnormal excess of limiting cell resources, including both dietary macronutrients as well as certain micronutrients.
Collapse
|
14
|
Simińska D, Korbecki J, Kojder K, Kapczuk P, Fabiańska M, Gutowska I, Machoy-Mokrzyńska A, Chlubek D, Baranowska-Bosiacka I. Epidemiology of Anthropometric Factors in Glioblastoma Multiforme-Literature Review. Brain Sci 2021; 11:116. [PMID: 33467126 PMCID: PMC7829953 DOI: 10.3390/brainsci11010116] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/23/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Although glioblastoma multiforme (GBM) is a widely researched cancer of the central nervous system, we still do not know its full pathophysiological mechanism and we still lack effective treatment methods as the current combination of surgery, radiotherapy, and chemotherapy does not bring about satisfactory results. The median survival time for GBM patients is only about 15 months. In this paper, we present the epidemiology of central nervous system (CNS) tumors and review the epidemiological data on GBM regarding gender, age, weight, height, and tumor location. The data indicate the possible influence of some anthropometric factors on the occurrence of GBM, especially in those who are male, elderly, overweight, and/or are taller. However, this review of single and small-size epidemiological studies should not be treated as definitive due to differences in the survey methods used. Detailed epidemiological registers could help identify the main at-risk groups which could then be used as homogenous study groups in research worldwide. Such research, with less distortion from various factors, could help identify the pathomechanisms that lead to the development of GBM.
Collapse
Affiliation(s)
- Donata Simińska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (D.S.); (J.K.); (P.K.); (D.C.)
| | - Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (D.S.); (J.K.); (P.K.); (D.C.)
| | - Klaudyna Kojder
- Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1 St., 71-281 Szczecin, Poland;
| | - Patrycja Kapczuk
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (D.S.); (J.K.); (P.K.); (D.C.)
| | - Marta Fabiańska
- Institute of Philosophy and Cognitive Science, University of Szczecin, Krakowska 71–79, 71-017 Szczecin, Poland;
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Anna Machoy-Mokrzyńska
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (D.S.); (J.K.); (P.K.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (D.S.); (J.K.); (P.K.); (D.C.)
| |
Collapse
|
15
|
Janjuha R, Bunn D, Hayhoe R, Hooper L, Abdelhamid A, Mahmood S, Hayden-Case J, Appleyard W, Morris S, Welch A. Effects of Dietary or Supplementary Micronutrients on Sex Hormones and IGF-1 in Middle and Older Age: A Systematic Review and Meta-Analysis. Nutrients 2020; 12:E1457. [PMID: 32443563 PMCID: PMC7284480 DOI: 10.3390/nu12051457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/29/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
Observational research suggests that micronutrients may be protective for sarcopenia, a key health issue during ageing, potentially via effects on hormone synthesis and metabolism. We aimed to carry out a systematic review of RCTs investigating effects of increasing dietary or supplemental micronutrient intake on sex hormones and IGF-1 in individuals aged 45 years or older. We searched MEDLINE, EMBASE and Cochrane databases for RCTs reporting the effects of different micronutrients (vitamins A, C, D, or E; carotenoids; iron; copper; zinc; magnesium; selenium; and potassium) on sex hormones or IGF-1. Of the 26 RCTs identified, nine examined effects of vitamin D, nine of multi-nutrients, four of carotenoids, two of selenium, one of zinc, and one of vitamin E. For IGF-1 increasing vitamin D (MD: -0.53 nmol/L, 95% CI: -1.58, 0.52), multi-nutrients (MD: 0.60 nmol/L, 95% CI -1.12 to 2.33) and carotenoids (MD -1.32 nmol/L; 95% CI -2.76 to 0.11) had no significant effect on circulating concentrations. No significant effects on sex hormones of other micronutrients were found, but data were very limited. All trials had significant methodological limitations making effects of micronutrient supplementation on sex hormones unclear. Further high quality RCTs with physiological doses of micronutrients in people with low baseline intakes or circulating concentrations, using robust methodology, are required to assess effects of supplementation adequately.
Collapse
Affiliation(s)
- Ryan Janjuha
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK; (R.J.); (R.H.); (L.H.); (A.A.); (S.M.); (J.H.-C.); (W.A.); (S.M.)
| | - Diane Bunn
- School of Health Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK;
| | - Richard Hayhoe
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK; (R.J.); (R.H.); (L.H.); (A.A.); (S.M.); (J.H.-C.); (W.A.); (S.M.)
| | - Lee Hooper
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK; (R.J.); (R.H.); (L.H.); (A.A.); (S.M.); (J.H.-C.); (W.A.); (S.M.)
| | - Asmaa Abdelhamid
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK; (R.J.); (R.H.); (L.H.); (A.A.); (S.M.); (J.H.-C.); (W.A.); (S.M.)
| | - Shaan Mahmood
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK; (R.J.); (R.H.); (L.H.); (A.A.); (S.M.); (J.H.-C.); (W.A.); (S.M.)
| | - Joseph Hayden-Case
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK; (R.J.); (R.H.); (L.H.); (A.A.); (S.M.); (J.H.-C.); (W.A.); (S.M.)
| | - Will Appleyard
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK; (R.J.); (R.H.); (L.H.); (A.A.); (S.M.); (J.H.-C.); (W.A.); (S.M.)
| | - Sophie Morris
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK; (R.J.); (R.H.); (L.H.); (A.A.); (S.M.); (J.H.-C.); (W.A.); (S.M.)
| | - Ailsa Welch
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK; (R.J.); (R.H.); (L.H.); (A.A.); (S.M.); (J.H.-C.); (W.A.); (S.M.)
| |
Collapse
|
16
|
Barutaut M, Fournier P, Peacock WF, Evaristi MF, Caubère C, Turkieh A, Desmoulin F, Eurlings LWM, van Wijk S, Rocca HPBL, Butler J, Koukoui F, Dambrin C, Mazeres S, Le Page S, Delmas C, Galinier M, Jung C, Smih F, Rouet P. Insulin-like Growth Factor Binding Protein 2 predicts mortality risk in heart failure. Int J Cardiol 2019; 300:245-251. [PMID: 31806281 DOI: 10.1016/j.ijcard.2019.09.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 08/15/2019] [Accepted: 09/13/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Insulin-like Growth Factor Binding Protein 2 (IGFBP2) showed greater heart failure (HF) diagnostic accuracy than the "grey zone" B-type natriuretic peptides, and may have prognostic utility as well. OBJECTIVES To determine if IGFBP2 provides independent information on cardiovascular mortality in HF. METHODS A retrospective study of 870 HF patients from 3 independent international cohorts. Presentation IGFBP2 plasma levels were measured by ELISA, and patients were followed from 1 year (Maastricht, Netherlands) to 6 years (Atlanta, GA, USA and Toulouse, France). Multivariate analysis, Net Reclassification Improvement (NRI) and Integrated Discrimination Improvement (IDI) were performed in the 3 cohorts. The primary outcome was cardiovascular mortality. RESULTS In multivariate Cox proportional hazards analysis, the highest quartile of IGFBP2 was associated with mortality in the Maastricht cohort (adjusted hazard ratio 1.69 (95% CI, 1.18-2.41), p = 0.004) and in the combined Atlanta and Toulouse cohorts (adjusted hazard ratio 2.04 (95%CI, 1.3-3.3), p = 0.003). Adding IGFBP2 to a clinical model allowed a reclassification of adverse outcome risk in the Maastricht cohort (NRI = 18.7% p = 0.03; IDI = 3.9% p = 0.02) and with the Atlanta/Toulouse patients (NRI of 40.4% p = 0.01, 31,2% p = 0.04, 31.5% p = 0,02 and IDI of 2,9% p = 0,0005, 3.1% p = 0,0005 and 4,2%, p = 0.0005, for a follow-up of 1, 2 and 3 years, respectively). CONCLUSION In 3 international cohorts, IGFBP2 level is a strong prognostic factor for cardiovascular mortality in HF, adding information to natriuretic monitoring and usual clinical markers, that should be further prospectively evaluated for patients' optimized care.
Collapse
Affiliation(s)
- Manon Barutaut
- LA Maison de la MItochondrie (LAMMI), Obesity and heart failure: molecular and clinical investigations, UMR CNRS 5288, 1 Avenue Jean Poulhes, BP 84225, 31432 Toulouse cedex 4, France; INI-CRCT F-CRIN, GREAT Networks, France
| | - Pauline Fournier
- LA Maison de la MItochondrie (LAMMI), Obesity and heart failure: molecular and clinical investigations, UMR CNRS 5288, 1 Avenue Jean Poulhes, BP 84225, 31432 Toulouse cedex 4, France; INI-CRCT F-CRIN, GREAT Networks, France; University Hospital of Toulouse, Cardiology Department, F-31432 Toulouse, France
| | - William F Peacock
- Emergency Medicine at the Baylor College of Medicine in Houston, TX, USA
| | - Maria Francesca Evaristi
- LA Maison de la MItochondrie (LAMMI), Obesity and heart failure: molecular and clinical investigations, UMR CNRS 5288, 1 Avenue Jean Poulhes, BP 84225, 31432 Toulouse cedex 4, France; INI-CRCT F-CRIN, GREAT Networks, France
| | - Céline Caubère
- LA Maison de la MItochondrie (LAMMI), Obesity and heart failure: molecular and clinical investigations, UMR CNRS 5288, 1 Avenue Jean Poulhes, BP 84225, 31432 Toulouse cedex 4, France; INI-CRCT F-CRIN, GREAT Networks, France
| | - Annie Turkieh
- LA Maison de la MItochondrie (LAMMI), Obesity and heart failure: molecular and clinical investigations, UMR CNRS 5288, 1 Avenue Jean Poulhes, BP 84225, 31432 Toulouse cedex 4, France; INI-CRCT F-CRIN, GREAT Networks, France
| | - Franck Desmoulin
- LA Maison de la MItochondrie (LAMMI), Obesity and heart failure: molecular and clinical investigations, UMR CNRS 5288, 1 Avenue Jean Poulhes, BP 84225, 31432 Toulouse cedex 4, France; INI-CRCT F-CRIN, GREAT Networks, France
| | - Luc W M Eurlings
- Department of Cardiology, VieCuri Medical Center, Venlo, the Netherlands
| | - Sandra van Wijk
- Department of Cardiology, Maastricht University Medical Center, CARIM, Maastricht, the Netherlands
| | | | - Javed Butler
- Department of Medicine, Stony Brook University, NY, USA
| | - François Koukoui
- LA Maison de la MItochondrie (LAMMI), Obesity and heart failure: molecular and clinical investigations, UMR CNRS 5288, 1 Avenue Jean Poulhes, BP 84225, 31432 Toulouse cedex 4, France; INI-CRCT F-CRIN, GREAT Networks, France
| | - Camille Dambrin
- LA Maison de la MItochondrie (LAMMI), Obesity and heart failure: molecular and clinical investigations, UMR CNRS 5288, 1 Avenue Jean Poulhes, BP 84225, 31432 Toulouse cedex 4, France; INI-CRCT F-CRIN, GREAT Networks, France; University Hospital of Toulouse, Cardiology Department, F-31432 Toulouse, France
| | - Serge Mazeres
- Institute of Pharmacology and Structural Biology (IPBS), Toulouse, France
| | - Servane Le Page
- LA Maison de la MItochondrie (LAMMI), Obesity and heart failure: molecular and clinical investigations, UMR CNRS 5288, 1 Avenue Jean Poulhes, BP 84225, 31432 Toulouse cedex 4, France; INI-CRCT F-CRIN, GREAT Networks, France
| | - Clement Delmas
- University Hospital of Toulouse, Cardiology Department, F-31432 Toulouse, France
| | - Michel Galinier
- LA Maison de la MItochondrie (LAMMI), Obesity and heart failure: molecular and clinical investigations, UMR CNRS 5288, 1 Avenue Jean Poulhes, BP 84225, 31432 Toulouse cedex 4, France; INI-CRCT F-CRIN, GREAT Networks, France; University Hospital of Toulouse, Cardiology Department, F-31432 Toulouse, France
| | - Christian Jung
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Duesseldorf, Germany
| | - Fatima Smih
- LA Maison de la MItochondrie (LAMMI), Obesity and heart failure: molecular and clinical investigations, UMR CNRS 5288, 1 Avenue Jean Poulhes, BP 84225, 31432 Toulouse cedex 4, France; INI-CRCT F-CRIN, GREAT Networks, France; Spartacus-Biomed, Clermont Le Fort, France
| | - Philippe Rouet
- LA Maison de la MItochondrie (LAMMI), Obesity and heart failure: molecular and clinical investigations, UMR CNRS 5288, 1 Avenue Jean Poulhes, BP 84225, 31432 Toulouse cedex 4, France; INI-CRCT F-CRIN, GREAT Networks, France.
| |
Collapse
|