1
|
Bosco MS, Naud-Martin D, Gonzalez-Galindo C, Auvray M, Araya-Farias M, Gropplero G, Rozenholc Y, Topcu Z, Gaucher JF, Tsatsaris V, Descroix S, Mahuteau-Betzer F, Gagey-Eilstein N. Bimodal Array-Based Fluorescence Sensor and Microfluidic Technology for Protein Fingerprinting and Clinical Diagnosis. ACS APPLIED BIO MATERIALS 2024; 7:8236-8247. [PMID: 39530215 DOI: 10.1021/acsabm.4c00938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Proteins play a crucial role in determining disease states in humans, making them prime targets for the development of diagnostic sensors. The developed sensor array is used to investigate global proteomic changes by fingerprinting multifactorial disease states in model urine simulating phenylketonuria and in serum from preeclamptic pregnant women. Here, we report a fluorescence-based chemical sensing array that exploits the host-guest interaction between cucurbit[7]uril (CB[7]) and fluorescent triphenylamine derivatives (TPA) to detect a range of proteins. Using linear discriminant analysis, we identify fluorescence fingerprints of 14 proteins with over 98% accuracy in buffer and human serum. The array is optimized on an automated droplet microfluidic-based platform, for high-throughput sensing with controlled composition and lower sample volumes. This sensor enables the discrimination of proteins in physiological buffer and human serum, with promising applications in disease diagnosis.
Collapse
Affiliation(s)
- Monica Swetha Bosco
- Unité de Technologies Chimiques et Biologiques pour la Santé - UTCBS, Faculté de Pharmacie de Paris, Université Paris Cité, CNRS UMR 8258, Inserm U1267, 75006 Paris, France
| | - Delphine Naud-Martin
- Institut Curie, Université PSL, CNRS UMR9187, Inserm U1196, 91400 Orsay, France
- Université Paris-Saclay, CNRS UMR9187, Inserm U1196, 91400 Orsay, France
| | - Carlos Gonzalez-Galindo
- Unité de Technologies Chimiques et Biologiques pour la Santé - UTCBS, Faculté de Pharmacie de Paris, Université Paris Cité, CNRS UMR 8258, Inserm U1267, 75006 Paris, France
| | - Marie Auvray
- Institut Curie, Université PSL, CNRS UMR9187, Inserm U1196, 91400 Orsay, France
- Université Paris-Saclay, CNRS UMR9187, Inserm U1196, 91400 Orsay, France
| | - Monica Araya-Farias
- Laboratoire Physics of Cells and Cancer (PCC), Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France
| | - Giacomo Gropplero
- Laboratoire Physics of Cells and Cancer (PCC), Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France
| | - Yves Rozenholc
- BioSTM UR 7537, Faculté de Pharmacie de Paris, Université Paris Cité, 75006 Paris, France
| | - Zeki Topcu
- BioSTM UR 7537, Faculté de Pharmacie de Paris, Université Paris Cité, 75006 Paris, France
| | - Jean-Francois Gaucher
- CiTCoM, Faculté de Pharmacie de Paris, Université Paris Cité, UMR CNRS 8038, 75006 Paris, France
| | - Vassilis Tsatsaris
- Department of Obstetric, Cochin Hospital, AP-HP, Université Paris Cité, FHU PREMA, 123 bd Port-Royal, 75014 Paris, France
| | - Stéphanie Descroix
- Laboratoire Physics of Cells and Cancer (PCC), Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France
| | - Florence Mahuteau-Betzer
- Institut Curie, Université PSL, CNRS UMR9187, Inserm U1196, 91400 Orsay, France
- Université Paris-Saclay, CNRS UMR9187, Inserm U1196, 91400 Orsay, France
| | - Nathalie Gagey-Eilstein
- Unité de Technologies Chimiques et Biologiques pour la Santé - UTCBS, Faculté de Pharmacie de Paris, Université Paris Cité, CNRS UMR 8258, Inserm U1267, 75006 Paris, France
| |
Collapse
|
2
|
Garcia AC, Shavlik M, Harms MJ, Pluth MD. Structural Deformations in Cucurbit[n]urils: Analysis, Host-Guest Dependence, and Automated Ellipticity Measurements Using ElliptiCB[n]. Chemistry 2024; 30:e202401981. [PMID: 39136587 DOI: 10.1002/chem.202401981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Indexed: 09/25/2024]
Abstract
Cucurbit[n]urils (CB[n]s) are cyclic macrocycles with rich host-guest chemistry. In many cases, guest binding in CB[n]s results in host structural deformations. Unfortunately, measuring such deformations remains a major challenge, with only a handful of manual estimations reported in the literature. To address this challenge, we have developed the public program ElliptiCB[n], which is available on GitHub, that provides a robust and automated method for measuring the elliptical deformations in CB[n] hosts. We outline the development and validation of this approach, apply ElliptiCB[n] to measure the ellipticity of the 1113 available CB[n] structures from the Cambridge Structural Database (CSD), and directly investigate the structural deformations of CB[5], CB[6], CB[7], CB[8], and CB[10] hosts. We also report the general landscape of accessible CB[n] elliptical deformations and compare ellipticity distributions across CB[n] hosts and host-guest complexes. We found that in almost all cases guest binding significantly impacts the distribution of host ellipticity distributions and that these distributions are dissimilar across host-guest complexes of differently sized CB[n]s. We anticipate that this work will provide a useful approach for understanding of the flexibility of CB[n] hosts and will also enable future measurement and standardization of ellipticity measurements of CB[n]s.
Collapse
Affiliation(s)
- Arman C Garcia
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| | - Michael Shavlik
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| | - Michael J Harms
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| | - Michael D Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| |
Collapse
|
3
|
Prabodh A, Grimm LM, Biswas PK, Mahram V, Biedermann F. Pillar[n]arene-Based Fluorescence Turn-On Chemosensors for the Detection of Spermine, Spermidine, and Cadaverine in Saline Media and Biofluids. Chemistry 2024; 30:e202401071. [PMID: 39140791 DOI: 10.1002/chem.202401071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Indexed: 08/15/2024]
Abstract
Polyamines are essential analytes due to their critical role in various biological processes and human health in general. Due to their role as regulators for cell growth and proliferation (putrescine and spermine), as neuroprotectors, gero-, and cardiovascular protectors (spermidine), and as bacterial growth indicators (cadaverine), rapid, simple, and cost-effective methods for polyamine detection in biofluids are in demand. The present study focuses on the development and investigation of self-assembled and fluorescent host⋅dye chemo-sensors based on sulfonated pillar[5]arene for the specific detection of polyamines. Binding studies, as well as stability and functionality assessments of the turn-on chemosensors for selective polyamine detection in saline and biologically relevant media, are shown. Furthermore, the practical applicability of the developed chemo-sensors is demonstrated in biofluids such as human urine and saliva.
Collapse
Affiliation(s)
- Amrutha Prabodh
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Laura M Grimm
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Pronay Kumar Biswas
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Vahideh Mahram
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Frank Biedermann
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| |
Collapse
|
4
|
Selinger AJ, Krämer J, Poarch E, Hore D, Biedermann F, Hof F. Mixed host co-assembled systems for broad-scope analyte sensing. Chem Sci 2024; 15:12388-12397. [PMID: 39118638 PMCID: PMC11304549 DOI: 10.1039/d4sc02788d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/29/2024] [Indexed: 08/10/2024] Open
Abstract
Here we report a systems chemistry oriented approach for developing information-rich mixed host chemosensors. We show that co-assembling macrocyclic hosts from different classes, DimerDye sulfonatocalix[4]arenes and cucurbit[n]urils, effectively increases the scope of analyte binding interactions and therefore, sensory outputs. This simple dynamic strategy exploits cross-reactive noncovalent host-host complexation interactions while integrating a reporter dye, thereby producing emergent photophysical responses when an analyte interacts with either host. We first demonstrate the advantages of mixed host co-assembled chemosensors through an increased detection range of hydrophobic, cationic, neutral, and anionic drugs. We then implement mixed host sensors in an array-based platform for the differentiation of illicit drugs, including cannabinoids, benzodiazepine analogs, opiates, anesthetics, amphetamine, and common adulterating substances. Finally, the potential of this approach is applied to profiling real-world multi-component illicit street drug samples, proving to be more effective than classical sensor arrays.
Collapse
Affiliation(s)
- Allison J Selinger
- Department of Chemistry, University of Victoria Victoria BC V8P 5C2 Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria Victoria BC V8W 2Y2 Canada
| | - Joana Krämer
- Department of Chemistry, University of Victoria Victoria BC V8P 5C2 Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria Victoria BC V8W 2Y2 Canada
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Kaiserstraße 12 76131 Karlsruhe Germany
| | - Eric Poarch
- Canadian Institute for Substance Use Research, University of Victoria Victoria BC V8W 2Y2 Canada
| | - Dennis Hore
- Department of Chemistry, University of Victoria Victoria BC V8P 5C2 Canada
- Canadian Institute for Substance Use Research, University of Victoria Victoria BC V8W 2Y2 Canada
| | - Frank Biedermann
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Kaiserstraße 12 76131 Karlsruhe Germany
| | - Fraser Hof
- Department of Chemistry, University of Victoria Victoria BC V8P 5C2 Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria Victoria BC V8W 2Y2 Canada
| |
Collapse
|
5
|
Li Q, Yu Z, Redshaw C, Xiao X, Tao Z. Double-cavity cucurbiturils: synthesis, structures, properties, and applications. Chem Soc Rev 2024; 53:3536-3560. [PMID: 38414424 DOI: 10.1039/d3cs00961k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Double-cavity Q[n]s are relatively new members of the Q[n] family and have garnered significant interest due to their distinctive structures and novel properties. While they incorporate n glycoluril units, akin to their single-cavity counterparts, their geometry can best be described as resembling a figure-of-eight or a handcuff, distinguishing them from single-cavity Q[n]s. Despite retaining the core molecular recognition traits of single-cavity Q[n]s, these double-cavity variants introduce fascinating new attributes rooted in their distinct configurations. This overview delves into the synthesis, structural attributes, properties, and intriguing applications of double-cavity Q[n]s. Some of the applications explored include their role in supramolecular polymers, molecular machinery, supra-amphiphiles, sensors, artificial light-harvesting systems, and adsorptive separation materials. Upon concluding this review, we discuss potential challenges and avenues for future development and offer valuable insights for other scholars working in this area with the aim of stimulating further exploration and interest.
Collapse
Affiliation(s)
- Qing Li
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, P. R. China.
| | - Zhengwei Yu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, P. R. China.
| | - Carl Redshaw
- Chemistry, School of Natural Sciences, University of Hull, Hull HU6 7RX, UK
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, P. R. China.
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, P. R. China.
| |
Collapse
|
6
|
Alešković M, Šekutor M. Overcoming barriers with non-covalent interactions: supramolecular recognition of adamantyl cucurbit[ n]uril assemblies for medical applications. RSC Med Chem 2024; 15:433-471. [PMID: 38389878 PMCID: PMC10880950 DOI: 10.1039/d3md00596h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/30/2023] [Indexed: 02/24/2024] Open
Abstract
Adamantane, a staple in medicinal chemistry, recently became a cornerstone of a supramolecular host-guest drug delivery system, ADA/CB[n]. Owing to a good fit between the adamantane cage and the host cavity of the cucurbit[n]uril macrocycle, formed strong inclusion complexes find applications in drug delivery and controlled drug release. Note that the cucurbit[n]uril host is not solely a delivery vehicle of the ADA/CB[n] system but rather influences the bioactivity and bioavailability of drug molecules and can tune drug properties. Namely, as host-guest interactions are capable of changing the intrinsic properties of the guest molecule, inclusion complexes can become more soluble, bioavailable and more resistant to metabolic conditions compared to individual non-complexed molecules. Such synergistic effects have implications for practical bioapplicability of this complex system and provide a new viewpoint to therapy, beyond the traditional single drug molecule approach. By achieving a balance between guest encapsulation and release, the ADA/CB[n] system has also found use beyond just drug delivery, in fields like bioanalytics, sensing assays, bioimaging, etc. Thus, chemosensing in physiological conditions, indicator displacement assays, in vivo diagnostics and hybrid nanostructures are just some recent examples of the ADA/CB[n] applicability, be it for displacements purposes or as cargo vehicles.
Collapse
Affiliation(s)
- Marija Alešković
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute Bijenička 54 10 000 Zagreb Croatia
| | - Marina Šekutor
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute Bijenička 54 10 000 Zagreb Croatia
| |
Collapse
|
7
|
Zaorska E, Malinska M. Cucurbit[7]uril-mediated Histidine Dimerization: Exploring the Structure and Binding Mechanism. Chemistry 2024; 30:e202302250. [PMID: 38055216 DOI: 10.1002/chem.202302250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/07/2023]
Abstract
Cucurbit[7,8]urils are known to form inclusion complexes with hydrophobic amino acids such as Trp, Tyr, Phe, and Met, as well as peptides containing these residues at the N-terminus. Despite their widespread use in protein purification, the affinity of histidine (His) for cucurbit[7,8]urils has not been extensively explored. In this study, X-ray diffraction experiments were conducted to investigate the binding of two histidine moieties to the cucurbit[7]uril (CB7) cavity, resulting in a network of π-π and hydrogen bonds. This assembly was found to induce a His pKa shift of ΔpKa=-4. Histidine weakly bound to CB7 or CB8; however, isothermal titration calorimetry revealed micromolar equilibrium dissociation constant values for CB7 and CB8 when bound to dipeptides containing His at the C-terminus. Conversely, dipeptides with His at the N-terminus exhibited millimolar values. Additionally, the His-Gly-Gly tripeptide formed a 2 : 1 complex with CB7. These findings suggest the potential use of histidine and histidine-containing tags in conjunction with CB7 for various biological applications.
Collapse
Affiliation(s)
- Ewelina Zaorska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Maura Malinska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| |
Collapse
|
8
|
Ma T, Chang S, He J, Liang F. Emerging sensing platforms based on Cucurbit[ n]uril functionalized gold nanoparticles and electrodes. Chem Commun (Camb) 2023; 60:150-167. [PMID: 38054368 DOI: 10.1039/d3cc04851a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Cucurbit[n]urils (CB[n]s, n = 5-8, 10, and 14), synthetic macrocycles with unique host-guest properties, have triggered increasing research interest in recent years. Gold nanoparticles (Au NPs) and electrodes stand out as exceptional substrates for sensing due to their remarkable physicochemical characteristics. Coupling the CB[n]s with Au NPs and electrodes has enabled the development of emerging sensing platforms for various promising applications. However, monitoring the behavior of analytes at the single-molecule level is currently one of the most challenging topics in the field of CB[n]-based sensing. Constructing supramolecular junctions in a sensing platform provides an ideal structure for single-molecule analysis, which can provide insights for a fundamental understanding of supramolecular interactions and chemical reactions and guide the design of sensing applications. This feature article outlines the progress in the preparation of the CB[n] functionalized Au NPs and Au electrodes, as well as the construction and application of supramolecular junctions in sensing platforms, based on the methods of recognition tunneling (RT), surface-enhanced Raman spectroscopy (SERS), single-molecule force spectroscopy (SMFS), and electrochemical sensing (ECS). A brief perspective on the future development of and challenges in CB[n] mediated sensing platforms is also covered.
Collapse
Affiliation(s)
- Tao Ma
- The State Key Laboratory of Refractories and Metallurgy, Coal Conversion and New Carbon Materials Hubei Key Laboratory, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Shuai Chang
- The State Key Laboratory of Refractories and Metallurgy, Coal Conversion and New Carbon Materials Hubei Key Laboratory, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Jin He
- Department of Physics, Florida International University, Miami, Florida 33199, USA.
| | - Feng Liang
- The State Key Laboratory of Refractories and Metallurgy, Coal Conversion and New Carbon Materials Hubei Key Laboratory, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| |
Collapse
|
9
|
Davis F, Higson SPJ. Synthetic Receptors for Early Detection and Treatment of Cancer. BIOSENSORS 2023; 13:953. [PMID: 37998127 PMCID: PMC10669836 DOI: 10.3390/bios13110953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/10/2023] [Accepted: 10/22/2023] [Indexed: 11/25/2023]
Abstract
Over recent decades, synthetic macrocyclic compounds have attracted interest from the scientific community due to their ability to selectively and reversibly form complexes with a huge variety of guest moieties. These molecules have been studied within a wide range of sensing and other fields. Within this review, we will give an overview of the most common synthetic macrocyclic compounds including cyclodextrins, calixarenes, calixresorcinarenes, pillarenes and cucurbiturils. These species all display the ability to form a wide range of complexes. This makes these compounds suitable in the field of cancer detection since they can bind to either cancer cell surfaces or indeed to marker compounds for a wide variety of cancers. The formation of such complexes allows sensitive and selective detection and quantification of such guests. Many of these compounds also show potential for the detection and encapsulation of environmental carcinogens. Furthermore, many anti-cancer drugs, although effective in in vitro tests, are not suitable for use directly for cancer treatment due to low solubility, inherent instability in in vivo environments or an inability to be adsorbed by or transported to the required sites for treatment. The reversible encapsulation of these species in a macrocyclic compound can greatly improve their solubility, stability and transport to required sites where they can be released for maximum therapeutic effect. Within this review, we intend to present the use of these species both in cancer sensing and treatment. The various macrocyclic compound families will be described, along with brief descriptions of their synthesis and properties, with an outline of their use in cancer detection and usage as therapeutic agents. Their use in the sensing of environmental carcinogens as well as their potential utilisation in the clean-up of some of these species will also be discussed.
Collapse
Affiliation(s)
| | - Séamus P. J. Higson
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK;
| |
Collapse
|
10
|
Kumar NM, Gruhs P, Casini A, Biedermann F, Moreno-Alcántar G, Picchetti P. Electrochemical Detection of Drugs via a Supramolecular Cucurbit[7]uril-Based Indicator Displacement Assay. ACS Sens 2023. [PMID: 37339775 PMCID: PMC10391622 DOI: 10.1021/acssensors.3c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Electrochemical detection methods are attractive for developing miniaturized, disposable, and portable sensors for molecular diagnostics. In this article, we present a cucurbit[7]uril-based chemosensor with an electrochemical signal readout for the micromolar detection of the muscle relaxant pancuronium bromide in buffer and human urine. This is possible through a competitive binding assay using a chemosensor ensemble consisting of cucurbit[7]uril as the host and an electrochemically active platinum(II) compound as the guest indicator. The electrochemical properties of the indicator are strongly modulated depending on the complexation state, a feature that is exploited to establish a functional chemosensor. Our design avoids cumbersome immobilization approaches on electrode surfaces, which are associated with practical and conceptual drawbacks. Moreover, it can be used with commercially available screen-printed electrodes that require minimal sample volume. The design principle presented here can be applied to other cucurbit[n]uril-based chemosensors, providing an alternative to fluorescence-based assays.
Collapse
Affiliation(s)
- Nilima Manoj Kumar
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Patrick Gruhs
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Angela Casini
- School of Natural Sciences, Department of Chemistry, Chair of Medicinal and Bioinorganic Chemistry, Technical University of Munich (TUM), 85748 Garching b. München, Germany
| | - Frank Biedermann
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Guillermo Moreno-Alcántar
- School of Natural Sciences, Department of Chemistry, Chair of Medicinal and Bioinorganic Chemistry, Technical University of Munich (TUM), 85748 Garching b. München, Germany
| | - Pierre Picchetti
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
11
|
Emissive‐Dye/Cucurbit[n]uril‐Based Fluorescence Probes for Sensing Applications. ChemistrySelect 2023. [DOI: 10.1002/slct.202204833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
12
|
Krämer J, Grimm LM, Zhong C, Hirtz M, Biedermann F. A supramolecular cucurbit[8]uril-based rotaxane chemosensor for the optical tryptophan detection in human serum and urine. Nat Commun 2023; 14:518. [PMID: 36720875 PMCID: PMC9889744 DOI: 10.1038/s41467-023-36057-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 01/13/2023] [Indexed: 02/02/2023] Open
Abstract
Sensing small biomolecules in biofluids remains challenging for many optical chemosensors based on supramolecular host-guest interactions due to adverse interplays with salts, proteins, and other biofluid components. Instead of following the established strategy of developing alternative synthetic binders with improved affinities and selectivity, we report a molecular engineering approach that addresses this biofluid challenge. Here we introduce a cucurbit[8]uril-based rotaxane chemosensor feasible for sensing the health-relevant biomarker tryptophan at physiologically relevant concentrations, even in protein- and lipid-containing human blood serum and urine. Moreover, this chemosensor enables emission-based high-throughput screening in a microwell plate format and can be used for label-free enzymatic reaction monitoring and chirality sensing. Printed sensor chips with surface-immobilized rotaxane-microarrays are used for fluorescence microscopy imaging of tryptophan. Our system overcomes the limitations of current supramolecular host-guest chemosensors and will foster future applications of supramolecular sensors for molecular diagnostics.
Collapse
Affiliation(s)
- Joana Krämer
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Laura M Grimm
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Chunting Zhong
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Michael Hirtz
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
- Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| | - Frank Biedermann
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
13
|
Kumar NM, Picchetti P, Hu C, Grimm LM, Biedermann F. Chemiluminescent Cucurbit[ n]uril-Based Chemosensor for the Detection of Drugs in Biofluids. ACS Sens 2022; 7:2312-2319. [PMID: 35895991 DOI: 10.1021/acssensors.2c00934] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chemiluminescence-based detection methods offer a superior signal-to-noise ratio and are commonly adopted for biosensors. This work presents the design and implementation of a supramolecular assay based on a chemiluminescent chemosensor. Specifically, an indicator displacement assay (IDA) with the supramolecular host-guest complex of chemiluminescent phenoxy 1,2-dioxetane and cucurbit[8]uril enables the low-micromolar detection of drugs in human urine and human serum samples. Cucurbit[8]uril thereby acts as a non-surfactant chemiluminescence enhancer and a synthetic receptor. Additionally, we show that adding an equimolar amount of cucurbit[8]uril to a commercially available dioxetane used in standard enzymatic chemiluminescence immunoassays enhances the chemiluminescence by more than 15 times. Finally, we demonstrate that a chemiluminescence resonance energy transfer between a unimolecular macrocyclic cucurbit[7]uril-dye conjugate and a phenoxy 1,2-dioxetane can be utilized to detect the herbicide paraquat at a micromolar concentration in aqueous media.
Collapse
Affiliation(s)
- Nilima Manoj Kumar
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Pierre Picchetti
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Changming Hu
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Laura M Grimm
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Frank Biedermann
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
14
|
Kommidi SSR, Smith BD. Cucurbit[7]uril Complexation of Near-Infrared Fluorescent Azobenzene-Cyanine Conjugates. Molecules 2022; 27:5440. [PMID: 36080213 PMCID: PMC9457616 DOI: 10.3390/molecules27175440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 01/21/2023] Open
Abstract
Two new azobenzene heptamethine cyanine conjugates exist as dispersed monomeric molecules in methanol solution and exhibit near-infrared (NIR) cyanine absorption and fluorescence. Both conjugates form non-emissive cyanine H-aggregates in water, but the addition of cucurbit[7]uril (CB7) induces dye deaggregation and a large increase in cyanine NIR fluorescence emission intensity. CB7 encapsulates the protonated azonium tautomer of the 4-(N,N-dimethylamino)azobenzene component of each azobenzene-cyanine conjugate and produces a distinctive new absorption band at 534 nm. The complex is quite hydrophilic, which suggests that CB7 can be used as a supramolecular additive to solubilize this new family of NIR azobenzene-cyanine conjugates for future biomedical applications. Since many azobenzene compounds are themselves potential drug candidates or theranostic agents, it should be possible to formulate many of them as CB7 inclusion complexes with improved solubility, stability, and pharmaceutical profile.
Collapse
Affiliation(s)
| | - Bradley D. Smith
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
15
|
Hu C, Jochmann T, Chakraborty P, Neumaier M, Levkin PA, Kappes MM, Biedermann F. Further Dimensions for Sensing in Biofluids: Distinguishing Bioorganic Analytes by the Salt-Induced Adaptation of a Cucurbit[7]uril-Based Chemosensor. J Am Chem Soc 2022; 144:13084-13095. [PMID: 35850489 PMCID: PMC9335531 DOI: 10.1021/jacs.2c01520] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Insufficient binding selectivity of chemosensors often renders biorelevant metabolites indistinguishable by the widely used indicator displacement assay. Array-based chemosensing methods are a common workaround but require additional effort for synthesizing a chemosensor library and setting up a sensing array. Moreover, it can be very challenging to tune the inherent binding preference of macrocyclic systems such as cucurbit[n]urils (CBn) by synthetic means. Using a novel cucurbit[7]uril-dye conjugate that undergoes salt-induced adaptation, we now succeeded in distinguishing 14 bioorganic analytes from each other through the facile stepwise addition of salts. The salt-specific concentration-resolved emission provides additional information about the system at a low synthetic effort. We present a data-driven approach to translate the human-visible curve differences into intuitive pairwise difference measures. Ion mobility experiments combined with density functional theory calculations gave further insights into the binding mechanism and uncovered an unprecedented ternary complex geometry for CB7. TThis work introduces the non-selectively binding, salt-adaptive cucurbit[n]uril system for sensing applications in biofluids such as urine, saliva, and blood serum.
Collapse
Affiliation(s)
- Changming Hu
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz-1, Eggenstein-Leopoldshafen 76344, Germany
| | - Thomas Jochmann
- Department of Computer Science and Automation, Technische Universität Ilmenau, Gustav-Kirchhoff-Str. 2, Ilmenau 98693, Germany
| | - Papri Chakraborty
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz-1, Eggenstein-Leopoldshafen 76344, Germany.,Institute of Physical Chemistry (IPC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, Karlsruhe 76131, Germany
| | - Marco Neumaier
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz-1, Eggenstein-Leopoldshafen 76344, Germany
| | - Pavel A Levkin
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz-1, Eggenstein-Leopoldshafen 76344, Germany
| | - Manfred M Kappes
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz-1, Eggenstein-Leopoldshafen 76344, Germany.,Institute of Physical Chemistry (IPC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, Karlsruhe 76131, Germany
| | - Frank Biedermann
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz-1, Eggenstein-Leopoldshafen 76344, Germany
| |
Collapse
|
16
|
Grimm LM, Spicher S, Tkachenko B, Schreiner PR, Grimme S, Biedermann F. The Role of Packing, Dispersion, Electrostatics, and Solvation in High-Affinity Complexes of Cucurbit[n]urils with Uncharged Polar Guests. Chemistry 2022; 28:e202200529. [PMID: 35612260 PMCID: PMC9401061 DOI: 10.1002/chem.202200529] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Indexed: 12/21/2022]
Abstract
The rationalization of non-covalent binding trends is both of fundamental interest and provides new design concepts for biomimetic molecular systems. Cucurbit[n]urils (CBn) are known for a long time as the strongest synthetic binders for a wide range of (bio)organic compounds in water. However, their host-guest binding mechanism remains ambiguous despite their symmetric and simple macrocyclic structure and the wealth of literature reports. We herein report experimental thermodynamic binding parameters (ΔG, ΔH, TΔS) for CB7 and CB8 with a set of hydroxylated adamantanes, di-, and triamantanes as uncharged, rigid, and spherical/ellipsoidal guests. Binding geometries and binding energy decomposition were obtained from high-level theory computations. This study reveals that neither London dispersion interactions, nor electronic energies or entropic factors are decisive, selectivity-controlling factors for CBn complexes. In contrast, peculiar host-related solvation effects were identified as the major factor for rationalizing the unique behavior and record-affinity characteristics of cucurbit[n]urils.
Collapse
Affiliation(s)
- Laura M. Grimm
- Institute of NanotechnologyKarlsruhe Institute of TechnologyHermann-von-Helmholtz Platz 176344Eggenstein-LeopoldshafenGermany
| | - Sebastian Spicher
- Mulliken Center for Theoretical ChemistryInstitute of Physical and Theoretical ChemistryUniversity of BonnBeringstraße 453115BonnGermany
| | - Boryslav Tkachenko
- Institute of Organic ChemistryJustus Liebig UniversityHeinrich-Buff-Ring 1735392GiessenGermany
| | - Peter R. Schreiner
- Institute of Organic ChemistryJustus Liebig UniversityHeinrich-Buff-Ring 1735392GiessenGermany
| | - Stefan Grimme
- Mulliken Center for Theoretical ChemistryInstitute of Physical and Theoretical ChemistryUniversity of BonnBeringstraße 453115BonnGermany
| | - Frank Biedermann
- Institute of NanotechnologyKarlsruhe Institute of TechnologyHermann-von-Helmholtz Platz 176344Eggenstein-LeopoldshafenGermany
| |
Collapse
|
17
|
Wei KN, Song GX, Huang SZ, Tang Q, Hu JH, Tao Z, Huang Y. Lab-on-a-Molecule Probe: Multitarget Detection of Five Aromatic Pesticides Using a Supramolecular Probe under Single Wavelength Excitation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5784-5793. [PMID: 35506583 DOI: 10.1021/acs.jafc.2c00655] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In order to prevent and control the effects of pesticide residues on human health and the ecological environment, the rapid, highly sensitive, and selective detection of multiple pesticide residues has become an urgent problem to be solved. Herein, a lab-on-a-molecule probe based on a host-guest complex (ThT@Q[8] probe) has been developed to simultaneously analyze multiple aromatic pesticides under single wavelength excitation, such as fuberidazole, thiabendazole, carbendazim, thidiazuron, and tricyclazole. The fluorescence titration spectra of the ThT@Q[8] probe with the five pesticides mentioned above showed that the fluorescence intensity exhibited a good linear correlation with the pesticide concentration and the limit of detection was as low as 10-7 M. Because the ThT@Q[8] probe exhibits diverse fluorescence color changes to the five pesticides studied under a 365 nm ultraviolet lamp, we fabricated a single probe used to detect multiple analytes in the RGB triple channel by extracting the RGB variations. Principal component analysis and linear discriminant analysis proved that the ThT@Q[8] probe can recognize and distinguish five pesticides and can be applied at different concentrations. In real samples, the ThT@Q[8] probe recognized and distinguished five pesticides in tap water and Huaxi River water. The 1H NMR spectra results proved that a charge-transfer complex of ThT and pesticides in the Q[8] cavity may be formed. Moreover, we selected a test strip as a carrier to detect pesticides. The results indicate it can be used to quickly and conveniently detect different pesticides due to the rapid color change. Besides, the ThT@Q[8] probe has good cell permeability and can be used to detect pesticide residues in living cells. This work has laid the foundation for the qualitative and quantitative multitarget detection of pesticide residues.
Collapse
Affiliation(s)
- Kai-Ni Wei
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Gui-Xian Song
- ShenQi Ethnic Medicine College of Guizhou Medical University, Guiyang 550025, China
| | - Shu-Zhen Huang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Qing Tang
- Department College of Tobacco Science, Guizhou University, Guiyang 550025, China
| | - Jian-Hang Hu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Ying Huang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
- The Engineering and Research Center for Southwest Bio-Pharmaceutical Resources of National Education Ministry of China, Guizhou University, Guiyang 550025, China
| |
Collapse
|
18
|
Abstract
Currently, there is a substantial research effort to develop near-infrared fluorescent polymethine cyanine dyes for biological imaging and sensing. In water, cyanine dyes with extended conjugation are known to cross over the "cyanine limit" and undergo a symmetry breaking Peierls transition that favors an unsymmetric distribution of π-electron density and produces a broad absorption profile and low fluorescence brightness. This study shows how supramolecular encapsulation of a newly designed series of cationic, cyanine dyes by cucurbit[7]uril (CB7) can be used to alter the π-electron distribution within the cyanine chromophore. For two sets of dyes, supramolecular location of the surrounding CB7 over the center of the dye favors a nonpolar ground state, with a symmetric π-electron distribution that produces a sharpened absorption band with enhanced fluorescence brightness. The opposite supramolecular effect (i.e., broadened absorption and partially quenched fluorescence) is observed with a third set of dyes because the surrounding CB7 is located at one end of the encapsulated cyanine chromophore. From the perspective of enhanced near-infrared bioimaging and sensing in water, the results show how that the principles of host/guest chemistry can be employed to mitigate the "cyanine limit" problem.
Collapse
Affiliation(s)
- Dong-Hao Li
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| |
Collapse
|
19
|
Host-guest liquid gating mechanism with specific recognition interface behavior for universal quantitative chemical detection. Nat Commun 2022; 13:1906. [PMID: 35393415 PMCID: PMC8991241 DOI: 10.1038/s41467-022-29549-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/16/2022] [Indexed: 12/26/2022] Open
Abstract
Universal visual quantitative chemical detection technology has emerged as an increasingly crucial tool for convenient testing with immediate results in the fields of environmental assessment, homeland security, clinical drug testing and health care, particularly in resource-limited settings. Here, we show a host-guest liquid gating mechanism to translate molecular interface recognition behavior into visually quantifiable detection signals. Quantitative chemical detection is achieved, which has obvious advantages for constructing a portable, affordable, on-site sensing platform to enable the visual quantitative testing of target molecules without optical/electrical equipment. Experiments and theoretical calculations confirm the specificity and scalability of the system. This mechanism can also be tailored by the rational design of host-guest complexes to quantitatively and visually detect various molecules. With the advantages of versatility and freedom from additional equipment, this detection mechanism has the potential to revolutionize environmental monitoring, food safety analysis, clinical drug testing, and more. In field, visual, chemical detection is of use for a wide range of possible applications. Here, the authors report on the creation of a host-guest liquid gating mechanism where detection of the target host triggers gate opening allowing for gas through the liquid gate, which can be used for visual detection.
Collapse
|
20
|
Zheng Z, Ren S, Geng WC, Cui X, Wu B, Wang H. Monitoring Methionine Decarboxylase by Supramolecular Tandem Assay. Chem Asian J 2022; 17:e202200106. [PMID: 35333438 DOI: 10.1002/asia.202200106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/24/2022] [Indexed: 11/12/2022]
Abstract
Methionine is an essential amino acid involved in many physiological and pathological processes. Methionine starvation caused by methionine decarboxylase ( MetDC) degradation becomes a promising strategy for cancer treatment. Multistep colorimetric method, the present approach to monitor the MetDC activity, possesses drawbacks of the complicated process, low accuracy, and poor anti-interference due to indirect detecting. Herein, we report a facile and easy-to-use supramolecular tandem assay (STA) with cucurbit[7]uril and acridine orange reporter pair for the direct and real-time monitoring of MetDC activity. The applicability of this strategy for measuring enzyme-kinetic parameters and screening of inhibitors are also demonstrated. The STA for MetDC activity detection not only provides a feasible method for methionine-related disease diagnosing but also opens a perspective for cancer therapy.
Collapse
Affiliation(s)
- Zhe Zheng
- China University of Mining and Technology - Xuzhou Campus: China University of Mining and Technology, School of Chemical Engineering & Technology, No. 1, Daxue Road, 221116, XuZhou, CHINA
| | - Siying Ren
- China University of Mining and Technology - Xuzhou Campus: China University of Mining and Technology, School of Chemical Engineering & Technology, CHINA
| | - Wen-Chao Geng
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, Key Laboratory of Systems Microbial Biotechnology, CHINA
| | - Xuexian Cui
- Institute of Microbiology Chinese Academy of Sciences, CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, CHINA
| | - Bian Wu
- Institute of Microbiology Chinese Academy of Sciences, CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, CHINA
| | - Hong Wang
- China University of Mining and Technology, School of Chemical Engineering & Technology, No1,Daxue Road, 221116, Xuzhou, CHINA
| |
Collapse
|
21
|
Nie H, Wei Z, Ni XL, Liu Y. Assembly and Applications of Macrocyclic-Confinement-Derived Supramolecular Organic Luminescent Emissions from Cucurbiturils. Chem Rev 2022; 122:9032-9077. [PMID: 35312308 DOI: 10.1021/acs.chemrev.1c01050] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cucurbit[n]urils (Q[n]s or CB[n]s), as a classical of artificial organic macrocyclic hosts, were found to have excellent advantages in the fabricating of tunable and smart organic luminescent materials in aqueous media and the solid state with high emitting efficiency under the rigid pumpkin-shaped structure-derived macrocyclic-confinement effect in recent years. This review aims to give a systematically up-to-date overview of the Q[n]-based supramolecular organic luminescent emissions from the confined spaces triggered host-guest complexes, including the assembly fashions and the mechanisms of the macrocycle-based luminescent complexes, as well as their applications. Finally, challenges and outlook are provided. Since this class of Q[n]-based supramolecular organic luminescent emissions, which have essentially derived from the cavity-dependent confinement effect and the resulting assembly fashions, emerged only a few years ago, we hope this review will provide valuable information for the further development of macrocycle-based light-emitting materials and other related research fields.
Collapse
Affiliation(s)
- Haigen Nie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Zhen Wei
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Xin-Long Ni
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China.,Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
22
|
Krämer J, Kang R, Grimm LM, De Cola L, Picchetti P, Biedermann F. Molecular Probes, Chemosensors, and Nanosensors for Optical Detection of Biorelevant Molecules and Ions in Aqueous Media and Biofluids. Chem Rev 2022; 122:3459-3636. [PMID: 34995461 PMCID: PMC8832467 DOI: 10.1021/acs.chemrev.1c00746] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 02/08/2023]
Abstract
Synthetic molecular probes, chemosensors, and nanosensors used in combination with innovative assay protocols hold great potential for the development of robust, low-cost, and fast-responding sensors that are applicable in biofluids (urine, blood, and saliva). Particularly, the development of sensors for metabolites, neurotransmitters, drugs, and inorganic ions is highly desirable due to a lack of suitable biosensors. In addition, the monitoring and analysis of metabolic and signaling networks in cells and organisms by optical probes and chemosensors is becoming increasingly important in molecular biology and medicine. Thus, new perspectives for personalized diagnostics, theranostics, and biochemical/medical research will be unlocked when standing limitations of artificial binders and receptors are overcome. In this review, we survey synthetic sensing systems that have promising (future) application potential for the detection of small molecules, cations, and anions in aqueous media and biofluids. Special attention was given to sensing systems that provide a readily measurable optical signal through dynamic covalent chemistry, supramolecular host-guest interactions, or nanoparticles featuring plasmonic effects. This review shall also enable the reader to evaluate the current performance of molecular probes, chemosensors, and nanosensors in terms of sensitivity and selectivity with respect to practical requirement, and thereby inspiring new ideas for the development of further advanced systems.
Collapse
Affiliation(s)
- Joana Krämer
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Rui Kang
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Laura M. Grimm
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Luisa De Cola
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Dipartimento
DISFARM, University of Milano, via Camillo Golgi 19, 20133 Milano, Italy
- Department
of Molecular Biochemistry and Pharmacology, Instituto di Ricerche Farmacologiche Mario Negri, IRCCS, 20156 Milano, Italy
| | - Pierre Picchetti
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Frank Biedermann
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
23
|
Bojesomo R, Assaf KI, Saadeh HA, Siddig LA, Saleh N. Benzimidazole-Piperazine-Coumarin/Cucurbit[7]uril Supramolecular Photoinduced Electron Transfer Fluorochromes for Detection of Carnosol by Stimuli-Responsive Dye Displacement and p K a Tuning. ACS OMEGA 2022; 7:2356-2363. [PMID: 35071923 PMCID: PMC8772309 DOI: 10.1021/acsomega.1c06287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
A new fluorescent dye (4PBZC) comprising coumarin (C), piperazine (P), and benzimidazole (BZ) was designed, prepared, and complexed to cucurbit[7]uril (CB7) to detect carnosol (CAR), an anti-breast cancer drug, in sub-nanomolar concentrations utilizing the supramolecular indicator displacement assay strategy, the CB7-assisted pK a shift, and the CB7-retarded photoinduced electron transfer process. The host-guest complexation was confirmed by UV-visible absorption, fluorescence, and 1H NMR spectroscopy, which established the binding of 4PBZC to CB7. CB7 preferentially binds the indicator dye (4PBZC) via the protonated BZ residue compared to the neutral BZ one, demonstrated by a higher binding constant of the complex in its di-protonated form, which led to an increase in the pK a of the BZ moiety by ca. 3.0 units after the addition of CB7. In aqueous solution (pH 6), switching the emission signals between 4PBZH+C/CB7 (ON state) and 4PBZC (OFF state) was achieved by displacement of the protonated dye from the cavity of CB7 by the CAR analyte. An efficient sensor was obtained for the sensitive detection of CAR in aqueous solution with a low detection limit of 0.148 ng/mL (0.45 nM) and a linear range from 20 to 627 ng/mL.
Collapse
Affiliation(s)
- Rukayat
S. Bojesomo
- Department
of Chemistry, College of Science, United
Arab Emirates University, P.O. Box 15551, Al Ain 15551, United Arab
Emirates
| | - Khaleel I. Assaf
- Department
of Chemistry, Faculty of Science, Al-Balqa
Applied University, Al-Salt 19117, Jordan
| | - Haythem A. Saadeh
- Department
of Chemistry, College of Science, United
Arab Emirates University, P.O. Box 15551, Al Ain 15551, United Arab
Emirates
- Department
of Chemistry, School of Science, The University
of Jordan, Amman 11942, Jordan
| | - Lamia A. Siddig
- Department
of Chemistry, College of Science, United
Arab Emirates University, P.O. Box 15551, Al Ain 15551, United Arab
Emirates
| | - Na’il Saleh
- Department
of Chemistry, College of Science, United
Arab Emirates University, P.O. Box 15551, Al Ain 15551, United Arab
Emirates
| |
Collapse
|
24
|
Máximo P, Colaço M, Pauleta SR, Costa PJ, Pischel U, Parola AJ, Basílio N. Photomodulation of ultrastable host–guest complexes in water and their application in light-controlled steroid release. Org Chem Front 2022. [DOI: 10.1039/d2qo00423b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Host–guest complexation of dithienylethene photoswitches with cucurbit[8]uril leads to photoresponsive binding pairs with picomolar affinity in water.
Collapse
Affiliation(s)
- Patrícia Máximo
- Laboratório Associado para a Química Verde (LAQV), Rede de Química e Tecnologia (REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Miriam Colaço
- Laboratório Associado para a Química Verde (LAQV), Rede de Química e Tecnologia (REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Sofia R. Pauleta
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Microbial Stress Lab, UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry/Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Paulo J. Costa
- BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| | - Uwe Pischel
- CIQSO – Centre for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva, Campus de El Carmen s/n, E-21071 Huelva, Spain
| | - A. Jorge Parola
- Laboratório Associado para a Química Verde (LAQV), Rede de Química e Tecnologia (REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Nuno Basílio
- Laboratório Associado para a Química Verde (LAQV), Rede de Química e Tecnologia (REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
25
|
Prabodh A, Sinn S, Biedermann F. Analyte sensing with unselectively binding synthetic receptors: virtues of time-resolved supramolecular assays. Chem Commun (Camb) 2022; 58:13947-13950. [DOI: 10.1039/d2cc04831k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Time-resolved supramolecular assays probe analyte-characteristic complexation and decomplexation rates. Consequently, even unselectively binding synthetic receptors can be used for analyte identification and quantification.
Collapse
Affiliation(s)
- Amrutha Prabodh
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Stephan Sinn
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Frank Biedermann
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| |
Collapse
|
26
|
Blanco E, Rocha L, Pozo MD, Vázquez L, Petit-Domínguez MD, Casero E, Quintana C. A supramolecular hybrid sensor based on cucurbit[8]uril, 2D-molibdenum disulphide and diamond nanoparticles towards methyl viologen analysis. Anal Chim Acta 2021; 1182:338940. [PMID: 34602204 DOI: 10.1016/j.aca.2021.338940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/20/2021] [Accepted: 08/10/2021] [Indexed: 11/15/2022]
Abstract
We develop an electrochemical sensor by using 2D-transition metal dichalcogenides (TMD), specifically MoS2, and nanoparticles stabilized with cucurbit[8]uril (CB[8]) incorporated together with them. Two different nanoparticles are assayed: diamond nanoparticles (DNPs) and gold nanoparticles (AuNp). 0D materials, together with TMD, provide increased conductivity and active surface while the macrocycle CB[8] affords selectivity towards the guest methyl viologen (MV2+), also named paraquat. Glassy Carbon (GC) electrodes are modified by drop-casting of suspensions of MoS2, followed by either a CB[8]-DNPs hybrid dispersion or a CB[8]-AuNp suspension. Atomic force microscopy is employed for the morphological characterization of the electrochemical sensor surface while cyclic voltammetry and electrochemical impedance spectroscopy techniques allow the electrochemical characterization of the sensor. The well-stablished signals of CB[8]-encapsulated MV2+ arise in voltammetric measurements when the macrocycle modifies the 0D-materials. Once the sensor construction and differential pulse voltammetry parameters have been optimized for quantification purposes, calibration procedures are performed with the platform GC/MoS2/CB[8]-DNPs. This sensing platform shows linear relations between peak intensity and the MV2+ concentration in the linear concentration range of (0.73-8.0) · 10-6 M with a limit of detection of 2.2 · 10-7 M. Analyses of river water samples fortified with MV2+ at the μM level shows recoveries of 100% with RSD values of 6.4% (n = 3).
Collapse
Affiliation(s)
- Elías Blanco
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, C/ Francisco Tomás y Valiente, Nº7, Campus de Excelencia de La Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Laura Rocha
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, C/ Francisco Tomás y Valiente, Nº7, Campus de Excelencia de La Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - María Del Pozo
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, C/ Francisco Tomás y Valiente, Nº7, Campus de Excelencia de La Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Luis Vázquez
- ESISNA Group, Instituto de Ciencia de Materiales de Madrid (CSIC), C/ Sor Juana Inés de La Cruz, Nº3. Campus de Excelencia de La Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - María Dolores Petit-Domínguez
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, C/ Francisco Tomás y Valiente, Nº7, Campus de Excelencia de La Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Elena Casero
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, C/ Francisco Tomás y Valiente, Nº7, Campus de Excelencia de La Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Carmen Quintana
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, C/ Francisco Tomás y Valiente, Nº7, Campus de Excelencia de La Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| |
Collapse
|
27
|
Chakraborty G, Choudhary MK, Sundararajan M, Ray AK, Mula S, Pal H. Stimuli Responsive Confinement of a Molecular Rotor Based BODIPY Dye inside a Cucurbit[7]uril Nanocavity. J Phys Chem B 2021; 125:7946-7957. [PMID: 34270242 DOI: 10.1021/acs.jpcb.1c02443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Present study reports the interaction of a molecular rotor based BODIPY dye, 8-anilino-BODIPY (ABP), with a versatile macrocyclic molecule, cucurbit[7]uril (CB7), investigated through various techniques such as ground-state absorption, steady-state fluorescence, time-resolve emission, proton NMR, and quantum chemical studies. Although BODIPY dyes have widespread applications due to their intriguing photochemical properties, studies on their noncovalent interactions with different macrocyclic hosts, especially regarding their supramolecularly induced modulations in photophysical properties are very limited. The investigated BODIPY dye, especially its protonated ABPH+ form (pH ∼ 1), shows a large fluorescence enhancement on its interaction with the CB7 host, due to large reduction in the structural flexibility for the bound dye, causing a suppression in its nonradiative de-excitation process in the excited state. Unlike ABPH+, the neutral ABP form (pH ∼ 7) shows considerably weaker interaction with CB7. For ABPH+-CB7 system, observed photophysical results indicate formation of both 1:1 and 1:2 dye-to-host complexes. Plausible geometries of these complexes are obtained from quantum chemical studies which are substantiated nicely from 1H NMR results. The response of the ABPH+-CB7 system toward changing temperature of the solution have also been investigated elaborately to understand the potential of the system in different stimuli-responsive sensor applications.
Collapse
Affiliation(s)
- Goutam Chakraborty
- Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Manoj K Choudhary
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Mahesh Sundararajan
- Theoretical Chemistry Section, Chemistry Division, Bhabha Atomic Research Centre, Mumbai,400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Alok K Ray
- Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Soumyaditya Mula
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Haridas Pal
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| |
Collapse
|
28
|
Li G, Trausel F, Helm MP, Klemm B, Brevé TG, Rossum SAP, Hartono M, Gerlings HHPJ, Lovrak M, Esch JH, Eelkema R. Tuneable Control of Organocatalytic Activity through Host–Guest Chemistry. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Guotai Li
- Department of Chemical Engineering Delft University of Technology van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Fanny Trausel
- Department of Chemical Engineering Delft University of Technology van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Michelle P. Helm
- Department of Chemical Engineering Delft University of Technology van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Benjamin Klemm
- Department of Chemical Engineering Delft University of Technology van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Tobias G. Brevé
- Department of Chemical Engineering Delft University of Technology van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Susan A. P. Rossum
- Department of Chemical Engineering Delft University of Technology van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Muhamad Hartono
- Department of Chemical Engineering Delft University of Technology van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Harm H. P. J. Gerlings
- Department of Chemical Engineering Delft University of Technology van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Matija Lovrak
- Department of Chemical Engineering Delft University of Technology van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Jan H. Esch
- Department of Chemical Engineering Delft University of Technology van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Rienk Eelkema
- Department of Chemical Engineering Delft University of Technology van der Maasweg 9 2629 HZ Delft The Netherlands
| |
Collapse
|
29
|
Li G, Trausel F, van der Helm MP, Klemm B, Brevé TG, van Rossum SAP, Hartono M, Gerlings HHPJ, Lovrak M, van Esch JH, Eelkema R. Tuneable Control of Organocatalytic Activity through Host-Guest Chemistry. Angew Chem Int Ed Engl 2021; 60:14022-14029. [PMID: 33821558 PMCID: PMC8251865 DOI: 10.1002/anie.202102227] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/24/2021] [Indexed: 12/23/2022]
Abstract
Dynamic regulation of chemical reactivity is important in many complex chemical reaction networks, such as cascade reactions and signal transduction processes. Signal responsive catalysts could play a crucial role in regulating these reaction pathways. Recently, supramolecular encapsulation was reported to regulate the activities of artificial catalysts. We present a host-guest chemistry strategy to modulate the activity of commercially available synthetic organocatalysts. The molecular container cucurbit[7]uril was successfully applied to change the activity of four different organocatalysts and one initiator, enabling up- or down-regulation of the reaction rates of four different classes of chemical reactions. In most cases CB[7] encapsulation results in catalyst inhibition, however in one case catalyst activation by binding to CB[7] was observed. The mechanism behind this unexpected behavior was explored by NMR binding studies and pKa measurements. The catalytic activity can be instantaneously switched during operation, by addition of either supramolecular host or competitive binding molecules, and the reaction rate can be predicted with a kinetic model. Overall, this signal responsive system proves a promising tool to control catalytic activity.
Collapse
Affiliation(s)
- Guotai Li
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Fanny Trausel
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Michelle P van der Helm
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Benjamin Klemm
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Tobias G Brevé
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Susan A P van Rossum
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Muhamad Hartono
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Harm H P J Gerlings
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Matija Lovrak
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Jan H van Esch
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Rienk Eelkema
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| |
Collapse
|
30
|
Liu J, Lambert H, Zhang YW, Lee TC. Rapid Estimation of Binding Constants for Cucurbit[8]uril Ternary Complexes Using Electrochemistry. Anal Chem 2021; 93:4223-4230. [PMID: 33595296 PMCID: PMC8023530 DOI: 10.1021/acs.analchem.0c04887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Supramolecular complexes
are of fundamental interests in biomedicines
and adaptive materials, and thus facile methods to determine their
binding affinity show usefulness in the design of novel drugs and
materials. Herein, we report a novel approach to estimate the binding
constants KG2 of cucurbit[8]uril-methyl
viologen-based ternary complexes (CB8-MV2+-G2) using electrochemistry,
achieving high precision (±0.03) and practical accuracy (±0.32)
in logKG2 and short measurement time (<10
min). In particular, we have uncovered a linear correlation (R2 > 0.8) between the reduction potential
of
CB8-MV2+-G2 ternary complexes and their reported binding
constants from isothermal titration calorimetry, which allow a calibration
curve to be plotted based on 25 sample complexes. Mechanistic investigation
using experimental and computational approaches reveals that this
correlation stems from the dynamic host-guest exchange events occurring
after the electron transfer step. Binding constants of unknown ternary
complexes, where G2 = hydrocarbons, were estimated, illustrating potential
applications for sparsely soluble second guests.
Collapse
Affiliation(s)
- Jia Liu
- Institute for Materials Discovery, University College London (UCL), Bloomsbury, London WC1E 7JE, United Kingdom.,Department of Chemistry, University College London (UCL), 20 Gordon Street, London, WC1H 0AJ, United Kingdom
| | - Hugues Lambert
- Institute for Materials Discovery, University College London (UCL), Bloomsbury, London WC1E 7JE, United Kingdom.,Department of Chemistry, University College London (UCL), 20 Gordon Street, London, WC1H 0AJ, United Kingdom.,Institute of High Performance Computing, 1 Fusionopolis Way, 138632, Singapore
| | - Yong-Wei Zhang
- Institute of High Performance Computing, 1 Fusionopolis Way, 138632, Singapore
| | - Tung-Chun Lee
- Institute for Materials Discovery, University College London (UCL), Bloomsbury, London WC1E 7JE, United Kingdom.,Department of Chemistry, University College London (UCL), 20 Gordon Street, London, WC1H 0AJ, United Kingdom
| |
Collapse
|
31
|
Li XX, Xu WT, Deng XY, Tian LF, Huang Y, Tao Z. Selective Identification of Phenylalanine Using Cucurbit[7,8]uril-Based Fluorescent Probes. Aust J Chem 2021. [DOI: 10.1071/ch20029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The interactions of two host–guest inclusion complexes comprised of cucurbit[7]uril (Q[7]) and cucurbit[8]uril (Q[8]) with a derivative of toluidine blue O (TB) have been investigated using 1H NMR and fluorescence spectroscopy. The experimental results revealed that the Q[7] host interacts with a TB molecule to form a 1:1 inclusion complex and the Q[8] host interacts with two TB guest molecules to form a 1:2 inclusion complex. The inclusion of the TB guest molecule within the Q[7] host gave rise to significant fluorescence enhancement, whereas the inclusion of the TB guest molecule within the Q[8] host resulted in significant fluorescence quenching. Further recognition experiments involving a series of l-α-amino acids revealed that the TB@Q[7] inclusion fluorescence probe exhibits high selectivity for the recognition of phenylalanine via significant fluorescence quenching in an aqueous solution, whereas the TB@Q[8] inclusion fluorescence probe also exhibited high selectivity for phenylalanine recognition via fluorescence enhancement in an aqueous solution.
Collapse
|
32
|
Li J, Zhuang G, Huang Q, Wang J, Wu Y, Du P. A Conjugated Molecular Crown Containing a Single Pyrenyl Unit: Synthesis, Characterization, and Photophysical Properties. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202012011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Chernikova EY, Berdnikova DV. Cucurbiturils in nucleic acids research. Chem Commun (Camb) 2020; 56:15360-15376. [PMID: 33206072 DOI: 10.1039/d0cc06583h] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
During the past ten years, the importance of cucurbiturils (CB[n]) as macrocyclic hosts in supramolecular assemblies with various types of natural and synthetic nucleic acids (NAs) has increased explosively. As a component of such systems, CB[n] macrocycles can play a wide spectrum of roles from drug and gene delivery vehicles to catalysts/inhibitors of biochemical reactions and even building blocks for NA-based materials. The aim of this highlight article is to describe the development of the CB[n] applications in nucleic acids research and to outline the current situation and perspectives of this fascinating synergistic combination of supramolecular chemistry of CB[n] and NAs.
Collapse
Affiliation(s)
- Ekaterina Y Chernikova
- Laboratory of Photoactive Supramolecular Systems, A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, Moscow, Russia.
| | | |
Collapse
|
34
|
He S, Zhiti A, Barba-Bon A, Hennig A, Nau WM. Real-Time Parallel Artificial Membrane Permeability Assay Based on Supramolecular Fluorescent Artificial Receptors. Front Chem 2020; 8:597927. [PMID: 33330387 PMCID: PMC7673371 DOI: 10.3389/fchem.2020.597927] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/06/2020] [Indexed: 01/17/2023] Open
Abstract
Parallel artificial membrane permeability assay (PAMPA) is a screening tool for the evaluation of drug permeability across various biological membrane systems in a microplate format. In PAMPA, a drug candidate is allowed to pass through the lipid layer of a particular well during an incubation period of, typically, 10–16 h. In a second step, the samples of each well are transferred to a UV-Vis–compatible microplate and optically measured (applicable only to analytes with sufficient absorbance) or sampled by mass-spectrometric analysis. The required incubation period, sample transfer, and detection methods jointly limit the scalability of PAMPA to high-throughput screening format. We introduce a modification of the PAMPA method that allows direct fluorescence detection, without sample transfer, in real time (RT-PAMPA). The method employs the use of a fluorescent artificial receptor (FAR), composed of a macrocycle in combination with an encapsulated fluorescent dye, administered in the acceptor chamber of conventional PAMPA microplates. Because the detection principle relies on the molecular recognition of an analyte by the receptor and the associated fluorescence response, concentration changes of any analyte that binds to the receptor can be monitored (molecules with aromatic residues in the present example), regardless of the spectroscopic properties of the analyte itself. Moreover, because the fluorescence of the (upper) acceptor well can be read out directly by fluorescence in a microplate reader, the permeation of the drug through the planar lipid layer can be monitored in real time. Compared with the traditional assay, RT-PAMPA allows not only quantification of the permeability characteristics but also rapid differentiation between fast and slow diffusion events.
Collapse
Affiliation(s)
- Suhang He
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Anxhela Zhiti
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Andrea Barba-Bon
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Andreas Hennig
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Werner M Nau
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| |
Collapse
|
35
|
Ai Q, Fu Q, Liang F. pH-Mediated Single Molecule Conductance of Cucurbit[7]uril. Front Chem 2020; 8:736. [PMID: 33195012 PMCID: PMC7477741 DOI: 10.3389/fchem.2020.00736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/16/2020] [Indexed: 11/13/2022] Open
Abstract
Recognition tunneling technique owns the capability for investigating and characterizing molecules at single molecule level. Here, we investigated the conductance value of cucurbit[7]uril (CB[7]) and melphalan@CB[7] (Mel@CB[7]) complex molecular junctions by using recognition tunneling technique. The conductances of CB[7] and Mel@CB[7] with different pH values were studied in aqueous media as well as organic solvent. Both pH value and guest molecule have an impact on the conductance of CB[7] molecular junction. The conductances of CB[7] and Mel@CB[7] both showed slightly difference on the conductance under different measurement systems. This work extends the molecular conductance measurement to aqueous media and provides new insights of pH-responsive host-guest system for single molecule detection through electrical measurements.
Collapse
Affiliation(s)
- Qiushuang Ai
- The State Key Laboratory for Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Qiang Fu
- Jiangxi College of Traditional Chinese Medicine, Fuzhou, China
| | - Feng Liang
- The State Key Laboratory for Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
36
|
Paudics A, Hessz D, Bojtár M, Gyarmati B, Szilágyi A, Kállay M, Bitter I, Kubinyi M. Binding Modes of a Phenylpyridinium Styryl Fluorescent Dye with Cucurbiturils. Molecules 2020; 25:E5111. [PMID: 33153219 PMCID: PMC7663148 DOI: 10.3390/molecules25215111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 11/16/2022] Open
Abstract
In order to explore how cucurbituril hosts accommodate an N-phenyl-pyridinium derivative guest, the complexation of the solvatochromic dye, 4-(4-(dimethylamino)styryl)-1-phenylpyridinium iodide (PhSt) with ,',δ,δ'-tetramethyl-cucurbit[6]uril (Me4CB6) and cucurbit[7]uril (CB7) was investigated by absorption spectroscopic, fluorescence and NMR experiments. In aqueous solutions, PhSt forms 1:1 complexes with both cucurbiturils, the complex with CB7 has a higher stability constant (Ka = 6.0 × 106 M-1) than the complex with Me4CB6 (Ka = 1.1 × 106 M-1). As revealed by NMR experiments and confirmed by theoretical calculations, CB7 encapsulates the whole phenylpyridinium entity of the PhSt cation guest, whereas the cavity of Me4CB6 includes only the phenyl ring, the pyridinium ring is bound to the carbonyl rim of the host. The binding of PhSt to cucurbiturils is accompanied by a strong enhancement of the fluorescence quantum yield due to the blocking of the deactivation through a twisted intramolecular charge transfer (TICT) state. The TICT mechanism in PhSt was characterized by fluorescence experiments in polyethylene glycol (PEG) solvents of different viscosities. The PhSt-CB7 system was tested as a fluorescence indicator displacement (FID) assay, and it recognized trimethyl-lysine selectively over other lysine derivatives.
Collapse
Affiliation(s)
- Adrien Paudics
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, 1521 Budapest, Hungary; (A.P.); (D.H.); (B.G.); (A.S.); (M.K.)
| | - Dóra Hessz
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, 1521 Budapest, Hungary; (A.P.); (D.H.); (B.G.); (A.S.); (M.K.)
| | - Márton Bojtár
- “Lendület” Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1519 Budapest, Hungary;
| | - Benjámin Gyarmati
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, 1521 Budapest, Hungary; (A.P.); (D.H.); (B.G.); (A.S.); (M.K.)
| | - András Szilágyi
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, 1521 Budapest, Hungary; (A.P.); (D.H.); (B.G.); (A.S.); (M.K.)
| | - Mihály Kállay
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, 1521 Budapest, Hungary; (A.P.); (D.H.); (B.G.); (A.S.); (M.K.)
| | - István Bitter
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary;
| | - Miklós Kubinyi
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, 1521 Budapest, Hungary; (A.P.); (D.H.); (B.G.); (A.S.); (M.K.)
| |
Collapse
|
37
|
Olson JE, Braegelman AS, Zou L, Webber MJ, Camden JP. Capture of Phenylalanine and Phenylalanine-Terminated Peptides Using a Supramolecular Macrocycle for Surface-Enhanced Raman Scattering Detection. APPLIED SPECTROSCOPY 2020; 74:1374-1383. [PMID: 32508116 DOI: 10.1177/0003702820937333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The cucurbit[n]uril (CB[n]) family of macrocycles are known to bind a variety of small molecules with high affinity. These motifs thus have promise in an ever-growing list of trace detection methods. Surface-enhanced Raman scattering (SERS) detection schemes employing CB[n] motifs exhibit increased sensitivity due to selective concentration of the analyte at the nanoparticle surface, coupled with the ability of CB[n] to facilitate the formation of well-defined electromagnetic hot spots. Herein, we report a CB[7] SERS assay for quantification of phenylalanine (Phe) and further demonstrate its utility for detecting peptides with an N-terminal Phe. The CB[7]-guest interaction improves the sensitivity 5-25-fold over direct detection of Phe using citrate-capped silver nanoparticle aggregates, enabling use of a portable Raman system. We further illustrate detection of insulin via binding of CB[7] to the N-terminal Phe residue on its B-chain, suggesting a general strategy for detecting Phe-terminated peptides of clinically relevant biomolecules.
Collapse
Affiliation(s)
- Jacob E Olson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, USA
| | - Adam S Braegelman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, USA
| | - Lei Zou
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, USA
| | - Matthew J Webber
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, USA
| | - Jon P Camden
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, USA
| |
Collapse
|
38
|
Hu C, Grimm L, Prabodh A, Baksi A, Siennicka A, Levkin PA, Kappes MM, Biedermann F. Covalent cucurbit[7]uril-dye conjugates for sensing in aqueous saline media and biofluids. Chem Sci 2020; 11:11142-11153. [PMID: 34094355 PMCID: PMC8162441 DOI: 10.1039/d0sc03079a] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/16/2020] [Indexed: 12/17/2022] Open
Abstract
Non-covalent chemosensing ensembles of cucurbit[n]urils (CBn) have been widely used in proof-of-concept sensing applications, but they are prone to disintegrate in saline media, e.g. biological fluids. We show here that covalent cucurbit[7]uril-indicator dye conjugates are buffer- (10× PBS buffer) and saline-stable (up to 1.4 M NaCl) and allow for selective sensing of Parkinson's drug amantadine in human urine and saliva, where the analogous non-covalent CB7⊃dye complex is dysfunctional. The in-depth analysis of the covalent host-dye conjugates in the gas-phase, and deionized versus saline aqueous media revealed interesting structural, thermodynamic and kinetic effects that are of general interest for the design of CBn-based supramolecular chemosensors and systems. This work also introduces a novel high-affinity indicator dye for CB7 through which fundamental limitations of indicator displacement assays (IDA) were exposed, namely an impractical slow equilibration time. Unlike non-covalent CBn⊃dye reporter pairs, the conjugate chemosensors can also operate through a SN2-type guest-dye exchange mechanism, which shortens assay times and opens new avenues for tailoring analyte-selectivity.
Collapse
Affiliation(s)
- Changming Hu
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Laura Grimm
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Amrutha Prabodh
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Ananya Baksi
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Institute of Physical Chemistry (IPC), Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Alicja Siennicka
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Pavel A Levkin
- Institute of Chemical and Biological Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Manfred M Kappes
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Institute of Physical Chemistry (IPC), Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Frank Biedermann
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
39
|
Mutihac RC, Bunaciu AA, Buschmann HJ, Mutihac L. A brief overview on supramolecular analytical chemistry of cucurbit[n]urils and hemicucurbit[n]urils. J INCL PHENOM MACRO 2020. [DOI: 10.1007/s10847-020-01019-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
40
|
Biedermann F, Ghale G, Hennig A, Nau WM. Fluorescent artificial receptor-based membrane assay (FARMA) for spatiotemporally resolved monitoring of biomembrane permeability. Commun Biol 2020; 3:383. [PMID: 32669621 PMCID: PMC7363885 DOI: 10.1038/s42003-020-1108-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
The spatiotemporally resolved monitoring of membrane translocation, e.g., of drugs or toxins, has been a long-standing goal. Herein, we introduce the fluorescent artificial receptor-based membrane assay (FARMA), a facile, label-free method. With FARMA, the permeation of more than hundred organic compounds (drugs, toxins, pesticides, neurotransmitters, peptides, etc.) through vesicular phospholipid bilayer membranes has been monitored in real time (µs-h time scale) and with high sensitivity (nM-µM concentration), affording permeability coefficients across an exceptionally large range from 10-9-10-3 cm s-1. From a fundamental point of view, FARMA constitutes a powerful tool to assess structure-permeability relationships and to test biophysical models for membrane passage. From an applied perspective, FARMA can be extended to high-throughput screening by adaption of the microplate reader format, to spatial monitoring of membrane permeation by microscopy imaging, and to the compartmentalized monitoring of enzymatic activity.
Collapse
Affiliation(s)
- Frank Biedermann
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany.
| | - Garima Ghale
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany
| | - Andreas Hennig
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany
| | - Werner M Nau
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany.
| |
Collapse
|
41
|
Sinn S, Krämer J, Biedermann F. Teaching old indicators even more tricks: binding affinity measurements with the guest-displacement assay (GDA). Chem Commun (Camb) 2020; 56:6620-6623. [PMID: 32459225 DOI: 10.1039/d0cc01841d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A simple change has important consequences: the guest-displacement assay (GDA) is introduced which allows for binding affinity determinations of supramolecular complexes with spectroscopically silent hosts and guests. GDA is complementary to indicator-displacement assay for affinity measurements with soluble components, but is superior for insoluble or for weakly binding guests.
Collapse
Affiliation(s)
- Stephan Sinn
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Joana Krämer
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Frank Biedermann
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
42
|
Masson E, Urbach AR. 6 th International Conference on Cucurbiturils (ICCB2019): Athens, Ohio, USA, July 21-24 th. Supramol Chem 2020. [DOI: 10.1080/10610278.2020.1725516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Eric Masson
- Department of Chemistry & Biochemistry, Ohio University, Athens, OH, USA
| | - Adam R. Urbach
- Department of Chemistry, Trinity University, San Antonio, TX, USA
| |
Collapse
|
43
|
Miskolczy Z, Megyesi M, Biczók L, Prabodh A, Biedermann F. Kinetics and Mechanism of Cation-Induced Guest Release from Cucurbit[7]uril. Chemistry 2020; 26:7433-7441. [PMID: 31943402 PMCID: PMC7318709 DOI: 10.1002/chem.201905633] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Indexed: 12/11/2022]
Abstract
The release of two organic guests from cucurbit[7]uril (CB7) was selectively monitored by the stopped‐flow method in aqueous solutions of inorganic salts to reveal the mechanistic picture in detail. Two contrasting mechanisms were identified: The symmetric dicationic 2,7‐dimethyldiazapyrenium shows a cation‐independent complex dissociation mechanism coupled to deceleration of the ingression in the presence of alkali and alkaline earth cations (Mn+) due to competitive formation of CB7–Mn+ complexes. A much richer, unprecedented kinetic behaviour was observed for the ingression and egression of the monocationic and non‐symmetric berberine (B+). The formation of ternary complex B+–CB7–Mn+ was unambiguously revealed. A difference of more than two orders of magnitude was found in the equilibrium constants of Mn+ binding to B+–CB7 inclusion complex. Large cations, such as K+ and Ba2+, also promoted B+ expulsion from the ternary complex in a bimolecular process. This study reveals a previously hidden mechanistic picture and motivates systematic kinetic investigations of other host–guest systems.
Collapse
Affiliation(s)
- Zsombor Miskolczy
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, P.O. Box 286, 1519, Budapest, Hungary
| | - Mónika Megyesi
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, P.O. Box 286, 1519, Budapest, Hungary
| | - László Biczók
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, P.O. Box 286, 1519, Budapest, Hungary
| | - Amrutha Prabodh
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Frank Biedermann
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
44
|
Dewantari AA, Yongwattana N, Payongsri P, Seemakhan S, Borwornpinyo S, Ojida A, Wongkongkatep J. Fluorescence Detection of Deoxyadenosine in Cordyceps spp. by Indicator Displacement Assay. Molecules 2020; 25:molecules25092045. [PMID: 32353945 PMCID: PMC7248813 DOI: 10.3390/molecules25092045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 02/07/2023] Open
Abstract
A rapid, sensitive and reliable indicator displacement assay (IDA) for specific detection of 2′- and 3′-deoxyadenosine (2′-dAde and 3′-dAde), the latter is also known as cordycepin, was established. The formation of inclusion complex between protonated acridine orange (AOH+) and cucurbit[7]uril (CB7) resulted in the hypochromic shift of fluorescent emission from 530 nm to 512 nm. Addition of cordycepin to the highly fluorescent AOH+/CB7 complex resulted in a unique tripartite AOH+/CB7/dAde complex with diminished fluorescence, and such reduction in emission intensity serves as the basis for our novel sensing system. The detection limits were 11 and 82 μM for 2′- and 3′-deoxyadenosine, respectively. The proposed method also demonstrated high selectivity toward 2′- and 3′-deoxyadenosine, owing to the inability of other deoxynucleosides, nucleosides and nucleotides commonly found in Cordyceps spp. to displace the AOH+ from the AOH+/CB7 complex, which was confirmed by isothermal titration calorimetry (ITC), UV-Visible and proton nuclear magnetic resonance (1H-NMR) spectroscopy. Our method was successfully implemented in the analysis of cordycepin in commercially available Ophiocordyceps and Cordyceps supplements, providing a novel and effective tool for quality assessment of these precious fungi with several health benefits.
Collapse
Affiliation(s)
- Arinta Agnie Dewantari
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (A.A.D.); (N.Y.); (P.P.); (S.B.)
| | - Nattha Yongwattana
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (A.A.D.); (N.Y.); (P.P.); (S.B.)
| | - Panwajee Payongsri
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (A.A.D.); (N.Y.); (P.P.); (S.B.)
| | - Sawinee Seemakhan
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - Suparerk Borwornpinyo
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (A.A.D.); (N.Y.); (P.P.); (S.B.)
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - Akio Ojida
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Jirarut Wongkongkatep
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (A.A.D.); (N.Y.); (P.P.); (S.B.)
- Correspondence: ; Tel.: +66-2201-5302
| |
Collapse
|
45
|
Grommet AB, Feller M, Klajn R. Chemical reactivity under nanoconfinement. NATURE NANOTECHNOLOGY 2020; 15:256-271. [PMID: 32303705 DOI: 10.1038/s41565-020-0652-2] [Citation(s) in RCA: 334] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/28/2020] [Indexed: 06/11/2023]
Abstract
Confining molecules can fundamentally change their chemical and physical properties. Confinement effects are considered instrumental at various stages of the origins of life, and life continues to rely on layers of compartmentalization to maintain an out-of-equilibrium state and efficiently synthesize complex biomolecules under mild conditions. As interest in synthetic confined systems grows, we are realizing that the principles governing reactivity under confinement are the same in abiological systems as they are in nature. In this Review, we categorize the ways in which nanoconfinement effects impact chemical reactivity in synthetic systems. Under nanoconfinement, chemical properties can be modulated to increase reaction rates, enhance selectivity and stabilize reactive species. Confinement effects also lead to changes in physical properties. The fluorescence of light emitters, the colours of dyes and electronic communication between electroactive species can all be tuned under confinement. Within each of these categories, we elucidate design principles and strategies that are widely applicable across a range of confined systems, specifically highlighting examples of different nanocompartments that influence reactivity in similar ways.
Collapse
Affiliation(s)
- Angela B Grommet
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Moran Feller
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Rafal Klajn
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
46
|
Prabodh A, Sinn S, Grimm L, Miskolczy Z, Megyesi M, Biczók L, Bräse S, Biedermann F. Teaching indicators to unravel the kinetic features of host–guest inclusion complexes. Chem Commun (Camb) 2020; 56:12327-12330. [DOI: 10.1039/d0cc03715j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Three new, practically convenient methods are introduced for measuring kinetic parameters of supramolecular host–guest and protein–ligand complexes. Combined with thermodynamic data, this allows for an in-depth of the binding mechanism.
Collapse
Affiliation(s)
- Amrutha Prabodh
- Karlsruhe Institute of Technology (KIT)
- Institute of Nanotechnology (INT)
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Stephan Sinn
- Karlsruhe Institute of Technology (KIT)
- Institute of Nanotechnology (INT)
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Laura Grimm
- Karlsruhe Institute of Technology (KIT)
- Institute of Nanotechnology (INT)
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Zsombor Miskolczy
- Institute of Materials and Environmental Chemistry Research Centre for Natural Sciences
- 1117 Budapest
- Hungary
| | - Mónika Megyesi
- Institute of Materials and Environmental Chemistry Research Centre for Natural Sciences
- 1117 Budapest
- Hungary
| | - László Biczók
- Institute of Materials and Environmental Chemistry Research Centre for Natural Sciences
- 1117 Budapest
- Hungary
| | - Stefan Bräse
- Karlsruhe Institute of Technology (KIT)
- Institute of Organic Chemistry (IOC)
- 76131 Karlsruhe
- Germany
- Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS-FMS)
| | - Frank Biedermann
- Karlsruhe Institute of Technology (KIT)
- Institute of Nanotechnology (INT)
- 76344 Eggenstein-Leopoldshafen
- Germany
| |
Collapse
|
47
|
Das D, Assaf KI, Nau WM. Applications of Cucurbiturils in Medicinal Chemistry and Chemical Biology. Front Chem 2019; 7:619. [PMID: 31572710 PMCID: PMC6753627 DOI: 10.3389/fchem.2019.00619] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/28/2019] [Indexed: 02/02/2023] Open
Abstract
The supramolecular chemistry of cucurbit[n]urils (CBn) has been rapidly developing to encompass diverse medicinal applications, including drug formulation and delivery, controlled drug release, and sensing for bioanalytical purposes. This is made possible by their unique recognition properties and very low cytotoxicity. In this review, we summarize the host-guest complexation of biologically important molecules with CBn, and highlight their implementation in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Debapratim Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, India
| | - Khaleel I. Assaf
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
- Department of Chemistry, Faculty of Science, Al-Balqa Applied University, Al-Salt, Jordan
| | - Werner M. Nau
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| |
Collapse
|
48
|
Sinn S, Spuling E, Bräse S, Biedermann F. Rational design and implementation of a cucurbit[8]uril-based indicator-displacement assay for application in blood serum. Chem Sci 2019; 10:6584-6593. [PMID: 31367309 PMCID: PMC6628674 DOI: 10.1039/c9sc00705a] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 05/31/2019] [Indexed: 12/14/2022] Open
Abstract
In this study, we report the first supramolecular indicator displacement assay (IDA) based on cucurbit[n]uril (CBn) host and a [2.2]paracyclophane derivative as indicator that is operational in blood serum.
In this study, we report the first supramolecular indicator-displacement assay (IDA) based on cucurbit[n]uril (CBn) hosts that is operational in blood serum. Rational design principles for host–guest chemosensing in competitively binding media were derived through detailed mathematical simulations. It was shown that currently known CBn-based chemosensing ensembles are not suited for use in highly competitive matrices such as blood serum. Conversely, the simulations indicated that a combination of cucurbit[8]uril (CB8) and an ultra-high affinity dye would be a promising IDA reporter pair for the detection of Alzheimer's drug memantine in blood serum. Therefore, a novel class of [2.2]paracyclophane-derived indicator dyes for the host CB8 was developed that possesses one of the highest host–guest affinities (Ka > 1012 M–1 in water) known in supramolecular host–guest chemistry, and which provides a large Stokes shift (up to 200 nm). The novel IDA was then tested for the detection of memantine in blood serum in a physiologically relevant sub- to low micromolar concentration range.
Collapse
Affiliation(s)
- Stephan Sinn
- Karlsruhe Institute of Technology (KIT) , Institute of Nanotechnology (INT) , Hermann-von-Helmholtz-Platz 1 , 76344 Eggenstein-Leopoldshafen , Germany .
| | - Eduard Spuling
- Karlsruhe Institute of Technology (KIT) , Institute of Organic Chemistry , Fritz-Haber-Weg 6 , 76131 Karlsruhe , Germany
| | - Stefan Bräse
- Karlsruhe Institute of Technology (KIT) , Institute of Organic Chemistry , Fritz-Haber-Weg 6 , 76131 Karlsruhe , Germany.,Karlsruhe Institute of Technology (KIT) , Institute of Toxicology and Genetics (ITG) , Hermann-von-Helmholtz-Platz 1 , 76344 Eggenstein-Leopoldshafen , Germany
| | - Frank Biedermann
- Karlsruhe Institute of Technology (KIT) , Institute of Nanotechnology (INT) , Hermann-von-Helmholtz-Platz 1 , 76344 Eggenstein-Leopoldshafen , Germany .
| |
Collapse
|
49
|
Zhang S, Assaf KI, Huang C, Hennig A, Nau WM. Ratiometric DNA sensing with a host-guest FRET pair. Chem Commun (Camb) 2019; 55:671-674. [PMID: 30565597 DOI: 10.1039/c8cc09126a] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A supramolecular host-guest FRET pair based on a carboxyfluorescein-labelled cucurbit[7]uril (CB7-CF, as acceptor) and the fluorescent dye 4',6-diamidino-2-phenylindole (DAPI, as donor) is developed for sensing of DNA. In comparison to the commercial DNA staining dye SYBR Green I, the new chemosensing ensemble offers dual-emission signals, which allows a linear ratiometric response over a wide concentration range.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany.
| | | | | | | | | |
Collapse
|
50
|
Miskolczy Z, Megyesi M, Toke O, Biczók L. Change of the kinetics of inclusion in cucurbit[7]uril upon hydrogenation and methylation of palmatine. Phys Chem Chem Phys 2019; 21:4912-4919. [DOI: 10.1039/c8cp07231k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The negative activation entropy of tetrahydropalmatine inclusion makes the entry into cucurbit[7]uril significantly slower than in the case of dehydrocorydaline.
Collapse
Affiliation(s)
- Zsombor Miskolczy
- Institute of Materials and Environmental Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- 1519 Budapest
- Hungary
| | - Mónika Megyesi
- Institute of Materials and Environmental Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- 1519 Budapest
- Hungary
| | - Orsolya Toke
- Laboratory for NMR Spectroscopy
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- 1519 Budapest
- Hungary
| | - László Biczók
- Institute of Materials and Environmental Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- 1519 Budapest
- Hungary
| |
Collapse
|