1
|
Cui B, Liu Y, Chen J, Chen H, Feng Y, Zhang P. Small molecule inhibitor CRT0066101 inhibits cytokine storm syndrome in a mouse model of lung injury. Int Immunopharmacol 2023; 120:110240. [PMID: 37182445 PMCID: PMC10181585 DOI: 10.1016/j.intimp.2023.110240] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/08/2023] [Accepted: 04/22/2023] [Indexed: 05/16/2023]
Abstract
Pneumonia is an acute inflammation of the lungs induced by pathogenic microorganisms, immune damage, physical and chemical factors, and other factors, and the latest outbreak of novel coronavirus pneumonia is also an acute lung injury (ALI) induced by viral infection. However, there are currently no effective treatments for inflammatory cytokine storms in patients with ALI/acute respiratory distress syndrome (ARDS). Protein kinase D (PKD) is a highly active kinase that has been shown to be associated with the production of inflammatory cytokines. Therefore, small-molecule compounds that inhibit PKD may be potential drugs for the treatment of ALI/ARDS. In the present study, we evaluated the ability of the small-molecule inhibitor CRT0066101 to attenuate lipopolysaccharide (LPS)-induced inflammatory cytokine production through in vitro cell experiments and a mouse pneumonia model. We found that CRT0066101 significantly reduced the protein and mRNA levels of LPS-induced cytokines (e.g., IL-6, TNF-α, and IL-1β). CRT0066101 inhibited MyD88 and TLR4 expression and reduced NF-κB, ERK, and JNK phosphorylation. CRT0066101 also reduced NLRP3 activation, inhibited the assembly of the inflammasome complex, and attenuated inflammatory cell infiltration and lung tissue damage. Taken together, our data indicate that CRT0066101 exerts anti-inflammatory effects on LPS-induced inflammation through the TLR4/MyD88 signaling pathway, suggesting that CRT0066101 may have therapeutic value in acute lung injury and other MyD88-dependent inflammatory diseases.
Collapse
Affiliation(s)
- Bomiao Cui
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, 14, Renmin South Road Section 3, Chengdu, Sichuan 610041, PR China
| | - Yiying Liu
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, 14, Renmin South Road Section 3, Chengdu, Sichuan 610041, PR China
| | - Jiao Chen
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, 14, Renmin South Road Section 3, Chengdu, Sichuan 610041, PR China
| | - Hongli Chen
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, 14, Renmin South Road Section 3, Chengdu, Sichuan 610041, PR China
| | - Yun Feng
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, 14, Renmin South Road Section 3, Chengdu, Sichuan 610041, PR China
| | - Ping Zhang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, 14, Renmin South Road Section 3, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
2
|
El-Darzi N, Mast N, Buchner DA, Saadane A, Dailey B, Trichonas G, Pikuleva IA. Low-Dose Anti-HIV Drug Efavirenz Mitigates Retinal Vascular Lesions in a Mouse Model of Alzheimer's Disease. Front Pharmacol 2022; 13:902254. [PMID: 35721135 PMCID: PMC9198296 DOI: 10.3389/fphar.2022.902254] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/02/2022] [Indexed: 12/02/2022] Open
Abstract
A small dose of the anti-HIV drug efavirenz (EFV) was previously discovered to activate CYP46A1, a cholesterol-eliminating enzyme in the brain, and mitigate some of the manifestation of Alzheimer's disease in 5XFAD mice. Herein, we investigated the retina of these animals, which were found to have genetically determined retinal vascular lesions associated with deposits within the retinal pigment epithelium and subretinal space. We established that EFV treatment activated CYP46A1 in the retina, enhanced retinal cholesterol turnover, and diminished the lesion frequency >5-fold. In addition, the treatment mitigated fluorescein leakage from the aberrant blood vessels, deposit size, activation of retinal macrophages/microglia, and focal accumulations of amyloid β plaques, unesterified cholesterol, and Oil Red O-positive lipids. Studies of retinal transcriptomics and proteomics identified biological processes enriched with differentially expressed genes and proteins. We discuss the mechanisms of the beneficial EFV effects on the retinal phenotype of 5XFAD mice. As EFV is an FDA-approved drug, and we already tested the safety of small-dose EFV in patients with Alzheimer's disease, our data support further clinical investigation of this drug in subjects with retinal vascular lesions or neovascular age-related macular degeneration.
Collapse
Affiliation(s)
- Nicole El-Darzi
- Departments of Ophthalmology and Visual Sciences, Cleveland, OH, United States
| | - Natalia Mast
- Departments of Ophthalmology and Visual Sciences, Cleveland, OH, United States
| | - David A. Buchner
- Departments of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Aicha Saadane
- Departments of Ophthalmology and Visual Sciences, Cleveland, OH, United States
| | - Brian Dailey
- Departments of Ophthalmology and Visual Sciences, Cleveland, OH, United States
| | - Georgios Trichonas
- Departments of Ophthalmology and Visual Sciences, Cleveland, OH, United States
| | - Irina A. Pikuleva
- Departments of Ophthalmology and Visual Sciences, Cleveland, OH, United States,*Correspondence: Irina A. Pikuleva,
| |
Collapse
|
3
|
Alter S, Zimmer AD, Park M, Gong J, Caliebe A, Fölster-Holst R, Torrelo A, Colmenero I, Steinberg SF, Fischer J. Telangiectasia-ectodermal dysplasia-brachydactyly-cardiac anomaly syndrome is caused by de novo mutations in protein kinase D1. J Med Genet 2020; 58:415-421. [PMID: 32817298 DOI: 10.1136/jmedgenet-2019-106564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/18/2020] [Accepted: 05/30/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND We describe two unrelated patients who display similar clinical features including telangiectasia, ectodermal dysplasia, brachydactyly and congenital heart disease. METHODS We performed trio whole exome sequencing and functional analysis using in vitro kinase assays with recombinant proteins. RESULTS We identified two different de novo mutations in protein kinase D1 (PRKD1, NM_002742.2): c.1774G>C, p.(Gly592Arg) and c.1808G>A, p.(Arg603His), one in each patient. PRKD1 (PKD1, HGNC:9407) encodes a kinase that is a member of the protein kinase D (PKD) family of serine/threonine protein kinases involved in diverse cellular processes such as cell differentiation and proliferation and cell migration as well as vesicle transport and angiogenesis. Functional analysis using in vitro kinase assays with recombinant proteins showed that the mutation c.1808G>A, p.(Arg603His) represents a gain-of-function mutation encoding an enzyme with a constitutive, lipid-independent catalytic activity. The mutation c.1774G>C, p.(Gly592Arg) in contrast shows a defect in substrate phosphorylation representing a loss-of-function mutation. CONCLUSION The present cases represent a syndrome, which associates symptoms from several different organ systems: skin, teeth, bones and heart, caused by heterozygous de novo mutations in PRKD1 and expands the clinical spectrum of PRKD1 mutations, which have hitherto been linked to syndromic congenital heart disease and limb abnormalities.
Collapse
Affiliation(s)
- Svenja Alter
- Institute of Human Genetics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas David Zimmer
- Institute of Human Genetics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Misun Park
- Department of Pharmacology, Columbia University, New York, New York, USA
| | - Jianli Gong
- Department of Pharmacology, Columbia University, New York, New York, USA
| | - Almuth Caliebe
- Institute of Human Genetics, Christian-Albrechts University Kiel & University Hospital Schleswig-Holstein, Kiel, Germany
| | - Regina Fölster-Holst
- Department of Dermatology, Christian-Albrechts University Kiel & University Hospital Schleswig-Holstein, Kiel, Germany
| | - Antonio Torrelo
- Department of Dermatology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Isabel Colmenero
- Department of Pathology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Susan F Steinberg
- Department of Pharmacology, Columbia University, New York, New York, USA
| | - Judith Fischer
- Institute of Human Genetics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Lipidomic Analysis of Cells and Extracellular Vesicles from High- and Low-Metastatic Triple-Negative Breast Cancer. Metabolites 2020; 10:metabo10020067. [PMID: 32069969 PMCID: PMC7073695 DOI: 10.3390/metabo10020067] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/02/2020] [Accepted: 02/07/2020] [Indexed: 12/27/2022] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer nanovesicles secreted from almost all cells including cancer. Cancer-derived EVs contribute to cancer progression and malignancy via educating the surrounding normal cells. In breast cancer, epidemiological and experimental observations indicated that lipids are associated with cancer malignancy. However, lipid compositions of breast cancer EVs and their contributions to cancer progression are unexplored. In this study, we performed a widely targeted quantitative lipidomic analysis in cells and EVs derived from high- and low-metastatic triple-negative breast cancer cell lines, using supercritical fluid chromatography fast-scanning triple-quadrupole mass spectrometry. We demonstrated the differential lipid compositions between EVs and cells of their origin, and between high- and low-metastatic cell lines. Further, we demonstrated EVs from highly metastatic breast cancer accumulated unsaturated diacylglycerols (DGs) compared with EVs from lower-metastatic cells, without increasing the amount in cells. The EVs enriched with DGs could activate the protein kinase D signaling pathway in endothelial cells, which can lead to stimulated angiogenesis. Our results indicate that lipids are selectively loaded into breast cancer EVs to support tumor progression.
Collapse
|
5
|
Cui B, Chen J, Luo M, Wang L, Chen H, Kang Y, Wang J, Zhou X, Feng Y, Zhang P. Protein kinase D3 regulates the expression of the immunosuppressive protein, PD‑L1, through STAT1/STAT3 signaling. Int J Oncol 2020; 56:909-920. [PMID: 32319563 PMCID: PMC7050980 DOI: 10.3892/ijo.2020.4974] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is capable of constructing a favorable immune escape environment through interactions of cells with cells and of cells with the environment. Programmed death ligand-1 (PD-L1) is a well-recognized inhibitor of anti-tumor immunity that plays an important role in tumor immune escape. However, the molecular mechanisms regulating PD-L1 expression are not yet fully understood. In this study, to investigate the role of protein kinase D3 (PKD3) in the regulation of PD-L1 expression, the expression and correlation of PKD3 and PD-L1 were first analyzed by the immunostaining of human OSCC tissue sections, cell experiments and TCGA gene expression databases. The expression levels of PKD3 and PD-L1 were found to be significantly higher in OSCC cells than in normal tissues or cells. In addition, the expression levels of PKD3 and PD-L1 were found to be significantly positively correlated. Subsequently, it was found that the levsel of PD-L1 expression decreased following the silencing of PKD3 and that the ability of interferon (IFN)-γ to induce PD-L1 expression was also decreased in OSCC. The opposite phenomenon occurred following the overexpression of PKD3. It was also found that the phosphorylation of signal transducer and activator of transcription (STAT)1/STAT3 was reduced by the knockdown of PKD3 in OSCC. Moreover, the expression level of PD-L1 was decreased after the use of siRNA to knockdown STAT1 or STAT3. On the whole, the findings of this study confirm that PKD3 regulates the expression of PD-L1 induced by IFN-γ by regulating the phosphorylation of STAT1/STAT3. These findings broaden the understanding of the biological function of PKD3, suggesting that PKD is a potential therapeutic target for OSCC.
Collapse
Affiliation(s)
- Bomiao Cui
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jiao Chen
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Min Luo
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Liwei Wang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hongli Chen
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yingzhu Kang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jingnan Wang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yun Feng
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ping Zhang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
6
|
Wang Y, Hoeppner LH, Angom RS, Wang E, Dutta S, Doeppler HR, Wang F, Shen T, Scarisbrick IA, Guha S, Storz P, Bhattacharya R, Mukhopadhyay D. Protein kinase D up-regulates transcription of VEGF receptor-2 in endothelial cells by suppressing nuclear localization of the transcription factor AP2β. J Biol Chem 2019; 294:15759-15767. [PMID: 31492751 PMCID: PMC6816101 DOI: 10.1074/jbc.ra119.010152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/19/2019] [Indexed: 01/29/2023] Open
Abstract
Vascular endothelial growth factor A (VEGF) signals primarily through its cognate receptor VEGF receptor-2 (VEGFR-2) to control vasculogenesis and angiogenesis, key physiological processes in cardiovascular disease and cancer. In human umbilical vein endothelial cells (HUVECs), knockdown of protein kinase D-1 (PKD1) or PKD2 down-regulates VEGFR-2 expression and inhibits VEGF-induced cell proliferation and migration. However, how PKD regulates VEGF signaling is unclear. Previous bioinformatics analyses have identified binding sites for the transcription factor activating enhancer-binding protein 2 (AP2) in the VEGFR-2 promoter. Using ChIP analyses, here we found that PKD knockdown in HUVECs increases binding of AP2β to the VEGFR-2 promoter. Luciferase reporter assays with serial deletions of AP2-binding sites within the VEGFR-2 promoter revealed that its transcriptional activity negatively correlates with the number of these sites. Next we demonstrated that AP2β up-regulation decreases VEGFR-2 expression and that loss of AP2β enhances VEGFR-2 expression in HUVECs. In vivo experiments confirmed increased VEGFR-2 immunostaining in the spinal cord of AP2β knockout mouse embryos. Mechanistically, we observed that PKD phosphorylates AP2β at Ser258 and Ser277 and suppresses its nuclear accumulation. Inhibition of PKD activity with a pan-PKD inhibitor increased AP2β nuclear localization, and overexpression of both WT and constitutively active PKD1 or PKD2 reduced AP2β nuclear localization through a Ser258- and Ser277-dependent mechanism. Furthermore, substitution of Ser277 in AP2β increased its binding to the VEGFR-2 promoter. Our findings uncover evidence of a molecular pathway that regulates VEGFR-2 expression, insights that may shed light on the etiology of diseases associated with aberrant VEGF/VEGFR signaling.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, Florida 32224
| | - Luke H Hoeppner
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Rochester, Minnesota 55905
| | - Ramcharan Singh Angom
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, Florida 32224
| | - Enfeng Wang
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, Florida 32224
| | - Shamit Dutta
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, Florida 32224
| | - Heike R Doeppler
- Department of Cancer Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, Florida 32224
| | - Fei Wang
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, Florida 32224
- Department of Neurosurgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Tao Shen
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, Florida 32224
- Department of Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Kunming 650221, China
| | - Isobel A Scarisbrick
- Department of Physical Medicine and Rehabilitation, College of Medicine and Science, Mayo Clinic, Rochester, Minnesota 55905
| | - Sushovan Guha
- University of Arizona College of Medicine, Phoenix, Arizona 85004
| | - Peter Storz
- Department of Cancer Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, Florida 32224
| | - Resham Bhattacharya
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Rochester, Minnesota 55905
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, Florida 32224
| |
Collapse
|
7
|
Yang L, Liu N, Zhao W, Li X, Han L, Zhang Z, Wang Y, Mao B. Angiogenic function of astragaloside IV in rats with myocardial infarction occurs via the PKD1-HDAC5-VEGF pathway. Exp Ther Med 2019; 17:2511-2518. [PMID: 30906439 PMCID: PMC6425153 DOI: 10.3892/etm.2019.7273] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 12/13/2018] [Indexed: 12/11/2022] Open
Abstract
The current study aimed to assess the role and mechanism of astragaloside IV (AS-IV) in myocardial infarction. A myocardial infarction model was established via the ligation of the left anterior descending artery. Rats were randomly divided into sham, DMSO, model, AS-IV, AS-IV-CID755673 and CID755673 inhibitor groups. Rats were then sacrificed following 4 weeks of treatment and segmental heart samples were obtained for hematoxylin and eosin, and masson staining. The expression of PKD1, HDAC5 and VEGF were analyzed using immunohistochemistry, reverse transcription polymerase chain reaction and western blotting. Compared with the sham and DMSO groups, the morphology of myocardium in the model and CID755673 inhibitor groups were disordered and exhibited necrotic myocardial cells and collagen tissues. Following treatment with AS-IV, the morphology of the myocardium was markedly improved and the number of new blood vessels increased. However, following treatment with CID755673, the myocardial tissue of rats became disordered, with an increased number of necrotic cells and the closure of certain vessels. The expression of PKD1, HDAC5 and VEGF mRNA and protein in myocardial tissue of model group and CID755673 inhibitor group were significantly lower than the other four groups (P<0.05), whereas these levels in the AS-IV group were significantly higher than those in the other five groups (P<0.01). Additionally, the AS-IV-CID755673 group exhibited significantly higher levels of PKD1, HDAC5 and VEGF mRNA and protein than the sham, DMSO, CID755673 inhibitor and model groups (P<0.05). Furthermore, the protein expression of pS205 PKD1, pS259 HDAC5 and pTyr951 VEGF in the myocardium of rats was comparable with that of PKD1, HDAC5 and VEGF. AS-IV may partly promote the angiogenesis of myocardial tissue in rats with myocardial infarction via the PKD1-HDAC5-VEGF pathway.
Collapse
Affiliation(s)
- Lei Yang
- Henan Key Laboratory of Zhang ZhongJing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan 473004, P.R. China.,The Zhang ZhongJing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan 473004, P.R. China
| | - Nuan Liu
- Henan Key Laboratory of Zhang ZhongJing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan 473004, P.R. China.,The Zhang ZhongJing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan 473004, P.R. China
| | - Wei Zhao
- Henan Key Laboratory of Zhang ZhongJing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan 473004, P.R. China.,The Zhang ZhongJing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan 473004, P.R. China
| | - Xing Li
- Henan Key Laboratory of Zhang ZhongJing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan 473004, P.R. China.,The Zhang ZhongJing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan 473004, P.R. China
| | - Li Han
- Henan Key Laboratory of Zhang ZhongJing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan 473004, P.R. China.,The Zhang ZhongJing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan 473004, P.R. China
| | - Zhongming Zhang
- Henan Key Laboratory of Zhang ZhongJing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan 473004, P.R. China.,The Zhang ZhongJing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan 473004, P.R. China
| | - Yanke Wang
- Henan Key Laboratory of Zhang ZhongJing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan 473004, P.R. China
| | - Bingyu Mao
- Henan Key Laboratory of Zhang ZhongJing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan 473004, P.R. China.,The Zhang ZhongJing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan 473004, P.R. China
| |
Collapse
|
8
|
Sun YY, Qin SS, Cheng YH, Wang CY, Liu XJ, Liu Y, Zhang XL, Zhang W, Zhan JX, Shao S, Bian WH, Luo BH, Lu DF, Yang J, Wang CH, Zhang CX. MicroRNA expression profile and functional analysis reveal their roles in contact inhibition and its disruption switch of rat vascular smooth muscle cells. Acta Pharmacol Sin 2018; 39:885-892. [PMID: 29698390 DOI: 10.1038/aps.2018.6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/07/2018] [Indexed: 12/21/2022] Open
Abstract
Contact inhibition and its disruption of vascular smooth muscle cells (VSMCs) are important cellular events in vascular diseases. But the underlying molecular mechanisms are unclear. In this study we investigated the roles of microRNAs (miRNAs) in the contact inhibition and its disruption of VSMCs and the molecular mechanisms involved. Rat VSMCs were seeded at 30% or 90% confluence. MiRNA expression profiles in contact-inhibited confluent VSMCs (90% confluence) and non-contact-inhibited low-density VSMCs (30% confluence) were determined. We found that multiple miRNAs were differentially expressed between the two groups. Among them, miR-145 was significantly increased in contact-inhibited VSMCs. Serum could disrupt the contact inhibition as shown by the elicited proliferation of confluent VSMCs. The contact inhibition disruption accompanied with a down-regulation of miR-145. Serum-induced contact inhibition disruption of VSMCs was blocked by overexpression of miR-145. Moreover, downregulation of miR-145 was sufficient to disrupt the contact inhibition of VSMCs. The downregulation of miR-145 in serum-induced contact inhibition disruption was related to the activation PI3-kinase/Akt pathway, which was blocked by the PI3-kinase inhibitor LY294002. KLF5, a target gene of miR-145, was identified to be involved in miR-145-mediated effect on VSMC contact inhibition disruption, as it could be inhibited by knockdown of KLF5. In summary, our results show that multiple miRNAs are differentially expressed in contact-inhibited VSMCs and in non-contact-inhibited VSMCs. Among them, miR-145 is a critical gene in contact inhibition and its disruption of VSMCs. PI3-kinase/Akt/miR-145/KLF5 is a critical signaling pathway in serum-induced contact inhibition disruption. Targeting of miRNAs related to the contact inhibition of VSMCs may represent a novel therapeutic approach for vascular diseases.
Collapse
|
9
|
Yang H, Xu M, Chi X, Yan Q, Wang Y, Xu W, Zhuang K, Li A, Liu S. Higher PKD3 expression in hepatocellular carcinoma (HCC) tissues predicts poorer prognosis for HCC patients. Clin Res Hepatol Gastroenterol 2017; 41:554-563. [PMID: 28363424 DOI: 10.1016/j.clinre.2017.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/24/2017] [Accepted: 02/08/2017] [Indexed: 02/04/2023]
Abstract
AIM Protein kinase D (PKD) acts as a key mediator in several cancer development signaling pathways. The aim of this study was to investigate the clinical significance and prognostic value of PKD3 expression in hepatocellular carcinoma (HCC) patients after hepatectomy. METHODS PKD3 mRNA and protein expression levels in tumor and matched non-tumoral (NT) tissues, HCC cell lines were evaluated by quantitative PCR (qRT-PCR), western blotting and immunohistochemical staining (IHC). Additionally, PKD3 mRNA expression in HCC tissues correlated with clinicopathological characteristics and survival. RESULTS PKD3 mRNA and protein expression was elevated in HCC tissues and HCC cell lines. Our data also showed that in HCC patients after resection, a high-expression of PKD3 mRNA and protein significantly correlated with multiple tumor nodules (P=0.009, P=0.020, respectively), poor tumor differentiation (P=0.001, P=0.004, respectively), high serum AFP level (P=0.005, P=0.002, respectively), vascular invasion (P=0.006, P=0.009, respectively) and advanced AJCC stage (P=0.001, P=0.022, respectively). A Kaplan-Meier analysis indicated that an elevated PKD3 mRNA expression correlated with shorter overall survival (OS) (P<0.001) and disease-free survival (DFS) (P=0.008). Moreover, multivariate analysis showed that a high-expression of PKD3 was an independent prognostic factor for three-year overall survival rate. CONCLUSIONS Our findings suggest that abnormal PKD3 expression might contribute to HCC progression. Furthermore, high PKD3 expression predicts a poor prognosis in HCC patients after hepatectomy.
Collapse
Affiliation(s)
- Haiyun Yang
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Gastroenterology, Guangdong No. 2 Provincial People(')s Hospital, Guangzhou 510317, China
| | - Ming Xu
- Department of Gastroenterology, Guangdong No. 2 Provincial People(')s Hospital, Guangzhou 510317, China
| | - Xiufang Chi
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou, Guangdong 510010, China
| | - Qun Yan
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yadong Wang
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wen Xu
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Kangmin Zhuang
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Aimin Li
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Side Liu
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
10
|
Hofvander J, Arbajian E, Stenkula KG, Lindkvist-Petersson K, Larsson M, Nilsson J, Magnusson L, von Steyern FV, Rissler P, Hornick JL, Mertens F. Frequent low-level mutations of protein kinase D2 in angiolipoma. J Pathol 2017; 241:578-582. [PMID: 28139834 DOI: 10.1002/path.4865] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/05/2016] [Accepted: 12/19/2016] [Indexed: 12/13/2022]
Abstract
Tumours displaying differentiation towards normal fat constitute the most common subgroup of soft tissue neoplasms. A series of such tumours was investigated by whole-exome sequencing followed by targeted ultra-deep sequencing. Eighty per cent of angiolipomas, but not any other tumour type, displayed mutations in the protein kinase D2 (PRKD2) gene, typically in the part encoding the catalytic domain. The absence of other aberrations at the chromosome or RNA level suggests that PRKD2 mutations are critical for angiolipoma development. Consistently, the mutated PRKD2 alleles were present at low (3-15%) frequencies, indicating that only a subset of the tumour cells is affected. Indeed, by sequencing mature fat cells and other cells separately, the former typically showed the highest mutation frequencies. Thus, we hypothesize that altered PRKD2 signalling in the adipocytic cells drives tumourigenesis and, in agreement with its pivotal role in angiogenesis, induces the vessel formation that is characteristic for angiolipoma. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jakob Hofvander
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, 221 84, Lund, Sweden
| | - Elsa Arbajian
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, 221 84, Lund, Sweden
| | - Karin G Stenkula
- Department of Experimental Medical Science, Lund University, 221 84, Lund, Sweden
| | | | - Malin Larsson
- Science for Life Laboratory, Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| | - Jenny Nilsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, 221 84, Lund, Sweden
| | - Linda Magnusson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, 221 84, Lund, Sweden
| | - Fredrik Vult von Steyern
- Department of Orthopedics, Clinical Sciences, Lund University and Skåne University Hospital, 221 85, Lund, Sweden
| | - Pehr Rissler
- Department of Pathology, Office for Medical Services, Division of Laboratory Medicine, 221 85, Lund, Sweden
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Fredrik Mertens
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, 221 84, Lund, Sweden.,Department of Clinical Genetics, Office for Medical Services, Division of Laboratory Medicine, 221 85, Lund, Sweden
| |
Collapse
|
11
|
Abstract
Vascular endothelial growth factor (VEGF) plays a fundamental role in angiogenesis and endothelial cell biology, and has been the subject of intense study as a result. VEGF acts via a diverse and complex range of signaling pathways, with new targets constantly being discovered. This review attempts to summarize the current state of knowledge regarding VEGF cell signaling in endothelial and cardiovascular biology, with a particular emphasis on its role in angiogenesis.
Collapse
Affiliation(s)
- Ian Evans
- Centre for Cardiovascular Biology and Medicine, Division of Medicine, University College London, Rayne Building, 5 University Street, London, WC1E 6JF, UK,
| |
Collapse
|
12
|
Ren B, Best B, Ramakrishnan DP, Walcott BP, Storz P, Silverstein RL. LPA/PKD-1-FoxO1 Signaling Axis Mediates Endothelial Cell CD36 Transcriptional Repression and Proangiogenic and Proarteriogenic Reprogramming. Arterioscler Thromb Vasc Biol 2016; 36:1197-208. [PMID: 27013613 DOI: 10.1161/atvbaha.116.307421] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 03/10/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE CD36 is a scavenger and antiangiogenic receptor that is important in atherothrombotic diseases, diabetes mellitus, cancer, and obesity. Lysophosphatidic acid, a phospholipid signaling mediator, abolishes endothelial cell responses to antiangiogenic proteins containing thrombospondin type 1 homology domains by downregulating endothelial CD36 transcription via protein kinase D1 (PKD-1) signaling. We aimed to understand mechanisms by which lysophosphatidic acid-mediated angiogenic signaling is integrated to regulate CD36 transcription and endothelial cell function via a nuclear transcriptional complex. APPROACH AND RESULTS Microvascular endothelial cells expressing CD36 were used for studying angiogenic signaling and CD36 transcription. Gene transfection and transduction, RT-qPCR, avidin-biotin-conjugated DNA-binding assay, chromatin immunoprecipitation assay, co-immunoprecipitation, proximal ligation assay, and immunofluorescence microscopy showed that lysophosphatidic acid-mediated CD36 transcriptional repression involved PKD-1 signaling mediated formation of forkhead box protein O1-histone deacetylase 7 complex in the nucleus. Unexpectedly, turning off CD36 transcription initiated reprogramming microvascular endothelial cells to express ephrin B2, a critical molecular signature involved in angiogenesis and arteriogenesis. Spheroid-based angiogenesis and in vivo Matrigel angiogenesis assays indicated that angiogenic branching morphogenesis and in vivo angiogenesis were dependent on PKD-1 signaling. A mouse tumor angiogenesis model revealed enhanced PKD-1 signaling and expression of ephrin B2 and smooth muscle actin in neovessels of Lewis Lung Carcinomas, along with low-CD36 expression or CD36 deficiency. CONCLUSIONS Lysophosphatidic acid/PKD-1 signaling leads to nuclear accumulation of histone deacetylase 7, where it interacts with forkhead box protein O1 to suppress endothelial CD36 transcription and mediates silencing of antiangiogenic switch, resulting in proangiogenic and proarteriogenic reprogramming. Targeting this signaling cascade could be a novel approach for ischemic cardiovascular disease and cancer.
Collapse
Affiliation(s)
- Bin Ren
- From the Department of Medicine, Medical College of Wisconsin, Milwaukee (B.R., R.L.S.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (B.R., B.B., D.P.R., R.L.S.); Department of Neurological Surgery, Cardiovascular Research Center, Massachusetts General Hospital & Harvard Medical School, Boston (B.P.W.); and Department of Cancer Biology, Mayo Clinic, Jacksonville, FL (P.S.)
| | - Brad Best
- From the Department of Medicine, Medical College of Wisconsin, Milwaukee (B.R., R.L.S.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (B.R., B.B., D.P.R., R.L.S.); Department of Neurological Surgery, Cardiovascular Research Center, Massachusetts General Hospital & Harvard Medical School, Boston (B.P.W.); and Department of Cancer Biology, Mayo Clinic, Jacksonville, FL (P.S.)
| | - Devi Prasadh Ramakrishnan
- From the Department of Medicine, Medical College of Wisconsin, Milwaukee (B.R., R.L.S.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (B.R., B.B., D.P.R., R.L.S.); Department of Neurological Surgery, Cardiovascular Research Center, Massachusetts General Hospital & Harvard Medical School, Boston (B.P.W.); and Department of Cancer Biology, Mayo Clinic, Jacksonville, FL (P.S.)
| | - Brian P Walcott
- From the Department of Medicine, Medical College of Wisconsin, Milwaukee (B.R., R.L.S.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (B.R., B.B., D.P.R., R.L.S.); Department of Neurological Surgery, Cardiovascular Research Center, Massachusetts General Hospital & Harvard Medical School, Boston (B.P.W.); and Department of Cancer Biology, Mayo Clinic, Jacksonville, FL (P.S.)
| | - Peter Storz
- From the Department of Medicine, Medical College of Wisconsin, Milwaukee (B.R., R.L.S.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (B.R., B.B., D.P.R., R.L.S.); Department of Neurological Surgery, Cardiovascular Research Center, Massachusetts General Hospital & Harvard Medical School, Boston (B.P.W.); and Department of Cancer Biology, Mayo Clinic, Jacksonville, FL (P.S.)
| | - Roy L Silverstein
- From the Department of Medicine, Medical College of Wisconsin, Milwaukee (B.R., R.L.S.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (B.R., B.B., D.P.R., R.L.S.); Department of Neurological Surgery, Cardiovascular Research Center, Massachusetts General Hospital & Harvard Medical School, Boston (B.P.W.); and Department of Cancer Biology, Mayo Clinic, Jacksonville, FL (P.S.).
| |
Collapse
|
13
|
Müller M, Schröer J, Azoitei N, Eiseler T, Bergmann W, Köhntop R, Lin Q, Costa IG, Zenke M, Genze F, Weidgang C, Seufferlein T, Liebau S, Kleger A. A time frame permissive for Protein Kinase D2 activity to direct angiogenesis in mouse embryonic stem cells. Sci Rep 2015; 5:11742. [PMID: 26148697 PMCID: PMC4493579 DOI: 10.1038/srep11742] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 05/15/2015] [Indexed: 01/18/2023] Open
Abstract
The protein kinase D isoenzymes PKD1/2/3 are prominent downstream targets of PKCs (Protein Kinase Cs) and phospholipase D in various biological systems. Recently, we identified PKD isoforms as novel mediators of tumour cell-endothelial cell communication, tumour cell motility and metastasis. Although PKD isoforms have been implicated in physiological/tumour angiogenesis, a role of PKDs during embryonic development, vasculogenesis and angiogenesis still remains elusive. We investigated the role of PKDs in germ layer segregation and subsequent vasculogenesis and angiogenesis using mouse embryonic stem cells (ESCs). We show that mouse ESCs predominantly express PKD2 followed by PKD3 while PKD1 displays negligible levels. Furthermore, we demonstrate that PKD2 is specifically phosphorylated/activated at the time of germ layer segregation. Time-restricted PKD2-activation limits mesendoderm formation and subsequent cardiovasculogenesis during early differentiation while leading to branching angiogenesis during late differentiation. In line, PKD2 loss-of-function analyses showed induction of mesendodermal differentiation in expense of the neuroectodermal germ layer. Our in vivo findings demonstrate that embryoid bodies transplanted on chicken chorioallantoic membrane induced an angiogenic response indicating that timed overexpression of PKD2 from day 4 onwards leads to augmented angiogenesis in differentiating ESCs. Taken together, our results describe novel and time-dependent facets of PKD2 during early cell fate determination.
Collapse
Affiliation(s)
- Martin Müller
- Department of Internal Medicine I, Ulm University, Ulm, Germany
| | - Jana Schröer
- Department of Internal Medicine I, Ulm University, Ulm, Germany
| | - Ninel Azoitei
- Department of Internal Medicine I, Ulm University, Ulm, Germany
| | - Tim Eiseler
- Department of Internal Medicine I, Ulm University, Ulm, Germany
| | - Wendy Bergmann
- Department of Internal Medicine I, Ulm University, Ulm, Germany
| | - Ralf Köhntop
- Department of Internal Medicine I, Ulm University, Ulm, Germany
| | - Qiong Lin
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Ivan G Costa
- IZKF Computational Biology Research Group, RWTH Aachen University Medical School, Aachen, Germany
| | - Martin Zenke
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | | | - Clair Weidgang
- Department of Internal Medicine I, Ulm University, Ulm, Germany
| | | | - Stefan Liebau
- Institute of Neuroanatomy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | | |
Collapse
|
14
|
Varga A, Gyulavári P, Greff Z, Futosi K, Németh T, Simon-Szabó L, Kerekes K, Szántai-Kis C, Brauswetter D, Kokas M, Borbély G, Erdei A, Mócsai A, Kéri G, Vántus T. Targeting vascular endothelial growth factor receptor 2 and protein kinase D1 related pathways by a multiple kinase inhibitor in angiogenesis and inflammation related processes in vitro. PLoS One 2015; 10:e0124234. [PMID: 25874616 PMCID: PMC4396990 DOI: 10.1371/journal.pone.0124234] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/27/2015] [Indexed: 12/18/2022] Open
Abstract
Emerging evidence suggests that the vascular endothelial growth factor receptor 2 (VEGFR2) and protein kinase D1 (PKD1) signaling axis plays a critical role in normal and pathological angiogenesis and inflammation related processes. Despite all efforts, the currently available therapeutic interventions are limited. Prior studies have also proved that a multiple target inhibitor can be more efficient compared to a single target one. Therefore, development of novel inflammatory pathway-specific inhibitors would be of great value. To test this possibility, we screened our molecular library using recombinant kinase assays and identified the previously described compound VCC251801 with strong inhibitory effect on both VEGFR2 and PKD1. We further analyzed the effect of VCC251801 in the endothelium-derived EA.hy926 cell line and in different inflammatory cell types. In EA.hy926 cells, VCC251801 potently inhibited the intracellular activation and signaling of VEGFR2 and PKD1 which inhibition eventually resulted in diminished cell proliferation. In this model, our compound was also an efficient inhibitor of in vitro angiogenesis by interfering with endothelial cell migration and tube formation processes. Our results from functional assays in inflammatory cellular models such as neutrophils and mast cells suggested an anti-inflammatory effect of VCC251801. The neutrophil study showed that VCC251801 specifically blocked the immobilized immune-complex and the adhesion dependent TNF-α -fibrinogen stimulated neutrophil activation. Furthermore, similar results were found in mast cell degranulation assay where VCC251801 caused significant reduction of mast cell response. In summary, we described a novel function of a multiple kinase inhibitor which strongly inhibits the VEGFR2-PKD1 signaling and might be a novel inhibitor of pathological inflammatory pathways.
Collapse
Affiliation(s)
- Attila Varga
- Pathobiochemistry Research Group, Hungarian Academy of Sciences—Semmelweis University, Budapest, Hungary
| | - Pál Gyulavári
- Pathobiochemistry Research Group, Hungarian Academy of Sciences—Semmelweis University, Budapest, Hungary
| | | | - Krisztina Futosi
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Tamás Németh
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Laura Simon-Szabó
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | - Krisztina Kerekes
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | | | - Diána Brauswetter
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Márton Kokas
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Gábor Borbély
- Pathobiochemistry Research Group, Hungarian Academy of Sciences—Semmelweis University, Budapest, Hungary
| | - Anna Erdei
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | - Attila Mócsai
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - György Kéri
- Pathobiochemistry Research Group, Hungarian Academy of Sciences—Semmelweis University, Budapest, Hungary
- Vichem Chemie Research Ltd., Budapest, Hungary
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Tibor Vántus
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
- * E-mail:
| |
Collapse
|
15
|
Aicart-Ramos C, Sánchez-Ruiloba L, Gómez-Parrizas M, Zaragoza C, Iglesias T, Rodríguez-Crespo I. Protein kinase D activity controls endothelial nitric oxide synthesis. J Cell Sci 2014; 127:3360-72. [PMID: 24928905 DOI: 10.1242/jcs.148601] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) regulates key functions of the endothelium, such as angiogenesis or vessel repair in processes involving endothelial nitric oxide synthase (eNOS) activation. One of the effector kinases that become activated in endothelial cells upon VEGF treatment is protein kinase D (PKD). Here, we show that PKD phosphorylates eNOS, leading to its activation and a concomitant increase in NO synthesis. Using mass spectrometry, we show that the purified active kinase specifically phosphorylates recombinant eNOS on Ser1179. Treatment of endothelial cells with VEGF or phorbol 12,13-dibutyrate (PDBu) activates PKD and increases eNOS Ser1179 phosphorylation. In addition, pharmacological inhibition of PKD and gene silencing of both PKD1 and PKD2 abrogate VEGF signaling, resulting in a clear diminished migration of endothelial cells in a wound healing assay. Finally, inhibition of PKD in mice results in an almost complete disappearance of the VEGF-induced vasodilatation, as monitored through determination of the diameter of the carotid artery. Hence, our data indicate that PKD is a new regulatory kinase of eNOS in endothelial cells whose activity orchestrates mammalian vascular tone.
Collapse
Affiliation(s)
- Clara Aicart-Ramos
- Departamento de Bioquímica y Biología Molecular I, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Lucía Sánchez-Ruiloba
- Instituto de Investigaciones Biomédicas "Alberto Sols". CSIC-UAM, C/Arturo Duperier, Madrid 28029, Spain CIBERNED, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Carlos Zaragoza
- Cardiovascular Research Unit University Francisco de Vitoria/Hospital Ramón y Cajal, Ctra Colmenar Viejo Km 9,100, Madrid 28034, Spain
| | - Teresa Iglesias
- Instituto de Investigaciones Biomédicas "Alberto Sols". CSIC-UAM, C/Arturo Duperier, Madrid 28029, Spain CIBERNED, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ignacio Rodríguez-Crespo
- Departamento de Bioquímica y Biología Molecular I, Universidad Complutense de Madrid, Madrid 28040, Spain
| |
Collapse
|
16
|
Hollenbach M, Stoll SJ, Jörgens K, Seufferlein T, Kroll J. Different regulation of physiological and tumor angiogenesis in zebrafish by protein kinase D1 (PKD1). PLoS One 2013; 8:e68033. [PMID: 23874489 PMCID: PMC3706615 DOI: 10.1371/journal.pone.0068033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 05/23/2013] [Indexed: 01/31/2023] Open
Abstract
Protein kinase D isoenzymes (PKDs, Prkds) are serine threonine kinases that belong to the CAMK superfamily. PKD1 is expressed in endothelial cells and is a major mediator of biological responses downstream of the VEGFRs that are relevant for angiogenesis such as endothelial cell migration, proliferation and tubulogenesis in vitro. PKDs also play a critical role in tumor development and progression, including tumor angiogenesis. However, given the plethora of signaling modules that drive angiogenesis, the precise role of PKD1 in both physiological and tumor angiogenesis in vivo has not been worked out so far. This study aimed at dissecting the contribution of PKD1 to physiological blood vessel formation, PKD1 was found to be widely expressed during zebrafish development. As far as physiological angiogenesis was concerned, morpholino-based silencing of PKD1 expression moderately reduced the formation of the intersomitic vessels and the dorsal longitudinal anastomotic vessel in tg(fli1:EGFP) zebrafish. In addition, silencing of PKD1 resulted in reduced formation of the parachordal lymphangioblasts that serves as a precursor for the developing thoracic duct. Interestingly, tumor angiogenesis was completely abolished in PKD1 morphants using the zebrafish/tumor xenograft angiogenesis assay. Our data in zebrafish demonstrate that PKD1 contributes to the regulation of physiological angiogenesis and lymphangiogenesis during zebrafish development and is essential for tumor angiogenesis.
Collapse
Affiliation(s)
- Marcus Hollenbach
- Department of Vascular Biology & Tumorangiogenesis, Center for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Department of Internal Medicine I, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Sandra Jasmin Stoll
- Department of Vascular Biology & Tumorangiogenesis, Center for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Kristina Jörgens
- Department of Vascular Biology & Tumorangiogenesis, Center for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine I, Ulm University, Ulm, Germany
- * E-mail:
| | - Jens Kroll
- Department of Vascular Biology & Tumorangiogenesis, Center for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
| |
Collapse
|
17
|
Armacki M, Joodi G, Nimmagadda SC, de Kimpe L, Pusapati GV, Vandoninck S, Van Lint J, Illing A, Seufferlein T. A novel splice variant of calcium and integrin-binding protein 1 mediates protein kinase D2-stimulated tumour growth by regulating angiogenesis. Oncogene 2013; 33:1167-80. [DOI: 10.1038/onc.2013.43] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 01/08/2013] [Accepted: 01/11/2013] [Indexed: 12/25/2022]
|
18
|
Blancas AA, Wong LE, Glaser DE, McCloskey KE. Specialized tip/stalk-like and phalanx-like endothelial cells from embryonic stem cells. Stem Cells Dev 2013; 22:1398-407. [PMID: 23249281 DOI: 10.1089/scd.2012.0376] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Endothelial cells (EC) generated in vitro from stem cells are desirable for their potential in a variety of in vitro models and cell-based therapeutic approaches; however, EC can take on a number of functionally and phenotypically distinct specializations. Here, we show the generation of functionally distinct EC subpopulations, including (1) the pro-angiogenic migrating tip-like and proliferative stalk-like EC, and (2) the less migratory cobblestone-shaped phalanx-like EC. Both embryonic stem cell (ESC)-derived EC subpopulations are generated from outgrowths of Flk-1+ vascular progenitor cells with high levels of vascular endothelial growth factor treatment, while the phalanx-like ESC-derived EC (ESC-EC) are subsequently isolated by selecting for cobblestone shape. Compared with the ESC-derived angiogenic endothelial cells (named ESC-AEC) that contain only 14% Flt-1+ and 25% Tie-1+ cells, the selected phalanx-like ESC-EC express higher numbers of cells expressing the phalanx markers Flt-1+ and Tie-1+, 89% and 90%, respectively. The ESC-AEC also contain 35% CXCR4+ tip cells, higher expression levels of stalk marker Notch-1, and lower expression levels of Tie-2 compared with the phalanx-type ESC-EC that do not contain discernible numbers of CXCR4+ tip cells. Perhaps most notably, the ESC-AEC display increased cell migration, proliferation, and 3 times more vessel-like structures after 48 h on Matrigel compared with the phalanx-like ESC-EC. This work analyzes, for the first time, the presence of distinct EC subtypes (tip/stalk, and phalanx) generated in vitro from ESC, and shows that phalanx-like EC can be purified and maintained in culture separate from the tip/stalk-like containing EC.
Collapse
Affiliation(s)
- Alicia A Blancas
- Graduate Program in Quantitative and Systems Biology, University of California , Merced, California, USA
| | | | | | | |
Collapse
|
19
|
The role of PKC isoforms in the inhibition of NF-κB activation by vitamin K2 in human hepatocellular carcinoma cells. J Nutr Biochem 2012; 23:1668-75. [PMID: 22475810 DOI: 10.1016/j.jnutbio.2011.11.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 11/03/2011] [Accepted: 11/30/2011] [Indexed: 12/31/2022]
Abstract
Vitamin K (VK) has diverse protective effects against osteoporosis, atherosclerosis and carcinogenesis. We recently reported that menatetrenone, a VK2 analogue, suppressed nuclear factor (NF)-κB activation in human hepatoma cells. Although NF-κB is regulated by isoforms of protein kinase C (PKC), the involvement of PKCs in VK2-mediated NF-κB inhibition remains unknown. Therefore, the effects of VK2 on the activation and the kinase activity of each PKC isoform were investigated. The human hepatoma Huh7 cells were treated with PKC isoform-specific inhibitors and/or siRNAs against each PKC isoform with or without 12-O-tetradecanoylphorbol-13-acetate (TPA). VK2 inhibited the TPA-induced NF-κB activation in Huh7 cells. NF-κB activity was inhibited by the pan-PKC inhibitor Ro-31-8425, but not by the PKCα-specific inhibitor Gö6976. The knockdown of individual PKC isoforms including PKCα, δ and ɛ showed only marginal effects on the NF-κB activity. However, the knockdown of both PKCδ and PKCɛ, together with treatment with a PKCα-specific inhibitor, depressed the NF-κB activity. VK2 suppressed the PKCα kinase activity and the phosphorylation of PKCɛ after TPA treatment, but neither the activation nor the enzyme activity of PKCδ was affected. The knockdown of PKCɛ abolished the TPA-induced phosphorylation of PKD1, and the effects of PKD1 knockdown on NF-κB activation were similar to those of PKCɛ knockdown. Collectively, all of the PKCs, including α, δ and ɛ, and PKD1 are involved in the TPA-mediated activation of NF-κB. VK2 inhibited the NF-κB activation through the inhibition of PKCα and ɛ kinase activities, as well as subsequent inhibition of PKD1 activation.
Collapse
|