1
|
Deshetty UM, Chatterjee N, Buch S, Periyasamy P. HIV-1 Tat-Mediated Human Müller Glial Cell Senescence Involves Endoplasmic Reticulum Stress and Dysregulated Autophagy. Viruses 2024; 16:903. [PMID: 38932195 PMCID: PMC11209317 DOI: 10.3390/v16060903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Antiretroviral treatments have notably extended the lives of individuals with HIV and reduced the occurrence of comorbidities, including ocular manifestations. The involvement of endoplasmic reticulum (ER) stress in HIV-1 pathogenesis raises questions about its correlation with cellular senescence or its role in initiating senescent traits. This study investigated how ER stress and dysregulated autophagy impact cellular senescence triggered by HIV-1 Tat in the MIO-M1 cell line (human Müller glial cells). Cells exposed to HIV-1 Tat exhibited increased vimentin expression combined with markers of ER stress (BiP, p-eIF2α), autophagy (LC3, Beclin-1, p62), and the senescence marker p21 compared to control cells. Western blotting and staining techniques like SA-β-gal were employed to examine these markers. Additionally, treatments with ER stress inhibitor 4-PBA before HIV-1 Tat exposure led to a decreased expression of ER stress, senescence, and autophagy markers. Conversely, pre-treatment with the autophagy inhibitor 3-MA resulted in reduced autophagy and senescence markers but did not alter ER stress markers compared to control cells. The findings suggest a link between ER stress, dysregulated autophagy, and the initiation of a senescence phenotype in MIO-M1 cells induced by HIV-1 Tat exposure.
Collapse
Affiliation(s)
- Uma Maheswari Deshetty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA;
| | - Nivedita Chatterjee
- Vision Research Foundation, Sankara Netralaya, 18, College Road, Chennai 600006, India;
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA;
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA;
| |
Collapse
|
2
|
Ellis RJ, Pal S, Achim CL, Sundermann E, Moore DJ, Soontornniyomkij V, Feldman H. Alzheimer-Type Cerebral Amyloidosis in the Context of HIV Infection: Implications for a Proposed New Treatment Approach. J Neuroimmune Pharmacol 2024; 19:27. [PMID: 38829507 PMCID: PMC11147830 DOI: 10.1007/s11481-024-10126-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 05/13/2024] [Indexed: 06/05/2024]
Abstract
Reverse transcriptase inhibitors (RTIs) are currently broadly prescribed for the treatment of HIV infection but are also thought to prevent Alzheimer's disease (AD) progression by protecting against amyloidosis. Our study evaluates the hypothesis that reverse transcriptase inhibitors protect against Alzheimer-type brain amyloidogenesis in the context of HIV infection. We compiled a case series of participants from a prospective study of the neurological consequences of HIV infection at the HIV Neurobehavioral Research Program (HNRP) who had serial neuropsychological and neurological assessments and were on RTIs. Two participants had gross and microscopic examination and immunohistochemistry of the brain at autopsy; one was assessed clinically for Alzheimer's disease by cerebrospinal fluid (CSF) analysis of phosphorylated-Tau, Total-Tau and Aβ42. Additionally, a larger cohort of 250 autopsied individuals was evaluated for presence of amyloid plaques, Tau, and related pathologies. Three older, virally suppressed individuals with HIV who had long-term treatment with RTIs were included in analyses. Two cases demonstrated substantial cerebral amyloid deposition at autopsy. The third case met clinical criteria for AD based on a typical clinical course and CSF biomarker profile. In the larger cohort of autopsied individuals, the prevalence of cerebral amyloidosis among people with HIV (PWH) was greater for those on RTIs. Our study showed that long-term RTI therapy did not protect against Alzheimer-type brain amyloidogenesis in the context of HIV infection in these patients. Given the known toxicities of RTIs, it is premature to recommend them to individuals at risk or with Alzheimer's disease who do not have HIV infection.
Collapse
Affiliation(s)
- Ronald J Ellis
- Department of Neuroscience, University of California, San Diego, CA, USA.
- Department of Psychiatry, University of California, San Diego, CA, USA.
| | - Shibangi Pal
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Cristian L Achim
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Erin Sundermann
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - David J Moore
- Department of Psychiatry, University of California, San Diego, CA, USA
| | | | - Howard Feldman
- Department of Neuroscience, University of California, San Diego, CA, USA
| |
Collapse
|
3
|
Ellis RJ, Marquine MJ, Kaul M, Fields JA, Schlachetzki JCM. Mechanisms underlying HIV-associated cognitive impairment and emerging therapies for its management. Nat Rev Neurol 2023; 19:668-687. [PMID: 37816937 PMCID: PMC11052664 DOI: 10.1038/s41582-023-00879-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2023] [Indexed: 10/12/2023]
Abstract
People living with HIV are affected by the chronic consequences of neurocognitive impairment (NCI) despite antiretroviral therapies that suppress viral replication, improve health and extend life. Furthermore, viral suppression does not eliminate the virus, and remaining infected cells may continue to produce viral proteins that trigger neurodegeneration. Comorbidities such as diabetes mellitus are likely to contribute substantially to CNS injury in people living with HIV, and some components of antiretroviral therapy exert undesirable side effects on the nervous system. No treatment for HIV-associated NCI has been approved by the European Medicines Agency or the US Food and Drug Administration. Historically, roadblocks to developing effective treatments have included a limited understanding of the pathophysiology of HIV-associated NCI and heterogeneity in its clinical manifestations. This heterogeneity might reflect multiple underlying causes that differ among individuals, rather than a single unifying neuropathogenesis. Despite these complexities, accelerating discoveries in HIV neuropathogenesis are yielding potentially druggable targets, including excessive immune activation, metabolic alterations culminating in mitochondrial dysfunction, dysregulation of metal ion homeostasis and lysosomal function, and microbiome alterations. In addition to drug treatments, we also highlight the importance of non-pharmacological interventions. By revisiting mechanisms implicated in NCI and potential interventions addressing these mechanisms, we hope to supply reasons for optimism in people living with HIV affected by NCI and their care providers.
Collapse
Affiliation(s)
- Ronald J Ellis
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
| | - María J Marquine
- Department of Medicine, Duke University, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Marcus Kaul
- School of Medicine, Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| | - Jerel Adam Fields
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
4
|
Ellis RJ, Pal S, Achim CL, Sundermann E, Moore DJ, Soontornniyomkij V, Feldman H. Alzheimer-type cerebral amyloidosis in the context of HIV infection: implications for a proposed new treatment approach. RESEARCH SQUARE 2023:rs.3.rs-3040756. [PMID: 37398361 PMCID: PMC10312930 DOI: 10.21203/rs.3.rs-3040756/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Reverse transcriptase inhibitors (RTIs) are currently broadly prescribed for the treatment of HIV infection but are also thought to prevent Alzheimer's Disease (AD) progression by protecting against amyloidosis. Our study evaluates the hypothesis that reverse transcriptase inhibitors protect against Alzheimer-type brain amyloidogenesis in the context of HIV infection. We compiled a case series of participants from a prospective study of the neurological consequences of HIV infection at the HIV Neurobehavioral Research Program (HNRP) who had serial neuropsychological and neurological assessments and were on RTIs. Two participants had gross and microscopic examination and immunohistochemistry of the brain at autopsy; one was assessed clinically for Alzheimer's Disease by cerebrospinal fluid (CSF) analysis of phosphorylated-Tau, Total-Tau and Aβ42. Additionally, a larger cohort of autopsied individuals was evaluated for presence of amyloid plaques, Tau, and related pathologies. Three older, virally suppressed individuals with HIV who had long-term treatment with RTIs were included in analyses. Two cases demonstrated substantial cerebral amyloid deposition at autopsy. The third case met clinical criteria for AD based on a typical clinical course and CSF biomarker profile. In the larger cohort of autopsied individuals, the prevalence of cerebral amyloidosis among people with HIV (PWH) was greater for those on RTIs. Our study showed that long-term RTI therapy did not protect against Alzheimer-type brain amyloidogenesis in the context of HIV infection in these patients. Given the known toxicities of RTIs, it is premature to recommend them to individuals at risk or with Alzheimer's disease who do not have HIV infection.
Collapse
|
5
|
Barbaro JM, Jaureguiberry-Bravo M, Sidoli S, Berman JW. Morphine disrupts macrophage functions even during HIV infection. J Leukoc Biol 2022; 112:1317-1328. [PMID: 36205434 PMCID: PMC9677813 DOI: 10.1002/jlb.3ma0522-273rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/1912] [Revised: 12/12/1912] [Accepted: 12/12/1912] [Indexed: 12/24/2022] Open
Abstract
HIV-associated neurocognitive impairment (HIV-NCI) is a debilitating comorbidity that reduces quality of life in 15-40% of people with HIV (PWH) taking antiretroviral therapy (ART). Opioid use has been shown to increase neurocognitive deficits in PWH. Monocyte-derived macrophages (MDMs) harbor HIV in the CNS even in PWH on ART. We hypothesized that morphine (MOR), a metabolite of heroin, further dysregulates functional processes in MDMs to increase neuropathogenesis. We found that, in uninfected and HIV-infected primary human MDMs, MOR activates these cells by increasing phagocytosis and up-regulating reactive oxygen species. Effects of MOR on phagocytosis were dependent on μ-opioid receptor activity and were mediated, in part, by inhibited lysosomal degradation of phagocytized substrates. All results persisted when cells were treated with both MOR and a commonly prescribed ART cocktail, suggesting minimal impact of ART during opioid exposure. We then performed mass spectrometry in HIV-infected MDMs treated with or without MOR to determine proteomic changes that suggest additional mechanisms by which opioids affect macrophage homeostasis. Using downstream pathway analyses, we found that MOR dysregulates ER quality control and extracellular matrix invasion. Our data indicate that MOR enhances inflammatory functions and impacts additional cellular processes in HIV-infected MDMs to potentially increases neuropathogenesis in PWH using opioids.
Collapse
Affiliation(s)
- John M. Barbaro
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - Matias Jaureguiberry-Bravo
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - Joan W. Berman
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| |
Collapse
|
6
|
Barbaro JM, Sidoli S, Cuervo AM, Berman JW. Methamphetamine Dysregulates Macrophage Functions and Autophagy to Mediate HIV Neuropathogenesis. Biomedicines 2022; 10:1257. [PMID: 35740279 PMCID: PMC9220012 DOI: 10.3390/biomedicines10061257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 01/31/2023] Open
Abstract
HIV-neurocognitive impairment (HIV-NCI) can be a debilitating condition for people with HIV (PWH), despite the success of antiretroviral therapy (ART). Substance use disorder is often a comorbidity with HIV infection. The use of methamphetamine (meth) increases systemic inflammation and CNS damage in PWH. Meth may also increase neuropathogenesis through the functional dysregulation of cells that harbor HIV. Perivascular macrophages are long-lived reservoirs for HIV in the CNS. The impaired clearance of extracellular debris and increased release of reactive oxygen species (ROS) by HIV-infected macrophages cause neurotoxicity. Macroautophagy is a vital intracellular pathway that can regulate, in part, these deleterious processes. We found in HIV-infected primary human macrophages that meth inhibits phagocytosis of aggregated amyloid-β, increases total ROS, and dysregulates autophagic processes. Treatment with widely prescribed ART drugs had minimal effects, although there may be an improvement in phagocytosis when co-administered with meth. Pharmacologically inhibited lysosomal degradation, but not induction of autophagy, further increased ROS in response to meth. Using mass spectrometry, we identified the differentially expressed proteins in meth-treated, HIV-infected macrophages that participate in phagocytosis, mitochondrial function, redox metabolism, and autophagy. Significantly altered proteins may be novel targets for interventional strategies that restore functional homeostasis in HIV-infected macrophages to improve neurocognition in people with HIV-NCI using meth.
Collapse
Affiliation(s)
- John M. Barbaro
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA;
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA;
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA;
| | - Joan W. Berman
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA;
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| |
Collapse
|
7
|
Alzheimer's-Like Pathology at the Crossroads of HIV-Associated Neurological Disorders. Vaccines (Basel) 2021; 9:vaccines9080930. [PMID: 34452054 PMCID: PMC8402792 DOI: 10.3390/vaccines9080930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022] Open
Abstract
Despite the widespread success of combined antiretroviral therapy (cART) in suppressing viremia, the prevalence of human immunodeficiency virus (HIV)-associated neurological disorders (HAND) and associated comorbidities such as Alzheimer’s disease (AD)-like symptomatology is higher among people living with HIV. The pathophysiology of observed deficits in HAND is well understood. However, it has been suggested that it is exacerbated by aging. Epidemiological studies have suggested comparable concentrations of the toxic amyloid protein, amyloid-β42 (Aβ42), in the cerebrospinal fluid (CSF) of HAND patients and in the brains of patients with dementia of the Alzheimer’s type. Apart from abnormal amyloid-β (Aβ) metabolism in AD, a better understanding of the role of similar pathophysiologic processes in HAND could be of substantial value. The pathogenesis of HAND involves either the direct effects of the virus or the effect of viral proteins, such as Tat, Gp120, or Nef, as well as the effects of antiretrovirals on amyloid metabolism and tauopathy, leading, in turn, to synaptodendritic alterations and neuroinflammatory milieu in the brain. Additionally, there is a lack of knowledge regarding the causative or bystander role of Alzheimer’s-like pathology in HAND, which is a barrier to the development of therapeutics for HAND. This review attempts to highlight the cause–effect relationship of Alzheimer’s-like pathology with HAND, attempting to dissect the role of HIV-1, HIV viral proteins, and antiretrovirals in patient samples, animal models, and cell culture model systems. Biomarkers associated with Alzheimer’s-like pathology can serve as a tool to assess the neuronal injury in the brain and the associated cognitive deficits. Understanding the factors contributing to the AD-like pathology associated with HAND could set the stage for the future development of therapeutics aimed at abrogating the disease process.
Collapse
|
8
|
Lee YJ, Yeo IJ, Choi DY, Yun J, Son DJ, Han SB, Hong JT. Amyloidogenic, neuroinflammatory and memory dysfunction effects of HIV-1 gp120. Arch Pharm Res 2021; 44:689-701. [PMID: 34302237 PMCID: PMC8300079 DOI: 10.1007/s12272-021-01340-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/30/2021] [Indexed: 01/05/2023]
Abstract
Human immunodeficiency virus 1 (HIV-1) infection can cause several HIV-associated neurocognitive disorders a variety of neurological impairments characterized by the loss of cortical and subcortical neurons and decreased cognitive and motor function. HIV-1 gp120, the major envelope glycoprotein on viral particles, acts as a binding protein for viral entry and is known to be an agent of neuronal cell death. To determine the mechanism of HIV-1 gp120-induced memory dysfunction, we performed mouse intracerebroventricular (i.c.v.) infusion with HIV-1 gp120 protein (300 ng per mouse) and investigated memory impairment and amyloidogenesis. Infusion of the HIV-1 gp120 protein induced memory dysfunction, which was evaluated using passive avoidance and water maze tests. Infusion of HIV-1 gp120 induced neuroinflammation, such as the release of iNOS and COX-2 and the activation of astrocytes and microglia and increased the mRNA and protein levels of IL-6, ICAM-1, M-CSF, TIM, and IL-2. In particular, we found that the infusion of HIV-1 gp120 induced the accumulation of amyloid plaques and signs of elevated amyloidogenesis, such as increased expression of amyloid precursor protein and BACE1 and increased β-secretase activity. Therefore, these studies suggest that HIV-1 gp120 may induce memory impairment through Aβ accumulation and neuroinflammation.
Collapse
Affiliation(s)
- Young-Jung Lee
- Department of Equine Resources Science, School of Equine and Horticultural, Cheju Halla University, 38 Halladaehak-ro, Jeju-si, Jeju Special Self-Governing Province, 63092, Republic of Korea
| | - In Jun Yeo
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Dong Young Choi
- College of Pharmacy, Yeungnam University, 280 Daehak Road, Gyeonsan, Gyeongbuk, 38541, Republic of Korea
| | - Jaesuk Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Dong Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea.
| |
Collapse
|
9
|
Wang Y, Shi Z, Zhang Y, Yan J, Yu W, Chen L. Oligomer β-amyloid Induces Hyperactivation of Ras to Impede NMDA Receptor-Dependent Long-Term Potentiation in Hippocampal CA1 of Mice. Front Pharmacol 2020; 11:595360. [PMID: 33536910 PMCID: PMC7848859 DOI: 10.3389/fphar.2020.595360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/20/2020] [Indexed: 12/02/2022] Open
Abstract
The activity of Ras, a small GTPase protein, is increased in brains with Alzheimer’s disease. The objective of this study was to determine the influence of oligomeric Aβ1-42 on the activation of Ras, and the involvement of the Ras hyperactivity in Aβ1-42-induced deficits in spatial cognition and hippocampal synaptic plasticity. Herein, we show that intracerebroventricular injection of Aβ1-42 in mice (Aβ-mice) enhanced hippocampal Ras activation and expression, while 60 min incubation of hippocampal slices in Aβ1-42 (Aβ-slices) only elevated Ras activity. Aβ-mice showed deficits in spatial cognition and NMDA receptor (NMDAR)-dependent long-term potentiation (LTP) in hippocampal CA1, but basal synaptic transmission was enhanced. The above effects of Aβ1-42 were corrected by the Ras inhibitor farnesylthiosalicylic acid (FTS). ERK2 phosphorylation increased, and Src phosphorylation decreased in Aβ-mice and Aβ1-42-slices. Both were corrected by FTS. In CA1 pyramidal cells of Aβ1-42-slices, the response of AMPA receptor and phosphorylation of GluR1 were enhanced with dependence on Ras activation rather than ERK signaling. In contrast, NMDA receptor (NMDAR) function and GluN2A/2B phosphorylation were downregulated in Aβ1-42-slices, which was recovered by application of FTS or the Src activator ouabain, and mimicked in control slices treated with the Src inhibitor PP2. The administration of PP2 impaired the spatial cognition and LTP induction in control mice and FTS-treated Aβ-mice. The treatment of Aβ-mice with ouabain rescued Aβ-impaired spatial cognition and LTP. Overall, the results indicate that the oligomeric Aβ1-42 hyperactivates Ras and thereby causes the downregulation of Src which impedes NMDAR-dependent LTP induction resulting in cognitive deficits.
Collapse
Affiliation(s)
- Ya Wang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Zhaochun Shi
- Department of Neurology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yajie Zhang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Jun Yan
- Department of Geriatric Medicine, Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenfeng Yu
- Key Laboratory of Endemic and Ethnic Diseases of Education Ministry, Guizhou Medical University, Guizhou, China
| | - Ling Chen
- Department of Physiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Jha NK, Sharma A, Jha SK, Ojha S, Chellappan DK, Gupta G, Kesari KK, Bhardwaj S, Shukla SD, Tambuwala MM, Ruokolainen J, Dua K, Singh SK. Alzheimer's disease-like perturbations in HIV-mediated neuronal dysfunctions: understanding mechanisms and developing therapeutic strategies. Open Biol 2020; 10:200286. [PMID: 33352062 PMCID: PMC7776571 DOI: 10.1098/rsob.200286] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/27/2020] [Indexed: 01/10/2023] Open
Abstract
Excessive exposure to toxic substances or chemicals in the environment and various pathogens, including viruses and bacteria, is associated with the onset of numerous brain abnormalities. Among them, pathogens, specifically viruses, elicit persistent inflammation that plays a major role in Alzheimer's disease (AD) as well as dementia. AD is the most common brain disorder that affects thought, speech, memory and ability to execute daily routines. It is also manifested by progressive synaptic impairment and neurodegeneration, which eventually leads to dementia following the accumulation of Aβ and hyperphosphorylated Tau. Numerous factors contribute to the pathogenesis of AD, including neuroinflammation associated with pathogens, and specifically viruses. The human immunodeficiency virus (HIV) is often linked with HIV-associated neurocognitive disorders (HAND) following permeation through the blood-brain barrier (BBB) and induction of persistent neuroinflammation. Further, HIV infections also exhibited the ability to modulate numerous AD-associated factors such as BBB regulators, members of stress-related pathways as well as the amyloid and Tau pathways that lead to the formation of amyloid plaques or neurofibrillary tangles accumulation. Studies regarding the role of HIV in HAND and AD are still in infancy, and potential link or mechanism between both is not yet established. Thus, in the present article, we attempt to discuss various molecular mechanisms that contribute to the basic understanding of the role of HIV-associated neuroinflammation in AD and HAND. Further, using numerous growth factors and drugs, we also present possible therapeutic strategies to curb the neuroinflammatory changes and its associated sequels.
Collapse
Affiliation(s)
- Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, UP 201310, India
| | - Ankur Sharma
- Department of Life Science, School of Basic Science and Research (SBSR), Sharda University, Greater Noida, UP 201310, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, UP 201310, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, PO Box 17666, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Gaurav Gupta
- School of Phamacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, Espoo 00076, Finland
| | - Shanu Bhardwaj
- Department of Biotechnology, HIMT, Greater Noida, CCS University, UP, India
| | - Shakti D. Shukla
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) and School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, UK
| | - Janne Ruokolainen
- Department of Applied Physics, School of Science, Aalto University, Espoo 00076, Finland
| | - Kamal Dua
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) and School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, PO Box 9, Solan, Himachal Pradesh 173229, India
| | - Sandeep Kumar Singh
- Department of Biomedical Research, Centre of Biomedical Research, SGPGI Campus, Lucknow 226014, UP, India
- Biological Science, Indian Scientific Education and Technology Foundation, Lucknow 226002, UP, India
| |
Collapse
|
11
|
Spitzer P, Walter M, Göth C, Oberstein TJ, Linning P, Knölker HJ, Kornhuber J, Maler JM. Pharmacological Inhibition of Amyloidogenic APP Processing and Knock-Down of APP in Primary Human Macrophages Impairs the Secretion of Cytokines. Front Immunol 2020; 11:1967. [PMID: 33013850 PMCID: PMC7494750 DOI: 10.3389/fimmu.2020.01967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/21/2020] [Indexed: 12/18/2022] Open
Abstract
It has been previously shown that the amyloid precursor protein (APP) support the innate immune defense as an immune receptor. Amyloid β (Aβ) peptides seem to have properties of an antimicrobial peptide and can act as opsonines. In APP-deficient mouse models, a reduced secretion of cytokines has been observed. Still, it is unclear whether this can be attributed to the lack of APP or to the missing secretion of Aβ peptides. We inhibited the secretion of Aβ peptides in primary human monocyte derived macrophages with the γ-secretase inhibitor N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine-t-butyl-ester (DAPT) or the β-secretase inhibitor GL-189. Alternatively, we knocked down APP by transfection with siRNA. We measured tumor necrosis factor α (TNFα), interleukin 6 (IL-6) and interleukin (IL-10) by enzyme linked immunosorbent assay (ELISA) and evaluated the phagocytotic activity by flow cytometry. We observed reduced concentrations of TNFα and IL-6 in the media of APPk/d macrophages and after inhibition of the β-, or γ-secretase, especially after additional immunological activation with lipopolysaccharide (LPS). Secretion of IL-10 was increased after pharmacological inhibition of APP processing when the macrophages were not immunologically activated but was decreased during LPS-induced inflammation in APPk/d macrophages. No changes of the phagocytotic activity were observed. We conclude that macrophage APP and Aβ peptides support the initiation of an immune response and are involved in the regulation of TNFα, IL-6, and IL-10 secretion by human monocyte-derived macrophages.
Collapse
Affiliation(s)
- Philipp Spitzer
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, University Hospital Erlangen, Erlangen, Germany
| | - Matthias Walter
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, University Hospital Erlangen, Erlangen, Germany
| | - Caroline Göth
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, University Hospital Erlangen, Erlangen, Germany
| | - Timo Jan Oberstein
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, University Hospital Erlangen, Erlangen, Germany
| | - Philipp Linning
- Faculty of Chemistry, Technische Universität Dresden, Dresden, Germany
| | | | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, University Hospital Erlangen, Erlangen, Germany
| | - Juan Manuel Maler
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
12
|
Abstract
OBJECTIVES Growing evidence suggested that antiretroviral (ARV) drugs may promote amyloid beta (Aβ) accumulation in HIV-1-infected brain and the persistence of HIV-associated neurocognitive disorders (HANDs). It has also been shown that lipid peroxidation upregulates β-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) expression and subsequently promotes Aβ peptide production. In the present study, we examined whether chronic exposure to the anti-HIV drugs tenofovir disoproxil fumarate (TDF) and nevirapine induces lipid peroxidation thereby promoting BACE1 and Aβ generation and consequently impair cognitive function in mice. METHODS TDF or nevirapine was orally administered to female BALB/c mice once a day for 8 weeks. On the 7th week of treatment, spatial learning and memory were assessed using the Morris water maze test. The levels of lipid peroxidation, BACE1, amyloid β 1-42 (Aβ1-42) and Aβ deposits were measured in the hippocampal tissue upon completion of treatment. RESULTS Chronic administration of nevirapine induced spatial learning and memory impairment in the Morris water maze test, whereas TDF did not have an effect. TDF and nevirapine administration increased hippocampal lipid peroxidation and Aβ1-42 concentration. Nevirapine further upregulated BACE1 expression and Aβ deposits. CONCLUSION Our results suggest that chronic exposure to TDF and nevirapine contributes to hippocampal lipid peroxidation and Aβ accumulation, respectively, as well as spatial learning and memory deficits in mice even in the absence of HIV infection. These findings further support a possible link between ARV drug toxicity, Aβ accumulation and the persistence of HANDs.
Collapse
|
13
|
Ghosh R, Kishore N. Physicochemical Insights into the Role of Drug Functionality in Fibrillation Inhibition of Bovine Serum Albumin. J Phys Chem B 2020; 124:8989-9008. [DOI: 10.1021/acs.jpcb.0c06167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ritutama Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| |
Collapse
|
14
|
Chen X, Zhang T, Zhang Y. Endoplasmic reticulum stress and autophagy in HIV-1-associated neurocognitive disorders. J Neurovirol 2020; 26:824-833. [PMID: 32918163 DOI: 10.1007/s13365-020-00906-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/24/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022]
Abstract
Although antiretroviral therapy (ART) affects virologic suppression and prolongs life expectancies among HIV-positive patients; HIV-1-associated neurocognitive disorders (HAND) continue to be diagnosed in patients with HIV-1 undergoing treatment. The extensive clinical manifestations of HAND include behavioral, cognitive, and motor dysfunctions that severely affect the patients' quality of life. The pathogenesis of HAND has received increasing attention as a potential avenue by which to improve the treatment of the condition. Many studies have shown that endoplasmic reticulum (ER) stress, autophagy, and their interaction play important roles in the onset and development of neurodegenerative diseases. While the accumulation of misfolded proteins can induce ER stress, autophagy can effectively remove accumulated toxic proteins, reduce ER stress, and thus inhibit the development of neuropathy. Through the in-depth study of ER stress and autophagy, both have been recognized as promising targets for pharmacotherapeutic intervention in the treatment of HAND. This review will highlight the effects of ER stress, autophagy, and their interaction in the context of HAND, thereby helping to inform the future development of targeted treatments for patients with HAND.
Collapse
Affiliation(s)
- Xue Chen
- Department of Infectious Diseases, Beijing You An Hospital, Beijing Institute of Hepatology, Capital Medical University, Beijing, 100069, China
| | - Tong Zhang
- Department of Infectious Diseases, Beijing You An Hospital, Beijing Institute of Hepatology, Capital Medical University, Beijing, 100069, China.
| | - Yulin Zhang
- Department of Infectious Diseases, Beijing You An Hospital, Beijing Institute of Hepatology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
15
|
Andhavarapu S, Katuri A, Bryant J, Patel V, Gupta U, Asemu G, Makar TK. Intersecting roles of ER stress, mitochondrial dysfunction, autophagy, and calcium homeostasis in HIV-associated neurocognitive disorder. J Neurovirol 2020; 26:664-675. [PMID: 32804309 DOI: 10.1007/s13365-020-00861-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/22/2020] [Accepted: 05/19/2020] [Indexed: 01/04/2023]
Abstract
HIV-associated neurocognitive disorder (HAND) is a collective term describing the spectrum of neurocognitive deficits that arise from HIV infection. Although the introduction to highly active antiretroviral therapy (HAART) has prolonged the lifespan of HIV patients, neurocognitive impairments remain prevalent, as patients are left perpetually with HIV. Currently, physicians face a challenge in treating HAND patients, so a greater understanding of the mechanisms underlying HAND pathology has been a growing focus in HIV research. Recent research has revealed the role disrupted calcium homeostasis in HIV-mediated neurotoxicity. Calcium plays a well-established role in the crosstalk between the mitochondrion and ER as well as in regulating autophagy, and ER stress, mitochondrial dysfunction, and impaired autophagic activity are considered hallmarks in several neurodegenerative and neurocognitive disorders. Therefore, it is paramount that the intricate inter-organelle signaling in relation to calcium homeostasis during HIV infection and the development of HAND is elucidated. This review consolidates current knowledge regarding the neuropathology of neurocognitive disorders and HIV infection with a focus on the underlying role of calcium during ER stress, mitochondrial dysfunction, and autophagy associated with the progression of HAND. The details of this intricate crosstalk during HAND remain relatively unknown; further research in this field can potentially aid in the development of improved therapy for patients suffering from HAND.
Collapse
Affiliation(s)
- Sanketh Andhavarapu
- Institute of Human Virology, University of Maryland, 725 W Lombard St, Baltimore, MD, 21201, USA
| | - Akhil Katuri
- Institute of Human Virology, University of Maryland, 725 W Lombard St, Baltimore, MD, 21201, USA
| | - Joseph Bryant
- Institute of Human Virology, University of Maryland, 725 W Lombard St, Baltimore, MD, 21201, USA
| | - Vivek Patel
- Institute of Human Virology, University of Maryland, 725 W Lombard St, Baltimore, MD, 21201, USA
| | - Udit Gupta
- Institute of Human Virology, University of Maryland, 725 W Lombard St, Baltimore, MD, 21201, USA
| | - Girma Asemu
- Institute of Human Virology, University of Maryland, 725 W Lombard St, Baltimore, MD, 21201, USA
| | - Tapas K Makar
- Institute of Human Virology, University of Maryland, 725 W Lombard St, Baltimore, MD, 21201, USA. .,VA Medical Center, Baltimore, MD, 21201, USA.
| |
Collapse
|
16
|
Heme attenuates beta-endorphin levels in leukocytes of HIV positive individuals with chronic widespread pain. Redox Biol 2020; 36:101684. [PMID: 32828015 PMCID: PMC7451624 DOI: 10.1016/j.redox.2020.101684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 12/27/2022] Open
Abstract
The prevalence of chronic widespread pain (CWP) in people with HIV is high, yet the underlying mechanisms are elusive. Leukocytes synthesize the endogenous opioid, β-endorphin, within their endoplasmic reticulum (ER). When released into plasma, β-endorphin dampens nociception by binding to opioid receptors on sensory neurons. We hypothesized that the heme-dependent redox signaling induces ER stress, which attenuates leukocyte β-endorphins levels/release, thereby increasing pain sensitivity in people with HIV. Results demonstrated that HIV positive individuals with CWP had increased plasma methemoglobin, erythrocytes membrane oxidation, hemolysis, and low plasma heme scavenging enzyme, hemopexin, compared to people with HIV without CWP and HIV-negative individuals with or without pain. In addition, the leukocytes from people with HIV with CWP had attenuated levels of the heme metabolizing enzyme, heme oxygenase-1, which metabolizes free heme to carbon-monoxide and biliverdin. These individuals also had elevated ER stress, and low β-endorphin in leukocytes. In vitro, heme exposure or heme oxygenase-1 deletion, decreased β-endorphins in murine monocytes/macrophages. Treating cells with a carbon-monoxide donor or an ER stress inhibitor, increased β-endorphins. To mimic hemolytic effects in a preclinical model, C57BL/6 mice were injected with phenylhydrazine hydrochloride (PHZ). PHZ increased cell-free heme and ER stress, decreased leukocyte β-endorphin levels and hindpaw mechanical sensitivity thresholds. Treatment of PHZ-injected mice with hemopexin blocked these effects, suggesting that heme-induced ER stress and a subsequent decrease in leukocyte β-endorphin is responsible for hypersensitivity in people with HIV.
Collapse
|
17
|
Proust A, Barat C, Leboeuf M, Drouin J, Gagnon MT, Vanasse F, Tremblay MJ. HIV-1 infection and latency-reversing agents bryostatin-1 and JQ1 disrupt amyloid beta homeostasis in human astrocytes. Glia 2020; 68:2212-2227. [DOI: 10.1002/glia.23833] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Alizé Proust
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL; Québec QC Canada
| | - Corinne Barat
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL; Québec QC Canada
| | - Mathieu Leboeuf
- Département d'obstétrique, gynécologie et reproduction, Faculté de Médecine; Université Laval; Québec QC Canada
| | - Jean Drouin
- Département de médecine familiale et médecine d'urgence, Faculté de Médecine; Université Laval; Québec QC Canada
| | - Marie-Thérèse Gagnon
- Clinique de planification des naissances, Centre Hospitalier Universitaire de Québec-Université Laval, Hôpital Saint-François d'Assise; Québec QC Canada
| | - François Vanasse
- Clinique de planification des naissances, Centre Hospitalier Universitaire de Québec-Université Laval, Hôpital Saint-François d'Assise; Québec QC Canada
| | - Michel J. Tremblay
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL; Québec QC Canada
- Département de Microbiologie-infectiologie et immunologie, Faculté de Médecine; Université Laval; Québec QC Canada
| |
Collapse
|
18
|
de Almeida SM, Ribeiro CE, Rotta I, Letendre S, Potter M, Tang B, Batistela M, Vaida F, Ellis RJ. Blood amyloid-β protein isoforms are affected by HIV-1 in a subtype-dependent pattern. J Neurovirol 2020; 26:3-13. [PMID: 31281948 PMCID: PMC6944779 DOI: 10.1007/s13365-019-00783-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/10/2019] [Accepted: 06/26/2019] [Indexed: 10/26/2022]
Abstract
This study aimed to compare serum amyloid processing biomarkers among HIV subtype B (n = 25), HIV subtype C (n = 26), healthy HIV-negative controls (n = 18), and patients with Alzheimer's disease (AD; n = 24). Immunoassays were used to measure main soluble Aβ isoforms Aβ38, Aβ40, Aβ42, and Aβ-total in serum and cerebrospinal fluid (CSF). People living with HIV (PLWH) and HIV(-) samples, including AD samples, were compared for gender and age, while HIV subtypes were compared for nadir CD4 and plasma viral load suppression. CSF/serum ratios of Aβ40, Aβ42, and Aβ-total were lower in HIV-1C group than in HIV-1B group (p = 0.020, 0.025, and 0.050, respectively). In serum, these biomarkers were comparable. Serum Aβ isoforms were significantly lower in PLWH than in AD. Serum Aβ42 levels in PLWH were decreased compared to those in control group, thus similar to Aβ42 alterations in CSF; these results were different from those observed in AD. Impaired cellular immunity, low CD4 cell count (nadir or current) influences serum Aβ metabolism in HIV-1B but not HIV-1C. However, in PLWH overall, but not in individual HIV subtype groups, greater CD4 recovery, calculated as the difference between current and nadir CD4, correlated with Aβ42/Aβ40 ratio in serum (rs 0.246; p = 0.0479). No significant correlation was found with global deficit score (GDS), an index of neurocognitive performance, age, or duration of infection. These findings are consistent with those of subtype-dependent amyloid processing in blood in chronic HIV disease.
Collapse
Affiliation(s)
- Sérgio M de Almeida
- Hospital de Clínicas - UFPR, Seção de Virologia, Setor Análises Clínicas Rua Padre Camargo, Universidade Federal do Paraná, Curitiba, Paraná, 80060-240, Brazil.
| | - Clea E Ribeiro
- Hospital de Clínicas - UFPR, Seção de Virologia, Setor Análises Clínicas Rua Padre Camargo, Universidade Federal do Paraná, Curitiba, Paraná, 80060-240, Brazil
| | - Indianara Rotta
- Hospital de Clínicas - UFPR, Seção de Virologia, Setor Análises Clínicas Rua Padre Camargo, Universidade Federal do Paraná, Curitiba, Paraná, 80060-240, Brazil
| | | | | | - Bin Tang
- University of California San Diego, San Diego, CA, USA
| | - Meiri Batistela
- Hospital de Clínicas - UFPR, Seção de Virologia, Setor Análises Clínicas Rua Padre Camargo, Universidade Federal do Paraná, Curitiba, Paraná, 80060-240, Brazil
| | - Florin Vaida
- University of California San Diego, San Diego, CA, USA
| | | |
Collapse
|
19
|
Williams ME, Zulu SS, Stein DJ, Joska JA, Naudé PJW. Signatures of HIV-1 subtype B and C Tat proteins and their effects in the neuropathogenesis of HIV-associated neurocognitive impairments. Neurobiol Dis 2019; 136:104701. [PMID: 31837421 DOI: 10.1016/j.nbd.2019.104701] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/18/2019] [Accepted: 12/08/2019] [Indexed: 11/16/2022] Open
Abstract
HIV-associated neurocognitive impairments (HANI) are a spectrum of neurological disorders due to the effects of HIV-1 on the central nervous system (CNS). The HIV-1 subtypes; HIV-1 subtype B (HIV-1B) and HIV-1 subtype C (HIV-1C) are responsible for the highest prevalence of HANI and HIV infections respectively. The HIV transactivator of transcription (Tat) protein is a major contributor to the neuropathogenesis of HIV. The effects of the Tat protein on cells of the CNS is determined by the subtype-associated amino acid sequence variations. The extent to which the sequence variation between Tat-subtypes contribute to underlying mechanisms and neurological outcomes are not clear. In this review of the literature, we discuss how amino acid variations between HIV-1B Tat (TatB) and HIV-1C Tat (TatC) proteins contribute to the potential underlying neurobiological mechanisms of HANI. Tat-C is considered to be a more effective transactivator, whereas Tat-B may exert increased neurovirulence, including neuronal apoptosis, monocyte infiltration into the brain, (neuro)inflammation, oxidative stress and blood-brain barrier damage. These findings support the premise that Tat variants from different HIV-1 subtypes may direct neurovirulence and neurological outcomes in HANI.
Collapse
Affiliation(s)
- Monray E Williams
- Department of Psychiatry and Mental Health and Neuroscience Institute, Brain Behaviour Unit, University of Cape Town, Cape Town, South Africa.
| | - Simo S Zulu
- Department of Psychiatry and Mental Health and Neuroscience Institute, Brain Behaviour Unit, University of Cape Town, Cape Town, South Africa
| | - Dan J Stein
- Department of Psychiatry and Mental Health and Neuroscience Institute, Brain Behaviour Unit, University of Cape Town, Cape Town, South Africa; SAMRC Unit on Risk and Resilience in Mental Disorders and Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - John A Joska
- Division of Neuropsychiatry, Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Petrus J W Naudé
- Department of Psychiatry and Mental Health and Neuroscience Institute, Brain Behaviour Unit, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
20
|
In Silico Insights into HIV-1 Vpu-Tetherin Interactions and Its Mutational Counterparts. Med Sci (Basel) 2019; 7:medsci7060074. [PMID: 31234536 PMCID: PMC6631454 DOI: 10.3390/medsci7060074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/15/2019] [Accepted: 06/19/2019] [Indexed: 11/16/2022] Open
Abstract
Tetherin, an interferon-induced host protein encoded by the bone marrow stromal antigen 2 (BST2/CD317/HM1.24) gene, is involved in obstructing the release of many retroviruses and other enveloped viruses by cross-linking the budding virus particles to the cell surface. This activity is antagonized in the case of human immunodeficiency virus (HIV)-1 wherein its accessory protein Viral Protein U (Vpu) interacts with tetherin, causing its downregulation from the cell surface. Vpu and tetherin connect through their transmembrane (TM) domains, culminating into events leading to tetherin degradation by recruitment of β-TrCP2. However, mutations in the TM domains of both proteins are reported to act as a resistance mechanism to Vpu countermeasure impacting tetherin's sensitivity towards Vpu but retaining its antiviral activity. Our study illustrates the binding aspects of blood-derived, brain-derived, and consensus HIV-1 Vpu with tetherin through protein-protein docking. The analysis of the bound complexes confirms the blood-derived Vpu-tetherin complex to have the best binding affinity as compared to other two. The mutations in tetherin and Vpu are devised computationally and are subjected to protein-protein interactions. The complexes are tested for their binding affinities, residue connections, hydrophobic forces, and, finally, the effect of mutation on their interactions. The single point mutations in tetherin at positions L23Y, L24T, and P40T, and triple mutations at {L22S, F44Y, L37I} and {L23T, L37T, T45I}, while single point mutations in Vpu at positions A19H and W23Y and triplet of mutations at {V10K, A11L, A19T}, {V14T, I18T, I26S}, and {A11T, V14L, A15T} have revealed no polar contacts with minimal hydrophobic interactions between Vpu and tetherin, resulting in reduced binding affinity. Additionally, we have explored the aggregation potential of tetherin and its association with the brain-derived Vpu protein. This work is a possible step toward an understanding of Vpu-tetherin interactions.
Collapse
|
21
|
HIV Infection Induces Extracellular Cathepsin B Uptake and Damage to Neurons. Sci Rep 2019; 9:8006. [PMID: 31142756 PMCID: PMC6541605 DOI: 10.1038/s41598-019-44463-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 04/23/2019] [Indexed: 01/22/2023] Open
Abstract
HIV-associated neurocognitive disorders prevail in 20-50 percent of infected individuals. Macrophages transmigrate through the blood brain barrier during HIV-1 infection, triggering neuronal dysfunction. HIV-infected macrophages secrete cathepsin B (CATB), and serum amyloid p component (SAPC), inducing neuronal apoptosis by an unknown mechanism. We hypothesized that HIV infection facilitates CATB/SAPC secretion from macrophages followed by neuronal internalization, promoting dysfunction. SK-N-SH neuronal cells were exposed to active recombinant histidine-tagged cathepsin B (His-CATB). His-CATB entry was tracked by intracellular flow cytometry, and neuronal dysfunction was verified by western blot. Macrophage-derived extracellular vesicles (EVs) were tested for the presence of CATB and SAPC. Neurons internalized His-CATB, an effect that was partially decreased by pre-treatment with anti-CATB antibody. Pre-treatment with CATB and SAPC antibodies decreased cleavage of caspase-3 and restored synaptophysin in neurons. Neurons exposed to macrophage-conditioned media differentially internalized His-CATB, dependent on the HIV replication levels. Finally, CATB and SAPC were secreted in EVs. We report for the first time that CATB is secreted from macrophages both free and in EVs, and is internalized by neurons. Moreover, HIV-replication levels modulate the amount of CATB neuronal uptake, and neuronal dysfunction can be decreased with CATB antibodies. In conclusion, the CATB/SAPC complex represents a novel target against HIV-associated neurocognitive disorders.
Collapse
|
22
|
Role of Cav-1 in HIV-1 Tat-Induced Dysfunction of Tight Junctions and A β-Transferring Proteins. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3403206. [PMID: 31217837 PMCID: PMC6537002 DOI: 10.1155/2019/3403206] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/04/2019] [Indexed: 12/14/2022]
Abstract
Objective To evaluate the role of caveolin-1 (Cav-1) in HIV-1 Tat-induced dysfunction of tight junction and amyloid β-peptide- (Aβ-) transferring proteins. Methods A Cav-1 shRNA interference target sequence was cloned into the lentiviral vector pHBLV-U6-Scramble-ZsGreen-Puro and verified by double enzyme digestion and DNA sequencing. Human cerebral microvascular endothelium (HBEC-5i) cells were transduced with viral particles made in 293T cells by transfection with lentiviral packaging plasmids. HBEC-5i cells transduced with Cav-1 shRNA or Ctr shRNA were exposed to HIV-1 Tat for 24 h, and the protein and mRNA levels of the tight junction protein occludin, Aβ-transferring protein, receptor for advanced glycation end products (RAGE), low-density lipoprotein receptor-related protein- (LRP-) 1, and RhoA were evaluated with Western blot and real-time reverse transcription polymerase chain reaction (qRT-PCR) assays, respectively. Results After sequencing, an RNA interference recombinant lentivirus expressing a vector targeting Cav-1 was successfully established. The recombined lentiviral particles were made by using 293T cells to package the recombined lentiviral vector. A stable monoclonal cell line with strong GFP expression was acquired with a Cav-1 knockdown rate of 85.7%. The occludin protein and mRNA levels in the Ctr shRNA group were decreased with HIV-1 Tat exposure but were upregulated in the Cav-1 shRNA group. The HIV-1 Tat-induced alterations of RAGE and LRP-1 protein and mRNA levels in the Ctr shRNA group were attenuated in the Cav-1 shRNA group. The RhoA protein levels in the Ctr shRNA group were upregulated by HIV-1 Tat exposure but were downregulated in the Cav-1 shRNA group. Conclusion These results show that HIV-1 Tat-induced downregulation of occludin and LRP-1 and upregulation of RAGE and RhoA may result in the accumulation of Aβ in the brain. Silencing the Cav-1 gene with shRNA plays a key role in the protection against HIV-1 Tat-induced dysfunction of the blood-brain barrier and Aβ accumulation.
Collapse
|
23
|
Neprilysin in the Cerebrospinal Fluid and Serum of Patients Infected With HIV1-Subtypes C and B. J Acquir Immune Defic Syndr 2019; 78:248-256. [PMID: 29481488 DOI: 10.1097/qai.0000000000001666] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Neprilysin (NEP) is the dominant Aβ peptide-degrading enzyme in the brain. HIV-1 subtype B transactivator of transcription protein is known to interfere with NEP function, but whether this is true of HIV-1C transactivator of transcription, which has a defective chemokine motif, is not known. This study aimed to analyze the impact of HIV subtype on NEP-mediated cleavage of Aβ by comparing cerebrospinal fluid (CSF) and serum levels of NEP between HIV+ (27 patients with HIV-1B and 26 with HIV-1C), healthy HIV- controls (n = 13), and patients with Alzheimer disease (n = 24). METHODS NEP and Aβ oligomers 38, 40, 42 levels were measured in CSF and serum by immunoassays. Ratios between NEP and Aβ-38, 40, 42, and total were calculated in CSF and serum. Comparisons between HIV(+) and HIV(-) were adjusted by linear regression for sex and age; HIV subtype comparisons were adjusted for nadir CD4 and plasma viral load suppression. RESULTS Levels of NEP and ratios in CSF were comparable for HIV-1C and B subtypes. The ratio of serum NEP/Aβ-40 was lower for HIV1-C than HIV1-B (P = 0.032). The CSF/serum index of NEP/Aβ-40, NEP/Aβ-42, and NEP/Aβ-total were lower for HIV1-B than HIV1-C (P = 0.008, 0.005, and 0.017, respectively), corroborating the findings for serum. CSF NEP was comparable for HIV+, HIV-, and AD. CONCLUSION There was impact of HIV subtype on NEP. The ratio of NEP/Aβ-40 on serum was lower on HIV1-C than HIV1-B. These results are consistent with the results of CSF Aβ-42 levels decreased in HIV1-C compared with HIV1-B, suggesting higher amyloid β deposit on HIV1-C than HIV1-B.
Collapse
|
24
|
Hategan A, Masliah E, Nath A. HIV and Alzheimer's disease: complex interactions of HIV-Tat with amyloid β peptide and Tau protein. J Neurovirol 2019; 25:648-660. [PMID: 31016584 DOI: 10.1007/s13365-019-00736-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/15/2019] [Accepted: 02/14/2019] [Indexed: 12/21/2022]
Abstract
In patients infected with the human immunodeficiency virus (HIV), the HIV-Tat protein may be continually produced despite adequate antiretroviral therapy. As the HIV-infected population is aging, it is becoming increasingly important to understand how HIV-Tat may interact with proteins such as amyloid β and Tau which accumulate in the aging brain and eventually result in Alzheimer's disease. In this review, we examine the in vivo data from HIV-infected patients and animal models and the in vitro experiments that show how protein complexes between HIV-Tat and amyloid β occur through novel protein-protein interactions and how HIV-Tat may influence the pathways for amyloid β production, degradation, phagocytosis, and transport. HIV-Tat may also induce Tau phosphorylation through a cascade of cellular processes that lead to the formation of neurofibrillary tangles, another hallmark of Alzheimer's disease. We also identify gaps in knowledge and future directions for research. Available evidence suggests that HIV-Tat may accelerate Alzheimer-like pathology in patients with HIV infection which cannot be impacted by current antiretroviral therapy.
Collapse
Affiliation(s)
- Alina Hategan
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bldg 10; Room 7C-103, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Eliezer Masliah
- Division of Neuroscience, National Institute of Aging, National Institutes of Health, 7201 Wisconsin Ave, Bethesda, MD, 20892, USA
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bldg 10; Room 7C-103, 10 Center Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
25
|
Rubin LH, Sundermann EE, Moore DJ. The current understanding of overlap between characteristics of HIV-associated neurocognitive disorders and Alzheimer's disease. J Neurovirol 2019; 25:661-672. [PMID: 30671777 DOI: 10.1007/s13365-018-0702-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/04/2018] [Accepted: 11/13/2018] [Indexed: 12/11/2022]
Abstract
The advent of effective antiretroviral medications (ARVs) has led to an aging of the HIV population with approximately 50% of people with HIV (PWH) being over the age of 50 years. Neurocognitive complications, typically known as HIV-associated neurocognitive disorders (HAND), persist in the era of ARVs and, in addition to risk of HAND, older PWH are also at risk for age-associated, neurodegenerative disorders including Alzheimer's disease (AD). It has been postulated that risk for AD may be greater among PWH due to potential compounding effects of HIV and aging on mechanisms of neural insult. We are now faced with the challenge of disentangling AD from HAND, which has important prognostic and treatment implications given the more rapidly debilitating trajectory of AD. Herein, we review the evidence to date demonstrating both parallels and differences in the profiles of HAND and AD. We specifically address similarities and difference of AD and HAND as it relates to (1) neuropsychological profiles (cross-sectional/longitudinal), (2) AD-associated neuropathological features as evidenced from neuropathological, cerebrospinal fluid and neuroimaging assessments, (3) biological mechanisms underlying cortical amyloid deposition, (4) parallels in mechanisms of neural insult, and (5) common risk factors. Our current understanding of the similarities and dissimilarities of AD and HAND should be further delineated and leveraged in the development of differential diagnostic methods that will allow for the early identification of AD and more suitable and effective treatment interventions among graying PWH.
Collapse
Affiliation(s)
- Leah H Rubin
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Erin E Sundermann
- Department of Psychiatry, University of California, San Diego (UCSD) School of Medicine, La Jolla, CA, USA.
| | - David J Moore
- Department of Psychiatry, University of California, San Diego (UCSD) School of Medicine, La Jolla, CA, USA
| |
Collapse
|
26
|
Fields JA, Spencer B, Swinton M, Qvale EM, Marquine MJ, Alexeeva A, Gough S, Soontornniyomkij B, Valera E, Masliah E, Achim CL, Desplats P. Alterations in brain TREM2 and Amyloid-β levels are associated with neurocognitive impairment in HIV-infected persons on antiretroviral therapy. J Neurochem 2018; 147:784-802. [PMID: 30152135 PMCID: PMC6310632 DOI: 10.1111/jnc.14582] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 12/27/2022]
Abstract
Neuroinflammation is a common pathological correlate of HIV-associated neurocognitive disorders (HAND) in individuals on antiretroviral therapy (ART). Triggering receptor expressed on myeloid cells 2 (TREM2) regulates neuroinflammation, clears extracellular Amyloid (A)-β, surveys for damaged neurons, and orchestrates microglial differentiation. TREM2 has not been studied in HIV+ brain tissues. In this retrospective study, we investigated TREM2 expression levels and localization to microglia, Aβ protein levels, and tumor necrosis factor (TNF)-α transcript levels in the frontal cortices of 52 HIV+ decedents. All donors had been on ART; 14 were cognitively normal (CN), 17 had an asymptomatic neurocognitive impairment (ANI), and 21 had a minor neurocognitive disorder (MND). Total TREM2 protein levels were increased in the soluble and decreased in the membrane-enriched fractions of MND brain tissues compared to CN; however, brains from MND Hispanics showed the most robust alterations in TREM2 as well as significantly increased TNF-α mRNA and Aβ levels when compared to CN Hispanics. Significant alterations in the expression of total TREM2 protein and transcripts for TNF-α were not observed in non-Hispanics, despite higher levels of Aβ in the non-Hispanic CN group compared to the non-Hispanic MND groups. These findings show that decreased and increased TREM2 in membrane-bound fractions and in soluble-enriched fractions, respectively, is associated with increased Aβ and neuroinflammation in this cohort of HIV+ brains, particularly those identifying as Hispanics. These findings suggest a role for TREM2 in the brain of HIV+ individuals may deserve more investigation as a biomarker for HAND and as a possible therapeutic target. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Jerel Adam Fields
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, United States of America
| | - Brian Spencer
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, United States of America
| | - Mary Swinton
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, United States of America
| | - Emma Martine Qvale
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, United States of America
| | - María J. Marquine
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, United States of America
| | - Arina Alexeeva
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, United States of America
| | - Sarah Gough
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, United States of America
| | - Benchawanna Soontornniyomkij
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, United States of America
| | - Elvira Valera
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, United States of America
| | - Eliezer Masliah
- Department of Pathology, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, United States of America
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, United States of America
| | - Cristian L. Achim
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, United States of America
- Department of Pathology, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, United States of America
| | - Paula Desplats
- Department of Pathology, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, United States of America
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, United States of America
| |
Collapse
|
27
|
|
28
|
Tiwari S, Atluri VSR, Yndart Arias A, Jayant RD, Kaushik A, Geiger J, Nair MN. Withaferin A Suppresses Beta Amyloid in APP Expressing Cells: Studies for Tat and Cocaine Associated Neurological Dysfunctions. Front Aging Neurosci 2018; 10:291. [PMID: 30356847 PMCID: PMC6190869 DOI: 10.3389/fnagi.2018.00291] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/04/2018] [Indexed: 12/31/2022] Open
Abstract
Neurological disorders are the biggest concern globally. Out of ~36 million human immunodeficiency virus (HIV) positive people, about 30%-60% exhibit neurological disorders, including dementia and Alzheimer's disease (AD) like pathology. In AD or AD like neurological disorders, the pathogenesis is mainly due to the abnormal accumulation of extracellular amyloid beta (Aβ). In this era of antiretroviral therapy, the life span of the HIV-infected individuals has increased leading towards increased neurocognitive dysfunction in nearly 30% of HIV-infected individuals, specifically older people. Deposition of the Aβ plaques in the CNS is one the major phenomenon happening in aging HIV patients. ART suppresses the viral replication, but the neurotoxic protein (Tat) is still produced and results in increased levels of Aβ. Furthermore, drugs of abuse like cocaine (coc) is known to induce the HIV associated neurocognitive disorders as well as the Aβ secretion. To target the Tat and coc induced Aβ secretion, we propose a potent bifunctional molecule Withaferin A (WA) which may act as a neuro-protectant against Aβ neurotoxicity. In this study, we show that WA reduces secreted Aβ and induced neurotoxicity in amyloid precursor protein (APP)-plasmid transfected SH-SY5Y cells (SH-APP). In this study, we show that in SH-APP cells, Aβ secretion is induced in the presence of HIV-1 Tat (neurotoxic) and drug of abuse coc. Our fluorescent microscopy studies show the increased concentration of Aβ40 in Tat (50 ng/ml) and coc (0.1 μM) treated SH-APP cells as compared to control. Our dose optimization study show, lower concentrations (0.5-2 μM) of WA significantly reduce the Aβ40 levels, without inducing cytotoxicity in the SH-APP cells. Additionally, WA reduces the Tat and cocaine induced Aβ levels. Therefore, we propose that Aβ aggregation is induced by the presence of Tat and coc and WA is potent in reducing the secreted Aβ and induced neurotoxicity. Our study provides new opportunities for exploring the pathophysiology and targeting the neurological disorders.
Collapse
Affiliation(s)
- Sneham Tiwari
- Institute of NeuroImmune Pharmacology, Center for Personalized Nanomedicine, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Venkata Subba Rao Atluri
- Institute of NeuroImmune Pharmacology, Center for Personalized Nanomedicine, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Adriana Yndart Arias
- Institute of NeuroImmune Pharmacology, Center for Personalized Nanomedicine, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Rahul Dev Jayant
- Institute of NeuroImmune Pharmacology, Center for Personalized Nanomedicine, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Ajeet Kaushik
- Institute of NeuroImmune Pharmacology, Center for Personalized Nanomedicine, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Jonathan Geiger
- Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Madhavan N Nair
- Institute of NeuroImmune Pharmacology, Center for Personalized Nanomedicine, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| |
Collapse
|
29
|
Canet G, Dias C, Gabelle A, Simonin Y, Gosselet F, Marchi N, Makinson A, Tuaillon E, Van de Perre P, Givalois L, Salinas S. HIV Neuroinfection and Alzheimer's Disease: Similarities and Potential Links? Front Cell Neurosci 2018; 12:307. [PMID: 30254568 PMCID: PMC6141679 DOI: 10.3389/fncel.2018.00307] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/23/2018] [Indexed: 12/30/2022] Open
Abstract
Environmental factors such as chemicals, stress and pathogens are now widely believed to play important roles in the onset of some brain diseases, as they are associated with neuronal impairment and acute or chronic inflammation. Alzheimer’s disease (AD) is characterized by progressive synaptic dysfunction and neurodegeneration that ultimately lead to dementia. Neuroinflammation also plays a prominent role in AD and possible links to viruses have been proposed. In particular, the human immunodeficiency virus (HIV) can pass the blood-brain barrier and cause neuronal dysfunction leading to cognitive dysfunctions called HIV-associated neurocognitive disorders (HAND). Similarities between HAND and HIV exist as numerous factors involved in AD such as members of the amyloid and Tau pathways, as well as stress-related pathways or blood brain barrier (BBB) regulators, seem to be modulated by HIV brain infection, leading to the accumulation of amyloid plaques or neurofibrillary tangles (NFT) in some patients. Here, we summarize findings regarding how HIV and some of its proteins such as Tat and gp120 modulate signaling and cellular pathways also impaired in AD, suggesting similarities and convergences of these two pathologies.
Collapse
Affiliation(s)
- Geoffrey Canet
- Molecular Mechanisms in Neurodegenerative Dementia, INSERM, University of Montpellier/EPHE, Montpellier, France
| | - Chloé Dias
- Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement français du Sang, Montpellier, France
| | - Audrey Gabelle
- Memory Research and Resources Center, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Yannick Simonin
- Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement français du Sang, Montpellier, France
| | - Fabien Gosselet
- Laboratoire de la Barrière Hémato-Encéphalique, Université d'Artois, Lens, France
| | - Nicola Marchi
- Cerebrovascular Mechanisms of Brain Disorders, Department of Neuroscience, Institute of Functional Genomics, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Alain Makinson
- Department of Infectious Diseases CHU Montpellier, INSERM, IRD, University of Montpellier, Montpellier, France
| | - Edouard Tuaillon
- Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement français du Sang, Montpellier, France.,Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement français du Sang, CHU Montpellier, Montpellier, France
| | - Philippe Van de Perre
- Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement français du Sang, Montpellier, France.,Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement français du Sang, CHU Montpellier, Montpellier, France
| | - Laurent Givalois
- Molecular Mechanisms in Neurodegenerative Dementia, INSERM, University of Montpellier/EPHE, Montpellier, France
| | - Sara Salinas
- Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement français du Sang, Montpellier, France
| |
Collapse
|
30
|
Alford K, Vera JH. Cognitive Impairment in people living with HIV in the ART era: A Review. Br Med Bull 2018; 127:55-68. [PMID: 29868901 DOI: 10.1093/bmb/ldy019] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/22/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cognitive disorders are a common issue impacting those living with human immunodeficiency virus (HIV). Effective antiretroviral treatment has lessened the severity but not the frequency of these impairments. Such deficits reduce quality of life and present a significant challenge to clinicians in the context of an ageing HIV population with a growing number of comorbidities. SOURCES OF DATA This review is based on recent published literature in the field of HIV-associated cognitive impairment (HAND). AREAS OF AGREEMENT The pathogenesis of HAND is multifactorial and can be categorized into HIV viral factors, antiretroviral factors and individual factors. The risk factors associated with HAND are well documented. AREAS OF CONTROVERSY The prevalence of HAND in HIV populations varies and is dependent on populations studied and assessment batteries used. Disease progression is poorly understood and has important implication for screening programmes. The relative contribution of pathogenic mechanisms causing HAND is unclear, but recent papers point to inflammation as a significant contributor. GROWING AREAS The role of psychiatric diseases, such as depression, in the development and maintenance of HAND has recently been examined and requires clinical consideration. Furthermore, as the HIV population ages, its clinical management faces new challenges. AREAS TIMELY FOR DEVELOPING RESEARCH Identifying biomarkers for HAND which are practical in a clinical setting and utilizing new imaging technologies to better monitor diagnosis and disease progression. Furthermore, the development of therapeutics targeting inflammation appears of increasing importance.
Collapse
Affiliation(s)
- K Alford
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex Brighton, UK
| | - J H Vera
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex Brighton, UK.,Department of Medicine, Brighton and Sussex Medical School, Brighton, UK
| |
Collapse
|
31
|
Sneha P, Panda PK, Gharemirshamlu FR, Bamdad K, Balaji S. Structural discordance in HIV-1 Vpu from brain isolate alarms amyloid fibril forming behavior- a computational perspective. J Theor Biol 2018; 451:35-45. [PMID: 29705491 DOI: 10.1016/j.jtbi.2018.04.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 02/14/2018] [Accepted: 04/25/2018] [Indexed: 11/15/2022]
Abstract
HIV-1 being the most widespread type worldwide, its accounts for almost 95% of all infections including HIV associated dementia (HAD) that triggers neurological dysfunction and neurodegeneration in patients. The common features associated with HAD and other neurodegenerative diseases are accumulation of amyloid plaques, neuronal loss and deterioration of cognitive abilities, amongst which amyloid fibrillation is considered to be a hallmark. The success of effective therapeutics lies in the understanding of mechanisms leading to neurotoxicity. Few viral proteins like gp-120 are known to be involved in aggregation and enhancement of viral infectivity while comprehending the neurotoxic role of some other proteins is still underway. In the current study, amyloidogenic potential of HIV-1 Vpu protein from brain isolate is investigated through computational approaches. The aggregation propensity of brain derived HIV-1 Vpu was assessed by several amyloid prediction servers that projected the region 4-35 to be amyloidogenic. The protein structure was modeled and subjected to 70 ns molecular dynamics (MD) simulation to investigate the transformation of α-helical conformation of the predicted aggregate region into β-sheet, proposing the protein's ability to initiate fibril formation that is central to amyloidogenic proteins. The structural features of brain derived HIV-1 Vpu were consistent with the in silico amyloid prediction results that depicts the conformational change in the region 8-28 of which residues Ala8, Ile9, Val10, Ala19, Ile20 and Val21 constitutes β-sheet formation. The α-helix/β-sheet discordance of the predicted region was reflected in the simulation study highlighting the possible structural transition associated with HIV-1 Vpu protein of brain isolate.
Collapse
Affiliation(s)
- Patil Sneha
- School of Biotechnology and Bioinformatics, D.Y. Patil deemed to be University, CBD Belapur, Sector 15, Navi Mumbai, Maharashtra 400614, India; Research and Development Centre, Bharathiar University, Coimbatore 641046 India
| | - Pritam Kumar Panda
- School of Biotechnology and Bioinformatics, D.Y. Patil deemed to be University, CBD Belapur, Sector 15, Navi Mumbai, Maharashtra 400614, India
| | | | - Kourosh Bamdad
- Faculty of Science(,) Payame Noor University, 19395-4697 Iran
| | - Seetharaman Balaji
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104 Karnataka, India.
| |
Collapse
|
32
|
Milanini B, Valcour V. Differentiating HIV-Associated Neurocognitive Disorders From Alzheimer's Disease: an Emerging Issue in Geriatric NeuroHIV. Curr HIV/AIDS Rep 2018; 14:123-132. [PMID: 28779301 DOI: 10.1007/s11904-017-0361-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review was to examine characteristics that may distinguish HIV-associated neurocognitive disorder (HAND) from early Alzheimer's disease (AD). RECENT FINDINGS Cerebrospinal fluid (CSF) AD biomarkers are perturbed in HIV, yet these alterations may be limited to settings of advanced dementia or unsuppressed plasma HIV RNA. Neuropsychological testing will require extensive batteries to maximize utility. Structural imaging is limited for early AD detection in the setting of HIV, but proper studies are absent. While positron-emission tomography (PET) amyloid imaging has altered the landscape of differential diagnosis for age-associated neurodegenerative disorders, costs are prohibitive. Risk for delayed AD diagnosis in the aging HIV-infected population is now among the most pressing issues in geriatric neuroHIV. While clinical, imaging, and biomarker characterizations of AD are extensively defined, fewer data define characteristics of HIV-associated neurocognitive disorder in the setting of suppressed plasma HIV RNA. Data needed to inform the phenotype of AD in the setting of HIV are equally few.
Collapse
Affiliation(s)
- Benedetta Milanini
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA.
| | - Victor Valcour
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| |
Collapse
|
33
|
de Almeida SM, Ribeiro CE, Rotta I, Piovesan M, Tang B, Vaida F, Raboni SM, Letendre S, Potter M, Batistela Fernandes MS, Ellis RJ. Biomarkers of neuronal injury and amyloid metabolism in the cerebrospinal fluid of patients infected with HIV-1 subtypes B and C. J Neurovirol 2018; 24:28-40. [PMID: 29063514 PMCID: PMC5792298 DOI: 10.1007/s13365-017-0591-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 12/13/2022]
Abstract
Based on prior reports that the HIV-1 Tat protein modulates amyloid-beta (Aβ) metabolism, this study aimed to compare CSF neural injury biomarkers between 27 patients with HIV subtype B, 26 patients with HIV subtype C, 18 healthy HIV-negative controls, and 24 patients with Alzheimer's disease (AD). Immunoassays were used to measure soluble amyloid precursor protein α and β (sAPPα, sAPPβ), Aβ oligomers 38, 40, 42, and Aβ-total; phosphorylated tau (P-tau181), and total tau (T-tau). Comparisons between HIV(+) and HIV(-) (including AD) were adjusted by linear regression for gender and age; HIV subtype comparisons were adjusted for nadir CD4 and plasma viral load suppression. The p values were corrected for multiple testing with the Benjamini-Hochberg procedure. CSF Aβ-42 and Hulstaert (P-tau181) index were lower in HIV1-C than B (p = 0.03, and 0.049 respectively); subtypes did not differ on other CSF biomarkers or ratios. Compared to AD, HIV(+) had lower CSF levels of T-tau, P-tau181 (p < 0.001), and sAPPα (p = 0.041); HIV(+) had higher CSF Aβ-42 (p = 0.002) and higher CSF indexes: [Aß-42/(240 + 1.18 T-tau)], P-tau181/Aβ-42, T-tau/Aβ-42, P-tau181/T-tau, sAPPα/β (all p ≤ 0.01) than AD. Compared to HIV(-), HIV(+) had lower CSF Aβ-42, and T-tau (all p ≤ 0.004). As conclusion, amyloid metabolism was influenced by HIV infection in a subtype-dependent manner. Aß-42 levels were lower in HIV1-C than B, suggesting that there may be greater deposition of Aß-42 in HIV1-C. These findings are supported by CSF Hulstaert (P-tau181) index. Differences between HIV and AD in the patterns of Aß and Tau biomarkers suggest that CNS HIV infection and AD may not share some of same mechanisms of neuronal injury.
Collapse
Affiliation(s)
- Sérgio Monteiro de Almeida
- Hospital de Clínicas-UFPR, Universidade Federal do Paraná, Seção de Virologia, Setor Análises Clínicas, Rua Padre Camargo, 280, Curitiba, PR, 80060-240, Brazil.
- Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil.
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil.
| | - Clea E Ribeiro
- Hospital de Clínicas-UFPR, Universidade Federal do Paraná, Seção de Virologia, Setor Análises Clínicas, Rua Padre Camargo, 280, Curitiba, PR, 80060-240, Brazil
| | - Indianara Rotta
- Hospital de Clínicas-UFPR, Universidade Federal do Paraná, Seção de Virologia, Setor Análises Clínicas, Rua Padre Camargo, 280, Curitiba, PR, 80060-240, Brazil
- Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Mauro Piovesan
- Hospital de Clínicas-UFPR, Universidade Federal do Paraná, Seção de Virologia, Setor Análises Clínicas, Rua Padre Camargo, 280, Curitiba, PR, 80060-240, Brazil
| | - Bin Tang
- HNRC-University of California-San Diego, San Diego, CA, USA
| | - Florin Vaida
- HNRC-University of California-San Diego, San Diego, CA, USA
| | - Sonia Mara Raboni
- Hospital de Clínicas-UFPR, Universidade Federal do Paraná, Seção de Virologia, Setor Análises Clínicas, Rua Padre Camargo, 280, Curitiba, PR, 80060-240, Brazil
| | - Scott Letendre
- HNRC-University of California-San Diego, San Diego, CA, USA
| | - Michael Potter
- HNRC-University of California-San Diego, San Diego, CA, USA
| | - Meire S Batistela Fernandes
- Hospital de Clínicas-UFPR, Universidade Federal do Paraná, Seção de Virologia, Setor Análises Clínicas, Rua Padre Camargo, 280, Curitiba, PR, 80060-240, Brazil
| | - Ronald J Ellis
- HNRC-University of California-San Diego, San Diego, CA, USA
| |
Collapse
|
34
|
Nooka S, Ghorpade A. HIV-1-associated inflammation and antiretroviral therapy regulate astrocyte endoplasmic reticulum stress responses. Cell Death Discov 2017; 3:17061. [PMID: 29354290 PMCID: PMC5712632 DOI: 10.1038/cddiscovery.2017.61] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/02/2017] [Indexed: 12/28/2022] Open
Abstract
Antiretroviral (ARV) therapy (ART) has effectively suppressed the incidence of human immunodeficiency virus (HIV)-associated dementia in HIV-1 positive individuals. However, the prevalence of more subtle forms of neurocognitive dysfunction continues to escalate. Recently, endoplasmic reticulum (ER) stress has been linked to many neurological diseases; yet, its role in HIV/neuroAIDS remains largely unexplored. Furthermore, upregulation of astrocyte elevated gene-1 (AEG-1), a novel HIV-1 inducible gene, along with ER stress markers in a Huntington’s disease model, suggests a possible role in HIV-associated ER stress. The current study is focused on unfolded protein responses (UPRs) and AEG-1 regulation in primary human astrocytes exposed to HIV-associated neurocognitive disorders (HAND)-relevant stimuli (HIV-1 virions, inflammation and ARV drugs). Interleukin (IL)-1β and the nucleoside reverse transcriptase inhibitor abacavir upregulated expression of ER stress markers in human astrocytes, including binding immunoglobulin protein (BiP), C/EBP homologous protein (CHOP), and calnexin. In addition, IL-1β activated all three well-known UPR pathways: protein kinase RNA-like ER kinase (PERK); activating transcription factor 6 (ATF-6); and inositol-requiring enzyme 1α (IRE1α). AEG-1 upregulation correlated to ER stress and demonstrated astrocyte AEG-1 interaction with the calcium-binding chaperone, calnexin. IL-1β and abacavir enhanced intracellular calcium signaling in astrocytes in the absence of extracellular calcium, illustrating ER-associated calcium release. Alternatively, calcium evoked in response to HAND-relevant stimuli led to mitochondrial permeability transition pore (mPTP) opening in human astrocytes. Importantly, IL-1β- and abacavir-induced UPR and mPTP opening were inhibited by the intracellular calcium chelation, indicating the critical role of calcium signaling in HAND-relevant ER stress in astrocytes. In summary, our study highlights that ARV drugs and IL-1β induced UPR, AEG-1 expression, intracellular calcium, and mitochondrial depolarization in astrocytes. This study uncovers astrocyte ER stress as a novel therapeutic target in the management of HIV-1-associated neurotoxicity and possibly in the treatment of neuroAIDS.
Collapse
Affiliation(s)
- Shruthi Nooka
- Institute for Molecular Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Anuja Ghorpade
- Institute for Molecular Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
35
|
HIV-1 counteracts an innate restriction by amyloid precursor protein resulting in neurodegeneration. Nat Commun 2017; 8:1522. [PMID: 29142315 PMCID: PMC5688069 DOI: 10.1038/s41467-017-01795-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 10/16/2017] [Indexed: 12/19/2022] Open
Abstract
While beta-amyloid (Aβ), a classic hallmark of Alzheimer's disease (AD) and dementia, has long been known to be elevated in the human immunodeficiency virus type 1 (HIV-1)-infected brain, why and how Aβ is produced, along with its contribution to HIV-associated neurocognitive disorder (HAND) remains ill-defined. Here, we reveal that the membrane-associated amyloid precursor protein (APP) is highly expressed in macrophages and microglia, and acts as an innate restriction against HIV-1. APP binds the HIV-1 Gag polyprotein, retains it in lipid rafts and blocks HIV-1 virion production and spread. To escape this restriction, Gag promotes secretase-dependent cleavage of APP, resulting in the overproduction of toxic Aβ isoforms. This Gag-mediated Aβ production results in increased degeneration of primary cortical neurons, and can be prevented by γ-secretase inhibitor treatment. Interfering with HIV-1's evasion of APP-mediated restriction also suppresses HIV-1 spread, offering a potential strategy to both treat infection and prevent HAND.
Collapse
|
36
|
Muñoz-Moreno JA, Prats A, Moltó J, Garolera M, Pérez-Álvarez N, Díez-Quevedo C, Miranda C, Fumaz CR, Ferrer MJ, Clotet B. Transdermal rivastigmine for HIV-associated cognitive impairment: A randomized pilot study. PLoS One 2017; 12:e0182547. [PMID: 28854283 PMCID: PMC5576750 DOI: 10.1371/journal.pone.0182547] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/11/2017] [Indexed: 11/19/2022] Open
Abstract
Objective To assess the efficacy and safety of transdermal rivastigmine for the treatment of HIV-associated cognitive impairment. Methods We recruited HIV-infected patients with cognitive impairment on stable antiretroviral therapy in a randomized controlled pilot trial with a 48-week follow-up. An additional assessment was held at 12 weeks. Participants received transdermal rivastigmine (9.5 mg daily), lithium (400 mg twice daily, titrated progressively), or remained in a control group (no new medication). The primary efficacy endpoint was change in a global cognitive score (NPZ-7). Secondary endpoints included change in specific cognitive measures, domains, and functional parameters. Safety covered the frequency of adverse events and changes in laboratory results. Results Seventy-six subjects were screened, and 29 were finally enrolled. Better cognitive outcomes were observed in all groups, although there were no significant differences between the arms (mean NPZ-7 change [SD]): rivastigmine, 0.35 (0.14); lithium, 0.25 (0.40); control, 0.20 (0.44) (p = 0.78). The rivastigmine group showed the highest positive trend (mean NPZ-7 [SD], baseline vs week 48): rivastigmine, –0.47 (0.22) vs –0.11 (0.29), p = 0.06; lithium, –0.50 (0.40) vs –0.26 (0.21), p = 0.22; control, –0.52 (0.34) vs –0.32 (0.52), p = 0.44. The cognitive domains with the highest positive trends were information processing speed at week 12 and executive function at week 48 (rivastigmine vs control): information processing speed, 0.35 (0.64) vs –0.13 (0.25), p = 0.17, d = 0.96; and executive functioning, 0.73 (0.33) vs 0.03 (0.74), p = 0.09, d = 1.18. No relevant changes were observed regarding functional outcomes. A total of 12 (41%) individuals dropped out of the study: 2 (20%) were due to medication-related effects in the rivastigmine group and 4 (36%) in the lithium group. No severe adverse events were reported. Conclusions The results from this small randomized trial indicate that transdermal rivastigmine did not provide significant cognitive benefits in people with HAND on stable antiretroviral therapy, even though positive trends were found in specific cognitive domains. Relevant tolerability issues were not observed.
Collapse
Affiliation(s)
- Jose A. Muñoz-Moreno
- Fundació Lluita contra la SIDA (FLS), Hospital Universitari Germans Trias i Pujol, Badalona, Catalonia, Spain
- Facultat de Psicologia i Ciències de l'Educació, Universitat Oberta de Catalunya (UOC), Barcelona, Catalonia, Spain
- * E-mail:
| | - Anna Prats
- Fundació Lluita contra la SIDA (FLS), Hospital Universitari Germans Trias i Pujol, Badalona, Catalonia, Spain
- Departament de Psiquiatria i Medicina Legal, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Catalonia, Spain
| | - José Moltó
- Fundació Lluita contra la SIDA (FLS), Hospital Universitari Germans Trias i Pujol, Badalona, Catalonia, Spain
| | - Maite Garolera
- Clinical Research Group for Brain, Cognition and Behavior, Consorci Sanitari Hospital de Terrassa, Terrassa, Catalonia, Spain
- Grup de Recerca Consolidat en Neuropsicologia, Universitat de Barcelona (UB), Barcelona, Catalonia, Spain
| | - Núria Pérez-Álvarez
- Fundació Lluita contra la SIDA (FLS), Hospital Universitari Germans Trias i Pujol, Badalona, Catalonia, Spain
- Departament d'Estadística i Investigació Operativa, Universitat Politècnica de Catalunya (UPC), Barcelona, Catalonia, Spain
| | - Crisanto Díez-Quevedo
- Departament de Psiquiatria i Medicina Legal, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Catalonia, Spain
- Servei de Psiquiatria, Hospital Universitari Germans Trias i Pujol, Badalona, Catalonia, Spain
| | - Cristina Miranda
- Fundació Lluita contra la SIDA (FLS), Hospital Universitari Germans Trias i Pujol, Badalona, Catalonia, Spain
| | - Carmina R. Fumaz
- Fundació Lluita contra la SIDA (FLS), Hospital Universitari Germans Trias i Pujol, Badalona, Catalonia, Spain
| | - Maria J. Ferrer
- Fundació Lluita contra la SIDA (FLS), Hospital Universitari Germans Trias i Pujol, Badalona, Catalonia, Spain
| | - Bonaventura Clotet
- Fundació Lluita contra la SIDA (FLS), Hospital Universitari Germans Trias i Pujol, Badalona, Catalonia, Spain
- Institut per la Recerca de la SIDA IrsiCaixa, Badalona, Catalonia, Spain
- Càtedra de la SIDA i Malalties Relacionades, Universitat de Vic—Universitat Central de Catalunya (UVic), Vic, Catalonia, Spain
| | | |
Collapse
|
37
|
Cantres-Rosario YM, Acevedo-Mariani FM, Pérez-Laspiur J, Haskins WE, Plaud M, Cantres-Rosario YM, Skolasky R, Méndez-Bermúdez I, Wojna V, Meléndez LM. Microwave & magnetic proteomics of macrophages from patients with HIV-associated cognitive impairment. PLoS One 2017; 12:e0181779. [PMID: 28746408 PMCID: PMC5528838 DOI: 10.1371/journal.pone.0181779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 07/06/2017] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE HIV-infected monocytes can infiltrate the blood brain barrier as differentiated macrophages to the central nervous system, becoming the primary source of viral and cellular neurotoxins. The final outcome is HIV-associated cognitive impairment (HACI), which remain prevalent today, possibly due to the longer life-span of the patients treated with combined anti-retroviral therapy. Our main goal was to characterize the proteome of monocyte-derived macrophages (MDM) from HACI patients, and its association with their cognitive status, to find novel targets for therapy. METHODS MDM were isolated from the peripheral blood of 14 HIV-seropositive women characterized for neurocognitive function, including: four normal cognition (NC), five asymptomatic (A), and five with cognitive impaired (CI). Proteins from macrophage lysates were isobaric-labeled with the microwave and magnetic (M2) sample preparation method followed by liquid chromatography-tandem mass spectrometry-based protein identification and quantification. Differences in protein abundance across groups classified by HACI status were determined using analysis of variance. RESULTS A total of 2,519 proteins were identified with 2 or more peptides and 28 proteins were quantified as differentially expressed. Statistical analysis revealed increased abundance of 17 proteins in patients with HACI (p<0.05), including several enzymes associated to the glucose metabolism. Western blot confirmed increased expression of 6-Phosphogluconate dehydrogenase and L-Plastin in A and CI patients over NC and HIV seronegatives. CONCLUSIONS This is the first quantitative proteomics study exploring the changes in protein abundance of macrophages isolated from patients with HACI. Further studies are warranted to determine if these proteins may be target candidates for therapy development against HACI.
Collapse
Affiliation(s)
- Yisel M. Cantres-Rosario
- Department of Microbiology and Medical Zoology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | | | - Juliana Pérez-Laspiur
- RCMI Translational Proteomics Center, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | | | - Marines Plaud
- RCMI Translational Proteomics Center, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Yadira M. Cantres-Rosario
- RCMI Translational Proteomics Center, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Richard Skolasky
- John Hopkins University, Department of Orthopedic Surgery, Baltimore, Maryland, United States of America
| | - Israel Méndez-Bermúdez
- Department of Biostatistics and Epidemiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Valerie Wojna
- Department of Medicine, Neurology Division, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Loyda M. Meléndez
- Department of Microbiology and Medical Zoology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
- RCMI Translational Proteomics Center, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| |
Collapse
|
38
|
HIV-1 Transactivator Protein Induces ZO-1 and Neprilysin Dysfunction in Brain Endothelial Cells via the Ras Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3160360. [PMID: 28553432 PMCID: PMC5434241 DOI: 10.1155/2017/3160360] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/09/2017] [Accepted: 03/01/2017] [Indexed: 11/30/2022]
Abstract
Amyloid beta (Aβ) deposition is increased in human immunodeficiency virus-1- (HIV-1-) infected brain, but the mechanisms are not fully understood. The aim of the present study was to evaluate the role of Ras signaling in HIV-1 transactivator protein- (Tat-) induced Aβ accumulation in human cerebral microvascular endothelial cells (HBEC-5i). Cell viability assay showed that 1 μg/mL Tat and 20 μmol/L of the Ras inhibitor farnesylthiosalicylic acid (FTS) had no significant effect on HBEC-5i cell viability after 24 h exposure. Exposure to Tat decreased protein and mRNA levels of zonula occludens- (ZO-) 1 and Aβ-degrading enzyme neprilysin (NEP) in HBEC-5i cells as determined by western blotting and quantitative real-time polymerase chain reaction. Exposure to Tat also increased transendothelial transfer of Aβ and intracellular reactive oxygen species (ROS) levels; however, these effects were attenuated by FTS. Collectively, these results suggest that the Ras signaling pathway is involved in HIV-1 Tat-induced changes in ZO-1 and NEP, as well as Aβ deposition in HBEC-5i cells. FTS partially protects blood-brain barrier (BBB) integrity and inhibits Aβ accumulation.
Collapse
|
39
|
Hahn F, Schmalen A, Setz C, Friedrich M, Schlößer S, Kölle J, Spranger R, Rauch P, Fraedrich K, Reif T, Karius-Fischer J, Balasubramanyam A, Henklein P, Fossen T, Schubert U. Proteolysis of mature HIV-1 p6 Gag protein by the insulin-degrading enzyme (IDE) regulates virus replication in an Env-dependent manner. PLoS One 2017; 12:e0174254. [PMID: 28388673 PMCID: PMC5384750 DOI: 10.1371/journal.pone.0174254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/06/2017] [Indexed: 12/18/2022] Open
Abstract
There is a significantly higher risk for type II diabetes in HIV-1 carriers, albeit the molecular mechanism for this HIV-related pathology remains enigmatic. The 52 amino acid HIV-1 p6 Gag protein is synthesized as the C-terminal part of the Gag polyprotein Pr55. In this context, p6 promotes virus release by its two late (L-) domains, and facilitates the incorporation of the viral accessory protein Vpr. However, the function of p6 in its mature form, after proteolytic release from Gag, has not been investigated yet. We found that the mature p6 represents the first known viral substrate of the ubiquitously expressed cytosolic metalloendopeptidase insulin-degrading enzyme (IDE). IDE is sufficient and required for degradation of p6, and p6 is approximately 100-fold more efficiently degraded by IDE than its eponymous substrate insulin. This observation appears to be specific for HIV-1, as p6 proteins from HIV-2 and simian immunodeficiency virus, as well as the 51 amino acid p9 from equine infectious anaemia virus were insensitive to IDE degradation. The amount of virus-associated p6, as well as the efficiency of release and maturation of progeny viruses does not depend on the presence of IDE in the host cells, as it was shown by CRISPR/Cas9 edited IDE KO cells. However, HIV-1 mutants harboring IDE-insensitive p6 variants exhibit reduced virus replication capacity, a phenomenon that seems to depend on the presence of an X4-tropic Env. Furthermore, competing for IDE by exogenous insulin or inhibiting IDE by the highly specific inhibitor 6bK, also reduced virus replication. This effect could be specifically attributed to IDE since replication of HIV-1 variants coding for an IDE-insensitive p6 were inert towards IDE-inhibition. Our cumulative data support a model in which removal of p6 during viral entry is important for virus replication, at least in the case of X4 tropic HIV-1.
Collapse
Affiliation(s)
- Friedrich Hahn
- Institute of Virology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Adrian Schmalen
- Institute of Virology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Setz
- Institute of Virology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Melanie Friedrich
- Institute of Virology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Schlößer
- Institute of Virology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Julia Kölle
- Institute of Virology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Robert Spranger
- Institute of Virology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Pia Rauch
- Institute of Virology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Kirsten Fraedrich
- Institute of Virology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Tatjana Reif
- Institute of Virology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Julia Karius-Fischer
- Institute of Virology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Ashok Balasubramanyam
- Translational Metabolism Unit, Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, Texas, United States of America
| | - Petra Henklein
- Institute of Biochemistry, Charité Universitätsmedizin-Berlin, Berlin, Germany
| | - Torgils Fossen
- Department of Chemistry and Centre for Pharmacy, University of Bergen, Bergen, Norway
| | - Ulrich Schubert
- Institute of Virology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- * E-mail:
| |
Collapse
|
40
|
Liu L, Yu J, Li L, Zhang B, Liu L, Wu CH, Jong A, Mao DA, Huang SH. Alpha7 nicotinic acetylcholine receptor is required for amyloid pathology in brain endothelial cells induced by Glycoprotein 120, methamphetamine and nicotine. Sci Rep 2017; 7:40467. [PMID: 28074940 PMCID: PMC5225415 DOI: 10.1038/srep40467] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 12/06/2016] [Indexed: 01/12/2023] Open
Abstract
One of the most challenging issues in HIV-associated neurocognitive disorders (HAND) caused by HIV-1 virotoxins and drug abuse is the lack of understanding the underlying mechanisms that are commonly associated with disorders of the blood-brain barrier (BBB), which mainly consists of brain microvascular endothelial cells (BMEC). Here, we hypothesized that Glycoprotein 120 (gp120), methamphetamine (METH) and nicotine (NT) can enhance amyloid-beta (Aβ) accumulation in BMEC through Alpha7 nicotinic acetylcholine receptor (α7 nAChR). Both in vitro (human BMEC) (HBMEC) and in vivo (mice) models of BBB were used to dissect the role of α7 nAChR in up-regulation of Aβ induced by gp120, METH and NT. Aβ release from and transport across HBMEC were significantly increased by these factors. Methyllycaconitine (MLA), an antagonist of α7 nAChR, could efficiently block these pathogenic effects. Furthermore, our animal data showed that these factors could significantly increase the levels of Aβ, Tau and Ubiquitin C-Terminal Hydrolase L1 (UCHL1) in mouse cerebrospinal fluid (CSF) and Aβ in the mouse brains. These pathogenicities were significantly reduced by MLA, suggesting that α7 nAChR may play an important role in neuropathology caused by gp120, METH and NT, which are the major pathogenic factors contributing to the pathogenesis of HAND.
Collapse
Affiliation(s)
- Liqun Liu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Saban Research Institute, Childrens Hospital Los Angeles, University of Southern California, Los Angeles, CA90027, USA
| | - Jingyi Yu
- Saban Research Institute, Childrens Hospital Los Angeles, University of Southern California, Los Angeles, CA90027, USA.,School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Li Li
- School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China.,Department of Clinical Laboratory, Kunming Children's Hospital, Kunming Medical University, Kunming, Yunnan 650034, China
| | - Bao Zhang
- Saban Research Institute, Childrens Hospital Los Angeles, University of Southern California, Los Angeles, CA90027, USA.,School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Lingjuan Liu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Chun-Hua Wu
- Saban Research Institute, Childrens Hospital Los Angeles, University of Southern California, Los Angeles, CA90027, USA
| | - Ambrose Jong
- Saban Research Institute, Childrens Hospital Los Angeles, University of Southern California, Los Angeles, CA90027, USA
| | - Ding-An Mao
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Sheng-He Huang
- Saban Research Institute, Childrens Hospital Los Angeles, University of Southern California, Los Angeles, CA90027, USA.,School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
41
|
Spitzer P, Condic M, Herrmann M, Oberstein TJ, Scharin-Mehlmann M, Gilbert DF, Friedrich O, Grömer T, Kornhuber J, Lang R, Maler JM. Amyloidogenic amyloid-β-peptide variants induce microbial agglutination and exert antimicrobial activity. Sci Rep 2016; 6:32228. [PMID: 27624303 PMCID: PMC5021948 DOI: 10.1038/srep32228] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/04/2016] [Indexed: 11/09/2022] Open
Abstract
Amyloid-β (Aβ) peptides are the main components of the plaques found in the brains of patients with Alzheimer's disease. However, Aβ peptides are also detectable in secretory compartments and peripheral blood contains a complex mixture of more than 40 different modified and/or N- and C-terminally truncated Aβ peptides. Recently, anti-infective properties of Aβ peptides have been reported. Here, we investigated the interaction of Aβ peptides of different lengths with various bacterial strains and the yeast Candida albicans. The amyloidogenic peptides Aβ1-42, Aβ2-42, and Aβ3p-42 but not the non-amyloidogenic peptides Aβ1-40 and Aβ2-40 bound to microbial surfaces. As observed by immunocytochemistry, scanning electron microscopy and Gram staining, treatment of several bacterial strains and Candida albicans with Aβ peptide variants ending at position 42 (Aβx-42) caused the formation of large agglutinates. These aggregates were not detected after incubation with Aβx-40. Furthermore, Aβx-42 exerted an antimicrobial activity on all tested pathogens, killing up to 80% of microorganisms within 6 h. Aβ1-40 only had a moderate antimicrobial activity against C. albicans. Agglutination of Aβ1-42 was accelerated in the presence of microorganisms. These data demonstrate that the amyloidogenic Aβx-42 variants have antimicrobial activity and may therefore act as antimicrobial peptides in the immune system.
Collapse
Affiliation(s)
- Philipp Spitzer
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, D-91054 Erlangen, Germany
| | - Mateja Condic
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, D-91054 Erlangen, Germany
| | - Martin Herrmann
- Department of Medicine III, Institute for Clinical Immunology, Friedrich-Alexander-University Erlangen-Nuremberg, Gluecksstraße 4a, D-91054 Erlangen, Germany
| | - Timo Jan Oberstein
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, D-91054 Erlangen, Germany
| | - Marina Scharin-Mehlmann
- Electron Devices, Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstraße 6, D-91058 Erlangen, Germany
| | - Daniel F Gilbert
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nuremberg, Paul-Gordan-Str. 3, D-91052 Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nuremberg, Paul-Gordan-Str. 3, D-91052 Erlangen, Germany
| | - Teja Grömer
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, D-91054 Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, D-91054 Erlangen, Germany
| | - Roland Lang
- Institute of Clinical Microbiology, Immunology and Hygiene, Friedrich-Alexander-University Erlangen-Nuremberg, Wasserturmstr. 3/5, D-91054 Erlangen, Germany
| | - Juan Manuel Maler
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, D-91054 Erlangen, Germany
| |
Collapse
|
42
|
Kaushik A, Jayant RD, Tiwari S, Vashist A, Nair M. Nano-biosensors to detect beta-amyloid for Alzheimer's disease management. Biosens Bioelectron 2016; 80:273-287. [PMID: 26851586 PMCID: PMC4786026 DOI: 10.1016/j.bios.2016.01.065] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 01/21/2016] [Accepted: 01/27/2016] [Indexed: 10/22/2022]
Abstract
Beta-amyloid (β-A) peptides are potential biomarkers to monitor Alzheimer's diseases (AD) for diagnostic purposes. Increased β-A level is neurotoxic and induces oxidative stress in brain resulting in neurodegeneration and causes dementia. As of now, no sensitive and inexpensive method is available for β-A detection under physiological and pathological conditions. Although, available methods such as neuroimaging, enzyme-linked immunosorbent assay (ELISA), and polymerase chain reaction (PCR) detect β-A, but they are not yet extended at point-of-care (POC) due to sophisticated equipments, need of high expertize, complicated operations, and challenge of low detection limit. Recently, β-A antibody based electrochemical immuno-sensing approach has been explored to detect β-A at pM levels within 30-40 min compared to 6-8h of ELISA test. The introduction of nano-enabling electrochemical sensing technology could enable rapid detection of β-A at POC and may facilitate fast personalized health care delivery. This review explores recent advancements in nano-enabling electrochemical β-A sensing technologies towards POC application to AD management. These analytical tools can serve as an analytical tool for AD management program to obtain bio-informatics needed to optimize therapeutics for neurodegenerative diseases diagnosis management.
Collapse
Affiliation(s)
- Ajeet Kaushik
- Center for Personalized Nanomedicine, Institute of Neuro immune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
| | - Rahul Dev Jayant
- Center for Personalized Nanomedicine, Institute of Neuro immune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Sneham Tiwari
- Center for Personalized Nanomedicine, Institute of Neuro immune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Arti Vashist
- Center for Personalized Nanomedicine, Institute of Neuro immune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Madhavan Nair
- Center for Personalized Nanomedicine, Institute of Neuro immune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
| |
Collapse
|
43
|
Turner RS, Chadwick M, Horton WA, Simon GL, Jiang X, Esposito G. An individual with human immunodeficiency virus, dementia, and central nervous system amyloid deposition. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2016; 4:1-5. [PMID: 27489872 PMCID: PMC4950581 DOI: 10.1016/j.dadm.2016.03.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human immunodeficiency virus (HIV)–associated neurocognitive disorder (HAND) is found in 30%–50% of individuals with HIV infection. To date, no HIV+ individual has been reported to have a positive amyloid PET scan. We report a 71-year-old HIV+ individual with HAND. Clinical and neuropsychologic evaluations confirmed a progressive mild dementia. A routine brain MRI was normal for age. [18F]Fluorodeoxyglucose–PET revealed mild hypermetabolism in bilateral basal ganglia and hypometabolism of bilateral parietal cortex including the posterior cingulate/precuneus. Resting state functional MRI revealed altered connectivity as found with individuals with mild AD. CSF examination revealed a low Aβ42/tau index but a low phospho-tau. An amyloid PET/CT with [18F]florbetaben revealed pronounced cortical radiotracer deposition. This case report suggests that progressive dementia in older HIV+ individuals may be due to HAND, AD, or both. HIV infection does not preclude CNS Aβ/amyloid deposition. Amyloid PET imaging may be of value in distinguishing HAND from AD pathologies.
Collapse
Affiliation(s)
| | - Melanie Chadwick
- Department of Neurology, Georgetown University, Washington, DC, USA
| | - Wesley A Horton
- Department of Neurology, Georgetown University, Washington, DC, USA
| | - Gary L Simon
- Department of Infectious Diseases, George Washington University, Washington, DC, USA
| | - Xiong Jiang
- Department of Neuroscience, Georgetown University, Washington, DC, USA
| | | |
Collapse
|
44
|
HIV-1 gp120 induces type-1 programmed cell death through ER stress employing IRE1α, JNK and AP-1 pathway. Sci Rep 2016; 6:18929. [PMID: 26740125 PMCID: PMC4703964 DOI: 10.1038/srep18929] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/30/2015] [Indexed: 12/22/2022] Open
Abstract
The ER stress-mediated apoptosis has been implicated in several neurodegenerative diseases; however, its role in HIV/neuroAIDS remains largely unexplored. The present study was undertaken to assess the involvement and detailed mechanism of IRE1α pathway in HIV-1 gp120-mediated ER stress and its possible involvement in cell death. Various signaling molecules for IRE1α pathway were assessed using SVGA cells, primary astrocytes and gp120 transgenic mice, which demonstrated gp120-mediated increase in phosphorylated JNK, XBP-1 and AP-1 leading to upregulation of CHOP. Furthermore, HIV-1 gp120-mediated activation of IRE1α also increased XBP-1 splicing. The functional consequence of gp120-mediated ER stress was determined via assessment of gp120-mediated cell death using PI staining and MTT assay. The gp120-mediated cell death also involved caspase-9/caspase-3-mediated apoptosis. These findings were confirmed with the help of specific siRNA for IRE1α, JNK, AP-1, BiP and CHOP showing significant reduction in gp120-mediated CHOP expression. Additionally, silencing all the intermediates also reduced the gp120-mediated cell death and caspase-9/caspase-3 activation at differential levels. This study provides ER-stress as a novel therapeutic target in the management of gp120-mediated cell death and possibly in the treatment of neuroAIDS.
Collapse
|
45
|
Bertrand L, Toborek M. Dysregulation of Endoplasmic Reticulum Stress and Autophagic Responses by the Antiretroviral Drug Efavirenz. Mol Pharmacol 2015; 88:304-15. [PMID: 25987489 DOI: 10.1124/mol.115.098590] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 05/15/2015] [Indexed: 12/23/2022] Open
Abstract
Increasing evidence demonstrates that the antiretroviral drugs (ARVds) used for human immunodeficiency virus (HIV) treatment have toxic effects that result in various cellular and tissue pathologies; however, their impact on the cells composing the blood-brain barrier is poorly understood. The current study focused on ARVds, used either in combination or alone, on the induction of endoplasmic reticulum (ER) stress responses in human brain endothelial cells. Among studied drugs (efavirenz, tenofovir, emtricitabine, lamivudine, and indinavir), only efavirenz increased ER stress via upregulation and activation of protein kinase-like ER kinase PERK and inositol requiring kinase 1α (IRE1α). At the same time, efavirenz diminished autophagic activity, a surprising result because typically the induction of ER stress is linked to enhanced autophagy. These results were confirmed in microvessels of HIV transgenic mice chronically administered with efavirenz. In a series of further experiments, we identified that efavirenz dysregulated ER stress and autophagy by blocking the activity of the Beclin-1/Atg14/PI3KIII complex in regard to synthesis of phosphatidylinositol 3-phosphate, a process that is linked to the formation of autophagosomes. Because autophagy is a protective mechanism involved in the removal of dysfunctional proteins and organelles, its inhibition can contribute to the toxicity of efavirenz or the development of neurodegenerative disease in HIV patients treated with this drug.
Collapse
Affiliation(s)
- Luc Bertrand
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, Florida
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, Florida
| |
Collapse
|
46
|
Cohen RA, Seider TR, Navia B. HIV effects on age-associated neurocognitive dysfunction: premature cognitive aging or neurodegenerative disease? ALZHEIMERS RESEARCH & THERAPY 2015; 7:37. [PMID: 25848401 PMCID: PMC4386102 DOI: 10.1186/s13195-015-0123-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Marked improvements in survival and health outcome for people infected with HIV have occurred since the advent of combination antiretroviral therapy over a decade ago. Yet HIV-associated neurocognitive disorders continue to occur with an alarming prevalence. This may reflect the fact that infected people are now living longer with chronic infection. There is mounting evidence that HIV exacerbates age-associated cognitive decline. Many middle-aged HIV-infected people are experiencing cognitive decline similar that to that found among much older adults. An increased prevalence of vascular and metabolic comorbidities has also been observed and is greatest among older adults with HIV. Premature age-associated neurocognitive decline appears to be related to structural and functional brain changes on neuroimaging, and of particular concern is the fact that pathology indicative of neurodegenerative disease has been shown to occur in the brains of HIV-infected people. Yet notable differences also exist between the clinical presentation and brain disturbances occurring with HIV and those occurring in neurodegenerative conditions such as Alzheimer’s disease. HIV interacts with the aging brain to affect neurological structure and function. However, whether this interaction directly affects neurodegenerative processes, accelerates normal cognitive aging, or contributes to a worsening of other comorbidities that affect the brain in older adults remains an open question. Evidence for and against each of these possibilities is reviewed.
Collapse
Affiliation(s)
- Ronald A Cohen
- Departments of Neurology, Cognitive Aging and Memory Program, Institute on Aging, Psychiatry, and Aging and Geriatric Research, University of Florida, 2004 Mowry Road, Gainesville, FL 32610 USA
| | - Talia R Seider
- Departments of Neurology, Cognitive Aging and Memory Program, Institute on Aging, Psychiatry, and Aging and Geriatric Research, University of Florida, 2004 Mowry Road, Gainesville, FL 32610 USA ; Department of Clinical and Health Psychology, University of Florida, 1225 Center Drive, Room 3151, Gainesville, FL 32611 USA
| | - Bradford Navia
- Department of Public Health and Community Medicine, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111 USA
| |
Collapse
|
47
|
Mothapo KM, Stelma F, Janssen M, Kessels R, Miners S, Verbeek MM, Koopmans P, van der Ven A. Amyloid beta-42 (Aβ-42), neprilysin and cytokine levels. A pilot study in patients with HIV related cognitive impairments. J Neuroimmunol 2015; 282:73-9. [PMID: 25903731 DOI: 10.1016/j.jneuroim.2015.03.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/18/2015] [Accepted: 03/20/2015] [Indexed: 01/13/2023]
Abstract
HIV-associated dementia (HAD) is associated with amyloid-beta (Aβ) deposition. This study measured CSF and plasma amyloid beta-42 (Aβ-42), neprilysin (NEP) and cytokine levels in HIV-related cognitive impairments (HCI), HIV normal cognitive functioning (NF) and non-HIV controls. Our data showed a trend towards detectable plasma Aβ-42 levels more frequently in HCI (67%), when compared to NF (29%) and controls (10%). We showed elevated IL-8 levels in CSF of HCI compared to NF, although not significant values. The data from this pilot study indicates that CSF IL-8 and plasma Aβ-42 may be interesting biomarkers for the presence of HCI.
Collapse
Affiliation(s)
- K M Mothapo
- Department of Internal Medicine and Nijmegen Institute for Infection, Inflammation and Immunity, Radboud University Medical Center, The Netherlands.
| | - F Stelma
- Department of Virology, Radboud University Nijmegen Medical Center, The Netherlands
| | - M Janssen
- Department of Medical Psychology, Radboud University Nijmegen Medical Center, The Netherlands
| | - R Kessels
- Department of Medical Psychology, Radboud University Nijmegen Medical Center, The Netherlands
| | - S Miners
- Dementia Research Group, University of Bristol, Institute of Clinical Neurosciences, Level 1, Learning and Research, Southmead Hospital, Bristol, UK
| | - M M Verbeek
- Department of Neurology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands; Department of Laboratory Medicine, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - P Koopmans
- Department of Internal Medicine and Nijmegen Institute for Infection, Inflammation and Immunity, Radboud University Medical Center, The Netherlands
| | - A van der Ven
- Department of Internal Medicine and Nijmegen Institute for Infection, Inflammation and Immunity, Radboud University Medical Center, The Netherlands
| |
Collapse
|
48
|
Hong S, Banks WA. Role of the immune system in HIV-associated neuroinflammation and neurocognitive implications. Brain Behav Immun 2015; 45:1-12. [PMID: 25449672 PMCID: PMC4342286 DOI: 10.1016/j.bbi.2014.10.008] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 10/13/2014] [Accepted: 10/15/2014] [Indexed: 12/16/2022] Open
Abstract
Individuals living with HIV who are optimally treated with combination antiretroviral therapy (cART) can now lead an extended life. In spite of this remarkable survival benefit from viral suppression achieved by cART in peripheral blood, the rate of mild to moderate cognitive impairment remains high. A cognitive decline that includes impairments in attention, learning and executive function is accompanied by increased rates of mood disorders that together adversely impact the daily life of those with chronic HIV infection. The evidence is clear that cells in the brain are infected with HIV that has crossed the blood-brain barrier both as cell-free virus and within infected monocytes and T cells. Viral proteins that circulate in blood can induce brain endothelial cells to release cytokines, invoking another source of neuroinflammation. The difficulty of efficient delivery of cART to the central nervous system (CNS) contributes to elevated viral load in the CNS, resulting in a persistent HIV-associated neurocognitive disorders (HAND). The pathogenesis of HAND is multifaceted, and mounting evidence indicates that immune cells play a major role. HIV-infected monocytes and T cells not only infect brain resident cells upon migration into the CNS but also produce proinflammatory cytokines such as TNF and IL-1ß, which in turn, further activate microglia and astrocytes. These activated brain resident cells, along with perivascular macrophages, are the main contributors to neuroinflammation in HIV infection and release neurotoxic factors such as excitatory amino acids and inflammatory mediators, resulting in neuronal dysfunction and death. Cytokines, which are elevated in the blood of patients with HIV infection, may also contribute to brain inflammation by entering the brain from the blood. Host factors such as aging and co-morbid conditions such as cytomegalovirus co-infection and vascular pathology are important factors that affect the HIV-host immune interactions in HAND pathogenesis. By these diverse mechanisms, HIV-1 induces a neuroinflammatory response that is likely to be a major contributor to the cognitive and behavior changes seen in HIV infection.
Collapse
Affiliation(s)
- Suzi Hong
- Department of Psychiatry, University of California San Diego, United States.
| | - William A. Banks
- Geriatric Research Clinical and Education Center, Veterans Affairs Puget Sound Health Care System and Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine
| |
Collapse
|
49
|
Marreiros R, Müller-Schiffmann A, Bader V, Selvarajah S, Dey D, Lingappa VR, Korth C. Viral capsid assembly as a model for protein aggregation diseases: Active processes catalyzed by cellular assembly machines comprising novel drug targets. Virus Res 2014; 207:155-64. [PMID: 25451064 DOI: 10.1016/j.virusres.2014.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/09/2014] [Accepted: 10/01/2014] [Indexed: 11/18/2022]
Abstract
Viruses can be conceptualized as self-replicating multiprotein assemblies, containing coding nucleic acids. Viruses have evolved to exploit host cellular components including enzymes to ensure their replicative life cycle. New findings indicate that also viral capsid proteins recruit host factors to accelerate their assembly. These assembly machines are RNA-containing multiprotein complexes whose composition is governed by allosteric sites. In the event of viral infection, the assembly machines are recruited to support the virus over the host and are modified to achieve that goal. Stress granules and processing bodies may represent collections of such assembly machines, readily visible by microscopy but biochemically labile and difficult to isolate by fractionation. We hypothesize that the assembly of protein multimers such as encountered in neurodegenerative or other protein conformational diseases, is also catalyzed by assembly machines. In the case of viral infection, the assembly machines have been modified by the virus to meet the virus' need for rapid capsid assembly rather than host homeostasis. In the case of the neurodegenerative diseases, it is the monomers and/or low n oligomers of the so-called aggregated proteins that are substrates of assembly machines. Examples for substrates are amyloid β peptide (Aβ) and tau in Alzheimer's disease, α-synuclein in Parkinson's disease, prions in the prion diseases, Disrupted-in-schizophrenia 1 (DISC1) in subsets of chronic mental illnesses, and others. A likely continuum between virus capsid assembly and cell-to-cell transmissibility of aggregated proteins is remarkable. Protein aggregation diseases may represent dysfunction and dysregulation of these assembly machines analogous to the aberrations induced by viral infection in which cellular homeostasis is pathologically reprogrammed. In this view, as for viral infection, reset of assembly machines to normal homeostasis should be the goal of protein aggregation therapeutics. A key basis for the commonality between viral and neurodegenerative disease aggregation is a broader definition of assembly as more than just simple aggregation, particularly suited for the crowded cytoplasm. The assembly machines are collections of proteins that catalytically accelerate an assembly reaction that would occur spontaneously but too slowly to be relevant in vivo. Being an enzyme complex with a functional allosteric site, appropriated for a non-physiological purpose (e.g. viral infection or conformational disease), these assembly machines present a superior pharmacological target because inhibition of their active site will amplify an effect on their substrate reaction. Here, we present this hypothesis based on recent proof-of-principle studies against Aβ assembly relevant in Alzheimer's disease.
Collapse
Affiliation(s)
- Rita Marreiros
- Department Neuropathology, Heinrich Heine University Düsseldorf Medical School, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Andreas Müller-Schiffmann
- Department Neuropathology, Heinrich Heine University Düsseldorf Medical School, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Verian Bader
- Department Neuropathology, Heinrich Heine University Düsseldorf Medical School, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | | | | | | | - Carsten Korth
- Department Neuropathology, Heinrich Heine University Düsseldorf Medical School, Moorenstrasse 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
50
|
Chen X, Hui L, Geiger JD. Amyloid beta accumulation in HIV-1 infected brain: the role of altered cholesterol homeostasis. CLINICAL RESEARCH IN HIV/AIDS 2014; 1:1011. [PMID: 30197929 PMCID: PMC6124677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The long-term survival of HIV-1 infected individuals credited to the availability and use of effective antiretroviral therapy (ART) is unfortunately now accompanied by an almost 50% prevalence of HIV-1 associated neurocognitive disorder (HAND). Increasingly, it has been realized that HIV-1 infected people on ART have clinical and pathological observations of Alzheimer's disease (AD)-like manifestations including neurocognitive problems, intraneuronal accumulation of amyloid beta (Aβ) protein, and disturbed synaptic integrity. Part of the current challenge facing the medical community and people living with HIV-1 infection is that the pathogenesis of HAND remains unclear, and little is known about how AD-like pathology is developed as a result of HIV-1 infection and/or long-term ART treatment. Here we discuss the potential role of altered plasma cholesterol homeostasis, a prominent feature of HIV-1 infection, on the development of intraneuronal Aβ accumulation in HIV-1 infected brain. We speculate that elevated plasma LDL cholesterol, once it enters brain parenchyma via an increasingly leaky BBB, can be internalized by neurons via receptor-mediated endocytosis, a process that could promote internalization of amyloid beta precursor protein (AβPP). Unlike brain in situ synthesized apoE-cholesterol, apoB-containing LDL-cholesterol could lead to cholesterol accumulation thus disturbing neuronal endolysosome function and ultimately the accumulation of intraneuronal Aβ in HIV-1 infected brain.
Collapse
Affiliation(s)
- Xuesong Chen
- Department of Basic Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, USA
| | - Liang Hui
- Department of Basic Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, USA
| | - Jonathan D Geiger
- Department of Basic Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, USA
| |
Collapse
|