1
|
Zhang J, Zhang R, Jin S, Feng X. Curcumin, a plant polyphenol with multiple physiological functions of improving antioxidation, anti-inflammation, immunomodulation and its application in poultry production. J Anim Physiol Anim Nutr (Berl) 2024; 108:1890-1905. [PMID: 39081000 DOI: 10.1111/jpn.14029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 05/11/2024] [Accepted: 07/18/2024] [Indexed: 11/07/2024]
Abstract
Finding environmentally friendly, effective and residue-free alternatives to antibiotics has become a research priority. This is due to the ban on antibiotics in animal feed. Curcumin is a polyphenol extracted from the rhizome of turmeric that has antioxidant, anti-inflammatory and immunomodulatory properties. Curcumin has been widely demonstrated as a traditional flavoured agent and herbal medicine in the fight against diseases. In recent years, curcumin has been extensively studied in animal production, especially in poultry production. This article reviews the source, structure, metabolism and biological functions of curcumin and focuses on the application of curcumin in poultry production. In terms of production performance, curcumin can improve the growth performance of poultry, increase the egg production rate of laying hens and alleviate the negative effects of heat stress on the production performance of poultry and livestock. In terms of meat quality, curcumin can improve poultry meat quality by regulating lipid metabolism and antioxidant capacity. In terms of health, curcumin can improve immunity. Since mycotoxins have been a major problem in poultry production, this article also reviews the role of curcumin in helping poultry resist toxins. It is hoped that the review in this article can provide a concrete theoretical basis and research ideas for the research and application of curcumin in the field of poultry.
Collapse
Affiliation(s)
- Jingyang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Ruoshi Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Sanjun Jin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xingjun Feng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
2
|
Belka M, Gostyńska-Stawna A, Stawny M, Krajka-Kuźniak V. Activation of Nrf2 and FXR via Natural Compounds in Liver Inflammatory Disease. Int J Mol Sci 2024; 25:11213. [PMID: 39456994 PMCID: PMC11508530 DOI: 10.3390/ijms252011213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Liver inflammation is frequently linked to oxidative stress and dysregulation of bile acid and fatty acid metabolism. This review focuses on the farnesoid X receptor (FXR), a critical regulator of bile acid homeostasis, and its interaction with the nuclear factor erythroid 2-related factor 2 (Nrf2), a key modulator of cellular defense against oxidative stress. The review explores the interplay between FXR and Nrf2 in liver inflammatory diseases, highlighting the potential therapeutic effects of natural FXR agonists. Specifically, compounds such as auraptene, cafestol, curcumin, fargesone A, hesperidin, lycopene, oleanolic acid, resveratrol, rutin, ursolic acid, and withaferin A are reviewed for their ability to modulate both the FXR and Nrf2 pathways. This article discusses their potential to alleviate liver inflammation, oxidative stress, and damage in diseases such as metabolic-associated fatty liver disease (MAFLD), cholestatic liver injury, and viral hepatitis. In addition, we address the molecular mechanisms driving liver inflammation, including oxidative stress, immune responses, and bile acid accumulation, while also summarizing relevant experimental models. This review emphasizes the promising therapeutic potential of targeting both the Nrf2 and FXR pathways using natural compounds, paving the way for future treatments for liver diseases. Finally, the limitations of the clinical application were indicated, and further research directions were proposed.
Collapse
Affiliation(s)
- Marta Belka
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland
| | - Aleksandra Gostyńska-Stawna
- Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.G.-S.); (M.S.)
| | - Maciej Stawny
- Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.G.-S.); (M.S.)
| | - Violetta Krajka-Kuźniak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| |
Collapse
|
3
|
Yashmi F, Fakhri S, Shiri Varnamkhasti B, Amin MN, Khirehgesh MR, Mohammadi-Noori E, Hosseini M, Khan H. Defining the mechanisms behind the hepatoprotective properties of curcumin. Arch Toxicol 2024; 98:2331-2351. [PMID: 38837048 DOI: 10.1007/s00204-024-03758-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/09/2024] [Indexed: 06/06/2024]
Abstract
As a critical cause of human dysfunctionality, hepatic failure leads to approximately two million deaths per year and is on the rise. Considering multiple inflammatory, oxidative, and apoptotic mechanisms behind hepatotoxicity, it urges the need for finding novel multi-targeting agents. Curcumin is a phenolic compound with anti-inflammatory, antioxidant, and anti-apoptotic roles. Curcumin possesses auspicious health benefits and protects against several diseases with exceptional safety and tolerability. This review focused on the hepatoprotective mechanisms of curcumin. The need to develop novel delivery systems of curcumin (e.g., nanoparticles, self-micro emulsifying, lipid-based colloids, solid lipid nanoparticles, cyclodextrin inclusion, phospholipid complexes, and nanoemulsions) is also considered.
Collapse
Affiliation(s)
- Farinam Yashmi
- Department of Pharmacy, Acibadem University, Istanbul, Turkey
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Behrang Shiri Varnamkhasti
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammed Namiq Amin
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Reza Khirehgesh
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Mohammadi-Noori
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahsa Hosseini
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
| |
Collapse
|
4
|
Ghasemzadeh Rahbardar M, Hosseinzadeh H. The ameliorative effect of turmeric (Curcuma longa Linn) extract and its major constituent, curcumin, and its analogs on ethanol toxicity. Phytother Res 2024; 38:2165-2181. [PMID: 38396341 DOI: 10.1002/ptr.8165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/09/2023] [Accepted: 02/04/2024] [Indexed: 02/25/2024]
Abstract
Ethanol toxicity is a major public health problem that can cause damage to various organs in the body by several mechanisms inducing oxidative stress, inflammation, and apoptosis. Recently, there has been a growing interest in the potential of herbal medicines as therapeutic agents for the prevention and treatment of various disorders. Turmeric (Curcuma longa) extracts and its main components including curcumin have antioxidant, anti-inflammatory, and anti-apoptotic properties. This review aims to evaluate the literature on the ameliorative effects of turmeric extracts and their main components on ethanol toxicity. The relevant studies were identified through searches of Google Scholar, PubMed, and Scopus without any time limitation. The underlying mechanisms of turmeric and curcumin were also discussed. The findings suggest that turmeric and curcumin ameliorate ethanol-induced organ damage by suppressing oxidative stress, inflammation, apoptosis, MAPK activation, TGF-β/Smad signaling pathway, hyperlipidemia, regulating hepatic enzymes, expression of SREBP-1c and PPAR-α. However, the limited clinical evidence suggests that further research is needed to determine the efficacy and safety of turmeric and curcumin in human subjects. In conclusion, the available evidence supports the potential use of turmeric and curcumin as alternative treatments for ethanol toxicity, but further high-quality studies are needed to firmly establish the clinical efficacy of the plant.
Collapse
Affiliation(s)
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Namachivayam A, Valsala Gopalakrishnan A. Effect of Lauric acid against ethanol-induced hepatotoxicity by modulating oxidative stress/apoptosis signalling and HNF4α in Wistar albino rats. Heliyon 2023; 9:e21267. [PMID: 37908709 PMCID: PMC10613920 DOI: 10.1016/j.heliyon.2023.e21267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023] Open
Abstract
Ethanol (EtOH) is most widely used in alcoholic beverages to prepare alcohol. As EtOH is mainly metabolised in the liver, the excessive consumption of EtOH forms a primary toxic metabolic product called acetaldehyde, as the gradual increase in acetaldehyde leads to liver injury, as reported. Lauric acid (LA) is rich in antioxidant, antifungal, antibacterial, anticancer, and antiviral properties. LA is an edible component highly present in coconut oil. However, no report on LA protective effects against the EtOH-instigated hepatotoxicity exists. Therefore, the experiment is carried out to investigate the potency effects of LA on EtOH-instigated hepatotoxicity in thirty male albino rats. Rats were divided into five groups (n-6): control DMSO alone, EtOH -intoxicated, EtOH + LA 180 mg/kg, EtOH + LA 360 mg/kg, and LA alone were administered orally using oral gavage. The study measured body weight every weekend in all rat groups. The rats were sacrificed and assessed for serum markers (alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase), antioxidant activity (superoxide dismutase, reduced glutathione, glutathione peroxidase), lipid peroxidation (malondialdehyde), histopathological, cytokine levels (TNF-α, IL-1β and IL-6), protein expression (caspase 3 and caspase 8 and Bcl-2 and HNF4α) were evaluated after the 56-days study period. The impact of EtOH intoxication reduces the rat's body weight by 90 g, upregulates the liver enzyme markers, depletes the antioxidant levels, produces malondialdehyde, changes the histoarchitecture (periportal inflammation and hepatocyte damage), downregulates the Bcl-2 expressions and HNF4α, and elevates the expression of cytokines and apoptotic markers. LA alleviated EtOH-induced liver toxicity by significant (p < 0.05) modulation of biochemical levels, caspase-8/3 signalling, reducing pro-inflammatory cytokines, and restoring the normal histoarchitecture, upregulating the Bcl-2 and HNF4α Expressions. In conclusion, LA treatment can protect the liver against EtOH-induced hepatotoxicity, evidenced by alleviating Oxidative stress, lipid peroxidation, inflammation, apoptosis, and upregulation of HNF4α.
Collapse
Affiliation(s)
- Arunraj Namachivayam
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| |
Collapse
|
6
|
Qin T, Chen X, Meng J, Guo Q, Xu S, Hou S, Yuan Z, Zhang W. The role of curcumin in the liver-gut system diseases: from mechanisms to clinical therapeutic perspective. Crit Rev Food Sci Nutr 2023; 64:8822-8851. [PMID: 37096460 DOI: 10.1080/10408398.2023.2204349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Natural products have provided abundant sources of lead compounds for new drug discovery and development over the past centuries. Curcumin is a lipophilic polyphenol isolated from turmeric, a plant used in traditional Asian medicine for centuries. Despite the low oral bioavailability, curcumin exhibits profound medicinal value in various diseases, especially liver and gut diseases, bringing an interest in the paradox of its low bioavailability but high bioactivity. Several latest studies suggest that curcumin's health benefits may rely on its positive gastrointestinal effects rather than its poor bioavailability solely. Microbial antigens, metabolites, and bile acids regulate metabolism and immune responses in the intestine and liver, suggesting the possibility that the liver-gut axis bidirectional crosstalk controls gastrointestinal health and diseases. Accordingly, these pieces of evidence have evoked great interest in the curcumin-mediated crosstalk among liver-gut system diseases. The present study discussed the beneficial effects of curcumin against common liver and gut diseases and explored the underlying molecular targets, as well as collected evidence from human clinical studies. Moreover, this study summarized the roles of curcumin in complex metabolic interactions in liver and intestine diseases supporting the application of curcumin in the liver-gut system as a potential therapeutic option, which opens an avenue for clinical use in the future.
Collapse
Affiliation(s)
- Tingting Qin
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Xiuying Chen
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiahui Meng
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qianqian Guo
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Shan Xu
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Shanshan Hou
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, China
| | - Ziqiao Yuan
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
7
|
Yang K, Ryu T, Chung BS. A Meta-Analysis of Preclinical Studies to Investigate the Effect of Panax ginseng on Alcohol-Associated Liver Disease. Antioxidants (Basel) 2023; 12:841. [PMID: 37107216 PMCID: PMC10135056 DOI: 10.3390/antiox12040841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/14/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Alcohol-associated liver disease (ALD) has become a major global concern, but the development of effective drugs remains a challenge despite numerous preclinical and clinical pieces of research on the effects of natural compounds. To address this, a meta-analysis was conducted on the efficacy of Panax ginseng for ALD based on preclinical studies. We identified 18 relevant studies from PubMed, Web of Science, and Cochrane Library database and evaluated their methodological quality using the Systematic Review Centre for Laboratory animal Experimentation tool. We analyzed the data using I2, p-values, and fixed effects models to assess overall efficacy and heterogeneity. The results of the meta-analysis suggested that Panax ginseng treatment is effective in reducing the levels of inflammatory markers associated with hepatic injury caused by ALD in animal experiments. Additionally, the administration of Panax ginseng was found to down-regulate inflammatory cytokines and attenuate lipid metabolism in ALD. Moreover, Panax ginseng markedly improved the antioxidant systems in ALD. Therefore, we concluded that Panax ginseng has the potential to be a promising therapeutic agent for ALD. Further research is needed to confirm these findings and to determine the optimal dosage and duration of treatment for patients with ALD.
Collapse
Affiliation(s)
- Keungmo Yang
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Tom Ryu
- Department of Internal Medicine, Institute for Digestive Research, Digestive Disease Center, College of Medicine, Soonchunhyang University, Seoul 04401, Republic of Korea
| | - Beom Sun Chung
- Department of Anatomy, College of Medicine, Yonsei University Wonju, Wonju 26426, Republic of Korea
| |
Collapse
|
8
|
Liao J, Lu Q, Li Z, Li J, Zhao Q, Li J. Acetaminophen-induced liver injury: Molecular mechanism and treatments from natural products. Front Pharmacol 2023; 14:1122632. [PMID: 37050900 PMCID: PMC10083499 DOI: 10.3389/fphar.2023.1122632] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Acetaminophen (APAP) is a widely used analgesic and antipyretic over-the-counter medicine worldwide. Hepatotoxicity caused by APAP overdose is one of the leading causes of acute liver failure (ALF) in the US and in some parts of Europe, limiting its clinical application. Excessive APAP metabolism depletes glutathione and increases N-acetyl-p-benzoquinoneimide (NAPQI) levels, leading to oxidative stress, DNA damage, and cell necrosis in the liver, which in turn leads to liver damage. Studies have shown that natural products such as polyphenols, terpenes, anthraquinones, and sulforaphane can activate the hepatocyte antioxidant defense system with Nrf2 as the core player, reduce oxidative stress damage, and protect the liver. As the key enzyme metabolizing APAP into NAPQI, cytochrome P450 enzymes are also considered to be intriguing target for the treatment of APAP-induced liver injury. Here, we systematically review the hepatoprotective activity and molecular mechanisms of the natural products that are found to counteract the hepatotoxicity caused by APAP, providing reference information for future preclinical and clinical trials of such natural products.
Collapse
Affiliation(s)
- Jiaqing Liao
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, China
- School of Pharmacy, Chengdu University, Chengdu, China
| | - Qiuxia Lu
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Zhiqi Li
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Jintao Li
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, China
- School of Pharmacy, Chengdu University, Chengdu, China
| | - Qi Zhao
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
- *Correspondence: Qi Zhao, ; Jian Li,
| | - Jian Li
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, China
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
- *Correspondence: Qi Zhao, ; Jian Li,
| |
Collapse
|
9
|
Aprioku JS, Amamina AM, Nnabuenyi PA. Mancozeb-induced hepatotoxicity: protective role of curcumin in rat animal model. Toxicol Res (Camb) 2023; 12:107-116. [PMID: 36866214 PMCID: PMC9972844 DOI: 10.1093/toxres/tfac085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/26/2022] [Accepted: 12/16/2022] [Indexed: 01/18/2023] Open
Abstract
Background Mancozeb-a widely used fungicide in the agricultural sector-is believed to cause toxicity by increasing oxidative stress. This work investigated the efficacy of curcumin in protecting mancozeb-induced hepatotoxicity. Materials and Methods Mature Wistar rats were assigned into 4 equal groups: control, mancozeb (30 mg/kg/day, ip), curcumin (100 mg/kg/day, po), and mancozeb+curcumin. The experiment lasted for 10 days. Results Our results reported that mancozeb elevated aspartate transaminase, alanine transaminase, alkaline phosphatase, lactate dehydrogenase, gamma glutamyltranspeptidase enzyme activities, and total bilirubin level in plasma; and decreased total protein and albumin levels, compared with the control group (P < 0.05-0.001). Hepatic tissue levels of malondialdehyde, and advanced oxidation protein products were significantly increased; whereas activities of superoxide dismutase, catalase, glutathione peroxidase, as well as levels of reduced glutathione, vitamin C, and total protein were reduced (P < 0.05-0.001). Histopathological examination showed marked histological changes. Co-treatment with curcumin improved the antioxidant activity; reversed oxidative stress and biochemical changes; and restored most of the liver histo-morphological alterations; thus, attenuating the hepatic toxicities induced by mancozeb. Conclusion These results indicated that curcumin could protect against detrimental hepatic effects induced by mancozeb.
Collapse
Affiliation(s)
- Jonah Sydney Aprioku
- Department of Experimental Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of Port Harcourt, East-West Road, Choba, Rivers State, PMB 5323, Nigeria
| | - Ayanabia Monica Amamina
- Department of Experimental Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of Port Harcourt, East-West Road, Choba, Rivers State, PMB 5323, Nigeria
| | - Perpetua Amarachi Nnabuenyi
- Department of Experimental Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of Port Harcourt, East-West Road, Choba, Rivers State, PMB 5323, Nigeria
| |
Collapse
|
10
|
Ding Q, Zhang G, Wang Y, Xu L, Wu M, Zhou Y, Xu T, Meng X, Huang C, Zhang L. β-catenin ISGylation promotes lipid deposition and apoptosis in ethanol-stimulated liver injury models. Redox Rep 2022; 27:239-248. [PMID: 36259544 PMCID: PMC9586657 DOI: 10.1080/13510002.2022.2109360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background The restoration of the Wnt/β-catenin pathway to alleviate alcoholic fatty liver disease (AFLD) progression is under study as a new strategy for alcoholic liver disease (ALD) treatment. Recent studies have indicated that interferon-stimulated gene 15 (ISG15) can covalently bind to β-catenin by HECT E3 ubiquitin ligase 5 (HERC5), leading to ISG degradation and downregulation of β-catenin levels. However, the relationship between β-catenin and the ISG15 system in AFLD remains unclear. Methods Here, we explored the roles of the ISG15 system in β-catenin activation and in the pathogenesis of alcohol-induced liver injury and steatosis. Results In this study, HERC5 silencing upregulated β-catenin protein expression and inhibited lipid metabolism disorders and cell apoptosis. Reduced β-catenin protein expression, increased lipid metabolism disorders, and cell apoptosis were detected in cells induced with HERC5 overexpression, which was reversible with the reactive oxygen species (ROS) inhibitor. All the above results were statistically analyzed. Thus, these observations demonstrate that β-catenin ISGylation is a prominent regulator of ALD pathology, which works by regulating ROS to induce lipid metabolism disorders and cell apoptosis. Conclusion Our findings provided the mechanism involved in the β-catenin ISGylation, allowing for future studies on the prevention or amelioration of liver injury in ALD.
Collapse
Affiliation(s)
- Qi Ding
- Anhui No.2 Provincial People's Hospital, Hefei, People's Republic of China
| | - Guodong Zhang
- School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,Key Laboratory of major autoimmune disease, Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Anhui Medical University, Hefei, People's Republic of China
| | - Yang Wang
- School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,Key Laboratory of major autoimmune disease, Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Anhui Medical University, Hefei, People's Republic of China
| | - Lei Xu
- School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,Key Laboratory of major autoimmune disease, Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Anhui Medical University, Hefei, People's Republic of China
| | - Meifei Wu
- School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,Key Laboratory of major autoimmune disease, Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Anhui Medical University, Hefei, People's Republic of China
| | - Yiwen Zhou
- School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,Key Laboratory of major autoimmune disease, Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Anhui Medical University, Hefei, People's Republic of China
| | - Tao Xu
- School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,Key Laboratory of major autoimmune disease, Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Anhui Medical University, Hefei, People's Republic of China
| | - Xiaoming Meng
- School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,Key Laboratory of major autoimmune disease, Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Anhui Medical University, Hefei, People's Republic of China
| | - Cheng Huang
- School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,Key Laboratory of major autoimmune disease, Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Anhui Medical University, Hefei, People's Republic of China
| | - Lei Zhang
- School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,Key Laboratory of major autoimmune disease, Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
11
|
Zakaria Z, Othman ZA, Suleiman JB, Mustaffa KMF, Jalil NAC, Ghazali WSW, Zulkipli NN, Mohamed M, Kamaruzaman KA. Therapeutic Effects of Heterotrigona itama (Stingless Bee) Bee Bread in Improving Hepatic Lipid Metabolism through theActivation of the Keap1/Nrf2 Signaling Pathway in an Obese Rat Model. Antioxidants (Basel) 2022; 11:2190. [PMID: 36358563 PMCID: PMC9686663 DOI: 10.3390/antiox11112190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 10/29/2023] Open
Abstract
Bee bread (BB) has traditionally been used as a dietary supplement to treat liver problems. This study evaluated the therapeutic effects of Heterotrigona itama BB from Malaysia on obesity-induced hepatic lipid metabolism disorder via the regulation of the Keap1/Nrf2 pathway. Male Sprague Dawley rats were fed with either a normal diet or high-fat diet (HFD) for 6 weeks to induce obesity. Following 6 weeks, obese rats were treated either with distilled water (OB group), BB (0.5 g/kg body weight/day) (OB + BB group) or orlistat (10 mg/kg body weight/day) (OB + OR group) concurrent with HFD for another 6 weeks. BB treatment suppressed Keap1 and promoted Nrf2 cytoplasmic and nuclear translocations, leading to a reduction in oxidative stress, and promoted antioxidant enzyme activities in the liver. Furthermore, BB down-regulated lipid synthesis and its regulator levels (SIRT1, AMPK), and up-regulated fatty acid β-oxidation in the liver of obese rats, being consistent with alleviated lipid levels, improved hepatic histopathological changes (steatosis, hepatocellular hypertrophy, inflammation and glycogen expression) and prevented progression to non-alcoholic steatohepatitis. These results showed the therapeutic potentials of H. itama BB against oxidative stress and improved lipid metabolism in the liver of obese rats possibly by targeting the Keap1/Nrf2 pathway, hence proposing its role as a natural supplement capable of treating obesity-induced fatty liver disease.
Collapse
Affiliation(s)
- Zaida Zakaria
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Zaidatul Akmal Othman
- Unit of Physiology, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Terengganu, Malaysia
| | - Joseph Bagi Suleiman
- Department of Science Laboratory Technology, Akanu Ibiam Federal Polytechnic, Unwana P.O. Box 1007, Ebonyi State, Nigeria
| | - Khairul Mohd Fadzli Mustaffa
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Nur Asyilla Che Jalil
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Wan Syaheedah Wan Ghazali
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Ninie Nadia Zulkipli
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Mahaneem Mohamed
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Unit of Integrative Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Khaidatul Akmar Kamaruzaman
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
12
|
Sun S, Huan S, Li Z, Yao Y, Su Y, Xia S, Wang S, Xu X, Shao J, Zhang Z, Zhang F, Fu J, Zheng S. Curcumol alleviates liver fibrosis by inducing endoplasmic reticulum stress-mediated necroptosis of hepatic stellate cells through Sirt1/NICD pathway. PeerJ 2022; 10:e13376. [PMID: 35582617 PMCID: PMC9107784 DOI: 10.7717/peerj.13376] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/13/2022] [Indexed: 01/13/2023] Open
Abstract
Liver fibrosis is a repair response process after chronic liver injury. During this process, activated hepatic stellate cells (HSCs) will migrate to the injury site and secrete extracellular matrix (ECM) to produce fibrous scars. Clearing activated HSCs may be a major strategy for the treatment of liver fibrosis. Curcumol isolated from plants of the genus Curcuma can effectively induce apoptosis of many cancer cells, but whether it can clear activated HSCs remains to be clarified. In the present study, we found that the effect of curcumol in treating liver fibrosis was to clear activated HSCs by inducing necroptosis of HSCs. Receptor-interacting protein kinase 3 (RIP3) silencing could impair necroptosis induced by curcumol. Interestingly, endoplasmic reticulum (ER) stress-induced cellular dysfunction was associated with curcumol-induced cell death. The ER stress inhibitor 4-PBA prevented curcumol-induced ER stress and necroptosis. We proved that ER stress regulated curcumol-induced necroptosis in HSCs via Sirtuin-1(Sirt1)/Notch signaling pathway. Sirt1-mediated deacetylation of the intracellular domain of Notch (NICD) led to degradation of NICD, thereby inhibiting Notch signalling pathway to alleviate liver fibrosis. Specific knockdown of Sirt1 by HSCs in male ICR mice further exacerbated CCl4-induced liver fibrosis. Overall, our study elucidates the anti-fibrotic effect of curcumol and reveals the underlying mechanism between ER stress and necroptosis.
Collapse
Affiliation(s)
- Sumin Sun
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sheng Huan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhanghao Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yue Yao
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Ying Su
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Siwei Xia
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shijun Wang
- Shandong Co-innovation Center of TCM Formula, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xuefen Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiangjuan Shao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinbo Fu
- Department of Pharmacy, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
13
|
Sun S, Li Z, Huan S, Kai J, Xia S, Su Y, Ji S, Chen A, Wang S, Xu X, Shao J, Zhang F, Zhang B, Zhang Z, Zheng S. Modification of lysine deacetylation regulates curcumol-induced necroptosis through autophagy in hepatic stellate cells. Phytother Res 2022; 36:2660-2676. [PMID: 35545249 DOI: 10.1002/ptr.7483] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 03/30/2022] [Accepted: 04/19/2022] [Indexed: 11/08/2022]
Abstract
The excessive deposition of extracellular matrix (ECM) is the main characteristic of liver fibrosis, and hepatic stellate cells (HSCs) are the main source of ECM. The removal of activated HSCs has a reversal effect on liver fibrosis. Western blot and MTT analysis indicated that curcumol could relieve hepatic fibrosis by promoting HSCs receptor-interacting protein kinase 1/3 (RIP1/RIP3)-dependent necroptosis. Importantly, autophagy flow was monitored by constructing the mRFP-GFP-LC3 plasmid, and it was found that curcumol cleared activated HSCs in a necroptosis manner that was dependent on autophagy. Our study suggested that the activation of necrosome formed by RIP1 and RIP3 depended on Atg5, and that autophagosomes were also necessary for curcumol-induced necroptosis. Furthermore, microscale thermophoresis and co-immunoprecipitation assay results proved that curcumol could target Sirt1 to regulate autophagy by reducing the acetylation level of Atg5. The HSCs-specific silencing of Sirt1 exacerbated CCl4 -induced liver fibrosis in mice. The deacetylation of Atg5 not only accelerated the accumulation of autophagosomes but also enhanced the interaction between Atg5 and RIP1/RIP3 to induce necroptosis. Overall, our study indicated that curcumol could activate Sirt1 to promote Atg5 deacetylation and enhanced its protein-protein interaction function, thereby inducing autophagy and promoting the necroptosis of HSCs to reduce liver fibrosis.
Collapse
Affiliation(s)
- Sumin Sun
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhanghao Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sheng Huan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Kai
- Department of Andrology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Siwei Xia
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ying Su
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shufan Ji
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Anping Chen
- Department of Pathology, School of Medicine, Saint Louis University, St Louis, Missouri, USA
| | - Shijun Wang
- Shandong Co-innovation Center of TCM Formula, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xuefen Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiangjuan Shao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Biyun Zhang
- Department of Nuclear Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
14
|
Chen J, Li J, Fan T, Zhong S, Qin X, Li R, Gao J, Liang Y. Protective effects of curcumin/cyclodextrin polymer inclusion complex against hydrogen peroxide-induced LO2 cells damage. Food Sci Nutr 2022; 10:1649-1656. [PMID: 35592280 PMCID: PMC9094476 DOI: 10.1002/fsn3.2787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/11/2022] [Accepted: 01/29/2022] [Indexed: 11/12/2022] Open
Abstract
The objective of the present study was to explore the protective effects of the curcumin/cyclodextrin polymer (CUR/CDP) inclusion complex on hydrogen peroxide (H2O2)-induced LO2 cells damage. In this study, a H2O2-induced cells oxidative injury model was established to test the protective effects of the CUR/CDP inclusion complex. The cell viability of cells was detected by the thiazolyl blue tetrazolium bromide (MTT) assay. The extracellular lactate dehydrogenase (LDH) activity, catalase (CAT) activity, and malondialdehyde (MDA) level were detected by assay kits. The cellular reactive oxygen species (ROS) level was detected using the dichlorodihydrofluorescein (DCF) fluorescence assay. Western blotting analysis was conducted to assess the changes of phosphorylated-p53 and caspase-3. The results showed that 700 μM H2O2-treated LO2 cells for 3 h resulted in a significant decrease of cell viability to 53.00 ± 1.68%, which established the cell oxidative injury model. Cells treated with H2O2 led to a significant increase of extracellular LDH activity, MDA content, and ROS level, and decreased CAT activity. Treatment with CUR/CDP significantly reversed the changes of the above indicators. Moreover, CUR/CDP treatment at 20 and 40 μg/ml inhibited H2O2-induced increase in phosphorylated-p53 and caspase-3 expression, indicating that CUR/CDP suppressed cell apoptosis to alleviate liver injury. The results of those studies demonstrated that CUR/CDP had a protective effect on the oxidative damage of LO2 cells, and it could be developed as a new type of natural liver protection product to apply in the prevention of liver injury.
Collapse
Affiliation(s)
- Jianping Chen
- College of Food Science and TechnologyGuangdong Provincial Key Laboratory of Aquatic Product Processing and SafetyGuangdong Provincial Engineering Technology Research Center of SeafoodGuangdong Province Engineering Laboratory for Marine Biological ProductsKey Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education InstitutionGuangdong Ocean UniversityZhanjiangChina
- Collaborative Innovation Center of Seafood Deep ProcessingDalian Polytechnic UniversityDalianChina
| | - Jiarui Li
- College of Food Science and TechnologyGuangdong Provincial Key Laboratory of Aquatic Product Processing and SafetyGuangdong Provincial Engineering Technology Research Center of SeafoodGuangdong Province Engineering Laboratory for Marine Biological ProductsKey Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education InstitutionGuangdong Ocean UniversityZhanjiangChina
- Collaborative Innovation Center of Seafood Deep ProcessingDalian Polytechnic UniversityDalianChina
| | - Tugui Fan
- College of Food Science and TechnologyGuangdong Provincial Key Laboratory of Aquatic Product Processing and SafetyGuangdong Provincial Engineering Technology Research Center of SeafoodGuangdong Province Engineering Laboratory for Marine Biological ProductsKey Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education InstitutionGuangdong Ocean UniversityZhanjiangChina
- Collaborative Innovation Center of Seafood Deep ProcessingDalian Polytechnic UniversityDalianChina
| | - Saiyi Zhong
- College of Food Science and TechnologyGuangdong Provincial Key Laboratory of Aquatic Product Processing and SafetyGuangdong Provincial Engineering Technology Research Center of SeafoodGuangdong Province Engineering Laboratory for Marine Biological ProductsKey Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education InstitutionGuangdong Ocean UniversityZhanjiangChina
- Collaborative Innovation Center of Seafood Deep ProcessingDalian Polytechnic UniversityDalianChina
| | - Xiaoming Qin
- College of Food Science and TechnologyGuangdong Provincial Key Laboratory of Aquatic Product Processing and SafetyGuangdong Provincial Engineering Technology Research Center of SeafoodGuangdong Province Engineering Laboratory for Marine Biological ProductsKey Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education InstitutionGuangdong Ocean UniversityZhanjiangChina
- Collaborative Innovation Center of Seafood Deep ProcessingDalian Polytechnic UniversityDalianChina
| | - Rui Li
- College of Food Science and TechnologyGuangdong Provincial Key Laboratory of Aquatic Product Processing and SafetyGuangdong Provincial Engineering Technology Research Center of SeafoodGuangdong Province Engineering Laboratory for Marine Biological ProductsKey Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education InstitutionGuangdong Ocean UniversityZhanjiangChina
- Collaborative Innovation Center of Seafood Deep ProcessingDalian Polytechnic UniversityDalianChina
| | - Jialong Gao
- College of Food Science and TechnologyGuangdong Provincial Key Laboratory of Aquatic Product Processing and SafetyGuangdong Provincial Engineering Technology Research Center of SeafoodGuangdong Province Engineering Laboratory for Marine Biological ProductsKey Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education InstitutionGuangdong Ocean UniversityZhanjiangChina
- Collaborative Innovation Center of Seafood Deep ProcessingDalian Polytechnic UniversityDalianChina
| | - Yuanwei Liang
- College of Chemistry and EnvironmentGuangdong Ocean UniversityZhanjiangChina
| |
Collapse
|
15
|
Hu M, Chen Y, Deng F, Chang B, Luo J, Dong L, Lu X, Zhang Y, Chen Z, Zhou J. D-Mannose Regulates Hepatocyte Lipid Metabolism via PI3K/Akt/mTOR Signaling Pathway and Ameliorates Hepatic Steatosis in Alcoholic Liver Disease. Front Immunol 2022; 13:877650. [PMID: 35464439 PMCID: PMC9021718 DOI: 10.3389/fimmu.2022.877650] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/17/2022] [Indexed: 11/25/2022] Open
Abstract
This study investigated the protective properties and mechanisms of D-mannose against hepatic steatosis in experimental alcoholic liver disease (ALD). Drinking-water supplementation of D-mannose significantly attenuated hepatic steatosis in a standard mouse ALD model established by chronic-binge ethanol feeding, especially hepatocyte lipid deposition. This function of D-mannose on lipid accumulation in hepatocytes was also confirmed using ethanol-treated primary mouse hepatocytes (PMHs) with a D-mannose supplement. Meanwhile, D-mannose regulated lipid metabolism by rescuing ethanol-mediated reduction of fatty acid oxidation genes (PPARα, ACOX1, CPT1) and elevation of lipogenic genes (SREBP1c, ACC1, FASN). PI3K/Akt/mTOR signaling pathway was involved in this effect of D-mannose on lipid metabolism since PI3K/Akt/mTOR pathway inhibitors or agonists could abolish this effect in PMHs. Overall, our findings suggest that D-mannose exhibits its anti-steatosis effect in ALD by regulating hepatocyte lipid metabolism via PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Mengyao Hu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yu Chen
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Fan Deng
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Bo Chang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jialiang Luo
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Lijun Dong
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Xiao Lu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yi Zhang
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Zhengliang Chen
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jia Zhou
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
16
|
Lee YS, Oh SM, Li QQ, Kim KW, Yoon D, Lee MH, Kwon DY, Kang OH, Lee DY. Validation of a Quantification Method for Curcumin Derivatives and Their Hepatoprotective Effects on Nonalcoholic Fatty Liver Disease. Curr Issues Mol Biol 2022; 44:409-432. [PMID: 35723408 PMCID: PMC8929050 DOI: 10.3390/cimb44010029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 11/18/2022] Open
Abstract
Curcumin (CM), demethoxycurcumin (DMC), and bisdemethoxycurcumin (BDMC) are major curcumin derivatives found in the rhizome of turmeric (Curcuma longa L.), and have yielded impressive properties to halt various diseases. In the present study, we carried out a method validation for curcumin derivatives and analyzed the contents simultaneously using HPLC with UV detection. For validation, HPLC was used to estimate linearity, range, specificity, accuracy, precision, limit of detection (LOD), and limit of quantification (LOQ). Results showed a high linearity of the calibration curve, with a coefficient of correlation (R2) for CM, DMC, and BDMC of 0.9999, 0.9999, and 0.9997, respectively. The LOD values for CM, DMC, and BDMC were 1.16, 1.03, and 2.53 ng/μL and LOQ values were 3.50, 3.11, and 7.67 ng/μL, respectively. Moreover, to evaluate the ability of curcumin derivatives to reduce liver lipogenesis and compare curcumin derivatives’ therapeutic effects, a HepG2 cell model was established to analyze their hepatoprotective properties. Regarding the in vivo study, we investigated the effect of DMC, CM, and BDMC on nonalcoholic fatty liver disease (NAFLD) caused by a methionine choline deficient (MCD)-diet in the C57BL/6J mice model. From the in vitro and in vivo results, curcumin derivatives alleviated MCD-diet-induced lipid accumulation as well as high triglyceride (TG) and total cholesterol (TC) levels, and the protein and gene expression of the transcription factors related to liver adipogenesis were suppressed. Furthermore, in MCD-diet mice, curcumin derivatives suppressed the upregulation of toll-like receptors (TLRs) and the production of pro-inflammatory cytokines. In conclusion, our findings indicated that all of the three curcuminoids exerted a hepatoprotective effect in the HepG2 cell model and the MCD-diet-induced NAFLD model, suggesting a potential for curcuminoids derived from turmeric as novel therapeutic agents for NAFLD.
Collapse
Affiliation(s)
- Young-Seob Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea; (Y.-S.L.); (S.M.O.); (K.-W.K.); (D.Y.)
| | - Seon Min Oh
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea; (Y.-S.L.); (S.M.O.); (K.-W.K.); (D.Y.)
| | - Qian-Qian Li
- College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Institute of Biotechnology, Wonkwang University, Iksan 54538, Korea; (Q.-Q.L.); (D.-Y.K.)
| | - Kwan-Woo Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea; (Y.-S.L.); (S.M.O.); (K.-W.K.); (D.Y.)
| | - Dahye Yoon
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea; (Y.-S.L.); (S.M.O.); (K.-W.K.); (D.Y.)
| | - Min-Ho Lee
- Department of Food Technology and Services, Eulji University, Seongnam 11759, Korea;
| | - Dong-Yeul Kwon
- College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Institute of Biotechnology, Wonkwang University, Iksan 54538, Korea; (Q.-Q.L.); (D.-Y.K.)
| | - Ok-Hwa Kang
- College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Institute of Biotechnology, Wonkwang University, Iksan 54538, Korea; (Q.-Q.L.); (D.-Y.K.)
- Correspondence: (O.-H.K.); (D.Y.L.)
| | - Dae Young Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea; (Y.-S.L.); (S.M.O.); (K.-W.K.); (D.Y.)
- Correspondence: (O.-H.K.); (D.Y.L.)
| |
Collapse
|
17
|
Ghafouri-Fard S, Shoorei H, Bahroudi Z, Hussen BM, Talebi SF, Taheri M, Ayatollahi SA. Nrf2-Related Therapeutic Effects of Curcumin in Different Disorders. Biomolecules 2022; 12:82. [PMID: 35053230 PMCID: PMC8773597 DOI: 10.3390/biom12010082] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/18/2021] [Accepted: 12/25/2021] [Indexed: 12/12/2022] Open
Abstract
Curcumin is a natural polyphenol with antioxidant, antibacterial, anti-cancer, and anti-inflammation effects. This substance has been shown to affect the activity of Nrf2 signaling, a pathway that is activated in response to stress and decreases levels of reactive oxygen species and electrophilic substances. Nrf2-related effects of curcumin have been investigated in different contexts, including gastrointestinal disorders, ischemia-reperfusion injury, diabetes mellitus, nervous system diseases, renal diseases, pulmonary diseases, cardiovascular diseases as well as cancers. In the current review, we discuss the Nrf2-mediated therapeutic effects of curcumin in these conditions. The data reviewed in the current manuscript indicates curcumin as a potential activator of Nrf2 and a therapeutic substance for the protection of cells in several pathological conditions.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 16666-63111, Iran;
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
| | - Zahra Bahroudi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran;
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil 44001, Kurdistan Region, Iraq;
| | - Seyedeh Fahimeh Talebi
- Department of Pharmacology, College of Pharmacy, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, 07743 Jena, Germany
| | | |
Collapse
|
18
|
He E, Ma Y, Kong L, Huang Y, Huang C, Yang W, Yi J, Zhu L. Suppression of endoplasmic reticulum stress-associated pathways and hepatocyte apoptosis participates in the attenuation of betulinic acid on alcohol-provoked liver injury in mice. Food Funct 2022; 13:11489-11502. [DOI: 10.1039/d2fo01042a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BA protects against alcohol-induced liver damage through the alleviation of oxidative stress and suppression of ERS-induced apoptosis.
Collapse
Affiliation(s)
- Enqi He
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Yurong Ma
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- Changsha University of Science & Technology, Changsha 410114, China
| | - Li Kong
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - You Huang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Chunlin Huang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Wenjiang Yang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Jine Yi
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Lijuan Zhu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
19
|
Shahcheraghi SH, Salemi F, Peirovi N, Ayatollahi J, Alam W, Khan H, Saso L. Nrf2 Regulation by Curcumin: Molecular Aspects for Therapeutic Prospects. Molecules 2021; 27:167. [PMID: 35011412 PMCID: PMC8746993 DOI: 10.3390/molecules27010167] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Nuclear factor erythroid 2 p45-related factor (2Nrf2) is an essential leucine zipper protein (bZIP) that is primarily located in the cytoplasm under physiological conditions. Nrf2 principally modulates endogenous defense in response to oxidative stress in the brain.In this regard, Nrf2 translocates into the nucleus and heterodimerizes with the tiny Maf or Jun proteins. It then attaches to certain DNA locations in the nucleus, such as electrophile response elements (EpRE) or antioxidant response elements (ARE), to start the transcription of cytoprotective genes. Many neoplasms have been shown to have over activated Nrf2, strongly suggesting that it is responsible for tumors with a poor prognosis. Exactly like curcumin, Zinc-curcumin Zn (II)-curc compound has been shown to induce Nrf2 activation. In the cancer cell lines analyzed, Zinc-curcumin Zn (II)-curc compound can also display anticancer effects via diverse molecular mechanisms, including markedly increasing heme oxygenase-1 (HO-1) p62/SQSTM1 and the Nrf2 protein levels along with its targets. It also strikingly decreases the levels of Nrf2 inhibitor, Kelch-like ECH-associated protein 1 (Keap1) protein.As a result, the crosstalk between p62/SQSTM1 and Nrf2 could be used to improve cancer patient response to treatments. The interconnected anti-inflammatory and antioxidative properties of curcumin resulted from its modulatory effects on Nrf2 signaling pathway have been shown to improve insulin resistance. Curcumin exerts its anti-inflammatory impact through suppressing metabolic reactions and proteins such as Keap1 that provoke inflammation and oxidation. A rational amount of curcumin-activated antioxidant Nrf2 HO-1 and Nrf2-Keap1 pathways and upregulated the modifier subunit of glutamate-cysteine ligase involved in the production of the intracellular antioxidant glutathione. Enhanced expression of glutamate-cysteine ligase, a modifier subunit (GLCM), inhibited transcription of glutamate-cysteine ligase, a catalytic subunit (GCLC). A variety of in vivo, in vitro and clinical studies has been done so far to confirm the protective role of curcumin via Nrf2 regulation. This manuscript is designed to provide a comprehensive review on the molecular aspects of curcumin and its derivatives/analogs via regulation of Nrf2 regulation.
Collapse
Affiliation(s)
- Seyed Hossein Shahcheraghi
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd 8916978477, Iran; (S.H.S.); (J.A.)
| | - Fateme Salemi
- School of Medicine, Islamic Azad University of Medical Sciences, Yazd 19395/1495, Iran;
| | - Niloufar Peirovi
- School of Medicine, Tehran University of Medical Sciences, Tehran 1417614411, Iran;
| | - Jamshid Ayatollahi
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd 8916978477, Iran; (S.H.S.); (J.A.)
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, 00185 Rome, Italy;
| |
Collapse
|
20
|
Wang M, Wang R, Li L, Yan Y, Jia S, Jiang H, Du Z. Quantitative proteomics of plasma and liver reveals the mechanism of turmeric in preventing hyperlipidemia in mice. Food Funct 2021; 12:10484-10499. [PMID: 34555841 DOI: 10.1039/d1fo01849c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hyperlipidemia is manifested by abnormal levels of circulating lipids and may lead to various cardiovascular diseases. Studies have demonstrated that turmeric supplemented in food can effectively prevent hyperlipidemia. The aim of this study is to elucidate the underlying mechanism. 27 male C57BL/6J mice were randomly divided into three groups, which were fed with a standard diet, a high-fat diet and a high-fat diet supplemented with turmeric powder (2.0% w/w), respectively. After eight weeks of feeding, turmeric intervention significantly reduced the plasma TC, TG, and LDL-C levels and the LDL-C/HDL-C ratio of mice compared with high-fat diet fed mice. TMT-based proteomic analysis showed that the expression of 24 proteins in mouse plasma and 76 proteins in mouse liver was significantly altered by turmeric, respectively. Bioinformatics analysis showed that differential proteins in the plasma were mainly involved in complement and coagulation cascades and the cholesterol metabolism pathway. The differential proteins in the liver were mainly involved in arachidonic acid metabolism, steroid hormone biosynthesis and the PPAR signaling pathway. Key differential proteins were successfully validated by western blot analysis. This study is the first to reveal the preventive mechanism of turmeric on hyperlipidemia from proteomics. The results showed that dietary turmeric could prevent hyperlipidemia through regulating the expression of proteins in metabolism pathways.
Collapse
Affiliation(s)
- Meiqin Wang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Runjing Wang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Lieyao Li
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yingfei Yan
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Shuailong Jia
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongliang Jiang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Zhifeng Du
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
21
|
Lu J, Zhao Y, Liu M, Lu J, Guan S. Toward improved human health: Nrf2 plays a critical role in regulating ferroptosis. Food Funct 2021; 12:9583-9606. [PMID: 34542140 DOI: 10.1039/d1fo01036k] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ferroptosis is a recently defined type of regulated cell death caused by an excess iron-dependent accumulation of lipid peroxides and is morphologically and biochemically distinct from other types of cell death. Notably, Nrf2 is identified to exquisitely modulate ferroptosis due to its ability to target a host of ferroptosis cascade genes, which places Nrf2 in the pivotal position of ferroptosis. This paper reviews the regulation effect of Nrf2 on ferroptosis, different activation mechanisms of Nrf2 as well as the relevance of the Nrf2-ferroptosis axis in diseases, and finally summarizes foods with beneficial effects in ferroptosis via the Nrf2 pathway and aims to serve as a reference for follow-up studies of food functions related to Nrf2, ferroptosis, and human health.
Collapse
Affiliation(s)
- Jing Lu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China. .,Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Yanan Zhao
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China.
| | - Meitong Liu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China.
| | - Jianing Lu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China.
| | - Shuang Guan
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China. .,Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, People's Republic of China
| |
Collapse
|
22
|
Shao Y, Wang X, Zhou Y, Jiang Y, Wu R, Lu C. Pterostilbene attenuates RIPK3-dependent hepatocyte necroptosis in alcoholic liver disease via SIRT2-mediated NFATc4 deacetylation. Toxicology 2021; 461:152923. [PMID: 34474091 DOI: 10.1016/j.tox.2021.152923] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/16/2022]
Abstract
Receptor-interacting protein kinase (RIPK) 3-dependent necroptosis plays a critical role in alcoholic liver disease. RIPK3 also facilitates steatosis, oxidative stress, and inflammation. Pterostilbene (PTS) has favorable hepatoprotective activities. The present study was aimed to reveal the therapeutic effects of PTS on ethanol-induced hepatocyte necroptosis and further illustrate possible molecular mechanisms. Human hepatocytes LO2 were incubated with 100 mM ethanol for 24 h to mimic alcoholic hepatocyte injury. Results showed that PTS at 20 μM reduced damage-associated molecular patterns (DAMPs) release, including IL-1α and high-mobility group box 1 (HMGB1), and blocked necroptotic signaling, evidenced by decreased RIPK1 and RIPK3 expression. Trypan blue staining visually showed that PTS reduced nonviable hepatocytes after ethanol exposure, which was counteracted by adenovirus-mediated ectopic overexpression of RIPK3 but not RIPK1. Besides, PTS inhibited ethanol-induced hepatocyte steatosis via restricting lipogenesis and enhancing lipolysis, decreased oxidative stress via rescuing mitochondrial membrane potential, reducing oxidative system, and enhancing antioxidant system, and relieved inflammation evidenced by decreased expression of proinflammatory factors. Notably, RIPK3 overexpression diminished these protective effects of PTS. Subsequent work indicated that PTS suppressed the expression and nuclear translocation of nuclear factor of activated T-cells 4 (NFATc4), an acetylated protein, in ethanol-exposed hepatocytes, while NFATc4 overexpression impaired the negative regulation of PTS on RIPK3 and DAMPs release. Further, PTS rescued sirtuin 2 (SIRT2) expression, and SIRT2 knockdown abrogated the inhibitory effects of PTS on nuclear translocation and acetylation status of NFATc4 in ethanol-incubated hepatocytes. In conclusion, PTS attenuated RIPK3-dependent hepatocyte necroptosis after ethanol exposure via SIRT2-mediated NFATc4 deacetylation.
Collapse
Affiliation(s)
- Yunyun Shao
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Xinqi Wang
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Ying Zhou
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Yiming Jiang
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Ruoman Wu
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Chunfeng Lu
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
23
|
Kong L, Dong R, Huang K, Wang X, Wang D, Yue N, Wang C, Sun P, Gu J, Luo H, Liu K, Wu J, Sun H, Meng Q. Yangonin modulates lipid homeostasis, ameliorates cholestasis and cellular senescence in alcoholic liver disease via activating nuclear receptor FXR. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 90:153629. [PMID: 34304130 DOI: 10.1016/j.phymed.2021.153629] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/24/2021] [Accepted: 06/06/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Alcoholic liver disease (ALD) is a progressive disease beginning with simple steatosis but can progress to alcoholic steatohepatitis, fibrosis, cirrhosis, and even hepatocellular carcinoma. The morbidity of ALD is on the rise and has been a large burden on global healthcare system. It is unfortunately that there are currently no approved therapeutic drugs against ALD. Hence, it is of utmost urgency to develop the efficacious therapies. The ability of many molecular targets against ALD is under investigation. Farnesoid X receptor (FXR), a member of the ligand-activated transcription factor superfamily, has been recently demonstrated to have a crucial role in the pathogenesis and progression of ALD. PURPOSE The purpose of the study is to determine whether Yangonin (YAN), a FXR agonist previously demonstrated by us, exerts the hepatoprotective effects against ALD and further to clarify the mechanisms in vitro and in vivo. STUDY DESIGN The alcoholic liver disease model induced by Lieber-Decarli liquid diet was established with or without Yan treatment. METHODS We determined the liver to body weight ratios, the body weight, serum and hepatic biochemical indicators. The alleviation of the liver histopathological progression was evaluated by H&E and immunohistochemical staining. Western blot and quantitative real-time PCR were used to demonstrate YAN treatment-mediated alleviation mechanisms of ALD. RESULTS The data indicated that YAN existed hepatoprotective activity against ALD via FXR activation. YAN improved the lipid homeostasis by decreasing hepatic lipogenesis and increasing fatty acid β-oxidation and lipoprotein lipolysis through modulating the related protein. Also, YAN ameliorated ethanol-induced cholestasis via inhibiting bile acid uptake transporter Ntcp and inducing bile acid efflux transporter Bsep and Mrp2 expression. Besides, YAN improved bile acid homeostasis via inducing Sult2a1 expression and inhibiting Cyp7a1 and Cyp8b1 expression. Furthermore, YAN attenuated ethanol-triggered hepatocyte damage by inhibiting cellular senescence marker P16, P21 and Hmga1 expression. Also, YAN alleviated ethanol-induced inflammation by down-regulating the inflammation-related gene IL-6, IL-1β and TNF-α expression. Notably, the protective effects of YAN were cancelled by FXR siRNA in vitro and FXR antagonist GS in vivo. CONCLUSIONS YAN exerted significant hepatoprotective effects against liver injury triggered by ethanol via FXR-mediated target gene modulation.
Collapse
Affiliation(s)
- Lina Kong
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Renchao Dong
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Kai Huang
- Drug Clinical Trial Institution, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, China
| | - Xiaohui Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Dalong Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Nan Yue
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Pengyuan Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Jiangning Gu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Haifeng Luo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Kexin Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Jingjing Wu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
24
|
Abdelhamid AM, Elsheakh AR, Suddek GM, Abdelaziz RR. Telmisartan alleviates alcohol-induced liver injury by activation of PPAR-γ/ Nrf-2 crosstalk in mice. Int Immunopharmacol 2021; 99:107963. [PMID: 34273638 DOI: 10.1016/j.intimp.2021.107963] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/01/2021] [Accepted: 07/04/2021] [Indexed: 02/07/2023]
Abstract
Excessive consumption of alcohol may induce severe liver damage, in part via oxidative stress and inflammatory responses, which implicates these processes as potential therapeutic approaches. Prior literature has shown that Telmisartan (TEL) may provide protective effects, presumably mediated by its anti-oxidant and anti-inflammatory activities. The purpose of this study was to determine TEL's hepatoprotective effects and to identify its possible curative mechanisms in alcoholic liver disease. A mouse chronic alcohol plus binge feedings model was used in the current study for induction of alcoholic liver disease (ALD). Our results showed that TEL (10 mg/kg/day) has the ability to reduce serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP). TEL also increased the activity of superoxide dismutase (SOD) and glutathione (GSH) with concomitant reduction of nitric oxide (NO) malonaldehyde (MDA) in the liver homogenate. Moreover, TEL downregulated nuclear factor kappa B (NF-κB) expression and decreased liver content of interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α). These anti-inflammatory and anti-oxidant activities were associated with a significant increase in the expression of nuclear factor erythroid 2-related factor 2 (Nrf-2), peroxisome proliferator-activated receptors -γ (PPAR-γ), and heme oxygenase-1 (Hmox-1). In conclusion, TEL's hepatoprotective effects against ALD may be attributable to its anti-inflammatory and anti-oxidant activities which may be in part via the modulation of PPAR-γ/ Nrf-2/ NF-κB crosstalk.
Collapse
Affiliation(s)
- Amir Mohamed Abdelhamid
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Egypt; Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Egypt
| | - Ahmed Ramadan Elsheakh
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Egypt
| | - Ghada Mohamed Suddek
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Egypt
| | | |
Collapse
|
25
|
Yan J, Nie Y, Luo M, Chen Z, He B. Natural Compounds: A Potential Treatment for Alcoholic Liver Disease? Front Pharmacol 2021; 12:694475. [PMID: 34290612 PMCID: PMC8287649 DOI: 10.3389/fphar.2021.694475] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Excessive alcohol intake is a direct cause of alcoholic liver disease (ALD). ALD usually manifests as fatty liver in the initial stage and then develops into alcoholic hepatitis (ASH), fibrosis and cirrhosis. Severe alcoholism induces extensive hepatocyte death, liver failure, and even hepatocellular carcinoma (HCC). Currently, there are few effective clinical means to treat ALD, except for abstinence. Natural compounds are a class of compounds extracted from herbs with an explicit chemical structure. Several natural compounds, such as silymarin, quercetin, hesperidin, and berberine, have been shown to have curative effects on ALD without side effects. In this review, we pay particular attention to natural compounds and developing clinical drugs based on natural compounds for ALD, with the aim of providing a potential treatment for ALD.
Collapse
Affiliation(s)
- Junbin Yan
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yunmeng Nie
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Minmin Luo
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhiyun Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Beihui He
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
26
|
Ashrafizadeh M, Ahmadi Z, Mohammadinejad R, Farkhondeh T, Samarghandian S. Curcumin Activates the Nrf2 Pathway and Induces Cellular Protection Against Oxidative Injury. Curr Mol Med 2021; 20:116-133. [PMID: 31622191 DOI: 10.2174/1566524019666191016150757] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/11/2019] [Accepted: 09/18/2019] [Indexed: 12/15/2022]
Abstract
Curcumin is a naturally occurring polyphenol that is isolated from the rhizome of Curcuma longa (turmeric). This medicinal compound has different biological activities, including antioxidant, antibacterial, antineoplastic, and anti-inflammatory. It also has therapeutic effects on neurodegenerative disorders, renal disorders, and diabetes mellitus. Curcumin is safe and well-tolerated at high concentrations without inducing toxicity. It seems that curcumin is capable of targeting the Nrf2 signaling pathway in protecting the cells against oxidative damage. Besides, this strategy is advantageous in cancer therapy. Accumulating data demonstrates that curcumin applies four distinct ways to stimulate the Nrf2 signaling pathway, including inhibition of Keap1, affecting the upstream mediators of Nrf2, influencing the expression of Nrf2 and target genes, and finally, improving the nuclear translocation of Nrf2. In the present review, the effects of curcumin on the Nrf2 signaling pathway to exert its therapeutic and biological activities has been discussed.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Zahra Ahmadi
- Department of Basic Science, Veterinary Medicine Faculty, Shushtar University, Khuzestan, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
27
|
Zhang YP, Yang XQ, Yu DK, Xiao HY, Du JR. Nrf2 signalling pathway and autophagy impact on the preventive effect of green tea extract against alcohol-induced liver injury. J Pharm Pharmacol 2021; 73:986-995. [PMID: 33877365 DOI: 10.1093/jpp/rgab027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 02/04/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVES To explore the potential molecular mechanism underlying the effect of green tea extract (TE), rich in tea polyphenols (TPs), on improving alcohol-induced liver injury. METHODS Mice were intragastrically treated with 50% (v/v) alcohol administration (15 ml/kg BW) with or without three doses of TE (50, 120 and 300 mg TPs/kg BW) daily for 4 weeks, and biological changes were tested. KEY FINDINGS The TE improved the functional and histological situations in the liver of the mice accepted alcohol administration, including enzymes for alcohol metabolism, oxidative stress and lipid accumulation. Interestingly, the TE increased the nuclear translocation of nuclear factor erythroid-2-related factor 2 (Nrf2), with the decreasing expression of kelch-like ECH-associated protein 1 (Keap1), indicating the association between the effect of TE with Nrf2-mediated antioxidant signalling. Moreover, the TE restored the activity of autophagy, showing as lifted Beclin-1 expression, LC3B-II/LC3B-I ratio, and decreased p62 expression. Importantly, all these effects were dose-dependent. CONCLUSIONS These findings provide a new notion for the first time that the TE preventing against alcohol-induced liver injury is closely related to accelerated metabolism of alcohol and relieved oxidative stress, which is associated with Nrf2 signalling activation and autophagy restoration, thus the reduction of lipid accumulation in liver.
Collapse
Affiliation(s)
- Yu-Pei Zhang
- Department of Pharmacology, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Xue-Qin Yang
- Department of Pharmacology, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Dong-Ke Yu
- Department of Pharmacy, Sichuan Provincial People's Hospital, Chengdu, China
| | - Heng-Yi Xiao
- Laboratory of Aging Research, West China Hospital, Sichuan University, Chengdu, China
| | - Jun-Rong Du
- Department of Pharmacology, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Thapa K, Grewal AS, Kanojia N, Rani L, Sharma N, Singh S. Alcoholic and Non-Alcoholic Liver Diseases: Promising Molecular Drug Targets and their Clinical Development. Curr Drug Discov Technol 2021; 18:333-353. [PMID: 31965945 DOI: 10.2174/1570163817666200121143959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/25/2019] [Accepted: 12/04/2019] [Indexed: 11/22/2022]
Abstract
Alcoholic and non-alcoholic fatty liver diseases have become a serious concern worldwide. Both these liver diseases have an identical pathology, starting from simple steatosis to cirrhosis and, ultimately to hepatocellular carcinoma. Treatment options for alcoholic liver disease (ALD) are still the same as they were 50 years ago which include corticosteroids, pentoxifylline, antioxidants, nutritional support and abstinence; and for non-alcoholic fatty liver disease (NAFLD), weight loss, insulin sensitizers, lipid-lowering agents and anti-oxidants are the only treatment options. Despite broad research in understanding the disease pathophysiology, limited treatments are available for clinical use. Some therapeutic strategies based on targeting a specific molecule have been developed to lessen the consequences of disease and are under clinical investigation. Therefore, focus on multiple molecular targets will help develop an efficient therapeutic strategy. This review comprises a brief overview of the pathogenesis of ALD and NAFLD; recent molecular drug targets explored for ALD and NAFLD that may prove to be effective for multiple therapeutic regimens and also the clinical status of these promising drug targets for liver diseases.
Collapse
Affiliation(s)
- Komal Thapa
- Chitkara University School of Basic Sciences, Chitkara University, Himachal Pradesh, India
| | - Ajmer Singh Grewal
- Chitkara University School of Basic Sciences, Chitkara University, Himachal Pradesh, India
| | - Neha Kanojia
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Lata Rani
- Chitkara University School of Basic Sciences, Chitkara University, Himachal Pradesh, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
29
|
Renggani HD, Hertianti T, Murwanti R. Animal Models of Alcoholic Liver Disease for Hepatoprotective Activity Evaluation. BIO WEB OF CONFERENCES 2021. [DOI: 10.1051/bioconf/20214107007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background: The reported statistics suggest that alcoholic liver disease is on the rise. Furthermore, medications used to treat the disease have unpleasant effects, and this necessitates the need to continuously investigate hepatoprotective agents. This study investigates animal models of alcoholic liver disease used to evaluate hepatoprotective activity. Content: A good number of published articles evaluating hepatoprotective activity were summarized. The studies used three ethanol-induced liver injury models: the acute ethanol-induced liver injury model, the chronic ethanol-induced liver injury model, and Lieber– DeCarli model. Summary: Wistar rats were primarily used in the ethanol-induced liver injury model. High levels of alanine transaminase (ALT) and aspartate transaminase (AST) and histopathological alterations were found in all animal models (acute ethanol-induced liver injury, chronic ethanol-induced liver injury, and Lieber–DeCarli models). Severe steatosis was shown in both chronic ethanol-induced liver injury and Lieber–DeCarli models. However, fibrosis was undetected in all models.
Collapse
|
30
|
Galicia-Moreno M, Lucano-Landeros S, Monroy-Ramirez HC, Silva-Gomez J, Gutierrez-Cuevas J, Santos A, Armendariz-Borunda J. Roles of Nrf2 in Liver Diseases: Molecular, Pharmacological, and Epigenetic Aspects. Antioxidants (Basel) 2020; 9:antiox9100980. [PMID: PMID: 33066023 PMCID: PMC7601324 DOI: 10.3390/antiox9100980] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/10/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023] Open
Abstract
Liver diseases represent a critical health problem with 2 million deaths worldwide per year, mainly due to cirrhosis and its complications. Oxidative stress plays an important role in the development of liver diseases. In order to maintain an adequate homeostasis, there must be a balance between free radicals and antioxidant mediators. Nuclear factor erythroid 2-related factor (Nrf2) and its negative regulator Kelch-like ECH-associated protein 1 (Keap1) comprise a defense mechanism against oxidative stress damage, and growing evidence considers this signaling pathway as a key pharmacological target for the treatment of liver diseases. In this review, we provide detailed and updated evidence regarding Nrf2 and its involvement in the development of the main liver diseases such as alcoholic liver damage, viral hepatitis, steatosis, steatohepatitis, cholestatic damage, and liver cancer. The molecular and cellular mechanisms of Nrf2 cellular signaling are elaborated, along with key and relevant antioxidant drugs, and mechanisms on how Keap1/Nrf2 modulation can positively affect the therapeutic response are described. Finally, exciting recent findings about epigenetic modifications and their link with regulation of Keap1/Nrf2 signaling are outlined.
Collapse
Affiliation(s)
- Marina Galicia-Moreno
- Instituto de Biologia Molecular en Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (M.G.-M.); (S.L.-L.); (H.C.M.-R.); (J.S.-G.); (J.G.-C.)
| | - Silvia Lucano-Landeros
- Instituto de Biologia Molecular en Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (M.G.-M.); (S.L.-L.); (H.C.M.-R.); (J.S.-G.); (J.G.-C.)
| | - Hugo Christian Monroy-Ramirez
- Instituto de Biologia Molecular en Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (M.G.-M.); (S.L.-L.); (H.C.M.-R.); (J.S.-G.); (J.G.-C.)
| | - Jorge Silva-Gomez
- Instituto de Biologia Molecular en Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (M.G.-M.); (S.L.-L.); (H.C.M.-R.); (J.S.-G.); (J.G.-C.)
| | - Jorge Gutierrez-Cuevas
- Instituto de Biologia Molecular en Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (M.G.-M.); (S.L.-L.); (H.C.M.-R.); (J.S.-G.); (J.G.-C.)
| | - Arturo Santos
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Zapopan 45201, Jalisco, Mexico;
| | - Juan Armendariz-Borunda
- Instituto de Biologia Molecular en Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (M.G.-M.); (S.L.-L.); (H.C.M.-R.); (J.S.-G.); (J.G.-C.)
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Zapopan 45201, Jalisco, Mexico;
- Correspondence: ; Tel.: +52-333-677-8741
| |
Collapse
|
31
|
Wang X, Chang X, Zhan H, Zhang Q, Li C, Gao Q, Yang M, Luo Z, Li S, Sun Y. Curcumin and Baicalin ameliorate ethanol-induced liver oxidative damage via the Nrf2/HO-1 pathway. J Food Biochem 2020; 44:e13425. [PMID: 32770697 DOI: 10.1111/jfbc.13425] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/17/2020] [Accepted: 07/19/2020] [Indexed: 12/18/2022]
Abstract
One of the key mechanisms of alcoholic liver disease is oxidative stress. Both Curcumin and Baicalin exert antioxidant effects, but the mechanism of their combined effects of ethanol-induced liver injury is still unclear. This study was conducted to evaluate the dual antioxidant activity of Curcumin combined with Baicalin against ethanol-induced liver injury in rats. Rats were divided into five groups, a control, ethanol, ethanol + Curcumin (50 mg/kg), ethanol + Baicalin (50 mg/kg), and ethanol + Curcumin +Baicalin group with ten rats per group. The effects of ethanol on liver enzymes, oxidative stress indicators and the levels of Nrf2/HO-1 pathway related proteins and mRNA were observed along with liver histopathology in rats. Our results found that the serum ALT and AKP levels were increased in ethanol-treated rats, which also showed a rising trend of 8-OHdG and LPO levels while hydroxyl radical scavenging ability, T-AOC, and the activities of SOD and GSH-Px were decreased in liver. The mRNA levels of Nrf2 and HO-1, the ratio of p-Nrf2/Nrf2, the protein level of HO-1 were decreased while NQO1 mRNA level, Nrf2, p-Nrf2, and NQO1 protein levels were increased in ethanol-treated rats. Combination treatment of Curcumin and Baicalin significantly reversed the ethanol-induced liver oxidative damage and further activate the Nrf2/HO-1 pathway, which was more effective than each drug alone. In conclusion, evidence has shown for the first time in this study that Curcumin combined with Baicalin ameliorated ethanol-induced liver oxidative damage in rats and revealed liver-protection. PRACTICAL APPLICATIONS: Many drugs for treating alcoholic liver disease are available commercially, but some adverse effects they have may cause secondary damage to the liver. At present, the combined treatment of different natural phytochemicals has attracted special attention in modern medicine. Curcumin, a kind of phytochemicals, is extracted from turmeric rhizome. Baicalin is one of the major active components of Scutellaria Baicalensis. The current research is to explore the antioxidant effect of Curcumin and Baicalin in ethanol-induced liver injury in rats. Our research proves that Curcumin combined with Baicalin on ethanol-induced liver oxidative damage is superior to single drug treatment. Therefore, the combination of Curcumin and Baicalin may provide a more prospective natural remedy to combat ethanol-induced liver injury.
Collapse
Affiliation(s)
- Xiaoxia Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Haibing Zhan
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Qiong Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Chengyun Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Qing Gao
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Mengmeng Yang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Zhen Luo
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Sheng Li
- The First People's Hospital of Lanzhou City, Lanzhou, China
| | - Yingbiao Sun
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
32
|
Abdelhamid AM, Elsheakh AR, Abdelaziz RR, Suddek GM. Empagliflozin ameliorates ethanol-induced liver injury by modulating NF-κB/Nrf-2/PPAR-γ interplay in mice. Life Sci 2020; 256:117908. [PMID: 32512011 DOI: 10.1016/j.lfs.2020.117908] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Excessive alcohol intake contributes to severe liver damage involving oxidative stress and inflammatory responses, which make them promising therapeutic targets. Previous studies have demonstrated that empagliflozin (EMPA) showed cardiovascular, renal, and cerebral benefits potentially mediated through its antioxidant and anti-inflammatory actions. AIMS This experiment aimed to evaluate the hepatoprotective effect of EMPA on alcoholic liver disease (ALD) and the possible underlying mechanisms. MATERIALS AND METHODS Serum biochemical parameters and the liver contents of malondialdehyde (MDA), nitric oxide (NO), reduced glutathione (GSH), and superoxide dismutase (SOD) were measured. Real-time qPCR was conducted to determine the gene expression of peroxisome proliferator-activated receptor gamma (PPAR-γ), nuclear factor erythroid 2-related factor 2 (Nrf-2), and heme oxygenase-1 (Hmox-1). In addition, ELISA was performed to measure tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, Nrf-2, and PPAR-γ. Nuclear factor-kappa B (NF-κB) was detected by immunohistochemical staining using an anti-NF-κB p65 antibody. KEY FINDINGS Our results revealed that the serum levels of alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase were significantly reduced by EMPA. EMPA also decreased the content of MDA and NO and increased the activities of SOD and GSH in liver homogenates. Moreover, EMPA inhibited the release of proinflammatory cytokines, including TNF-α, IL-1β, and IL-6, via the downregulation of NF-κB. These changes were associated with an improvement in histopathological deterioration. The protective effect of EMPA against oxidative stress and inflammation was associated with the upregulation of PPAR-γ, Nrf-2, and their target gene Hmox-1. SIGNIFICANCE EMPA showed protective activities against ethanol-induced liver injury by suppressing inflammation and oxidative stress via modulation of the NF-κB/Nrf-2/PPAR-γ axis.
Collapse
Affiliation(s)
- Amir Mohamed Abdelhamid
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science & Technology, Egypt.
| | - Ahmed Ramadan Elsheakh
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Egypt
| | | | - Ghada Mohamed Suddek
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Egypt
| |
Collapse
|
33
|
Empagliflozin ameliorates ethanol-induced liver injury by modulating NF-κB/Nrf-2/PPAR-γ interplay in mice. Life Sci 2020. [DOI: 10.1016/j.lfs.2020.117908
expr 913773998 + 879574250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
34
|
Kai J, Yang X, Wang Z, Wang F, Jia Y, Wang S, Tan S, Chen A, Shao J, Zhang F, Zhang Z, Zheng S. Oroxylin a promotes PGC-1α/Mfn2 signaling to attenuate hepatocyte pyroptosis via blocking mitochondrial ROS in alcoholic liver disease. Free Radic Biol Med 2020; 153:89-102. [PMID: 32289481 DOI: 10.1016/j.freeradbiomed.2020.03.031] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/10/2020] [Accepted: 03/30/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND It is well acknowledged that alcoholic liver disease (ALD) is widely prevalent all over the world, characterized by aberrant lipid deposition and excessive oxidative stress in hepatocytes. Recently, pyroptosis, a new type of programmed cell death, has been found in ALD, which provides new ideas for the treatment of ALD. METHODS Male ICR mice were treated with the Lieber-De-Carli diet (Dyets) or isocaloric liquid diet for 8 weeks, and binge alcohol model was also used for ALD. Blood and livers were taken to evaluate the efficacy of oroxylin A. The levels of factors related to hepatocyte pyroptosis were measured via western blot analyses, immunofluorescence analyses and quantitative reverse transcriptase in vitro. RESULT Our study found that oroxylin A suppressed hepatocyte pyroptosis through a NLRP3 inflammasome dependent-canonical caspase-1 pathway. Results illuminated that oroxylin A inhibited NLRP3 inflammasome activation by reducing ROS accumulation. Furthermore, oroxylin A upregulated mitofusin 2 (Mfn2) to resist lipid deposition and mitochondria-derived ROS overproduction. As an upstream mediator of Mfn2, peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), a major regulator of mitochondria, was found to promote transcription of Mfn2 under oroxylin A treatment. CONCLUSION Our research revealed that oroxylin A could alleviate ALD via PGC-1α/Mfn2 signaling mediated canonical pyroptosis pathway resistance.
Collapse
Affiliation(s)
- Jun Kai
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiang Yang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhimin Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Feixia Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yan Jia
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shijun Wang
- Shandong University of Traditional Chinese Medicine, Jinan, 250035, China
| | - Shanzhong Tan
- Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Anping Chen
- Department of Pathology, School of Medicine, Saint Louis University, MO, 63104, USA
| | - Jiangjuan Shao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
35
|
Nouri-Vaskeh M, Malek Mahdavi A, Afshan H, Alizadeh L, Zarei M. Effect of curcumin supplementation on disease severity in patients with liver cirrhosis: A randomized controlled trial. Phytother Res 2020; 34:1446-1454. [PMID: 32017253 DOI: 10.1002/ptr.6620] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/03/2020] [Accepted: 01/13/2020] [Indexed: 01/15/2023]
Abstract
Recent reports indicated that curcumin had beneficial effects in animal models of liver injury and cirrhosis. Current study aimed to investigate the effects of curcumin supplementation in patients with liver cirrhosis. In this randomized double-blind placebo-controlled trial, 70 patients with liver cirrhosis aged 20-70 years were randomly divided into two groups to receive 1,000 mg/day curcumin (n = 35) or placebo (n = 35) for 3 months. Model for end-stage liver disease (MELD) (i), MELD, MELD-Na, and Child-Pugh scores were used to assess the severity of cirrhosis. Sixty patients (29 in the curcumin group and 31 in the placebo group) completed the study. MELD(i) (15.55 ± 3.78 to 12.41 ± 3.07), MELD (15.31 ± 3.07 to 12.03 ± 2.79), MELD-Na (15.97 ± 4.02 to 13.55 ± 3.51), and Child-Pugh (7.17 ± 1.54 to 6.72 ± 1.31) scores decreased significantly in the curcumin group after 3-month intervention (p < .001, p < .001, p = .001, and p = .051, respectively), whereas they increased significantly in the placebo group (p < .001, p < .001, p < .001, p = .001, respectively). Significant differences were only observed between the two groups in MELD(i), MELD, MELD-Na, and Child-Pugh scores after 3-month intervention (p < .001 for all of them). In this pilot study, beneficial effects of curcumin supplementation were observed in decreasing disease activity scores and severity of cirrhosis in patients with cirrhosis.
Collapse
Affiliation(s)
- Masoud Nouri-Vaskeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aida Malek Mahdavi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Afshan
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Alizadeh
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Zarei
- Department of Pathology and Laboratory Medicine, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
36
|
Traumatic brain injury-induced downregulation of Nrf2 activates inflammatory response and apoptotic cell death. J Mol Med (Berl) 2019; 97:1627-1641. [DOI: 10.1007/s00109-019-01851-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/11/2019] [Accepted: 11/05/2019] [Indexed: 12/17/2022]
|
37
|
Zhao XJ, Chen L, Zhao Y, Pan Y, Yang YZ, Sun Y, Jiao RQ, Kong LD. Polygonum cuspidatum extract attenuates fructose-induced liver lipid accumulation through inhibiting Keap1 and activating Nrf2 antioxidant pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 63:152986. [PMID: 31310912 DOI: 10.1016/j.phymed.2019.152986] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/04/2019] [Accepted: 06/08/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Polygonum cuspidatum has been used in traditional Chinese medicine to treat liver disorders associated with oxidative stress, inflammation and lipid accumulation for centuries in patients. PURPOSE The aim of this study was to examine whether P. cuspidatum extract (PCE) prevented against fructose-induced liver lipid accumulation via regulating Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. METHOD PCE was administered orally to male Sprague-Dawley rats given 10% fructose drinking water for 6 weeks at 80 and 160 mg/kg once daily for 11 weeks. RESULTS PCE significantly alleviated liver lipid accumulation in fructose-fed rats with metabolic syndrome. It also inhibited Keap1, activated Nrf2 antioxidant pathway, resulting in the suppression of oxidative stress, evidenced by reducing hydrogen peroxide (H2O2), malondialdehyde (MDA) and hydroxy radical (OH•) levels, and increasing glutathione (GSH)/oxidized glutathione (GSSG) ratio as well as superoxidase dismutase (SOD) and catalase (CAT) activity in the liver of fructose-fed rats. Additionally, PCE up-regulated peroxisome proliferator activated receptor-α (PPAR-α), and down-regulated sterol regulatory element binging protein 1 (SREBP-1), fatty acid synthetase (FAS) and stearoyl-CoA desaturase-1 (SCD-1) in this animal model, being consistent with its reduction of triglyceride (TG) levels. CONCLUSION These results demonstrate that PCE reduces oxidative stress, and prevent lipid accumulation in the liver of fructose-fed rats possibly by targeting the Keap1/Nrf2 pathway. PCE may be a promising therapeutic strategy for fructose-associated liver lipid accumulation.
Collapse
Affiliation(s)
- Xiao-Juan Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Li Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Yue Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Ying Pan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Yan-Zi Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Rui-Qing Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
38
|
Naeini MB, Momtazi AA, Jaafari MR, Johnston TP, Barreto G, Banach M, Sahebkar A. Antitumor effects of curcumin: A lipid perspective. J Cell Physiol 2019; 234:14743-14758. [PMID: 30741424 DOI: 10.1002/jcp.28262] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/06/2019] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Lipid metabolism plays an important role in cancer development due to the necessities of rapidly dividing cells to increase structural, energetic, and biosynthetic demands for cell proliferation. Basically, obesity, type 2 diabetes, and other related diseases, and cancer are associated with a common hyperactivated "lipogenic state." Recent evidence suggests that metabolic reprogramming and overproduction of enzymes involved in the synthesis of fatty acids are the new hallmarks of cancer, which occur in an early phase of tumorigenesis. As the first evidence to confirm dysregulated lipid metabolism in cancer cells, the overexpression of fatty acid synthase (FAS) was observed in breast cancer patients and demonstrated the role of FAS in cancer. Other enzymes of fatty acid synthesis have recently been found to be dysregulated in cancer, including ATP-dependent citrate lyase and acetyl-CoA carboxylase, which further underscores the connection of these metabolic pathways with cancer cell survival and proliferation. The degree of overexpression of lipogenic enzymes and elevated lipid utilization in tumors is closely associated with cancer progression. The question that arises is whether the progression of cancer can be suppressed, or at least decelerated, by modulating gene expression related to fatty acid metabolism. Curcumin, due to its effects on the regulation of lipogenic enzymes, might be able to suppress, or even cause regression of tumor growth. This review discusses recent evidence concerning the important role of lipogenic enzymes in the metabolism of cancer cells and whether the inhibitory effects of curcumin on lipogenic enzymes is therapeutically efficacious.
Collapse
Affiliation(s)
- Mehri Bemani Naeini
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Abbas Momtazi
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri
| | - George Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C, Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Maciej Banach
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
39
|
Ghaffarzadegan T, Zanzer YC, Östman E, Hållenius F, Essén S, Sandahl M, Nyman M. Postprandial Responses of Serum Bile Acids in Healthy Humans after Ingestion of Turmeric before Medium/High-Fat Breakfasts. Mol Nutr Food Res 2019; 63:e1900672. [PMID: 31411373 DOI: 10.1002/mnfr.201900672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/25/2019] [Indexed: 12/17/2022]
Abstract
SCOPE Bile acids (BAs) are known to regulate a number of metabolic activities in the body. However, very little is known about how BAs are affected by diet. This study aims to investigate whether a single dose of turmeric-based beverage (TUR) before ingestion of medium- (MF) or high-fat (HF) breakfasts would improve the BA profile in healthy subjects. METHODS AND RESULTS Twelve healthy subjects are assigned to a randomized crossover single-blind study. The subjects receive isocaloric MF or HF breakfasts after a drink containing flavored water with or without an extract of turmeric with at least 1-week wash-out period between the treatments. Postprandial BAs are measured using protein precipitation followed by ultra-high-performance liquid chromatography-mass spectrometry analysis. The concentration of BAs is generally higher after HF than MF breakfasts. Ingestion of TUR before MF breakfast increases the serum concentrations of free and conjugated forms of cholic (CA) and ursodeoxycholic acids (UDCA), as well as the concentrations of chenodeoxycholic acid (CDCA) and its taurine-conjugated forms. However, the concentration of conjugated forms of deoxycholic acid (DCA) decreases when TUR is taken before HF breakfast. CONCLUSION TUR ingestion before MF and HF breakfasts improve BA profiles and may therefore have potential health-promoting effects on BA metabolism.
Collapse
Affiliation(s)
- Tannaz Ghaffarzadegan
- Food for Health Science Centre, Kemicentrum, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden
| | - Yoghatama Cindya Zanzer
- Food for Health Science Centre, Kemicentrum, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden
| | - Elin Östman
- Food for Health Science Centre, Kemicentrum, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden
| | - Frida Hållenius
- Food for Health Science Centre, Kemicentrum, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden
| | - Sofia Essén
- Centre for Analysis and Synthesis, Department of Chemistry, Kemicentrum, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden
| | - Margareta Sandahl
- Centre for Analysis and Synthesis, Department of Chemistry, Kemicentrum, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden
| | - Margareta Nyman
- Food for Health Science Centre, Kemicentrum, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden
| |
Collapse
|
40
|
Ramos-Tovar E, Muriel P. Free radicals, antioxidants, nuclear factor-E2-related factor-2 and liver damage. J Appl Toxicol 2019; 40:151-168. [PMID: 31389060 DOI: 10.1002/jat.3880] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022]
Abstract
Oxidative/nitrosative stress is proposed to be a critical factor in various diseases, including liver pathologies. Antioxidants derived from medicinal plants have been studied extensively and are relevant to many illnesses, including liver diseases. Several hepatic disorders, such as viral hepatitis and alcoholic or nonalcoholic steatohepatitis, involve free radicals/oxidative stress as agents that cause or at least exacerbate liver injury, which can result in chronic liver diseases, such as liver fibrosis, cirrhosis and end-stage hepatocellular carcinoma. In this scenario, nuclear factor-E2-related factor-2 (Nrf2) appears to be an essential factor to counteract or attenuate oxidative or nitrosative stress in hepatic cells. In fact, a growing body of evidence indicates that Nrf2 plays complex and multicellular roles in hepatic inflammation, fibrosis, hepatocarcinogenesis and regeneration via the induction of its target genes. Inflammation is the most common feature of chronic liver diseases, triggering fibrosis, cirrhosis and hepatocellular carcinoma. Increasing evidence indicates that Nrf2 counteracts the proinflammatory process by modulating the recruitment of inflammatory cells and inducing the endogenous antioxidant response of the cell. In this review, the interactions between antioxidant and inflammatory molecular pathways are analyzed.
Collapse
Affiliation(s)
- Erika Ramos-Tovar
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City, Mexico
| | - Pablo Muriel
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City, Mexico
| |
Collapse
|
41
|
Aldose Reductase Inhibitors of Plant Origin in the Prevention and Treatment of Alcoholic Liver Disease: A Minireview. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3808594. [PMID: 31321234 PMCID: PMC6610749 DOI: 10.1155/2019/3808594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 05/18/2019] [Indexed: 12/20/2022]
Abstract
Alcoholic liver disease (ALD) is caused by heavy alcohol consumption over a long period. Acetaldehyde-mediated toxicity, oxidative stress, and imbalance of lipid metabolism are generally considered involved in the initiation of ALD. There is an increasing requirement for alternative and natural medicine to treat ALD. Recently, aldose reductase (AR) has been reported to be involved in the development of ALD by affecting inflammatory cytokines, oxidative stress, and lipid metabolism. Here, we review the effect of plant-derived AR inhibitors on ALD in rodents. And we conclude that AR inhibitors of plant origin may enhance antioxidant capacity, inhibit lipid peroxidation and inflammatory cytokines expression, and activate AMP-activated protein kinase thereby subsequently suppressing alcohol-induced lipid synthesis in liver to achieve ALD protection. This review reveals that natural AR inhibitor may be potential therapeutic agent for ALD.
Collapse
|
42
|
Rezaee-Khorasany A, Razavi BM, Taghiabadi E, Tabatabaei Yazdi A, Hosseinzadeh H. Effect of saffron (stigma of Crocus sativus L.) aqueous extract on ethanol toxicity in rats: A biochemical, histopathological and molecular study. JOURNAL OF ETHNOPHARMACOLOGY 2019; 237:286-299. [PMID: 30926569 DOI: 10.1016/j.jep.2019.03.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 03/09/2019] [Accepted: 03/17/2019] [Indexed: 05/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Saffron (Crocus sativus L.) is considered in the Iranian traditional medicine because of many therapeutic properties such as sedative agent, strengthen the stomach and liver, improving the uterus disorders and infectious wounds. The detoxification of alcohol was one of the most important of saffron effects in ancient medicine. AIM OF THE STUDY In the current research, the protective effects of saffron aqueous extract (Aq. Ext.) versus oxidative stress, apoptosis, inflammation, histopathological and biochemical abnormalities induced by ethanol were evaluated. MATERIALS & METHODS The male Wistar rats were divided into seven groups consisted of 6 rats in control (distilled water), ethanol (5 g/kg - 50% v/v), Aq. Ext. (40, 80 and 160 mg/kg) plus ethanol, Aq. Ext. 80 and 160 mg/kg. Animals were treated for four weeks and at the end of treatment period, histopathological damages, biochemical markers, apoptosis, levels of MDA and GSH, TNF-α and IL-6 were evaluated. RESULTS Ethanol induced nephrotoxicity and hepatotoxicity as evidenced by histopathological damages and biochemical abnormalities. The level of MDA was significantly enhanced while GSH content was remarkably reduced in ethanol-treated rats, but protective groups restored them. Also, the levels of TNF-α and IL-6 were regulated by Aq. Ext. Furthermore, the effects of ethanol on histopathological and biochemical parameters were improved by Aq. Ext. The ethanol increased the expression of Bax/Bcl2 ratio, caspase-3, -8, and -9. Real-time PCR and western blot analysis proved that Aq. Ext. treatment inhibited apoptosis induced by ethanol through decreasing the Bax/Bcl2 ratio (mRNA and protein) and caspases-3, -8, and -9 levels in the kidney and liver. CONCLUSION The results of this research demonstrated that Aq. Ext. could exert protective effects against ethanol toxicity in rat kidney and liver via antioxidant, anti-apoptosis, and anti-inflammatory effects.
Collapse
Affiliation(s)
- Alireza Rezaee-Khorasany
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Bibi Marjan Razavi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Elahe Taghiabadi
- Orthopedic Research Center, Shahid Kamyab Hospital, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Abbas Tabatabaei Yazdi
- Ghaem Hospital, Department of Pathology, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
43
|
Kong LZ, Chandimali N, Han YH, Lee DH, Kim JS, Kim SU, Kim TD, Jeong DK, Sun HN, Lee DS, Kwon T. Pathogenesis, Early Diagnosis, and Therapeutic Management of Alcoholic Liver Disease. Int J Mol Sci 2019; 20:ijms20112712. [PMID: 31159489 PMCID: PMC6600448 DOI: 10.3390/ijms20112712] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 02/08/2023] Open
Abstract
Alcoholic liver disease (ALD) refers to the damages to the liver and its functions due to alcohol overconsumption. It consists of fatty liver/steatosis, alcoholic hepatitis, steatohepatitis, chronic hepatitis with liver fibrosis or cirrhosis, and hepatocellular carcinoma. However, the mechanisms behind the pathogenesis of alcoholic liver disease are extremely complicated due to the involvement of immune cells, adipose tissues, and genetic diversity. Clinically, the diagnosis of ALD is not yet well developed. Therefore, the number of patients in advanced stages has increased due to the failure of proper early detection and treatment. At present, abstinence and nutritional therapy remain the conventional therapeutic interventions for ALD. Moreover, the therapies which target the TNF receptor superfamily, hormones, antioxidant signals, and MicroRNAs are used as treatments for ALD. In particular, mesenchymal stem cells (MSCs) are gaining attention as a potential therapeutic target of ALD. Therefore, in this review, we have summarized the current understandings of the pathogenesis and diagnosis of ALD. Moreover, we also discuss the various existing treatment strategies while focusing on promising therapeutic approaches for ALD.
Collapse
Affiliation(s)
- Ling-Zu Kong
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea.
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
| | - Nisansala Chandimali
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea.
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
| | - Ying-Hao Han
- Department of Disease Model Animal Research Center, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Dong-Ho Lee
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, Jeonbuk 56216, Korea.
| | - Ji-Su Kim
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, Jeonbuk 56216, Korea.
| | - Sun-Uk Kim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si, Chungcheongbuk-do 28116, Korea.
| | - Tae-Don Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
| | - Dong Kee Jeong
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea.
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea.
| | - Hu-Nan Sun
- Department of Disease Model Animal Research Center, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea.
| | - Dong Sun Lee
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea.
- Department of Biotechnology, College of Applied Life Science, Jeju National University, Jeju 63243, Korea.
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, Jeonbuk 56216, Korea.
| |
Collapse
|
44
|
Wu H, Liu G, He Y, Da J, Xie B. Obeticholic acid protects against diabetic cardiomyopathy by activation of FXR/Nrf2 signaling in db/db mice. Eur J Pharmacol 2019; 858:172393. [PMID: 31085240 DOI: 10.1016/j.ejphar.2019.05.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/06/2019] [Accepted: 05/10/2019] [Indexed: 02/06/2023]
Abstract
Diabetic cardiomyopathy (DCM) is one of the major cardiac complications in diabetic patients and a major reason for the death of diabetic patients. Obeticholic acid (OCA) is a semi-synthetic bile acid analogue. The objective of the present study was to investigate the possible cardio-protective effect of OCA against DCM. db/db diabetic mice were given OCA with or without injection of LV-short hairpin farnesoid X receptor (shFXR), and general glucose and lipid metabolism, myocardial morphology and function, myocardial fibrosis, inflammation and oxidative stress were evaluated. We found that OCA significantly ameliorated metabolic dysfunctions. Moreover, OCA attenuated morphological injury of cardiac tissue, restored the abnormal changes of hemodynamic variables and echocardiographic parameters. The Sirius-Red staining of cardiac tissue and mRNA expression of fibrotic biomarkers, including connective tissue growth factor, osteopontin, Transforming growth factor-β1, atrial natriuretic peptide, Collagen Ⅰ, and Collagen Ⅲ were decreased by OCA. Systemic levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 were reduced by OCA. Moreover, OCA decreased oxidant products and increased nuclear factor (erythroid-derived 2)-like 2 (Nrf2) expression and the expression and activities of antioxidant enzymes. Injection of LV-shFXR downregulated FXR expression and inhibited all these beneficial effects of OCA. FXR is major target that mediated that beneficial effect of OCA. In summary, FXR/Nrf2 signaling was involved in OCA-induced amelioration of metabolic disorder, oxidative stress, inflammation, fibrosis and myocardial dysfunction. Our findings provide new evidence for the interaction of FXR and Nrf2 signaling and novel option for the intervention of DCM.
Collapse
Affiliation(s)
- Hongkui Wu
- Department of Oldor Cardiovascular and Cerebrovascular Diseases, Baoji Central Hospital, Baoji, Shaanxi, 721008, China.
| | - Gang Liu
- Department of Oldor Cardiovascular and Cerebrovascular Diseases, Baoji Central Hospital, Baoji, Shaanxi, 721008, China
| | - Yaoli He
- Department of Oldor Cardiovascular and Cerebrovascular Diseases, Baoji Central Hospital, Baoji, Shaanxi, 721008, China
| | - Jing Da
- Department of Oldor Cardiovascular and Cerebrovascular Diseases, Baoji Central Hospital, Baoji, Shaanxi, 721008, China
| | - Bingqing Xie
- Department of Oldor Cardiovascular and Cerebrovascular Diseases, Baoji Central Hospital, Baoji, Shaanxi, 721008, China
| |
Collapse
|
45
|
He P, Tian N. Curcumin modulates the apolipoprotein B mRNA editing by coordinating the expression of cytidine deamination to uridine editosome components in primary mouse hepatocytes. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY 2019; 23:181-189. [PMID: 31080349 PMCID: PMC6488708 DOI: 10.4196/kjpp.2019.23.3.181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 08/14/2018] [Accepted: 09/12/2018] [Indexed: 11/15/2022]
Abstract
Curcumin, an active ingredient of Curcuma longa L., can reduce the concentration of low-density lipoproteins in plasma, in different ways. We had first reported that curcumin exhibits hypocholesterolemic properties by improving the apolipoprotein B (apoB) mRNA editing in primary rat hepatocytes. However, the role of curcumin in the regulation of apoB mRNA editing is not clear. Thus, we investigated the effect of curcumin on the expression of multiple editing components of apoB mRNA cytidine deamination to uridine (C-to-U) editosome. Our results demonstrated that treatment with 50 µM curcumin markedly increased the amount of edited apoB mRNA in primary mouse hepatocytes from 5.13%–8.05% to 27.63%–35.61%, and significantly elevated the levels of the core components apoB editing catalytic polypeptide-1 (APOBEC-1), apobec-1 complementation factor (ACF), and RNA-binding-motif-protein-47 (RBM47), as well as suppressed the level of the inhibitory component glycine-arginine-tyrosine-rich RNA binding protein. Moreover, the increased apoB RNA editing by 50 µM curcumin was significantly reduced by siRNA-mediated APOBEC-1, ACF, and RBM47 knockdown. These findings suggest that curcumin modulates apoB mRNA editing by coordinating the multiple editing components of the editosome in primary hepatocytes. Our data provided evidence for curcumin to be used therapeutically to prevent atherosclerosis.
Collapse
Affiliation(s)
- Pan He
- Institute of Molecular Medicine, Life Science College, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Nan Tian
- Institute of Molecular Medicine, Life Science College, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| |
Collapse
|
46
|
Iranshahy M, Iranshahi M, Abtahi SR, Karimi G. The role of nuclear factor erythroid 2-related factor 2 in hepatoprotective activity of natural products: A review. Food Chem Toxicol 2018; 120:261-276. [DOI: 10.1016/j.fct.2018.07.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 12/15/2022]
|
47
|
Zhao N, Guo FF, Xie KQ, Zeng T. Targeting Nrf-2 is a promising intervention approach for the prevention of ethanol-induced liver disease. Cell Mol Life Sci 2018; 75:3143-3157. [PMID: 29947925 PMCID: PMC11105722 DOI: 10.1007/s00018-018-2852-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/18/2018] [Accepted: 06/06/2018] [Indexed: 02/07/2023]
Abstract
Alcoholic liver disease (ALD) remains to be a worldwide health problem. It is generally accepted that oxidative stress plays critical roles in the pathogenesis of ALD, and antioxidant therapy represents a logical strategy for the prevention and treatment of ALD. Nuclear factor erythroid-derived 2-like 2 (NFE2L2 or Nrf-2) is essential for the antioxidant responsive element (ARE)-mediated induction of endogenous antioxidant enzymes such as heme oxygenase 1 (HO-1) and glutamate-cysteine ligase [GCL, the rate-limiting enzyme in the synthesis of glutathione (GSH)]. Activation of Nrf-2 pathway by genetic manipulation or pharmacological agents has been demonstrated to provide protection against ALD, which suggests that targeting Nrf-2 may be a promising approach for the prevention and treatment of ALD. Herein, we review the relevant literature about the potential hepatoprotective roles of Nrf-2 activation against ALD.
Collapse
Affiliation(s)
- Ning Zhao
- Institute of Toxicology, School of Public Health, Shandong University, 44 Wenhua West Road, Jinan, 250012, Shandong, China
| | - Fang-Fang Guo
- Department of Pharmacy, Qilu Hospital of Shandong University, 107 Wenhua West Road, Jinan, 250012, Shandong, China
| | - Ke-Qin Xie
- Institute of Toxicology, School of Public Health, Shandong University, 44 Wenhua West Road, Jinan, 250012, Shandong, China
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Shandong University, 44 Wenhua West Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
48
|
Zhao XJ, Yu HW, Yang YZ, Wu WY, Chen TY, Jia KK, Kang LL, Jiao RQ, Kong LD. Polydatin prevents fructose-induced liver inflammation and lipid deposition through increasing miR-200a to regulate Keap1/Nrf2 pathway. Redox Biol 2018; 18:124-137. [PMID: 30014902 PMCID: PMC6068203 DOI: 10.1016/j.redox.2018.07.002] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/01/2018] [Accepted: 07/04/2018] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress is a critical factor in nonalcoholic fatty liver disease pathogenesis. MicroRNA-200a (miR-200a) is reported to target Kelch-like ECH-associated protein 1 (Keap1), which regulates nuclear factor erythroid 2-related factor 2 (Nrf2) anti-oxidant pathway. Polydatin (3,4',5-trihydroxy-stilbene-3-β-D-glucoside), a polyphenol found in the rhizome of Polygonum cuspidatum, have anti-oxidative, anti-inflammatory and anti-hyperlipidemic effects. However, whether miR-200a controls Keap1/Nrf2 pathway in fructose-induced liver inflammation and lipid deposition and the blockade of polydatin are still not clear. Here, we detected miR-200a down-regulation, Keap1 up-regulation, Nrf2 antioxidant pathway inactivation, ROS-driven thioredoxin-interacting protein (TXNIP) over-expression, NOD-like receptor (NLR) family, pyrin domain containing 3 (NLRP3) inflammasome activation and dysregulation of peroxisome proliferator activated receptor-α (PPAR-α), carnitine palmitoyl transferase-1 (CPT-1), sterol regulatory element binging protein 1 (SREBP-1) and stearoyl-CoA desaturase-1 (SCD-1) in rat livers, BRL-3A and HepG2 cells under high fructose induction. Furthermore, the data from the treatment or transfection of miR-200a minic, Keap1 and TXNIP siRNA, Nrf2 activator and ROS inhibitor demonstrated that fructose-induced miR-200a low-expression increased Keap1 to block Nrf2 antioxidant pathway, and then enhanced ROS-driven TXNIP to activate NLRP3 inflammasome and disturb lipid metabolism-related proteins, causing inflammation and lipid deposition in BRL-3A cells. We also found that polydatin up-regulated miR-200a to inhibit Keap1 and activate Nrf2 antioxidant pathway, resulting in attenuation of these disturbances in these animal and cell models. These findings provide a novel pathological mechanism of fructose-induced redox status imbalance and suggest that the enhancement of miR-200a to control Keap1/Nrf2 pathway by polydatin is a therapeutic strategy for fructose-associated liver inflammation and lipid deposition.
Collapse
Affiliation(s)
- Xiao-Juan Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Han-Wen Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Yan-Zi Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Wen-Yuan Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Tian-Yu Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Ke-Ke Jia
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Lin-Lin Kang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Rui-Qing Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
49
|
Sun J, Fu J, Li L, Chen C, Wang H, Hou Y, Xu Y, Pi J. Nrf2 in alcoholic liver disease. Toxicol Appl Pharmacol 2018; 357:62-69. [PMID: 30165058 DOI: 10.1016/j.taap.2018.08.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 12/19/2022]
Abstract
Alcoholic liver disease (ALD) is a leading cause of morbidity and mortality of liver disorders and a major health issue globally. ALD refers to a spectrum of liver pathologies ranging from steatosis, steatohepatitis, fibrosis, cirrhosis and even hepatocellular carcinoma. Various mechanisms, including oxidative stress, protein and DNA modification, inflammation and impaired lipid metabolism, have been implicated in the pathogenesis of ALD. Further, reactive oxygen species (ROS) in particular, have been identified as a key component in the initiation and progression of ALD. Nuclear factor erythroid 2 like 2 (Nrf2) is a master regulator of the intracellular adaptive antioxidant response to oxidative stress, and aids in the detoxification of a variety of toxicants. Given its cytoprotective role, Nrf2 has been extensively studied as a therapeutic target for ALD. Paradoxically, however, emerging evidence have revealed that Nrf2 may be implicated in the progression of ALD. In this review, we summarize the role of Nrf2 in the development of ALD and discuss the underlying mechanisms. Clearly, more comprehensive studies with proper animal and cell models and in human are needed to verify the potential therapeutic role of Nrf2 in ALD.
Collapse
Affiliation(s)
- Jing Sun
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Jingqi Fu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China.
| | - Lu Li
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Chengjie Chen
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Huihui Wang
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Yongyong Hou
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Yuanyuan Xu
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China.
| |
Collapse
|
50
|
Update on FXR Biology: Promising Therapeutic Target? Int J Mol Sci 2018; 19:ijms19072069. [PMID: 30013008 PMCID: PMC6073382 DOI: 10.3390/ijms19072069] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 12/11/2022] Open
Abstract
Farnesoid X receptor (FXR), a metabolic nuclear receptor, plays critical roles in the maintenance of systemic energy homeostasis and the integrity of many organs, including liver and intestine. It regulates bile acid, lipid, and glucose metabolism, and contributes to inter-organ communication, in particular the enterohepatic signaling pathway, through bile acids and fibroblast growth factor-15/19 (FGF-15/19). The metabolic effects of FXR are also involved in gut microbiota. In addition, FXR has various functions in the kidney, adipose tissue, pancreas, cardiovascular system, and tumorigenesis. Consequently, the deregulation of FXR may lead to abnormalities of specific organs and metabolic dysfunction, allowing the protein as an attractive therapeutic target for the management of liver and/or metabolic diseases. Indeed, many FXR agonists have been being developed and are under pre-clinical and clinical investigations. Although obeticholic acid (OCA) is one of the promising candidates, significant safety issues have remained. The effects of FXR modulation might be multifaceted according to tissue specificity, disease type, and/or energy status, suggesting the careful use of FXR agonists. This review summarizes the current knowledge of systemic FXR biology in various organs and the gut–liver axis, particularly regarding the recent advancement in these fields, and also provides pharmacological aspects of FXR modulation for rational therapeutic strategies and novel drug development.
Collapse
|