1
|
Zhou H, Zhou X, Huang G, Zhao Y, Lan P, Chen Z. Inhibition of ferroptosis protects intrahepatic bile duct cells against ischemia-reperfusion and bile salt toxicity. Biochem Pharmacol 2025; 233:116788. [PMID: 39890033 DOI: 10.1016/j.bcp.2025.116788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 02/03/2025]
Abstract
Ischemia-reperfusion injury (IRI) and bile salt toxicity are significant contributors to post-transplant cholangiopathy. Ferroptosis appears to play a critical role in intrahepatic bile duct injury induced by ischemia-reperfusion (I/R) and bile salt toxicity. Our study aimed to elucidate the role of ferroptosis in bile duct injuries and its potential as a therapeutic target for liver diseases. Mouse models of liver ischemia-reperfusion (I/R) and α-naphthyl isocyanate (ANIT)-induced liver cholestasis were employed to investigate the role of ferroptosis in intrahepatic bile duct injury in vivo. Hypoxia-reoxygenation (H/R) and bile salt treatment models were utilized to simulate the post-transplant bile duct injury process in vitro. In mouse models of liver I/R and cholestasis, we observed a downregulation of glutathione peroxidase 4 (GPX4) and an upregulation of lipid peroxidation levels in bile duct cells. Furthermore, the ferroptosis inhibitor Liproxstatin-1 (Lip-1) significantly attenuated intrahepatic bile duct injuries. Ferroptosis inhibitors alleviated cell death and lipid peroxide accumulation in human intrahepatic biliary epithelial cells (HiBECs) subjected to H/R or glycochenodeoxycholate (GCDCA) treatment. GCDCA treatment led to ferroptosis in HiBECs along with ferritin degradation. Inhibition of autophagy alleviated GCDCA-induced bile duct cell death. Our study suggested that ferroptosis played an important role of in the intrahepatic bile duct injury during I/R or cholestasis.
Collapse
Affiliation(s)
- Huisheng Zhou
- Institute of Organ Transplantation Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Key Laboratory of Organ Transplantation Ministry of Education NHC Key Laboratory of Organ Transplantation Chinese Academy of Medical Sciences Wuhan China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases China
| | - Xi Zhou
- Institute of Organ Transplantation Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Key Laboratory of Organ Transplantation Ministry of Education NHC Key Laboratory of Organ Transplantation Chinese Academy of Medical Sciences Wuhan China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases China
| | - Guobin Huang
- Institute of Organ Transplantation Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Key Laboratory of Organ Transplantation Ministry of Education NHC Key Laboratory of Organ Transplantation Chinese Academy of Medical Sciences Wuhan China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases China
| | - Yuanyuan Zhao
- Institute of Organ Transplantation Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Key Laboratory of Organ Transplantation Ministry of Education NHC Key Laboratory of Organ Transplantation Chinese Academy of Medical Sciences Wuhan China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases China
| | - Peixiang Lan
- Institute of Organ Transplantation Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Key Laboratory of Organ Transplantation Ministry of Education NHC Key Laboratory of Organ Transplantation Chinese Academy of Medical Sciences Wuhan China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases China.
| | - Zhishui Chen
- Institute of Organ Transplantation Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Key Laboratory of Organ Transplantation Ministry of Education NHC Key Laboratory of Organ Transplantation Chinese Academy of Medical Sciences Wuhan China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases China.
| |
Collapse
|
2
|
Luo C, Liang H, Ji M, Ye C, Lin Y, Guo Y, Zhang Z, Shu Y, Jin X, Lu S, Lu W, Dang Y, Zhang H, Li B, Zhou G, Zhang Z, Chang L. Autophagy induced by mechanical stress sensitizes cells to ferroptosis by the NCOA4-FTH1 axis. Autophagy 2025. [PMID: 39988734 DOI: 10.1080/15548627.2025.2469129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 02/14/2025] [Accepted: 02/15/2025] [Indexed: 02/25/2025] Open
Abstract
Ferroptosis is an iron-dependent regulated form of cell death implicated in various diseases, including cancers, with its progression influenced by iron-dependent peroxidation of phospholipids and dysregulation of the redox system. Whereas the extracellular matrix of tumors provides mechanical cues influencing tumor initiation and progression, its impact on ferroptosis and its mechanisms remains largely unexplored. In this study, we reveal that heightened mechanical tension sensitizes cells to ferroptosis, whereas decreased mechanics confers resistance. Mechanistically, reduced mechanical tension reduces intracellular free iron levels by enhancing FTH1 protein expression. Additionally, low mechanics significantly diminishes NCOA4, pivotal in mediating FTH1 phase separation-induced ferritinophagy. Targeting NCOA4 effectively rescues ferroptosis susceptibility under low mechanical tension through modulation of FTH1 phase separation-driven autophagy. In conclusion, our findings demonstrate that mechanics regulates iron metabolism via NCOA4-FTH1 phase separation-mediated autophagy, thereby influencing ferroptosis sensitivity and offering promising therapeutic avenues for future exploration.
Collapse
Affiliation(s)
- Chenyu Luo
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University,School of Radiation Medicine and Protection, Suzhou, China
- 986 Hospital of People's Liberation Army Air Force, Xian, China
| | - Haisheng Liang
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University,School of Radiation Medicine and Protection, Suzhou, China
| | - Mintao Ji
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University,School of Radiation Medicine and Protection, Suzhou, China
| | - Caiyong Ye
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University,School of Radiation Medicine and Protection, Suzhou, China
| | - Yiping Lin
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University,School of Radiation Medicine and Protection, Suzhou, China
| | - Yuhan Guo
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University,School of Radiation Medicine and Protection, Suzhou, China
| | - Zhisen Zhang
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University,School of Radiation Medicine and Protection, Suzhou, China
| | - Yinyin Shu
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University,School of Radiation Medicine and Protection, Suzhou, China
| | - Xiaoni Jin
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University,School of Radiation Medicine and Protection, Suzhou, China
| | - Shuangshuang Lu
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University,School of Radiation Medicine and Protection, Suzhou, China
| | - Wanling Lu
- 986 Hospital of People's Liberation Army Air Force, Xian, China
| | - Yazheng Dang
- 986 Hospital of People's Liberation Army Air Force, Xian, China
| | - Hong Zhang
- The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bingyan Li
- Department of Nutrition and Food Hygiene, Soochow University of Public Health, Suzhou, China
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University,School of Radiation Medicine and Protection, Suzhou, China
| | - Zengli Zhang
- Department of Nutrition and Food Hygiene, Soochow University of Public Health, Suzhou, China
| | - Lei Chang
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University,School of Radiation Medicine and Protection, Suzhou, China
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Dong Y, Zheng M, Ding W, Guan H, Xiao J, Li F. Nrf2 activators for the treatment of rare iron overload diseases: From bench to bedside. Redox Biol 2025; 81:103551. [PMID: 39965404 DOI: 10.1016/j.redox.2025.103551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/02/2025] [Accepted: 02/13/2025] [Indexed: 02/20/2025] Open
Abstract
Iron overload and related oxidative damage are seen in many rare diseases, due to mutation of iron homeostasis-related genes. As a core regulator on cellular antioxidant reaction, Nrf2 can also decrease systemic and cellular iron levels by regulating iron-related genes and pathways, making Nrf2 activators very good candidates for the treatment of iron overload disorders. Successful examples include the clinical use of omaveloxolone for Friedreich's Ataxia and dimethyl fumarate for relapsing-remitting multiple sclerosis. Despite these uses, the therapeutic potentials of Nrf2 activators for iron overload disorders may be overlooked in clinical practice. Therefore, this study talks about the potential use, possible mechanisms, and precautions of Nrf2 activators in treating rare iron overload diseases. In addition, a combination therapy with Nrf2 activators and iron chelators is proposed for clinical reference, aiming to facilitate the clinical use of Nrf2 activators for more iron overload disorders.
Collapse
Affiliation(s)
- Yimin Dong
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Zheng
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weizhong Ding
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hanfeng Guan
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jun Xiao
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Feng Li
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Sha X, Li Y, Ding J, Gu C, Zhang L, Jia L, Meng D, Liang L, Zhang Y, Sun S, Yang R. Cage-like ferritin and lysozyme heteroprotein complexes coacervation for encapsulation, stabilization, and sustained release of bioactive compounds. Int J Biol Macromol 2025; 304:140786. [PMID: 39924041 DOI: 10.1016/j.ijbiomac.2025.140786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/24/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
The ferritin (FRT) with a modifiable cavity can interact with the lysozyme (LYS) to form a heteroprotein complex coacervation (HPCC). This interaction is believed to combine the unique properties of FRT and LYS to form a novel structure with enhanced characteristics. The study aimed to explore the pH-dependent complexation between FRT and LYS and evaluate the protective effects of the heteroprotein complex on curcumin (Cur). Results showed that pH and protein ratios influenced the formation of the complex. ζ-potential measurements indicated that interactions between oppositely the charged molecules and hydrogen bonding drove the formation of FRT-LYS (FL) complexes, enhancing their hydrophobicity and thermal stability. Cur-encapsulated in FL (FCL) demonstrated an increased stability when exposed to heat, natural light, and ultraviolet light (FL/Cur, 1:50) treatments, and showed a controlled and sustained release behavior. This study emphasizes the potential of FL heteroprotein complexes as nanocarriers for encapsulation and protection of bioactive molecules.
Collapse
Affiliation(s)
- Xinmei Sha
- Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yichen Li
- Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jiaqi Ding
- Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Chunkai Gu
- Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Lingling Zhang
- Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Longgang Jia
- Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Demei Meng
- Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Li Liang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, PR China
| | - Yuyu Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, PR China
| | - Shihao Sun
- Beijing Life Science Academy, Beijing 102209, PR China
| | - Rui Yang
- Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
5
|
Yoshida E. Protein Cage-like Vesicles Fabricated via Polymerization-Induced Microphase Separation of Amphiphilic Diblock Copolymers. MATERIALS (BASEL, SWITZERLAND) 2025; 18:727. [PMID: 39942392 PMCID: PMC11820364 DOI: 10.3390/ma18030727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/15/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025]
Abstract
Highly symmetric protein cages represent one of the most artistic architectures formed by biomolecules. However, the underlying reasons for the formation of some of these architectures remain unknown. The present study aims to investigate the significance behind their morphological formation by fabricating protein cage-like vesicles using a synthetic polymer. The vesicles were synthesized by combining polymerization-induced self-assembly (PISA) with polymerization-induced microphase separation (PIMS), employing an amphiphilic poly(methacrylic acid)-block-poly(n-butyl methacrylate-random-cyclohexyl methacrylate-random-methacrylic acid) diblock copolymer, PMAA-b-P(BMA-r-CMA-r-MAA). The copolymer, with a 60 mol% molar ratio of CMA to the BMA units, produced clathrin-like vesicles with angular windows in their shell, resulting from the segregation of the hard CMA units from the soft BMA matrix in the hydrophobic phase of the vesicle. These vesicles were highly stable against rising temperatures. In contrast, the vesicles with a 30 mol% CMA ratio dissociated upon heating to 50 °C into triskelion-like segments due to intramolecular microphase separation. These findings indicate that designing synthetic polymers can mimic living organ morphologies, aiding in elucidating their morphological significance and inspiring the development of new materials utilizing these morphologies.
Collapse
Affiliation(s)
- Eri Yoshida
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi 441-8580, Japan
| |
Collapse
|
6
|
Safari MH, Rahimzadeh P, Alaei E, Alimohammadi M, Esfandiari N, Daneshi S, Malgard N, Farahani N, Taheriazam A, Hashemi M. Targeting ferroptosis in gastrointestinal tumors: Interplay of iron-dependent cell death and autophagy. Mol Cell Probes 2025; 79:102013. [PMID: 39837469 DOI: 10.1016/j.mcp.2025.102013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/06/2025] [Accepted: 01/18/2025] [Indexed: 01/23/2025]
Abstract
Ferroptosis is a regulated cell death mechanism distinct from apoptosis, autophagy, and necroptosis, marked by iron accumulation and lipid peroxidation. Since its identification in 2012, it has developed into a potential therapeutic target, especially concerning GI disorders like PC, HCC, GC, and CRC. This interest arises from the distinctive role of ferroptosis in the progression of diseases, presenting a new avenue for treatment where existing therapies fall short. Recent studies emphasize the promise of focusing on ferroptosis to fight GI cancers, showcasing its unique pathophysiological mechanisms compared to other types of cell death. By comprehending how ferroptosis aids in the onset and advancement of GI diseases, scientists aim to discover novel drug targets and treatment approaches. Investigating ferroptosis in gastrointestinal disorders reveals exciting possibilities for novel therapies, potentially revolutionizing cancer treatment and providing renewed hope for individuals affected by these tumors.
Collapse
Affiliation(s)
- Mohamad Hosein Safari
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elmira Alaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Negin Esfandiari
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Neda Malgard
- Department of Internal Medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
7
|
Helmann JD. Metals in Motion: Understanding Labile Metal Pools in Bacteria. Biochemistry 2025; 64:329-345. [PMID: 39755956 PMCID: PMC11755726 DOI: 10.1021/acs.biochem.4c00726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/02/2024] [Accepted: 12/13/2024] [Indexed: 01/07/2025]
Abstract
Metal ions are essential for all life. In microbial cells, potassium (K+) is the most abundant cation and plays a key role in maintaining osmotic balance. Magnesium (Mg2+) is the dominant divalent cation and is required for nucleic acid structure and as an enzyme cofactor. Microbes typically require the transition metals manganese (Mn), iron (Fe), copper (Cu), and zinc (Zn), although the precise set of metal ions needed to sustain life is variable. Intracellular metal pools can be conceptualized as a chemically complex mixture of rapidly exchanging (labile) ions, complemented by those reservoirs that exchange slowly relative to cell metabolism (sequestered). Labile metal pools are buffered by transient interactions with anionic metabolites and macromolecules, with the ribosome playing a major role. Sequestered metal pools include many metalloproteins, cofactors, and storage depots, with some pools redeployed upon metal depletion. Here, I review the size, composition, and dynamics of intracellular metal pools and highlight the major gaps in understanding.
Collapse
Affiliation(s)
- John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, New York 14853-8101, United States
| |
Collapse
|
8
|
Tu S, Zou Y, Yang M, Zhou X, Zheng X, Jiang Y, Wang H, Chen B, Qian Q, Dou X, Bao J, Tian L. Ferroptosis in hepatocellular carcinoma: Mechanisms and therapeutic implications. Biomed Pharmacother 2025; 182:117769. [PMID: 39689515 DOI: 10.1016/j.biopha.2024.117769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 12/19/2024] Open
Abstract
Ferroptosis is a novel form of oxidative cell death, in which highly expressed unsaturated fatty acids on the cell membrane are catalyzed by divalent iron or ester oxygenase to promote liposome peroxidation. This process reduces cellular antioxidant capacity, increases lipid reactive oxygen species, and leads to the accumulation of intracellular ferrous ions, which disrupts intracellular redox homeostasis and ultimately causes oxidative cell death. Studies have shown that ferroptosis induces an immune response that has a dual role in liver disease, ferroptosis also offers a promising strategy for precise cancer therapy. Ferroptosis regulators are beneficial in maintaining cellular homeostasis and tissue health, have shown efficacy in treating diseases of the hepatic system. However, the mechanisms of action and molecular regulatory pathways of ferroptosis in hepatocellular carcinoma (HCC) have not been fully elucidated. Therefore, deciphering the role of ferroptosis and its mechanisms in HCC progression is crucial for treating the disease. In this review, we introduce the morphological features and biochemical functions of ferroptosis, outline the molecular regulatory pathways of ferroptosis, and highlights the therapeutic potential of ferroptosis inhibitors and modulators to target it in HCC.
Collapse
Affiliation(s)
- Shanjie Tu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Yuchao Zou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Meiqi Yang
- Liaoning University of Traditional Chinese Medicine Xinglin College, Shenyang, Liaoning, PR China
| | - Xinlei Zhou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Xu Zheng
- The First Affiliated Hospital of Henan University of TCM, Zhengzhou, Henan, PR China
| | - Yuwei Jiang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Haoran Wang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Buyang Chen
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Qianyu Qian
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Xiaobing Dou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China.
| | - Jianfeng Bao
- The Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China.
| | - Lulu Tian
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
9
|
Arosio P, Cairo G, Bou-Abdallah F. A Brief History of Ferritin, an Ancient and Versatile Protein. Int J Mol Sci 2024; 26:206. [PMID: 39796064 PMCID: PMC11719527 DOI: 10.3390/ijms26010206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Ferritin, a highly conserved iron storage protein, is among the earliest proteins that have been purified, named, and characterized due to its unique properties that continue to captivate researchers. Ferritin is composed of 24 subunits that form an almost spherical shell delimiting a cavity where thousands of iron atoms can be stored in a nontoxic ferric form, thereby preventing cytosolic iron from catalyzing oxidative stress. Mitochondrial and extracellular ferritin have also been described and characterized, with the latter being associated with several signaling functions. In addition, serum ferritin serves as a reliable indicator of both iron stores and inflammatory conditions. First identified and purified through crystallization in 1937, ferritin has since drawn significant attention for its critical role in iron metabolism and regulation. Its unique structural features have recently been exploited for many diverse biological and technological applications. To date, more than 40,000 publications have explored this remarkable protein. Here, we present a historical overview, tracing its journey from discovery to current applications and highlighting the evolution of biochemical techniques developed for its structure-function characterization over the past eight decades.
Collapse
Affiliation(s)
- Paolo Arosio
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Gaetano Cairo
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy;
| | - Fadi Bou-Abdallah
- Department of Chemistry, State University of New York at Potsdam, Potsdam, NY 13676, USA;
| |
Collapse
|
10
|
Lu S, Liu Z, Qi M, Wang Y, Chang L, Bai X, Jiao Y, Chen X, Zhen J. Ferroptosis and its role in osteoarthritis: mechanisms, biomarkers, and therapeutic perspectives. Front Cell Dev Biol 2024; 12:1510390. [PMID: 39744014 PMCID: PMC11688369 DOI: 10.3389/fcell.2024.1510390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/04/2024] [Indexed: 01/04/2025] Open
Abstract
Osteoarthritis (OA) is one of the leading causes of disability worldwide, characterized by a complex pathological process involving cartilage degradation, synovial inflammation, and subchondral bone remodeling. In recent years, ferroptosis, a form of programmed cell death driven by iron-dependent lipid peroxidation, has been recognized as playing a critical role in the onset and progression of OA. Investigating the molecular mechanisms of ferroptosis and its involvement in OA may offer novel strategies for diagnosing and treating this disease. This review first outlines the core mechanisms of ferroptosis, with a particular focus on the roles of critical molecules such as Glutathione Peroxidase 4 (GPX4), Transferrin Receptor 1 (TfR1), and Nuclear Receptor Coactivator 4 (NCOA4). Subsequently, this study examines the specific impacts of ferroptosis on the pathophysiology of OA. Building on this, the potential of ferroptosis-related biomarkers for OA diagnosis and treatment is highlighted, along with proposed therapeutic strategies targeting ferroptosis regulation. This review aims to deepen the understanding of ferroptosis mechanisms and advance the clinical application of regulatory therapies for OA.
Collapse
Affiliation(s)
- Shanyu Lu
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Imaging, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, Shanxi, China
| | - Zhenyu Liu
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Imaging, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, Shanxi, China
| | - Meiling Qi
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Imaging, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, Shanxi, China
| | - Yingchao Wang
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Imaging, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Le Chang
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Imaging, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaolong Bai
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Imaging, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yingguang Jiao
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Imaging, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xinyao Chen
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Imaging, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Junping Zhen
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Imaging, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Molecular Imaging Laboratory, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
11
|
Gómez Hernández M, Soto-Ospina A, Osorio CA, Villegas-Lanau A. Structural Analysis of Variants of the Ferritin Light Chain Protein and Its Relationship with Neuroferritinopathy. ACS Chem Neurosci 2024; 15:4402-4417. [PMID: 39641997 DOI: 10.1021/acschemneuro.4c00400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024] Open
Abstract
Ferritin is a highly conserved spherical protein that stores iron and possesses triple and quadruple symmetry input ports. Additionally, it is composed of light chains that can be affected by post-translational mutations, reducing the iron storage capacity in the brain and leading to neuroferritinopathy, which is a rare disease with limited bioinformatics data. In this study, we analyzed the biochemical mechanism of different ferritin mutations reported in the literature, through the characterization and determination of the in silico structural model by searching databases, implementing bioinformatics programs such as Jalview, NetNGlyc 1.0, NetOGlyc 3.1, and three-dimensional structure predictors with machine learning such as Alphafold, demonstrating the generation of hairpin and steric hindrances that hinder the aggregation of subunits and changes in the size and arrangement of quadruple and triple entry holes of the A96T mutation compared to the wild-type protein, since in the quadruple entry hole, a decrease in area is observed compared to the wild-type protein and the triple entry hole has a decrease in distance measurements of 6.504 Å. This possibly affects the functionality of the protein, thus releasing high concentrations of iron in the brain and causing neurodegeneration.
Collapse
Affiliation(s)
- Madelin Gómez Hernández
- School of Microbiology, Neuroscience Group of Antioquia (GNA) and Molecular Genetics Group (GENMOL), University of Antioquia, Medellín, Antioquia 050010, Colombia
| | - Alejandro Soto-Ospina
- Chemist from the University of Antioquia, Leader of the Food Research Group (GRIAL), Faculty of Engineering, Unilasallista University Corporation, Caldas, Associate researcher of Neuroscience Group of Antioquia (GNA) and Molecular Genetics Group (GENMOL), University of Antioquia, Antioquia 50130, Colombia
| | - Cristian Andrés Osorio
- Neuroscience Group of Antioquia (GNA) and Molecular Genetics Group (GENMOL), University of Antioquia, Medellín 050010, Colombia
| | - Andrés Villegas-Lanau
- Neuroscience Group of Antioquia (GNA) and Molecular Genetics Group (GENMOL), University of Antioquia, Medellín 050010, Colombia
| |
Collapse
|
12
|
Sultana F, Ghosh A. Exploring the evolutionary landscape and structural resonances of ferritin with insights into functional significance in plant. Biochimie 2024; 227:217-230. [PMID: 39047810 DOI: 10.1016/j.biochi.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/04/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
The mineral iron plays a crucial role in facilitating the optimal functioning of numerous biological processes within the cellular environment. These processes involve the transportation of oxygen, energy production, immune system functioning, cognitive abilities, and muscle function. However, it is crucial to note that excessive levels of iron can result in oxidative damage within cells, primarily through Fenton reactions. Iron availability and toxicity present significant challenges that have been addressed through evolution. Ferritin is an essential protein that stores iron and is divided into different subfamilies, including DNA-binding proteins under starvation (Dps), bacterioferritin, and classical ferritin. Ferritin plays a critical role in maintaining cellular balance and protecting against oxidative damage. This study delves into ferritin's evolutionary dynamics across diverse taxa, emphasizing structural features and regulatory mechanisms. Insights into ferritin's evolution and functional diversity are gained through phylogenetic and structural analysis in bacterial Dps, bacterioferritin, and classical ferritin proteins. Additionally, the involvement of ferritin in plant stress responses and development is explored. Analysis of ferritin gene expression across various developmental stages and stress conditions provides insights into its regulatory roles. This comprehensive exploration enhances our understanding of ferritin's significance in plant biology, offering insights into its evolutionary history, structural diversity, and protective mechanisms against oxidative stress.
Collapse
Affiliation(s)
- Fahmida Sultana
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Ajit Ghosh
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh.
| |
Collapse
|
13
|
Khazaei M, Ardeshir RA. Protective effects of sulfated polysaccharides from Enteromorpha intestinalis on oxidative stress, liver iron overload and Ferroptosis in Zebra fish exposed to ethanol. Biomed Pharmacother 2024; 181:117715. [PMID: 39615168 DOI: 10.1016/j.biopha.2024.117715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/13/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
The study investigates the protective effects of sulfated polysaccharides extracted from Enteromorpha intestinalis (EIP) against oxidative stress, liver iron overload, and ferroptosis in zebrafish exposed to ethanol, a model for alcohol-related liver disease (ALD). The extracted polysaccharides were characterized for sulfate and sugar content, molecular weight, and functional groups. Adult male zebrafish were divided into three groups: control, ethanol-exposed (EE) (0.2 % ethanol (v/v) in the water), and ethanol-exposed with EIP supplementation (1 % EIP incorporated into the basal diet) (EE+EIP) for 30 days. The study measured liver oxidative stress indexes, serum enzymological indexes, liver and serum lipid profiles, liver iron ion content, and expression of ferroptosis-related genes. Histological analysis was conducted to assess lipid accumulation and iron deposition in liver tissues. The findings indicate that EIP supplementation significantly mitigates ethanol-induced liver damage. Specifically, EIP reduced malondialdehyde levels, increased antioxidant enzyme and non-enzymatic antioxidant activity, and decreased iron ion accumulation and the area of iron granules in the liver tissue. Additionally, EIP treatment lowered lipids levels and aminotransferase enzyme activity in the serum. In the ALD model, EIP inhibited ethanol-induced ferroptosis by modulating the expression of key genes: it decreased the expression of transferrin (tf), transferrin receptor (tfr), ferroportin (fpn), and ferritin heavy chain (fth), while increasing the expression of glutathione peroxidase 4 (gpx4) and solute carrier family 7 member 11 (slc7a11). EIP has protective effects against ethanol-induced liver injury in zebrafish, offering a foundation for further research into its hepatoprotective action and potential application in preventing and treating ALD.
Collapse
Affiliation(s)
- Marziyeh Khazaei
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russian Federation.
| | - Rashid Alijani Ardeshir
- Marine Biotechnology Department, College of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran.
| |
Collapse
|
14
|
Guo MMH, Kuo HC. Promising biomarkers of Kawasaki disease: markers that aid in diagnosis. Expert Rev Mol Diagn 2024:1-13. [PMID: 39556196 DOI: 10.1080/14737159.2024.2432025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/29/2024] [Accepted: 11/17/2024] [Indexed: 11/19/2024]
Abstract
INTRODUCTION Currently the diagnosis of Kawasaki disease is still heavily reliant on clinical criteria which may be subject to interpretation or mimic other common febrile diseases of childhood. Biomarkers that can aid in the accurate and timely diagnosis of KD are of great clinical utility. AREAS COVERED A literature search of PubMed was performed using the key words: Kawasaki disease, diagnosis, biomarkers, proteomics and transcriptomics. In this article we review biomarkers that are widely clinically available including NT-ProBNP and ferritin. We also include promising novel biomarkers that have been identified through newer transcriptomic and proteomic techniques. EXPERT OPINION While the identification of biomarkers that can accurately assist in diagnosing patients with KD is a promising field of research, more still remains to be done to in order to validate new biomarkers in larger cohorts, and to set standardized cutoff values for potential biomarkers that are currently clinically available. Further research is needed before KD biomarkers that are consistent, readily available, and cost-effective can be a clinical reality.
Collapse
Affiliation(s)
- Mindy Ming-Huey Guo
- Department of Pediatrics and Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ho-Chang Kuo
- Department of Pediatrics and Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
15
|
Hao Z, Guo X, Wang Y, Yang G. Physical Activity Reduces Metabolic Risk via Iron Metabolism: Cross-National Evidence Using the Triglyceride-Glucose Index. Metabolites 2024; 14:651. [PMID: 39728432 DOI: 10.3390/metabo14120651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Purpose: Studies suggest that the triglyceride-glucose index (TyG) is a novel and comprehensive marker of metabolic health. While most research indicates that increased physical activity (PA) is linked to improved metabolic health, some studies argue that the previous markers may not fully capture this relationship. This study uses TyG as a marker of metabolic health to examine the association between PA and TyG. Methods: Data are from cross-sectional surveys in three large population studies in China and the United States: CHARLS, CHNS, and NHANES. Regression models were applied to analyze the relationship between PA and TyG, with covariates adjusted in a stepwise manner. Stratified analysis was used to explore this relationship among different population groups, and, since it has been suggested that iron metabolism plays an important role in metabolic health, it was used as a mediating variable to construct a mediation model for analysis and discussion. Results: Higher PA was significantly associated with lower TyG levels across all three databases (p < 0.001), and this relationship remained robust after full adjustment for covariates. This negative association was more pronounced in older males (over 45 years). Iron metabolism also mediated this relationship, with mediation proportions ranging from 10% to 12.5%. Conclusions: There is a significant inverse association between PA and TyG, suggesting a link between increased PA and metabolic health, with iron metabolism moderating this relationship, especially among older males.
Collapse
Affiliation(s)
- Zikang Hao
- School of Physical Education, Shandong University, Jinan 250061, China
- Laboratory of Exercise Science, Ocean University of China, Qingdao 261000, China
| | - Xinmeng Guo
- School of Physical Education, Shandong University, Jinan 250061, China
| | - Yitao Wang
- Kunshan Hospital of Traditional Chinese Medicine, Nanjing University of Traditional Chinese Medicine, Kunshan 215300, China
- School of Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Guang Yang
- Kunshan Hospital of Traditional Chinese Medicine, Nanjing University of Traditional Chinese Medicine, Kunshan 215300, China
- School of Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
16
|
Wang Y, Cao X, Yang C, Fan J, Zhang X, Wu X, Guo W, Sun S, Liu M, Zhang L, Li T. Ferroptosis and immunosenescence in colorectal cancer. Semin Cancer Biol 2024; 106-107:156-165. [PMID: 39419366 DOI: 10.1016/j.semcancer.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Colorectal cancer (CRC), ranked as the globe's third leading malignancy. Despite advancements in therapeutic approaches, the mortality rate remains distressingly high for those afflicted with advanced stages of the disease. Ferroptosis is a programmed form of cell death. The ways of ferroptosis mainly include promoting the accumulation of cellular ROS and increasing the level of cellular Labile iron pool (LIP). Immunosenescence is characterized by a gradual deterioration of the immune system's ability to respond to pathogens and maintain surveillance against cancer cells. In CRC, this decline is exacerbated by the tumor microenvironment, which can suppress the immune response and promote tumor progression. This paper reviews the relationship between iron prolapse and immune senescence in colorectal cancer, focusing on the following aspects: firstly, the different pathways that induce iron prolapse in colorectal cancer; secondly, immune-immune senescence in colorectal cancer; and lastly, the interactions between immune senescence and iron prolapse in colorectal cancer, e.g., immune-immune senescent cells often exhibit increased oxidative stress, leading to the accumulation of ROS, and consequently to lipid peroxidation and induction of iron-induced cell death. At the same time, ferroptosis induces immune cell senescence as well as alterations in the immune microenvironment by promoting the death of damaged or diseased cells and leading to the inflammation usually associated with it. In conclusion, by exploring the potential targets of ferroptosis and immune senescence in colorectal cancer therapy, we hope to provide a reference for future research.
Collapse
Affiliation(s)
- Yao Wang
- Inpatient ward 8, General Surgery, Harbin Medical University Affiliated Second Hospital, Harbin 150000, China
| | - Xinran Cao
- Graduate School, Hebei North University, Zhangjiakou 075000, China
| | - Chunbaixue Yang
- Graduate School, Hebei North University, Zhangjiakou 075000, China
| | - Jianchun Fan
- Institute of Cancer, The First Affiliated Hospital of Hebei North University, Hebei 075000, China
| | - Xingmei Zhang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China.
| | - Xueliang Wu
- Institute of Cancer, The First Affiliated Hospital of Hebei North University, Hebei 075000, China; Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, China.
| | - Wei Guo
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Shoutian Sun
- Department of Emergency, Zibo Central Hospital, Zibo 255024, China.
| | - Ming Liu
- General Surgery, Harbin Medical University Affiliated Fourth Hospital, Harbin 150000, China.
| | - Lifen Zhang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
17
|
Yao Z, Jiao Q, Du X, Jia F, Chen X, Yan C, Jiang H. Ferroptosis in Parkinson's disease -- The iron-related degenerative disease. Ageing Res Rev 2024; 101:102477. [PMID: 39218077 DOI: 10.1016/j.arr.2024.102477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/16/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Parkinson's disease (PD) is a prevalent and advancing age-related neurodegenerative disorder, distinguished by the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Iron regional deposit in SNpc is a significant pathological characteristic of PD. Brain iron homeostasis is precisely regulated by iron metabolism related proteins, whereas disorder of these proteins can damage neurons and glial cells in the brain. Additionally, growing studies have reported iron metabolism related proteins are involved in the ferroptosis progression in PD. However, the effect of these proteins in the ferroptosis of PD has not been systematically summarized. This review focuses on the roles of iron metabolism related proteins in the ferroptosis of PD. Finally, we put forward the iron early diagnosis according to the observation of iron deposits in the brain and showed the recent advances in iron chelation therapy in PD.
Collapse
Affiliation(s)
- Zhengyang Yao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Fengju Jia
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Chunling Yan
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Hong Jiang
- Qingdao Key Laboratory of Neurorehabilitation, University of Health and Rehabilitation Sciences, Qingdao, 266113, China.
| |
Collapse
|
18
|
Wang X, Lenartowicz M, Mazgaj R, Ogłuszka M, Szkopek D, Zaworski K, Kopeć Z, Żelazowska B, Lipiński P, Woliński J, Starzyński RR. Preterm Piglets Born by Cesarean Section as a Suitable Animal Model for the Study of Iron Metabolism in Premature Infants. Int J Mol Sci 2024; 25:11215. [PMID: 39456997 PMCID: PMC11508764 DOI: 10.3390/ijms252011215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Preterm infants are most at risk of iron deficiency. However, our knowledge of the regulation of iron homeostasis in preterm infants is poor. The main goal of our research was to develop and validate an animal model of human prematurity to assess iron status in preterm infants. We performed a cesarean section on sows on the 109th day of pregnancy, which corresponds to the last trimester of human pregnancy. Preterm piglets showed decreased body weight, red blood cell indices, plasma iron level and transferrin saturation. Interestingly, higher hepatic and splenic non-heme iron content and plasma and hepatic ferritin levels were found in premature piglets compared with term ones. In addition, premature piglets showed higher mRNA levels of iron-regulatory hormone hepcidin in the liver than term animals, which have not been reflected in higher plasma hepcidin-25 levels. We also showed changes in hepcidin regulators, including hepatic bone morphogenetic protein 6, plasma erythroferrone and growth differentiation factor 15 in preterm piglets. Consequently, no difference was observed in iron-exporter ferroportin levels in the spleen and liver. Overall, it seems that premature piglets show a pattern of iron metabolism characteristic of functional iron deficiency and iron accumulation in the tissue.
Collapse
Affiliation(s)
- Xiuying Wang
- Laboratory of Iron Molecular Biology, Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (X.W.); (R.M.); (Z.K.); (B.Ż.); (P.L.)
| | - Małgorzata Lenartowicz
- Laboratory of Genetics and Evolutionism, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Kraków, Poland
| | - Rafał Mazgaj
- Laboratory of Iron Molecular Biology, Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (X.W.); (R.M.); (Z.K.); (B.Ż.); (P.L.)
| | - Magdalena Ogłuszka
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland;
| | - Dominika Szkopek
- Laboratory of Large Animal Models, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland; (D.S.); (J.W.)
| | - Kamil Zaworski
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland;
| | - Zuzanna Kopeć
- Laboratory of Iron Molecular Biology, Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (X.W.); (R.M.); (Z.K.); (B.Ż.); (P.L.)
| | - Beata Żelazowska
- Laboratory of Iron Molecular Biology, Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (X.W.); (R.M.); (Z.K.); (B.Ż.); (P.L.)
| | - Paweł Lipiński
- Laboratory of Iron Molecular Biology, Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (X.W.); (R.M.); (Z.K.); (B.Ż.); (P.L.)
| | - Jarosław Woliński
- Laboratory of Large Animal Models, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland; (D.S.); (J.W.)
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland;
| | - Rafał Radosław Starzyński
- Laboratory of Iron Molecular Biology, Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (X.W.); (R.M.); (Z.K.); (B.Ż.); (P.L.)
| |
Collapse
|
19
|
Sharawy N, Aboulhoda B, Khalifa M, Morcos G, Morsy S, Alghamdi M, Khalifa I, Abd Algaleel W. Amelioration of nephrotoxicity by targeting ferroptosis: role of NCOA4, IREB2, and SLC7a11 signaling. Braz J Med Biol Res 2024; 57:e13116. [PMID: 39383377 PMCID: PMC11463912 DOI: 10.1590/1414-431x2024e13116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/29/2024] [Indexed: 10/11/2024] Open
Abstract
Nephrotoxicity is a common complication that limits the clinical utility of cisplatin. Ferroptosis is an iron-dependent necrotic cell death program that is mediated by phospholipid peroxidation. The molecular mechanisms that disrupt iron homeostasis and lead to ferroptosis are yet to be elucidated. In this study, we aimed to investigate the involvement of nuclear receptor coactivator 4 (NCOA4), a selective cargo receptor that mediates ferroptosis and autophagic degradation of ferritin in nephrotoxicity. Adult male Sprague-Dawley rats were randomly-assigned to four groups: control group, cisplatin (Cis)-treated group, deferiprone (DEF)-treated group, and Cis+DEF co-treated group. Serum, urine, and kidneys were isolated to perform biochemical, morphometric, and immunohistochemical analysis. Iron accumulation was found to predispose to ferroptotic damage of the renal tubular cells. Treatment with deferiprone highlights the role of ferroptosis in nephrotoxicity. Upregulation of NCOA4 in parallel with low ferritin level in renal tissue seems to participate in iron-induced ferroptosis. This study indicated that ferroptosis may participate in cisplatin-induced tubular cell death and nephrotoxicity through iron-mediated lipid peroxidation. Iron dyshomeostasis could be attributed to NCOA4-mediated ferritin degradation.
Collapse
Affiliation(s)
- N. Sharawy
- Department of Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - B.E. Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - M.M. Khalifa
- Department of Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Human Physiology, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - G.N. Morcos
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Basic Medical Sciences, Faculty of Medicine, King Salman International University, South Sinai, Sinai, Egypt
| | - S.A.A.G. Morsy
- Pathological Sciences Department, MBBS Program, Fakeeh College for Medical Sciences, Jeddah, 21461, Saudi Arabia
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - M.A. Alghamdi
- College of Medicine, King Khalid University, Abha, 62529, Saudi Arabia
- Genomics and Personalized Medicine Unit, The Center for Medical and Health Research, King Khalid University, Abha, 62529, Saudi Arabia
| | - I.M. Khalifa
- Clinical Sciences Department, MBBS Program, Fakeeh College for Medical Sciences, Jeddah, 21461, Saudi Arabia
- Department of Internal Medicine, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - W.A. Abd Algaleel
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Faculty of Medicine, Galala University, Suez, Egypt
| |
Collapse
|
20
|
Bou-Abdallah F, Boumaiza M, Srivastava AK. Effects of ferritin iron loading, subunit composition, and the NCOA4-iron sulfur cluster on ferritin-NCOA4 interactions: An isothermal titration calorimetry study. Int J Biol Macromol 2024; 278:135044. [PMID: 39182888 DOI: 10.1016/j.ijbiomac.2024.135044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Ferritin is a 24-mer protein nanocage that stores iron and regulates intracellular iron homeostasis. The nuclear receptor coactivator-4 (NCOA4) binds specifically to ferritin H subunits and facilitates the autophagic trafficking of ferritin to the lysosome for degradation and iron release. Using isothermal titration calorimetry (ITC), we studied the thermodynamics of the interactions between ferritin and the soluble fragment of NCOA4 (residues 383-522), focusing on the effects of the recently identified FeS cluster bound to NCOA4, ferritin subunit composition, and ferritin-iron loading. Our findings show that in the presence of the FeS cluster, the binding is driven by a more favorable enthalpy change and a decrease in entropy change, indicating a key role for the FeS cluster in the structural organization and stability of the complex. The ferritin iron core further enhances this association, increasing binding enthalpy and stabilizing the NCOA4-ferritin complex. The ferritin subunit composition primarily affects binding stoichiometry of the reaction based on the number of H subunits in the ferritin H/L oligomer. Our results demonstrate that both the FeS cluster and the ferritin iron core significantly affect the binding thermodynamics of the NCOA4-ferritin interactions, suggesting regulatory roles for the FeS cluster and ferritin iron content in ferritinophagy.
Collapse
Affiliation(s)
- Fadi Bou-Abdallah
- Department of Chemistry, State University of New York, Potsdam, NY 13676, USA.
| | - Mohamed Boumaiza
- Department of Chemistry, State University of New York, Potsdam, NY 13676, USA
| | - Ayush K Srivastava
- Department of Chemistry, State University of New York, Potsdam, NY 13676, USA
| |
Collapse
|
21
|
Kron NS, Fieber LA, Baker L, Campbell C, Schmale MC. Host response to Aplysia Abyssovirus 1 in nervous system and gill. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 159:105211. [PMID: 38885747 PMCID: PMC11378725 DOI: 10.1016/j.dci.2024.105211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
The California sea hare (Aplysia californica) is a model for age associated cognitive decline. Recent researched identified a novel nidovirus, Aplysia Abyssovirus 1, with broad tropism enriched in the Aplysia nervous system. This virus is ubiquitous in wild and maricultured, young and old animals without obvious pathology. Here we re-evaluated gene expression data from several previous studies to investigate differential expression in the nervous system and gill in response to virus and aging as well as the mutational spectrum observed in the viral sequences obtained from these datasets. Viral load and age were highly correlated, indicating persistent infection. Upregulated genes in response to virus were enriched for immune genes and signatures of ER and proteostatic stress, while downregulated genes were enriched for mitochondrial metabolism. Differential expression with respect to age suggested increased iron accumulation and decreased glycolysis, fatty acid metabolism, and proteasome function. Interaction of gene expression trends associated with viral infection and aging suggest that viral infection likely plays a role in aging in the Aplysia nervous system. Mutation analysis of viral RNA identified signatures suggesting ADAR and AID/APOBEC like deaminase act as part of Aplysia anti-viral defense.
Collapse
Affiliation(s)
- Nicholas S Kron
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA.
| | - Lynne A Fieber
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA
| | - Lydia Baker
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA
| | | | - Michael C Schmale
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA
| |
Collapse
|
22
|
Zhang R, Zhang L, Fan S, Wang L, Wang B, Wang L. Squalene monooxygenase (SQLE) protects ovarian cancer cells from ferroptosis. Sci Rep 2024; 14:22646. [PMID: 39349544 PMCID: PMC11442994 DOI: 10.1038/s41598-024-72506-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 09/09/2024] [Indexed: 10/02/2024] Open
Abstract
Altered cholesterol metabolism has been linked to a poor prognosis in various types of cancer. Cholesterol oxidation can lead to lipid peroxidation, membrane damage, and cell death. Ferroptosis is a regulated form of cell death characterized by the accumulation of lipid peroxides, which significantly inhibits the growth of ovarian cancer cells. SQLE is the primary enzyme responsible for catalyzing cholesterol lipid synthesis and is notably expressed in ovarian cancer tissues and cells. This study aims to investigate the role of squalene monooxygenase (SQLE) in ferroptosis in ovarian cancer. The protein and mRNA expression of SQLE was assessed using qRT-PCR, Western Blot, and immunohistochemistry. The association between SQLE and ferroptosis was demonstrated through analysis of TCGA and GTEx databases, TMT protein sequencing, as well as validation by qRT-PCR, Western Blot, immunofluorescence, ROS detection, and lipid peroxide detection. Animal experiments further confirmed the relationship between SQLE and ferroptosis in ovarian cancer. The protein and mRNA expression of SQLE was found to be upregulated in both ovarian cancer tissues and cell lines. Decreased SQLE expression led to ferroptosis in ovarian cancer cells, thereby increasing their sensitivity to ferroptosis inducers. Our research demonstrates that SQLE is significantly upregulated in both ovarian cancer tissues and cells. The overexpression of SQLE in ovarian cancer may facilitate tumorigenesis by conferring resistance to ferroptosis, thus shedding light on potential novel therapeutic strategies for ovarian cancer.
Collapse
Affiliation(s)
- Rong Zhang
- The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Longzih, Bengbu, Anhui, China
| | - Lingmei Zhang
- The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Longzih, Bengbu, Anhui, China
| | - Sizhe Fan
- The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Longzih, Bengbu, Anhui, China
| | - Liangliang Wang
- The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Longzih, Bengbu, Anhui, China
| | - Beibei Wang
- The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Longzih, Bengbu, Anhui, China
| | - Lihua Wang
- The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Longzih, Bengbu, Anhui, China.
| |
Collapse
|
23
|
Lu X, Liu L, Zhang H, Lu H, Tian T, Du B, Li P, Yu Y, Zhou J, Lu H. High-Yield Expressed Human Ferritin Heavy-Chain Nanoparticles in K. marxianus for Functional Food Development. Foods 2024; 13:2919. [PMID: 39335848 PMCID: PMC11431416 DOI: 10.3390/foods13182919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
The use of Generally Recognized as Safe (GRAS)-grade microbial cell factories to produce recombinant protein-based nutritional products is a promising trend in developing food and health supplements. In this study, GRAS-grade Kluyveromyces marxianus was employed to express recombinant human heavy-chain ferritin (rhFTH), achieving a yield of 11 g/L in a 5 L fermenter, marking the highest yield reported for ferritin nanoparticle proteins to our knowledge. The rhFTH formed 12 nm spherical nanocages capable of ferroxidase activity, which involves converting Fe2+ to Fe3+ for storage. The rhFTH-containing yeast cell lysates promoted cytokine secretion (tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and -1β (IL-1β)) and enhanced locomotion, pharyngeal pumping frequency, egg-laying capacity, and lifespan under heat and oxidative stress in the RAW264.7 mouse cell line and the C. elegans model, respectively, whereas yeast cell lysate alone had no such effects. These findings suggest that rhFTH boosts immunity, holding promise for developing ferritin-based food and nutritional products and suggesting its adjuvant potential for clinical applications of ferritin-based nanomedicine. The high-yield production of ferritin nanoparticles in K. marxianus offers a valuable source of ferritin for the development of ferritin-based products.
Collapse
Affiliation(s)
- Xinyi Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai 200438, China
| | - Liping Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai 200438, China
| | - Haibo Zhang
- North America Nutrition Research and Development Society, Guangzhou Aoungo Biotech Co., Ltd., Guangzhou 510310, China
| | - Haifang Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai 200438, China
| | - Tian Tian
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai 200438, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Pan Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yao Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai 200438, China
| | - Jungang Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai 200438, China
| | - Hong Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai 200438, China
| |
Collapse
|
24
|
Kopeć Z, Starzyński RR, Lenartowicz M, Grzesiak M, Opiela J, Smorąg Z, Gajda B, Nicpoń J, Ogłuszka M, Wang X, Mazgaj R, Stankiewicz A, Płonka W, Pirga-Niemiec N, Herman S, Lipiński P. Comparison of Molecular Potential for Iron Transfer across the Placenta in Domestic Pigs with Varied Litter Sizes and Wild Boars. Int J Mol Sci 2024; 25:9638. [PMID: 39273585 PMCID: PMC11395084 DOI: 10.3390/ijms25179638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Neonatal iron deficiency anemia is prevalent among domestic pigs but does not occur in the offspring of wild boar. The main causes of this disorder in piglets of modern pig breeds are paucity of hepatic iron stores, high birth weight, and rapid growth. Replenishment of fetal iron stores is a direct result of iron transfer efficiency across the placenta. In this study, we attempted to investigate the molecular potential of iron transfer across the placenta as a possible cause of differences between wild boar and Polish Large White (PLW) offspring. Furthermore, by analyzing placentas from PLW gilts that had litters of different sizes, we aimed to elucidate the impact of the number of fetuses on placental ability to transport iron. Using RNA sequencing, we examined the expression of iron-related genes in the placentas from wild boar and PLW gilts. We did not reveal significant differences in the expression of major iron transporters among all analyzed placentas. However, in wild boar placentas, we found higher expression of copper-dependent ferroxidases such as ceruloplasmin, zyklopen, and hephaestin, which facilitate iron export to the fetal circulation. We also determined a close co-localization of ceruloplasmin and zyklopen with ferroportin, the only iron exporter.
Collapse
Affiliation(s)
- Zuzanna Kopeć
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Rafał Radosław Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Małgorzata Lenartowicz
- Laboratory of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, 31-007 Kraków, Poland
| | - Małgorzata Grzesiak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, 31-007 Krakow, Poland
| | - Jolanta Opiela
- National Research Institute of Animal Production, 32-083 Balice, Poland
| | - Zdzisław Smorąg
- National Research Institute of Animal Production, 32-083 Balice, Poland
| | - Barbara Gajda
- National Research Institute of Animal Production, 32-083 Balice, Poland
| | - Jakub Nicpoń
- Department of Surgery, Faculty of Veterinary Sciences, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | - Magdalena Ogłuszka
- Department of Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Xiuying Wang
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Rafał Mazgaj
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Adrian Stankiewicz
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Wiktoria Płonka
- Laboratory of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, 31-007 Kraków, Poland
| | - Natalia Pirga-Niemiec
- Laboratory of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, 31-007 Kraków, Poland
| | - Sylwia Herman
- Laboratory of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, 31-007 Kraków, Poland
| | - Paweł Lipiński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| |
Collapse
|
25
|
Elmorsy EA, Saber S, Hamad RS, Abdel-Reheim MA, El-Kott AF, AlShehri MA, Morsy K, Negm S, Youssef ME. Mechanistic insights into carvedilol's potential protection against doxorubicin-induced cardiotoxicity. Eur J Pharm Sci 2024; 200:106849. [PMID: 38992452 DOI: 10.1016/j.ejps.2024.106849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Doxorubicin (DOX) is an anthracycline chemotherapy drug widely employed in the treatment of various cancers, known for its potent antineoplastic properties but often associated with dose-dependent cardiotoxicity, limiting its clinical use. This review explores the complex molecular details that determine the heart-protective effectiveness of carvedilol in relation to cardiotoxicity caused by DOX. The harmful effects of DOX on heart cells could include oxidative stress, DNA damage, iron imbalance, disruption of autophagy, calcium imbalance, apoptosis, dysregulation of topoisomerase 2-beta, arrhythmogenicity, and inflammatory responses. This review carefully reveals how carvedilol serves as a strong protective mechanism, strategically reducing each aspect of cardiac damage caused by DOX. Carvedilol's antioxidant capabilities involve neutralizing free radicals and adjusting crucial antioxidant enzymes. It skillfully manages iron balance, controls autophagy, and restores the calcium balance essential for cellular stability. Moreover, the anti-apoptotic effects of carvedilol are outlined through the adjustment of Bcl-2 family proteins and activation of the Akt signaling pathway. The medication also controls topoisomerase 2-beta and reduces the renin-angiotensin-aldosterone system, together offering a thorough defense against cardiotoxicity induced by DOX. These findings not only provide detailed understanding into the molecular mechanisms that coordinate heart protection by carvedilol but also offer considerable potential for the creation of targeted treatment strategies intended to relieve cardiotoxicity caused by chemotherapy.
Collapse
Affiliation(s)
- Elsayed A Elmorsy
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraidah, 51452, Saudi Arabia; Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt.
| | - Rabab S Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia; Central Laboratory, Theodor Bilharz Research Institute, Giza 12411, Egypt.
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia; Department of Zoology, Faculty of Science, Damanhour University, Egypt
| | - Mohammed A AlShehri
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Kareem Morsy
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia; Department of Zoology, Faculty of Science, Cairo University, Cairo, Egypt
| | - Sally Negm
- Department of Life Sciences, College of Science and Art Mahyel Aseer, King Khalid University, Abha 62529, Saudi Arabia
| | - Mahmoud E Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| |
Collapse
|
26
|
Zhang Y, He F, Hu W, Sun J, Zhao H, Cheng Y, Tang Z, He J, Wang X, Liu T, Luo C, Lu Z, Xiang M, Liao Y, Wang Y, Li J, Xia J. Bortezomib elevates intracellular free Fe 2+ by enhancing NCOA4-mediated ferritinophagy and synergizes with RSL-3 to inhibit multiple myeloma cells. Ann Hematol 2024; 103:3627-3637. [PMID: 38647678 DOI: 10.1007/s00277-024-05762-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Iron contributes to tumor initiation and progression; however, excessive intracellular free Fe2+ can be toxic to cancer cells. Our findings confirmed that multiple myeloma (MM) cells exhibited elevated intracellular iron levels and increased ferritin, a key protein for iron storage, compared with normal cells. Interestingly, Bortezomib (BTZ) was found to trigger ferritin degradation, increase free intracellular Fe2+, and promote ferroptosis in MM cells. Subsequent mechanistic investigation revealed that BTZ effectively increased NCOA4 levels by preventing proteasomal degradation in MM cells. When we knocked down NCOA4 or blocked autophagy using chloroquine, BTZ-induced ferritin degradation and the increase in intracellular free Fe2+ were significantly reduced in MM cells, confirming the role of BTZ in enhancing ferritinophagy. Furthermore, the combination of BTZ with RSL-3, a specific inhibitor of GPX4 and inducer of ferroptosis, synergistically promoted ferroptosis in MM cell lines and increased cell death in both MM cell lines and primary MM cells. The induction of ferroptosis inhibitor liproxstatin-1 successfully counteracted the synergistic effect of BTZ and RSL-3 in MM cells. Altogether, our findings reveal that BTZ elevates intracellular free Fe2+ by enhancing NCOA4-mediated ferritinophagy and synergizes with RSL-3 by increasing ferroptosisin MM cells.
Collapse
Affiliation(s)
- Yanyan Zhang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Changshengxi Road 28#, Hengyang, 421001, Hunan, China
| | - Fen He
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Changshengxi Road 28#, Hengyang, 421001, Hunan, China
| | - Wei Hu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Changshengxi Road 28#, Hengyang, 421001, Hunan, China
| | - Jingqi Sun
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Changshengxi Road 28#, Hengyang, 421001, Hunan, China
| | - Hongyan Zhao
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Changshengxi Road 28#, Hengyang, 421001, Hunan, China
| | - Yuzhi Cheng
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Changshengxi Road 28#, Hengyang, 421001, Hunan, China
| | - Zhanyou Tang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Changshengxi Road 28#, Hengyang, 421001, Hunan, China
| | - Jiarui He
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Changshengxi Road 28#, Hengyang, 421001, Hunan, China
| | - Xiangyuan Wang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Changshengxi Road 28#, Hengyang, 421001, Hunan, China
| | - Tairan Liu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Changshengxi Road 28#, Hengyang, 421001, Hunan, China
| | - Cong Luo
- Department of Hematology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhongwei Lu
- Department of Hematology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Mei Xiang
- Department of Hematology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yiting Liao
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Changshengxi Road 28#, Hengyang, 421001, Hunan, China
| | - Yihao Wang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Changshengxi Road 28#, Hengyang, 421001, Hunan, China
| | - Junjun Li
- Department of Hematology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| | - Jiliang Xia
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Changshengxi Road 28#, Hengyang, 421001, Hunan, China.
| |
Collapse
|
27
|
Ricci C, Abbandonato G, Giannangeli M, Matthews L, Almásy L, Sartori B, Podestà A, Caselli A, Boffi A, Thiel G, Del Favero E, Moroni A. Ferritin at different iron loading: From biological to nanotechnological applications. Int J Biol Macromol 2024; 276:133812. [PMID: 39032902 DOI: 10.1016/j.ijbiomac.2024.133812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
The characterization of the structure of ferritin in solution and the arrangement of iron stored in its cavity are intriguing subjects for both cell biology and applied science, since the protein structure, stability, and easiness of production make it an ideal tool for biomedical applications. We characterized the ferritin structure over a wide range of iron loadings by visible light, X-ray, and neutron scattering techniques. We found that the arrangement of iron ions inside the protein cage resulted in a more disposable arrangement at lower loading factors and then in a crystalline structure. At very high iron content the inner core is composed of magnetite more than ferrihydrite, and the shell of the protein is elastically deformed by the iron crystal growth in an ellipsoidal arrangement. The application of an external radiofrequency (RF) magnetic field affected ferritins at low iron loading factors. Notably the RF modified the iron disposition towards a more dispersed arrangement. The structural characterization of the ferritin at different LFs and in presence of magnetic fields provides useful insights into their physiological behaviour and can help in the design and fine-tuning of ferritin-based nanosystems for biotechnological applications.
Collapse
Affiliation(s)
| | | | | | - Lauren Matthews
- ESRF, The European Synchrotron, 71 avenue des Martyrs, 38043 Grenoble, France
| | - László Almásy
- HUN-REN Centre for Energy Research, POB 49, Budapest 1525, Hungary
| | - Barbara Sartori
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9/4, Graz, Austria
| | - Alessandro Podestà
- Department of Physics "Aldo Pontremoli", University of Milan, Milan, Italy
| | | | - Alberto Boffi
- Department of Biochemical Sciences, Sapienza University of Rome, Italy
| | - Gerhard Thiel
- Department of Biosciences, University of Milan, Milan, Italy
| | | | - Anna Moroni
- Department of Biosciences, University of Milan, Milan, Italy
| |
Collapse
|
28
|
Yousaf N, Sardar MF, Ishfaq M, Yu B, Zhong Y, Zaman F, Zhang F, Zou C. Insights in to iron-based nanoparticles (hematite and magnetite) improving the maize growth (Zea mays L.) and iron nutrition with low environmental impacts. CHEMOSPHERE 2024; 362:142781. [PMID: 38972262 DOI: 10.1016/j.chemosphere.2024.142781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/22/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
The possible potential application of Fe-NPs on Fe nutrition, heavy metals uptake and soil microbial community needs to be investigated. In the current research, a pot experiment was used to examine the implications of Fe-NPs (α-Fe2O3 and Fe3O4) on maize growth, Fe uptake and transportation, soil microbial community, and environmental risk. Fe3O4, α-Fe2O3, FeSO4 at a rate of 800 mg Fe kg-1 were applied in soils with four replications under a completely randomized design for a period of 60 days. Results showed that Fe uptake by maize roots were increased by 107-132% than control, with obvious variations across different treatments (Fe3O4> α-Fe2O3> FeSO4> control). Similarly, plant height, leaf surface area, and biomass were increased by 40-64%, 52-91% and 38-109% respectively, with lower values by FeSO4 application. The elevated level of chlorophyll contents and carotenoids and significant effects with control on antioxidant enzymes activities (i.e., catalase, and superoxide dismutase) suggested that application of Fe-NPs improved overall biochemical processes. The differential expression of important Fe transporters (i.e., ZmYS1 and ZmFER1) as compared to control indicated the plant strategic response for efficient uptake and distribution of Fe. Importantly, Fe-NPs reduced the heavy metals uptake (i.e., chromium, cadmium, arsenic, nickel, copper) by complex formation, and showed no toxicity to the soil microbial community. In summary, the application of Fe-NPs can be a promising approach for improving crop productivity and Fe nutrition without negatively affecting soil microbial community, and fostering sustainable agricultural production.
Collapse
Affiliation(s)
- Nauman Yousaf
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, 100193 Beijing, China
| | - Muhammad Fahad Sardar
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Muhammad Ishfaq
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518061, China
| | - Baogang Yu
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, 100193 Beijing, China
| | - Yanting Zhong
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, 100193 Beijing, China
| | - Faisal Zaman
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Fusuo Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, 100193 Beijing, China
| | - Chunqin Zou
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, 100193 Beijing, China.
| |
Collapse
|
29
|
Labra-Muñoz JA, van der Zant HSJ. Ferritin Single-Electron Transistor. J Phys Chem B 2024; 128:6387-6393. [PMID: 38916107 PMCID: PMC11228996 DOI: 10.1021/acs.jpcb.4c01937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
We report on the fabrication of a single-electron transistor based on ferritin using wide self-aligned nanogap devices. A local gate below the gap area enables three-terminal electrical measurements, showing the Coulomb blockade in good agreement with the single-electron tunneling theory. Comparison with this theory allows extraction of the tunnel resistances, capacitances, and gate coupling. Additionally, the data suggest the presence of two separate islands coupled in series or in parallel: information that was not possible to distinguish by using only two-terminal measurements. To interpret the charge transport features, we propose a scenario based on the established configuration structures of ferritin involving either iron sites in the organic shell or two dissimilar clusters within the core.
Collapse
Affiliation(s)
- Jacqueline A Labra-Muñoz
- Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, The Netherlands
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
| | - Herre S J van der Zant
- Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, The Netherlands
| |
Collapse
|
30
|
Long Z, Luo Y, Yu M, Wang X, Zeng L, Yang K. Targeting ferroptosis: a new therapeutic opportunity for kidney diseases. Front Immunol 2024; 15:1435139. [PMID: 39021564 PMCID: PMC11251909 DOI: 10.3389/fimmu.2024.1435139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Ferroptosis is a form of non-apoptotic regulated cell death (RCD) that depends on iron and is characterized by the accumulation of lipid peroxides to lethal levels. Ferroptosis involves multiple pathways including redox balance, iron regulation, mitochondrial function, and amino acid, lipid, and glycometabolism. Furthermore, various disease-related signaling pathways also play a role in regulating the process of iron oxidation. In recent years, with the emergence of the concept of ferroptosis and the in-depth study of its mechanisms, ferroptosis is closely associated with various biological conditions related to kidney diseases, including kidney organ development, aging, immunity, and cancer. This article reviews the development of the concept of ferroptosis, the mechanisms of ferroptosis (including GSH-GPX4, FSP1-CoQ1, DHODH-CoQ10, GCH1-BH4, and MBOAT1/2 pathways), and the latest research progress on its involvement in kidney diseases. It summarizes research on ferroptosis in kidney diseases within the frameworks of metabolism, reactive oxygen biology, and iron biology. The article introduces key regulatory factors and mechanisms of ferroptosis in kidney diseases, as well as important concepts and major open questions in ferroptosis and related natural compounds. It is hoped that in future research, further breakthroughs can be made in understanding the regulation mechanism of ferroptosis and utilizing ferroptosis to promote treatments for kidney diseases, such as acute kidney injury(AKI), chronic kidney disease (CKD), diabetic nephropathy(DN), and renal cell carcinoma. This paves the way for a new approach to research, prevent, and treat clinical kidney diseases.
Collapse
Affiliation(s)
- Zhiyong Long
- Department of Physical Medicine and Rehabilitation, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanfang Luo
- Department of Nephrology, The Central Hospital of Shaoyang, Shaoyang, Hunan, China
| | - Min Yu
- Department of Physical Medicine and Rehabilitation, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoyan Wang
- Department of Nephrology, The Central Hospital of Shaoyang, Shaoyang, Hunan, China
| | - Liuting Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
31
|
Li J, Feng Y, Li Y, He P, Zhou Q, Tian Y, Yao R, Yao Y. Ferritinophagy: A novel insight into the double-edged sword in ferritinophagy-ferroptosis axis and human diseases. Cell Prolif 2024; 57:e13621. [PMID: 38389491 PMCID: PMC11216947 DOI: 10.1111/cpr.13621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/19/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024] Open
Abstract
Nuclear receptor coactive 4 (NCOA4), which functions as a selective cargo receptor, is a critical regulator of the particularly autophagic degradation of ferritin, a process known as ferritinophagy. Mechanistically, NCOA4-mediated ferritinophagy performs an increasingly vital role in the maintenance of intracellular iron homeostasis by promoting ferritin transport and iron release as needed. Ferritinophagy is not only involved in iron-dependent responses but also in the pathogenesis and progression of various human diseases, including metabolism-related, neurodegenerative, cardiovascular and infectious diseases. Therefore, ferritinophagy is of great importance in maintaining cell viability and function and represents a potential therapeutic target. Recent studies indicated that ferritinophagy regulates the signalling pathway associated with ferroptosis, a newly discovered type of cell death characterised by iron-dependent lipid peroxidation. Although accumulating evidence clearly demonstrates the importance of the interplay between dysfunction in iron metabolism and ferroptosis, a deeper understanding of the double-edged sword effect of ferritinophagy in ferroptosis has remained elusive. Details of the mechanisms underlying the ferritinophagy-ferroptosis axis in regulating relevant human diseases remain to be elucidated. In this review, we discuss the latest research findings regarding the mechanisms that regulate the biological function of NCOA4-mediated ferritinophagy and its contribution to the pathophysiology of ferroptosis. The important role of the ferritinophagy-ferroptosis axis in human diseases will be discussed in detail, highlighting the great potential of targeting ferritinophagy in the treatment of diseases.
Collapse
Affiliation(s)
- Jing‐Yan Li
- Department of EmergencyThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Yan‐Hua Feng
- Department of OrthopedicsHebei Provincial Chidren's HospitalShijiazhuangChina
| | - Yu‐Xuan Li
- Translational Medicine Research CenterMedical Innovation Research Division and Fourth Medical Center of the Chinese PLA General HospitalBeijingChina
| | - Peng‐Yi He
- Translational Medicine Research CenterMedical Innovation Research Division and Fourth Medical Center of the Chinese PLA General HospitalBeijingChina
| | - Qi‐Yuan Zhou
- Department of EmergencyThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Ying‐Ping Tian
- Department of EmergencyThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Ren‐Qi Yao
- Translational Medicine Research CenterMedical Innovation Research Division and Fourth Medical Center of the Chinese PLA General HospitalBeijingChina
| | - Yong‐Ming Yao
- Department of EmergencyThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
- Translational Medicine Research CenterMedical Innovation Research Division and Fourth Medical Center of the Chinese PLA General HospitalBeijingChina
| |
Collapse
|
32
|
Ryan F, Blex C, Ngo TD, Kopp MA, Michalke B, Venkataramani V, Curran L, Schwab JM, Ruprecht K, Otto C, Jhelum P, Kroner A, David S. Ferroptosis inhibitor improves outcome after early and delayed treatment in mild spinal cord injury. Acta Neuropathol 2024; 147:106. [PMID: 38907771 PMCID: PMC11193702 DOI: 10.1007/s00401-024-02758-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/28/2024] [Accepted: 06/12/2024] [Indexed: 06/24/2024]
Abstract
We show that redox active iron can induce a regulated form of non-apoptotic cell death and tissue damage called ferroptosis that can contribute to secondary damage and functional loss in the acute and chronic periods after spinal cord injury (SCI) in young, adult, female mice. Phagocytosis of red blood cells at sites of hemorrhage is the main source of iron derived from hemoglobin after SCI. Expression of hemeoxygenase-1 that induces release of iron from heme, is increased in spinal cord macrophages 7 days after injury. While iron is stored safely in ferritin in the injured spinal cord, it can, however, be released by NCOA4-mediated shuttling of ferritin to autophagosomes for degradation (ferritinophagy). This leads to the release of redox active iron that can cause free radical damage. Expression of NCOA4 is increased after SCI, mainly in macrophages. Increase in the ratio of redox active ferrous (Fe2+) to ferric iron (Fe3+) is also detected after SCI by capillary electrophoresis inductively coupled mass spectrometry. These changes are accompanied by other hallmarks of ferroptosis, i.e., deficiency in various elements of the antioxidant glutathione (GSH) pathway. We also detect increases in enzymes that repair membrane lipids (ACSL4 and LPCAT3) and thus promote on-going ferroptosis. These changes are associated with increased levels of 4-hydroxynonenal (4-HNE), a toxic lipid peroxidation product. Mice with mild SCI (30 kdyne force) treated with the ferroptosis inhibitor (UAMC-3203-HCL) either early or delayed times after injury showed improvement in locomotor recovery and secondary damage. Cerebrospinal fluid and serum samples from human SCI cases show evidence of increased iron storage (ferritin), and other iron related molecules, and reduction in GSH. Collectively, these data suggest that ferroptosis contributes to secondary damage after SCI and highlights the possible use of ferroptosis inhibitors to treat SCI.
Collapse
Affiliation(s)
- Fari Ryan
- Centre for Research in Neuroscience, The BRAiN Program, The Research Institute of the McGill University Health Centre, Livingston Hall, Room L7-210, 1650 Cedar Ave., Montreal, QC, H3G 1A4, Canada
| | - Christian Blex
- Clinical and Experimental Spinal Cord Injury Research (Neuroparaplegiology), Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - The Dung Ngo
- Clinical and Experimental Spinal Cord Injury Research (Neuroparaplegiology), Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marcel A Kopp
- Clinical and Experimental Spinal Cord Injury Research (Neuroparaplegiology), Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Vivek Venkataramani
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Laura Curran
- Centre for Research in Neuroscience, The BRAiN Program, The Research Institute of the McGill University Health Centre, Livingston Hall, Room L7-210, 1650 Cedar Ave., Montreal, QC, H3G 1A4, Canada
| | - Jan M Schwab
- Belford Center for Spinal Cord Injury and Departments of Neurology and Neurosciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Klemens Ruprecht
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Carolin Otto
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Priya Jhelum
- Centre for Research in Neuroscience, The BRAiN Program, The Research Institute of the McGill University Health Centre, Livingston Hall, Room L7-210, 1650 Cedar Ave., Montreal, QC, H3G 1A4, Canada
| | - Antje Kroner
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Samuel David
- Centre for Research in Neuroscience, The BRAiN Program, The Research Institute of the McGill University Health Centre, Livingston Hall, Room L7-210, 1650 Cedar Ave., Montreal, QC, H3G 1A4, Canada.
| |
Collapse
|
33
|
Fila M, Przyslo L, Derwich M, Luniewska-Bury J, Pawlowska E, Blasiak J. Potential of ferroptosis and ferritinophagy in migraine pathogenesis. Front Mol Neurosci 2024; 17:1427815. [PMID: 38915936 PMCID: PMC11195014 DOI: 10.3389/fnmol.2024.1427815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 05/21/2024] [Indexed: 06/26/2024] Open
Abstract
Objective To assess the potential of ferroptosis and ferritinophagy in migraine pathogenesis. Background Ferroptosis and ferritinophagy are related to increased cellular iron concentration and have been associated with the pathogenesis of several neurological disorders, but their potential in migraine pathogenesis has not been explored. Increased iron deposits in some deep brain areas, mainly periaqueductal gray (PAG), are reported in migraine and they have been associated with the disease severity and chronification as well as poor response to antimigraine drugs. Results Iron deposits may interfere with antinociceptive signaling in the neuronal network in the brain areas affected by migraine, but their mechanistic role is unclear. Independently of the location, increased iron concentration may be related to ferroptosis and ferritinophagy in the cell. Therefore, both phenomena may be related to increased iron deposits in migraine. It is unclear whether these deposits are the reason, consequence, or just a correlate of migraine. Still, due to migraine-related elevated levels of iron, which is a prerequisite of ferroptosis and ferritinophagy, the potential of both phenomena in migraine should be explored. If the iron deposits matter in migraine pathogenesis, they should be mechanically linked with the clinical picture of the disease. As iron is an exogenous essential trace element, it is provided to the human body solely with diet or supplements. Therefore, exploring the role of iron in migraine pathogenesis may help to determine the potential role of iron-rich/poor dietary products as migraine triggers or relievers. Conclusion Ferroptosis and ferritinophagy may be related to migraine pathogenesis through iron deposits in the deep areas of the brain.
Collapse
Affiliation(s)
- Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother’s Memorial Hospital Research Institute, Lodz, Poland
| | - Lukasz Przyslo
- Department of Developmental Neurology and Epileptology, Polish Mother’s Memorial Hospital Research Institute, Lodz, Poland
| | - Marcin Derwich
- Department of Developmental Dentistry, Medical University of Lodz, Lodz, Poland
| | | | - Elzbieta Pawlowska
- Department of Developmental Dentistry, Medical University of Lodz, Lodz, Poland
| | - Janusz Blasiak
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, Plock, Poland
| |
Collapse
|
34
|
Pandey KK, Sahoo BR, Pattnaik AK. Protein Nanoparticles as Vaccine Platforms for Human and Zoonotic Viruses. Viruses 2024; 16:936. [PMID: 38932228 PMCID: PMC11209504 DOI: 10.3390/v16060936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Vaccines are one of the most effective medical interventions, playing a pivotal role in treating infectious diseases. Although traditional vaccines comprise killed, inactivated, or live-attenuated pathogens that have resulted in protective immune responses, the negative consequences of their administration have been well appreciated. Modern vaccines have evolved to contain purified antigenic subunits, epitopes, or antigen-encoding mRNAs, rendering them relatively safe. However, reduced humoral and cellular responses pose major challenges to these subunit vaccines. Protein nanoparticle (PNP)-based vaccines have garnered substantial interest in recent years for their ability to present a repetitive array of antigens for improving immunogenicity and enhancing protective responses. Discovery and characterisation of naturally occurring PNPs from various living organisms such as bacteria, archaea, viruses, insects, and eukaryotes, as well as computationally designed structures and approaches to link antigens to the PNPs, have paved the way for unprecedented advances in the field of vaccine technology. In this review, we focus on some of the widely used naturally occurring and optimally designed PNPs for their suitability as promising vaccine platforms for displaying native-like antigens from human viral pathogens for protective immune responses. Such platforms hold great promise in combating emerging and re-emerging infectious viral diseases and enhancing vaccine efficacy and safety.
Collapse
Affiliation(s)
- Kush K. Pandey
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (K.K.P.); (B.R.S.)
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Bikash R. Sahoo
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (K.K.P.); (B.R.S.)
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Asit K. Pattnaik
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (K.K.P.); (B.R.S.)
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
35
|
Wang X, Kang C, Guo W, Zhang H, Xiao Q, Hao W. Chlormequat Chloride Inhibits TM3 Leydig Cell Growth via Ferroptosis-Initiated Inflammation. Cells 2024; 13:979. [PMID: 38891111 PMCID: PMC11171675 DOI: 10.3390/cells13110979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Ferroptosis hallmarked by lipid peroxidation and iron homeostasis imbalance is involved in the occurrence and development of various diseases. The plant growth regulator chlormequat chloride (CCC) can contribute to the causality and exacerbation of reproductive disorders. However, the mechanism by which CCC may cause Leydig cell attenuation remains poorly understood. In this study, TM3 Leydig cells were used to investigate the inhibitory effect of CCC on cell growth and its possible mechanism. The results showed that CCC caused apoptosis, pyroptosis, ferroptosis and necroinflammation in TM3 cells. By comparing the effects of ferroptosis inhibitor Ferrostatin-1 (Fer-1) and pan-Caspase inhibitor Z-VAD-FMK (ZVF) on lipid peroxidation and Caspase-mediated regulated cell death (RCD), we found that Fer-1 was better at rescuing the growth of TM3 cells than ZVF. Although ZVF reduced mitochondrial ROS level and inhibited the activation of Caspase3 and Caspase1, it could not significantly ameliorate lipid peroxidation and the levels of IL-1β and HMGB1 like Fer-1. Therefore, ferroptosis might be a key non apoptotic RCD mode responsible for CCC-driven inflammation, leading to weakened viability and proliferation of TM3 cells. In addition, overexpression of ferritin light chain (FTL) promoted the resistance of TM3 cells to CCC-induced ferroptosis-mediated inflammation and to some extent improved the inhibition of viability and proliferation. Altogether, ferroptosis-initiated inflammation might play a key role in CCC-impaired TM3 cell growth.
Collapse
Affiliation(s)
- Xiaoxia Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (X.W.); (C.K.); (W.G.); (H.Z.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China
| | - Chenping Kang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (X.W.); (C.K.); (W.G.); (H.Z.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China
| | - Wanqian Guo
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (X.W.); (C.K.); (W.G.); (H.Z.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China
| | - Haoran Zhang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (X.W.); (C.K.); (W.G.); (H.Z.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China
| | - Qianqian Xiao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (X.W.); (C.K.); (W.G.); (H.Z.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (X.W.); (C.K.); (W.G.); (H.Z.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China
| |
Collapse
|
36
|
Sun Y, Zhang J. HMOX1 regulates ferroptosis via mic14 and its impact on chemotherapy resistance in small-cell lung cancer. Anticancer Drugs 2024; 35:397-411. [PMID: 38527419 DOI: 10.1097/cad.0000000000001588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
This study aimed to investigate the role and molecular mechanism of heme oxygenase-1 (HMOX1) in chemotherapy resistance in small-cell lung cancer (SCLC). Employed bioinformatics, qPCR, and Western Blot to assess HMOX1 levels in SCLC versus normal tissues and its prognostic relevance. CCK-8, flow cytometry, and thiobarbituric acid assays determined HMOX1's impact on SCLC chemosensitivity, ferroptosis markers, lipid peroxidation, and mic14's role in chemoresistance. In the GSE40275 and GSE60052 cohorts, HMOX1 expression was downregulated in SCLC tissues compared to normal tissues. Higher HMOX1 expression was associated with improved prognosis in the Sun Yat-sen University Cancer Hospital cohort and GSE60052 cohort. The RNA and protein levels of HMOX1 were reduced in drug-resistant SCLC cell lines compared to chemosensitive cell lines. Upregulation of HMOX1 increased chemosensitivity and reduced drug resistance in SCLC, while downregulation of HMOX1 decreased chemosensitivity and increased drug resistance. Upregulation of HMOX1 elevated the expression of ferroptosis-related proteins ACSL4, CD71, Transferrin, Ferritin Heavy Chain, and Ferritin Light Chain, while decreasing the expression of GPX4 and xCT. Conversely, downregulation of HMOX1 decreased the expression of ACSL4, CD71, Transferrin, Ferritin Heavy Chain, and Ferritin Light Chain, while increasing the expression of GPX4 and xCT. Upregulation of HMOX1 promoted cellular lipid peroxidation, whereas downregulation of HMOX1 inhibited cellular lipid peroxidation. Upregulation of HMOX1 reduced the RNA level of mic14, while downregulation of HMOX1 increased the RNA level of mic14. mic14 exhibited inhibitory effects on cellular lipid peroxidation in SCLC cells and contributed to reduced chemosensitivity and increased drug resistance in chemoresistant SCLC cell lines. HMOX1 plays a role in ferroptosis by regulating mic14 expression, thereby reversing chemoresistance in SCLC.
Collapse
Affiliation(s)
- Yujie Sun
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | | |
Collapse
|
37
|
Zhang Q, Chen C, Zou X, Wu W, Di Y, Li N, Fu A. Iron promotes ovarian cancer malignancy and advances platinum resistance by enhancing DNA repair via FTH1/FTL/POLQ/RAD51 axis. Cell Death Dis 2024; 15:329. [PMID: 38740757 PMCID: PMC11091064 DOI: 10.1038/s41419-024-06688-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024]
Abstract
Iron is crucial for cell DNA synthesis and repair, but an excess of free iron can lead to oxidative stress and subsequent cell death. Although several studies suggest that cancer cells display characteristics of 'Iron addiction', an ongoing debate surrounds the question of whether iron can influence the malignant properties of ovarian cancer. In the current study, we initially found iron levels increase during spheroid formation. Furthermore, iron supplementation can promote cancer cell survival, cancer spheroid growth, and migration; vice versa, iron chelators inhibit this process. Notably, iron reduces the sensitivity of ovarian cancer cells to platinum as well. Mechanistically, iron downregulates DNA homologous recombination (HR) inhibitor polymerase theta (POLQ) and relieves its antagonism against the HR repair enzyme RAD51, thereby promoting DNA damage repair to resist chemotherapy-induced damage. Additionally, iron tightly regulated by ferritin (FTH1/FTL) which is indispensable for iron-triggered DNA repair. Finally, we discovered that iron chelators combined with platinum exhibit a synergistic inhibitory effect on ovarian cancer in vitro and in vivo. Our findings affirm the pro-cancer role of iron in ovarian cancer and reveal that iron advances platinum resistance by promoting DNA damage repair through FTH1/FTL/POLQ/RAD51 pathway. Our findings highlight the significance of iron depletion therapy, revealing a promising avenue for advancing ovarian cancer treatment.
Collapse
Affiliation(s)
- Qingyu Zhang
- Laboratory of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China.
| | - Caiyun Chen
- Laboratory of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Xinxin Zou
- Laboratory of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Weifeng Wu
- Laboratory of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Yunbo Di
- Laboratory of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Ning Li
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang, 524023, China.
- Department of Hematology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China.
| | - Aizhen Fu
- Laboratory of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China.
| |
Collapse
|
38
|
Hagen WR. Quantum Magnetism of the Iron Core in Ferritin Proteins-A Re-Evaluation of the Giant-Spin Model. Molecules 2024; 29:2254. [PMID: 38792115 PMCID: PMC11123763 DOI: 10.3390/molecules29102254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/04/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The electron-electron, or zero-field interaction (ZFI) in the electron paramagnetic resonance (EPR) of high-spin transition ions in metalloproteins and coordination complexes, is commonly described by a simple spin Hamiltonian that is second-order in the spin S: H=D[Sz2-SS+1/3+E(Sx2-Sy2). Symmetry considerations, however, allow for fourth-order terms when S ≥ 2. In metalloprotein EPR studies, these terms have rarely been explored. Metal ions can cluster via non-metal bridges, as, for example, in iron-sulfur clusters, in which exchange interaction can result in higher system spin, and this would allow for sixth- and higher-order ZFI terms. For metalloproteins, these have thus far been completely ignored. Single-molecule magnets (SMMs) are multi-metal ion high spin complexes, in which the ZFI usually has a negative sign, thus affording a ground state level pair with maximal spin quantum number mS = ±S, giving rise to unusual magnetic properties at low temperatures. The description of EPR from SMMs is commonly cast in terms of the 'giant-spin model', which assumes a magnetically isolated system spin, and in which fourth-order, and recently, even sixth-order ZFI terms have been found to be required. A special version of the giant-spin model, adopted for scaling-up to system spins of order S ≈ 103-104, has been applied to the ubiquitous iron-storage protein ferritin, which has an internal core containing Fe3+ ions whose individual high spins couple in a way to create a superparamagnet at ambient temperature with very high system spin reminiscent to that of ferromagnetic nanoparticles. This scaled giant-spin model is critically evaluated; limitations and future possibilities are explicitly formulated.
Collapse
Affiliation(s)
- Wilfred R Hagen
- Department of Biotechnology, Delft University of Technology, Building 58, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
39
|
Wu J, Li Y, Wu H, Zhang H, Sha X, Ma J, Yang R. The application of ferritin in transporting and binding diverse metal ions. Food Chem 2024; 439:138132. [PMID: 38081094 DOI: 10.1016/j.foodchem.2023.138132] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024]
Abstract
The ferritin cage can not only load iron ions in its inner cavity, but also has the capacity to carry other metal ions, thus constructing a new biological nano-transport system. The nanoparticles formed by ferritin and minerals can be used as ingredients of mineral supplements, which overcome the shortcomings of traditional mineral ingredients such as low bioavailability. Moreover, ferritin can be used to remove heavy metal ions from contaminated food. Silver and palladium nanoparticles formed by ferritin are also applied as anticancer agents. Ferritin combined with metal ions can be also used to detect harmful substances. This review aims to provide a comprehensive overview of ferritin's function in transporting and binding metal ions, and discusses the limitations and future prospects, which offers valuable insights for the application of ferritin in mineral supplements, food detoxifiers, anticancer agents, and food detections.
Collapse
Affiliation(s)
- Jincan Wu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yue Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Huimin Wu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Haotong Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xinmei Sha
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Junrui Ma
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Rui Yang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
40
|
Hou DY, Lu JJ, Zhang X, Abudukeyoumu A, Li MQ, Zhu XY, Xie F. Heme metabolism and HO-1 in the pathogenesis and potential intervention of endometriosis. Am J Reprod Immunol 2024; 91:e13855. [PMID: 38745499 DOI: 10.1111/aji.13855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Endometriosis (EM) is one of the diseases related to retrograded menstruation and hemoglobin. Heme, released from hemoglobin, is degraded by heme oxygenase-1 (HO-1). In EM lesions, heme metabolites regulate processes such as inflammation, redox balance, autophagy, dysmenorrhea, malignancy, and invasion, where macrophages (Mø) play a fundamental role in their interactions. Regulation occurs at molecular, cellular, and pathological levels. Numerous studies suggest that heme is an indispensable component in EM and may contribute to its pathogenesis. The regulatory role of heme in EM encompasses cytokines, signaling pathways, and kinases that mediate cellular responses to external stimuli. HO-1, a catalytic enzyme in the catabolic phase of heme, mitigates heme's cytotoxicity in EM due to its antioxidant, anti-inflammatory, and anti-proliferative properties. Certain compounds may intervene in EM by targeting heme metabolism, guiding the development of appropriate treatments for all stages of endometriosis.
Collapse
Affiliation(s)
- Ding-Yu Hou
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Jia-Jing Lu
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Xing Zhang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Ayitila Abudukeyoumu
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital of Jiading District, Shanghai, People's Republic of China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Xiao-Yong Zhu
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Feng Xie
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
- Medical Center of Diagnosis and Treatment for Cervical and Intrauterine Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
41
|
Herrald AL, Ambrogi EK, Mirica KA. Electrochemical Detection of Gasotransmitters: Status and Roadmap. ACS Sens 2024; 9:1682-1705. [PMID: 38593007 PMCID: PMC11196117 DOI: 10.1021/acssensors.3c02529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Gasotransmitters, including nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), are a class of gaseous, endogenous signaling molecules that interact with one another in the regulation of critical cardiovascular, immune, and neurological processes. The development of analytical sensing mechanisms for gasotransmitters, especially multianalyte mechanisms, holds vast importance and constitutes a growing area of study. This review provides an overview of electrochemical sensing mechanisms with an emphasis on opportunities in multianalyte sensing. Electrochemical methods demonstrate good sensitivity, adequate selectivity, and the most well-developed potential for the multianalyte detection of gasotransmitters. Future research will likely address challenges with sensor stability and biocompatibility (i.e., sensor lifetime and cytotoxicity), sensor miniaturization, and multianalyte detection in biological settings.
Collapse
Affiliation(s)
- Audrey L Herrald
- Department of Chemistry, Burke Laboratory, Dartmouth College, 41 College Street, Hanover, New Hampshire 03755, United States
| | - Emma K Ambrogi
- Department of Chemistry, Burke Laboratory, Dartmouth College, 41 College Street, Hanover, New Hampshire 03755, United States
| | - Katherine A Mirica
- Department of Chemistry, Burke Laboratory, Dartmouth College, 41 College Street, Hanover, New Hampshire 03755, United States
| |
Collapse
|
42
|
Kontoghiorghes GJ. The Importance and Essentiality of Natural and Synthetic Chelators in Medicine: Increased Prospects for the Effective Treatment of Iron Overload and Iron Deficiency. Int J Mol Sci 2024; 25:4654. [PMID: 38731873 PMCID: PMC11083551 DOI: 10.3390/ijms25094654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
The supply and control of iron is essential for all cells and vital for many physiological processes. All functions and activities of iron are expressed in conjunction with iron-binding molecules. For example, natural chelators such as transferrin and chelator-iron complexes such as haem play major roles in iron metabolism and human physiology. Similarly, the mainstay treatments of the most common diseases of iron metabolism, namely iron deficiency anaemia and iron overload, involve many iron-chelator complexes and the iron-chelating drugs deferiprone (L1), deferoxamine (DF) and deferasirox. Endogenous chelators such as citric acid and glutathione and exogenous chelators such as ascorbic acid also play important roles in iron metabolism and iron homeostasis. Recent advances in the treatment of iron deficiency anaemia with effective iron complexes such as the ferric iron tri-maltol complex (feraccru or accrufer) and the effective treatment of transfusional iron overload using L1 and L1/DF combinations have decreased associated mortality and morbidity and also improved the quality of life of millions of patients. Many other chelating drugs such as ciclopirox, dexrazoxane and EDTA are used daily by millions of patients in other diseases. Similarly, many other drugs or their metabolites with iron-chelation capacity such as hydroxyurea, tetracyclines, anthracyclines and aspirin, as well as dietary molecules such as gallic acid, caffeic acid, quercetin, ellagic acid, maltol and many other phytochelators, are known to interact with iron and affect iron metabolism and related diseases. Different interactions are also observed in the presence of essential, xenobiotic, diagnostic and theranostic metal ions competing with iron. Clinical trials using L1 in Parkinson's, Alzheimer's and other neurodegenerative diseases, as well as HIV and other infections, cancer, diabetic nephropathy and anaemia of inflammation, highlight the importance of chelation therapy in many other clinical conditions. The proposed use of iron chelators for modulating ferroptosis signifies a new era in the design of new therapeutic chelation strategies in many other diseases. The introduction of artificial intelligence guidance for optimal chelation therapeutic outcomes in personalised medicine is expected to increase further the impact of chelation in medicine, as well as the survival and quality of life of millions of patients with iron metabolic disorders and also other diseases.
Collapse
Affiliation(s)
- George J Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, Limassol 3021, Cyprus
| |
Collapse
|
43
|
Din MAU, Lin Y, Wang N, Wang B, Mao F. Ferroptosis and the ubiquitin-proteasome system: exploring treatment targets in cancer. Front Pharmacol 2024; 15:1383203. [PMID: 38666028 PMCID: PMC11043542 DOI: 10.3389/fphar.2024.1383203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Ferroptosis is an emerging mode of programmed cell death fueled by iron buildup and lipid peroxidation. Recent evidence points to the function of ferroptosis in the aetiology and development of cancer and other disorders. Consequently, harnessing iron death for disease treatment has diverted the interest of the researchers in the field of basic and clinical research. The ubiquitin-proteasome system (UPS) represents a primary protein degradation pathway in eukaryotes. It involves labelling proteins to be degraded by ubiquitin (Ub), followed by recognition and degradation by the proteasome. Dysfunction of the UPS can contribute to diverse pathological processes, emphasizing the importance of maintaining organismal homeostasis. The regulation of protein stability is a critical component of the intricate molecular mechanism underlying iron death. Moreover, the intricate involvement of the UPS in regulating iron death-related molecules and signaling pathways, providing valuable insights for targeted treatment strategies. Besides, it highlights the potential of ferroptosis as a promising target for cancer therapy, emphasizing the combination between ferroptosis and the UPS. The molecular mechanisms underlying ferroptosis, including key regulators such as glutathione peroxidase 4 (GPX4), cysteine/glutamate transporter (system XC-), and iron metabolism, are thoroughly examined, alongside the role of the UPS in modulating the abundance and activity of crucial proteins for ferroptotic cell death, such as GPX4, and nuclear factor erythroid 2-related factor 2 (NRF2). As a pivotal regulatory system for macromolecular homeostasis, the UPS substantially impacts ferroptosis by directly or indirectly modulating iron death-related molecules or associated signaling pathways. This review explores the involvement of the UPS in regulating iron death-related molecules and signaling pathways, providing valuable insights for the targeted treatment of diseases associated with ferroptosis.
Collapse
Affiliation(s)
- Muhammad Azhar Ud Din
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu, China
| | - Yan Lin
- The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, Jiangsu, China
| | - Naijian Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine Jiangsu University, Zhenjiang, Jiangsu, China
| | - Bo Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine Jiangsu University, Zhenjiang, Jiangsu, China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu, China
| |
Collapse
|
44
|
Terzi EM, Possemato R. Iron, Copper, and Selenium: Cancer's Thing for Redox Bling. Cold Spring Harb Perspect Med 2024; 14:a041545. [PMID: 37932129 PMCID: PMC10982729 DOI: 10.1101/cshperspect.a041545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Cells require micronutrients for numerous basic functions. Among these, iron, copper, and selenium are particularly critical for redox metabolism, and their importance is heightened during oncogene-driven perturbations in cancer. In this review, which particularly focuses on iron, we describe how these micronutrients are carefully chaperoned about the body and made available to tissues, a process that is designed to limit the toxicity of free iron and copper or by-products of selenium metabolism. We delineate perturbations in iron metabolism and iron-dependent proteins that are observed in cancer, and describe the current approaches being used to target iron metabolism and iron-dependent processes.
Collapse
Affiliation(s)
- Erdem M Terzi
- Department of Pathology, New York University Grossman School of Medicine, New York, New York 10016, USA
- Laura and Isaac Perlmutter Cancer Center, New York, New York 10016, USA
| | - Richard Possemato
- Department of Pathology, New York University Grossman School of Medicine, New York, New York 10016, USA
- Laura and Isaac Perlmutter Cancer Center, New York, New York 10016, USA
| |
Collapse
|
45
|
Park M, Park S, Choi Y, Cho YL, Kim MJ, Park YJ, Chung SW, Lee H, Lee SJ. The mechanism underlying correlation of particulate matter-induced ferroptosis with inflammasome activation and iron accumulation in macrophages. Cell Death Discov 2024; 10:144. [PMID: 38491062 PMCID: PMC10943117 DOI: 10.1038/s41420-024-01874-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 03/18/2024] Open
Abstract
Particulate matter (PM) is a global environmental hazard, which affects human health through free radical production, cell death induction, and immune responses. PM activates inflammasomes leading to excessive inflammatory responses and induces ferroptosis, a type of cell death. Despite ongoing research on the correlation among PM-induced ferroptosis, immune response, and inflammasomes, the underlying mechanism of this relationship has not been elucidated. In this study, we demonstrated the levels of PM-induced cell death and immune responses in murine macrophages, J774A.1 and RAW264.7, depending on the size and composition of particulate matter. PM2.5, with extraction ions, induced significant levels of cell death and immune responses; it induces lipid peroxidation, iron accumulation, and reactive oxygen species (ROS) production, which characterize ferroptosis. In addition, inflammasome-mediated cell death occurred owing to the excessive activation of inflammatory responses. PM-induced iron accumulation activates ferroptosis and inflammasome formation through ROS production; similar results were observed in vivo. These results suggest that the link between ferroptosis and inflammasome formation induced by PM, especially PM2.5 with extraction ions, is established through the iron-ROS axis. Moreover, this study can effectively facilitate the development of a new therapeutic strategy for PM-induced immune and respiratory diseases.
Collapse
Affiliation(s)
- Minkyung Park
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Sujeong Park
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Yumin Choi
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Young-Lai Cho
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
| | - Min Jeong Kim
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Young-Jun Park
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Su Wol Chung
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan, 44610, South Korea
| | - Heedoo Lee
- Department of Biology and Chemistry, Changwon National University, Changwon, 51140, South Korea
| | - Seon-Jin Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea.
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, 34113, South Korea.
| |
Collapse
|
46
|
Dhondge RH, Agrawal S, Kumar S, Acharya S, Karwa V. A Comprehensive Review on Serum Ferritin as a Prognostic Marker in Intensive Care Units: Insights Into Ischemic Heart Disease. Cureus 2024; 16:e57365. [PMID: 38694418 PMCID: PMC11061809 DOI: 10.7759/cureus.57365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/31/2024] [Indexed: 05/04/2024] Open
Abstract
Serum ferritin has garnered considerable attention as a prognostic marker in intensive care units (ICUs), offering valuable insights into patient outcomes and clinical management strategies. This comprehensive review examines the role of serum ferritin in predicting outcomes among critically ill patients, with a particular focus on its implications for ischemic heart disease (IHD). Elevated serum ferritin levels have consistently been associated with adverse outcomes in ICU settings, including increased mortality, prolonged hospital stays, and higher morbidity rates. Furthermore, the relationship between serum ferritin levels and IHD underscores its potential as a biomarker for cardiovascular risk assessment in critically ill populations. The review synthesizes existing literature to highlight the predictive value of serum ferritin in assessing illness severity and guiding clinical decision-making in the ICUs. It also explores potential mechanisms linking serum ferritin to adverse outcomes and discusses implications for clinical practice. Integrating serum ferritin measurements into routine assessments could enhance prognostication and risk stratification in ICU patients, while further research is needed to elucidate optimal management strategies and therapeutic targets. Collaborative efforts between clinicians and researchers are essential to advance our understanding of serum ferritin's prognostic value in the ICUs and translate this knowledge into improved patient care and outcomes.
Collapse
Affiliation(s)
- Rushikesh H Dhondge
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sachin Agrawal
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sunil Kumar
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sourya Acharya
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Vineet Karwa
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
47
|
Zhao X, Zhou Y, Zhang Y, Zhang Y. Ferritin: Significance in viral infections. Rev Med Virol 2024; 34:e2531. [PMID: 38502012 DOI: 10.1002/rmv.2531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
As an indispensable trace element, iron is essential for many biological processes. Increasing evidence has shown that virus infection can perturb iron metabolism and play a role in the occurrence and development of viral infection-related diseases. Ferritin plays a crucial role in maintaining the body's iron homoeostasis. It is an important protein to stabilise the iron balance in cells. Ferritin is a 24-mer hollow iron storage protein composed of two subunits: ferritin heavy chain and ferritin light chain. It was reported that ferritin is not only an intra-cellular iron storage protein, but also a pathogenic mediator that enhances the inflammatory process and stimulates the further inflammatory pathway, which is a key member of the vicious pathogenic cycle to perpetuate. Ferritin exerts immuno-suppressive and pro-inflammatory functions during viral infection. In this review, we describe in detail the basic information of ferritin in the first section, including its structural features, the regulation of ferritin. In the second part, we focus on the role of ferritin in viral infection-related diseases and the molecular mechanisms by which viral infection regulates ferritin. The last section briefly outlines the potential of ferritin in antiviral therapy. Given the importance of iron and viral infection, understanding the role of ferritin during viral infection helps us understand the relationship between iron metabolic dysfunction and viral infection, which provides a new direction for the development of antiviral therapeutic drugs.
Collapse
Affiliation(s)
- Xia Zhao
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yuntao Zhou
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo, China
| | - Yong Zhang
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo, China
| | - Yan Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo, China
| |
Collapse
|
48
|
Li Z, Zhao B, Zhang Y, Fan W, Xue Q, Chen X, Wang J, Qi X. Mitochondria-mediated ferroptosis contributes to the inflammatory responses of bovine viral diarrhea virus (BVDV) in vitro. J Virol 2024; 98:e0188023. [PMID: 38226812 PMCID: PMC10878082 DOI: 10.1128/jvi.01880-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024] Open
Abstract
Bovine viral diarrhea virus (BVDV) belongs to the family Flaviviridae and includes two biotypes in cell culture: cytopathic (CP) or non-cytopathic (NCP) effects. Ferroptosis is a non-apoptotic form of programmed cell death that contributes to inflammatory diseases. However, whether BVDV induces ferroptosis and the role of ferroptosis in viral infection remain unclear. Here, we provide evidence that both CP and NCP BVDV can induce ferroptosis in Madin-Darby bovine kidney cells at similar rate. Mechanistically, biotypes of BVDV infection downregulate cytoplasmic and mitochondrial GPX4 via Nrf2-GPX4 pathway, thereby resulting in lethal lipid peroxidation and promoting ferroptosis. In parallel, BVDV can degrade ferritin heavy chain and mitochondrial ferritin via NCOA4-mediated ferritinophagy to promote the accumulation of Fe2+ and initiate ferroptosis. Importantly, CP BVDV-induced ferroptosis is tightly associated with serious damage of mitochondria and hyperactivation of inflammatory responses. In contrast, mild or unapparent damage of mitochondria and slight inflammatory responses were detected in NCP BVDV-infected cells. More importantly, different mitophagy pathways in response to mitochondria damage by both biotypes of BVDV are involved in inflammatory responses. Overall, this study is the first to show that mitochondria may play key roles in mediating ferroptosis and inflammatory responses induced by biotypes of BVDV in vitro.IMPORTANCEBovine viral diarrhea virus (BVDV) threatens a wide range of domestic and wild cattle population worldwide. BVDV causes great economic loss in cattle industry through its immunosuppression and persistent infection. Despite extensive research, the mechanism underlying the pathogenesis of BVDV remains elusive. Our data provide the first direct evidence that mitochondria-mediated ferroptosis and mitophagy are involved in inflammatory responses in both biotypes of BVDV-infected cells. Importantly, we demonstrate that the different degrees of injury of mitochondria and inflammatory responses may attribute to different mitophagy pathways induced by biotypes of BVDV. Overall, our findings uncover the interaction between BVDV infection and mitochondria-mediated ferroptosis, which shed novel light on the physiological impacts of ferroptosis on the pathogenesis of BVDV infection, and provide a promising therapeutic strategy to treat this important infectious disease with a worldwide distribution.
Collapse
Affiliation(s)
- Zhijun Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Xi'an, China
| | - Bao Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Shaanxi Animal Disease Control Center, Xi'an, China
| | - Ying Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Xi'an, China
| | - Wenqi Fan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Xi'an, China
| | - Qinghong Xue
- China Institute of Veterinary Drug Control, Beijing, China
| | - Xiwen Chen
- Animal Disease Prevention and Control, Healthy Breeding Engineering Technology Research Center, Mianyang Normal University, Mianyang, Sichuan, China
| | - Jingyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Xi'an, China
| | - Xuefeng Qi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Xi'an, China
| |
Collapse
|
49
|
Liu YC, Gong YT, Sun QY, Wang B, Yan Y, Chen YX, Zhang LJ, Zhang WD, Luan X. Ferritinophagy induced ferroptosis in the management of cancer. Cell Oncol (Dordr) 2024; 47:19-35. [PMID: 37713105 DOI: 10.1007/s13402-023-00858-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Ferroptosis, a newly form of regulated cell death (RCD), is characterized by iron dyshomeostasis and unrestricted lipid peroxidation. Emerging evidence depicts a pivotal role for ferroptosis in driving some pathological processes, especially in cancer. Triggering ferroptosis can suppress tumor growth and induce an anti-tumor immune response, denoting the therapeutic promises for targeting ferroptosis in the management of cancer. As an autophagic phenomenon, ferritinophagy is critical to induce ferroptosis by degradation of ferritin to release intracellular free iron. Recently, a great deal of effort has gone into designing and developing anti-cancer strategies based on targeting ferritinophagy to induce ferroptosis. CONCLUSION This review delineates the regulatory mechanism of ferritinophagy firstly and summarizes the role of ferritinophagy-induced ferroptosis in cancer. Moreover, the strategies targeting ferritinophagy to induce ferroptosis are highlighted to unveil the therapeutic value of ferritinophagy as a target to manage cancer. Finally, the future research directions on how to cope with the challenges in developing ferritinophagy promoters into clinical therapeutics are discussed.
Collapse
Affiliation(s)
- Yi-Chen Liu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yi-Ting Gong
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qing-Yan Sun
- Shanghai Institute of Pharmaceutical Industry, Shanghai, 200040, China
| | - Bei Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yue Yan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yi-Xu Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Li-Jun Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Wei-Dong Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xin Luan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
50
|
de Araújo SA, Silva CMP, Costa CS, Ferreira CSC, Ribeiro HS, da Silva Lima A, Quintino da Rocha C, Calabrese KDS, Abreu-Silva AL, Almeida-Souza F. Leishmanicidal and immunomodulatory activity of Terminalia catappa in Leishmania amazonensisin vitro infection. Heliyon 2024; 10:e24622. [PMID: 38312642 PMCID: PMC10835263 DOI: 10.1016/j.heliyon.2024.e24622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/24/2023] [Accepted: 01/11/2024] [Indexed: 02/06/2024] Open
Abstract
Leishmaniases are infectious-parasitic diseases that impact public health around the world. Antileishmanial drugs presented toxicity and increase in parasitic resistance. Studies with natural products show an alternative to this effect, and several metabolites have demonstrated potential in the treatment of various diseases. Terminalia catappa is a plant species with promising pharmaceutical properties. The objective of this work was to evaluate the therapeutic potential of extracts and fractions of T. catappa on Leishmania amazonensis and investigate the immunomodulatory mechanisms associated with its action. In anti-Leishmania assays, the ethyl acetate fraction exhibited activity against promastigotes (IC50 86.07 ± 1.09 μg/mL) and low cytotoxicity (CC50 517.70 ± 1.68 μg/mL). The ethyl acetate fraction also inhibited the intracellular parasite (IC50 25.74 ± 1.08 μg/mL) with a selectivity index of 20.11. Treatment with T. catappa ethyl acetate fraction did not alter nitrite production by peritoneal macrophages stimulated with L. amazonensis, although there was a decrease in unstimulated macrophages treated at 50 μg/mL (p = 0.0048). The T. catappa ethyl acetate fraction at 100 μg/mL increased TNF-α levels (p = 0.0238) and downregulated HO-1 (p = 0.0030) and ferritin (p = 0.0002) gene expression in L. amazonensis-stimulated macrophages. Additionally, the total flavonoid and ellagic acid content for ethyl acetate fraction was 13.41 ± 1.86 mg QE/g and 79.25 mg/g, respectively. In conclusion, the T. catappa ethyl acetate fraction showed leishmanicidal activity against different forms of L. amazonensis and displayed immunomodulatory mechanisms, including TNF-α production and expression of pro and antioxidant genes.
Collapse
Affiliation(s)
- Sandra Alves de Araújo
- Rede Nordeste de Biotecnologia, Universidade Federal do Maranhão, São Luís, 65080-805, Brazil
| | | | | | | | | | - Aldilene da Silva Lima
- Laboratório de Química dos Produtos Naturais, Universidade Federal do Maranhão, 65080-805, São Luís, MA, Brazil
| | - Cláudia Quintino da Rocha
- Laboratório de Química dos Produtos Naturais, Universidade Federal do Maranhão, 65080-805, São Luís, MA, Brazil
| | - Kátia da Silva Calabrese
- Laboratório de Protozoologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, 21041-250, Brazil
| | - Ana Lucia Abreu-Silva
- Rede Nordeste de Biotecnologia, Universidade Federal do Maranhão, São Luís, 65080-805, Brazil
- Universidade Estadual do Maranhão, São Luís, 65055-310, Brazil
- Pós-graduação em Ciência Animal, Universidade Estadual do Maranhão, São Luís, 65055-310, Brazil
| | - Fernando Almeida-Souza
- Universidade Estadual do Maranhão, São Luís, 65055-310, Brazil
- Laboratório de Protozoologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, 21041-250, Brazil
- Pós-graduação em Ciência Animal, Universidade Estadual do Maranhão, São Luís, 65055-310, Brazil
| |
Collapse
|