1
|
Myo Min KK, Ffrench CB, McClure BJ, Ortiz M, Dorward EL, Samuel MS, Ebert LM, Mahoney MG, Bonder CS. Desmoglein-2 as a cancer modulator: friend or foe? Front Oncol 2023; 13:1327478. [PMID: 38188287 PMCID: PMC10766750 DOI: 10.3389/fonc.2023.1327478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Desmoglein-2 (DSG2) is a calcium-binding single pass transmembrane glycoprotein and a member of the large cadherin family. Until recently, DSG2 was thought to only function as a cell adhesion protein embedded within desmosome junctions designed to enable cells to better tolerate mechanical stress. However, additional roles for DSG2 outside of desmosomes are continuing to emerge, particularly in cancer. Herein, we review the current literature on DSG2 in cancer and detail its impact on biological functions such as cell adhesion, proliferation, migration, invasion, intracellular signaling, extracellular vesicle release and vasculogenic mimicry. An increased understanding of the diverse repertoire of the biological functions of DSG2 holds promise to exploit this cell surface protein as a potential prognostic biomarker and/or target for better patient outcomes. This review explores the canonical and non-canonical functions of DSG2, as well as the context-dependent impacts of DSG2 in the realm of cancer.
Collapse
Affiliation(s)
- Kay K. Myo Min
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
| | - Charlie B. Ffrench
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
| | - Barbara J. McClure
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Michael Ortiz
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
| | - Emma L. Dorward
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
| | - Michael S. Samuel
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Basil Hetzel Institute, Queen Elizabeth Hospital, SA, Adelaide, Australia
| | - Lisa M. Ebert
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
- Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Mỹ G. Mahoney
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Claudine S. Bonder
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
2
|
Nielsen MS, van Opbergen CJM, van Veen TAB, Delmar M. The intercalated disc: a unique organelle for electromechanical synchrony in cardiomyocytes. Physiol Rev 2023; 103:2271-2319. [PMID: 36731030 PMCID: PMC10191137 DOI: 10.1152/physrev.00021.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
The intercalated disc (ID) is a highly specialized structure that connects cardiomyocytes via mechanical and electrical junctions. Although described in some detail by light microscopy in the 19th century, it was in 1966 that electron microscopy images showed that the ID represented apposing cell borders and provided detailed insight into the complex ID nanostructure. Since then, much has been learned about the ID and its molecular composition, and it has become evident that a large number of proteins, not all of them involved in direct cell-to-cell coupling via mechanical or gap junctions, reside at the ID. Furthermore, an increasing number of functional interactions between ID components are emerging, leading to the concept that the ID is not the sum of isolated molecular silos but an interacting molecular complex, an "organelle" where components work in concert to bring about electrical and mechanical synchrony. The aim of the present review is to give a short historical account of the ID's discovery and an updated overview of its composition and organization, followed by a discussion of the physiological implications of the ID architecture and the local intermolecular interactions. The latter will focus on both the importance of normal conduction of cardiac action potentials as well as the impact on the pathophysiology of arrhythmias.
Collapse
Affiliation(s)
- Morten S Nielsen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Chantal J M van Opbergen
- The Leon Charney Division of Cardiology, New York University Grossmann School of Medicine, New York, New York, United States
| | - Toon A B van Veen
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mario Delmar
- The Leon Charney Division of Cardiology, New York University Grossmann School of Medicine, New York, New York, United States
| |
Collapse
|
3
|
Gerber TS, Ridder DA, Schindeldecker M, Weinmann A, Duret D, Breuhahn K, Galle PR, Schirmacher P, Roth W, Lang H, Straub BK. Constitutive Occurrence of E:N-cadherin Heterodimers in Adherens Junctions of Hepatocytes and Derived Tumors. Cells 2022; 11:cells11162507. [PMID: 36010583 PMCID: PMC9406782 DOI: 10.3390/cells11162507] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 12/24/2022] Open
Abstract
Cell–cell junctions are pivotal for embryogenesis and tissue homeostasis but also play a major role in tumorigenesis, tumor invasion, and metastasis. E-cadherin (CDH1) and N-cadherin (CDH2) are two adherens junction’s transmembrane glycoproteins with tissue-specific expression patterns in epithelial and neural/mesenchymal cells. Aberrant expression has been implicated in the process of epithelial–mesenchymal transition (EMT) in malignant tumors. We could hitherto demonstrate cis-E:N-cadherin heterodimer in endoderm-derived cells. Using immunoprecipitation in cultured cells of the line PLC as well as in human hepatocellular carcinoma (HCC)-lysates, we isolated E-N-cadherin heterodimers in a complex with the plaque proteins α- and β-catenin, plakoglobin, and vinculin. In confocal laser scanning microscopy, E-cadherin co-localized with N-cadherin at the basolateral membrane of normal hepatocytes, hepatocellular adenoma (HCA), and in most cases of HCC. In addition, we analyzed E- and N-cadherin expression via immunohistochemistry in a large cohort of 868 HCCs from 570 patients, 25 HCA, and respective non-neoplastic liver tissue, and correlated our results with multiple prognostic markers. While E- or N-cadherin were similarly expressed in tumor sites with vascular invasion or HCC metastases, HCC with vascular encapsulated tumor clusters (VETC) displayed slightly reduced E-cadherin, and slightly increased N-cadherin expression. Analyzing The Cancer Genome Atlas patient cohort, we found that reduced mRNA levels of CDH1, but not CDH2 were significantly associated with unfavorable prognosis; however, in multivariate analysis, CDH1 did not correlate with prognosis. In summary, E- and N-cadherin are specific markers for hepatocytes and derived HCA and HCC. E:N-cadherin heterodimers are constitutively expressed in the hepatocytic lineage and only slightly altered in malignant progression, thereby not complying with the concept of EMT.
Collapse
Affiliation(s)
- Tiemo Sven Gerber
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Dirk Andreas Ridder
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Mario Schindeldecker
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Tissue Biobank, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Arndt Weinmann
- 1st Department of Internal Medicine, Gastroenterology and Hepatology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Diane Duret
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Clinic Heidelberg, 69120 Heidelberg, Germany
| | - Peter R. Galle
- 1st Department of Internal Medicine, Gastroenterology and Hepatology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Clinic Heidelberg, 69120 Heidelberg, Germany
| | - Wilfried Roth
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Hauke Lang
- Department of General, Visceral and Transplant Surgery, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Beate Katharina Straub
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Correspondence:
| |
Collapse
|
4
|
Gerber TS, Goeppert B, Hausen A, Witzel HR, Bartsch F, Schindeldecker M, Gröger LK, Ridder DA, Cahyadi O, Esposito I, Gaida MM, Schirmacher P, Galle PR, Lang H, Roth W, Straub BK. N-Cadherin Distinguishes Intrahepatic Cholangiocarcinoma from Liver Metastases of Ductal Adenocarcinoma of the Pancreas. Cancers (Basel) 2022; 14:cancers14133091. [PMID: 35804866 PMCID: PMC9264797 DOI: 10.3390/cancers14133091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 12/12/2022] Open
Abstract
Carcinomas of the pancreatobiliary system confer an especially unfavorable prognosis. The differential diagnosis of intrahepatic cholangiocarcinoma (iCCA) and its subtypes versus liver metastasis of ductal adenocarcinoma of the pancreas (PDAC) is clinically important to allow the best possible therapy. We could previously show that E-cadherin and N-cadherin, transmembrane glycoproteins of adherens junctions, are characteristic features of hepatocytes and cholangiocytes. We therefore analyzed E-cadherin and N-cadherin in the embryonally related epithelia of the bile duct and pancreas, as well as in 312 iCCAs, 513 carcinomas of the extrahepatic bile ducts, 228 gallbladder carcinomas, 131 PDACs, and precursor lesions, with immunohistochemistry combined with image analysis, fluorescence microscopy, and immunoblots. In the physiological liver, N-cadherin colocalizes with E-cadherin in small intrahepatic bile ducts, whereas larger bile ducts and pancreatic ducts are positive for E-cadherin but contain decreasing amounts of N-cadherin. N-cadherin was highly expressed in most iCCAs, whereas in PDACs, N-cadherin was negative or only faintly expressed. E- and N-cadherin expression in tumors of the pancreaticobiliary tract recapitulate their expression in their normal tissue counterparts. N-cadherin is a helpful marker for the differential diagnosis between iCCA and PDAC, with a specificity of 96% and a sensitivity of 67% for small duct iCCAs and 50% for large duct iCCAs.
Collapse
Affiliation(s)
- Tiemo S. Gerber
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (T.S.G.); (A.H.); (H.R.W.); (M.S.); (D.A.R.); (M.M.G.); (W.R.)
| | - Benjamin Goeppert
- Institute of Pathology and Neuropathology, RKH Klinikum Ludwigsburg, 71640 Ludwigsburg, Germany; (B.G.); (P.S.)
| | - Anne Hausen
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (T.S.G.); (A.H.); (H.R.W.); (M.S.); (D.A.R.); (M.M.G.); (W.R.)
| | - Hagen R. Witzel
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (T.S.G.); (A.H.); (H.R.W.); (M.S.); (D.A.R.); (M.M.G.); (W.R.)
| | - Fabian Bartsch
- Department of General, Visceral and Transplant Surgery, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (F.B.); (L.-K.G.); (H.L.)
| | - Mario Schindeldecker
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (T.S.G.); (A.H.); (H.R.W.); (M.S.); (D.A.R.); (M.M.G.); (W.R.)
- Tissue Biobank, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Lisa-Katharina Gröger
- Department of General, Visceral and Transplant Surgery, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (F.B.); (L.-K.G.); (H.L.)
| | - Dirk A. Ridder
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (T.S.G.); (A.H.); (H.R.W.); (M.S.); (D.A.R.); (M.M.G.); (W.R.)
| | - Oscar Cahyadi
- Institute of Pathology, University of Heidelberg, 69120 Heidelberg, Germany;
| | - Irene Esposito
- Institute of Pathology, University Clinic Düsseldorf, 40225 Düsseldorf, Germany;
| | - Matthias M. Gaida
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (T.S.G.); (A.H.); (H.R.W.); (M.S.); (D.A.R.); (M.M.G.); (W.R.)
| | - Peter Schirmacher
- Institute of Pathology and Neuropathology, RKH Klinikum Ludwigsburg, 71640 Ludwigsburg, Germany; (B.G.); (P.S.)
| | - Peter R. Galle
- Department of Medicine I, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany;
| | - Hauke Lang
- Department of General, Visceral and Transplant Surgery, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (F.B.); (L.-K.G.); (H.L.)
| | - Wilfried Roth
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (T.S.G.); (A.H.); (H.R.W.); (M.S.); (D.A.R.); (M.M.G.); (W.R.)
| | - Beate K. Straub
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (T.S.G.); (A.H.); (H.R.W.); (M.S.); (D.A.R.); (M.M.G.); (W.R.)
- Correspondence:
| |
Collapse
|
5
|
Punovuori K, Malaguti M, Lowell S. Cadherins in early neural development. Cell Mol Life Sci 2021; 78:4435-4450. [PMID: 33796894 PMCID: PMC8164589 DOI: 10.1007/s00018-021-03815-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/04/2021] [Accepted: 03/18/2021] [Indexed: 11/12/2022]
Abstract
During early neural development, changes in signalling inform the expression of transcription factors that in turn instruct changes in cell identity. At the same time, switches in adhesion molecule expression result in cellular rearrangements that define the morphology of the emerging neural tube. It is becoming increasingly clear that these two processes influence each other; adhesion molecules do not simply operate downstream of or in parallel with changes in cell identity but rather actively feed into cell fate decisions. Why are differentiation and adhesion so tightly linked? It is now over 60 years since Conrad Waddington noted the remarkable "Constancy of the Wild Type" (Waddington in Nature 183: 1654-1655, 1959) yet we still do not fully understand the mechanisms that make development so reproducible. Conversely, we do not understand why directed differentiation of cells in a dish is sometimes unpredictable and difficult to control. It has long been suggested that cells make decisions as 'local cooperatives' rather than as individuals (Gurdon in Nature 336: 772-774, 1988; Lander in Cell 144: 955-969, 2011). Given that the cadherin family of adhesion molecules can simultaneously influence morphogenesis and signalling, it is tempting to speculate that they may help coordinate cell fate decisions between neighbouring cells in the embryo to ensure fidelity of patterning, and that the uncoupling of these processes in a culture dish might underlie some of the problems with controlling cell fate decisions ex-vivo. Here we review the expression and function of cadherins during early neural development and discuss how and why they might modulate signalling and differentiation as neural tissues are formed.
Collapse
Affiliation(s)
- Karolina Punovuori
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, 00290, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Mattias Malaguti
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Little France Drive, Edinburgh, EH16 4UU, UK
| | - Sally Lowell
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Little France Drive, Edinburgh, EH16 4UU, UK.
| |
Collapse
|
6
|
The intercalated disc: a mechanosensing signalling node in cardiomyopathy. Biophys Rev 2020; 12:931-946. [PMID: 32661904 PMCID: PMC7429531 DOI: 10.1007/s12551-020-00737-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/08/2020] [Indexed: 02/08/2023] Open
Abstract
Cardiomyocytes, the cells generating contractile force in the heart, are connected to each other through a highly specialised structure, the intercalated disc (ID), which ensures force transmission and transduction between neighbouring cells and allows the myocardium to function in synchrony. In addition, cardiomyocytes possess an intrinsic ability to sense mechanical changes and to regulate their own contractile output accordingly. To achieve this, some of the components responsible for force transmission have evolved to sense changes in tension and to trigger a biochemical response that results in molecular and cellular changes in cardiomyocytes. This becomes of particular importance in cardiomyopathies, where the heart is exposed to increased mechanical load and needs to adapt to sustain its contractile function. In this review, we will discuss key mechanosensing elements present at the intercalated disc and provide an overview of the signalling molecules involved in mediating the responses to changes in mechanical force.
Collapse
|
7
|
Nguyen PT, Nguyen D, Chea C, Miyauchi M, Fujii M, Takata T. Interaction between N-cadherin and decoy receptor-2 regulates apoptosis in head and neck cancer. Oncotarget 2018; 9:31516-31530. [PMID: 30140387 PMCID: PMC6101147 DOI: 10.18632/oncotarget.25846] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 07/15/2018] [Indexed: 11/25/2022] Open
Abstract
N-cadherin is a neural cell adhesion molecule that aberrantly occurs in head and neck cancers to promote cancer cell growth. However, the underlying mechanisms remain unclear. Here we report that N-cadherin increases cancer cell growth by inhibiting apoptosis. Apoptosis eliminates old, unnecessary, and unhealthy cells. However, tumor cells have the ability of avoiding apoptosis that increases cancer cell growth. Recent studies have found that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis in tumor cells by reacting with four distinct cell surface receptors: TRAIL-R1 (DR-4), TRAIL-R2 (DR-5), TRAIL-R3 (DcR-1), and TRAIL-R4 (DcR-2). Among these TRAIL receptors, the death receptors DR-4 and DR-5 transmit apoptotic signals owing to the death domain in the intracellular portion. Conversely, the decoy receptors DcR-1 and DcR-2 lack a complete intracellular portion, so neither can transmit apoptotic signals. DcR-1 or DcR-2 overexpression suppresses TRAIL-induced apoptosis. In this study, N-cadherin overexpression increased DcR-2 expression and decreased DR-5 expression. In contrast, knockdown of N-cadherin expression upregulated DR-5 expression and downregulated DcR-2 expression. A significantly positive relationship between N-cadherin and DcR-2 expression was also found in HNSCC specimens. Those specimens with a lower apoptotic index showed a higher expression of N-cadherin and/or DcR-2. In addition, we demonstrated that N-cadherin interacts directly with DcR-2. Notably, DcR-2 induces cancer cell survival through the cleavage of caspases and PARP by activating MAPK/ERK pathway and suppressing NF-kB/ p65 phosphorylation, which has a very important role in resistance to chemotherapy.
Collapse
Affiliation(s)
- Phuong Thao Nguyen
- Department of Oral and Maxillofacial Pathobiology, Basic Life Science, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan.,Department of Global Dental Medicine and Molecular Oncology, Integrated Health Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Dung Nguyen
- Department of Oral and Maxillofacial Pathobiology, Basic Life Science, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Chanbora Chea
- Department of Oral and Maxillofacial Pathobiology, Basic Life Science, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mutsumi Miyauchi
- Department of Oral and Maxillofacial Pathobiology, Basic Life Science, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Makiko Fujii
- Department of Global Dental Medicine and Molecular Oncology, Integrated Health Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takashi Takata
- Department of Oral and Maxillofacial Pathobiology, Basic Life Science, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
8
|
Di Pietro M, Pascuali N, Scotti L, Irusta G, Bas D, May M, Tesone M, Abramovich D, Parborell F. In vivo intrabursal administration of bioactive lipid sphingosine-1-phosphate enhances vascular integrity in a rat model of ovarian hyperstimulation syndrome. Mol Hum Reprod 2017; 23:417-427. [DOI: 10.1093/molehr/gax021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 03/29/2017] [Indexed: 01/09/2023] Open
|
9
|
Goldmann WH. Role of vinculin in cellular mechanotransduction. Cell Biol Int 2016; 40:241-56. [DOI: 10.1002/cbin.10563] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 11/14/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Wolfgang H. Goldmann
- Department of Biophysics; Friedrich-Alexander-University of Erlangen-Nuremberg; Erlangen Germany
| |
Collapse
|
10
|
Blaschuk OW. N-cadherin antagonists as oncology therapeutics. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140039. [PMID: 25533096 DOI: 10.1098/rstb.2014.0039] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The cell adhesion molecule (CAM), N-cadherin, has emerged as an important oncology therapeutic target. N-cadherin is a transmembrane glycoprotein mediating the formation and structural integrity of blood vessels. Its expression has also been documented in numerous types of poorly differentiated tumours. This CAM is involved in regulating the proliferation, survival, invasiveness and metastasis of cancer cells. Disruption of N-cadherin homophilic intercellular interactions using peptide or small molecule antagonists is a promising novel strategy for anti-cancer therapies. This review discusses: the discovery of N-cadherin, the mechanism by which N-cadherin promotes cell adhesion, the role of N-cadherin in blood vessel formation and maintenance, participation of N-cadherin in cancer progression, the different types of N-cadherin antagonists and the use of N-cadherin antagonists as anti-cancer drugs.
Collapse
Affiliation(s)
- Orest W Blaschuk
- Division of Urology, Department of Surgery, McGill University, Montreal, Quebec, Canada H3A 1A1
| |
Collapse
|
11
|
Vazquez-Levin MH, Marín-Briggiler CI, Caballero JN, Veiga MF. Epithelial and neural cadherin expression in the mammalian reproductive tract and gametes and their participation in fertilization-related events. Dev Biol 2015; 401:2-16. [DOI: 10.1016/j.ydbio.2014.12.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 12/23/2014] [Accepted: 12/28/2014] [Indexed: 01/10/2023]
|
12
|
Shenoy AK, Lu J. Cancer cells remodel themselves and vasculature to overcome the endothelial barrier. Cancer Lett 2014; 380:534-544. [PMID: 25449784 DOI: 10.1016/j.canlet.2014.10.031] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/27/2014] [Accepted: 10/28/2014] [Indexed: 12/19/2022]
Abstract
Metastasis refers to the spread of cancer cells from a primary tumor to distant organs mostly via the bloodstream. During the metastatic process, cancer cells invade blood vessels to enter circulation, and later exit the vasculature at a distant site. Endothelial cells that line blood vessels normally serve as a barrier to the movement of cells into or out of the blood. It is thus critical to understand how metastatic cancer cells overcome the endothelial barrier. Epithelial cancer cells acquire increased motility and invasiveness through epithelial-to-mesenchymal transition (EMT), which enables them to move toward vasculature. Cancer cells also express a variety of adhesion molecules that allow them to attach to vascular endothelium. Finally, cancer cells secrete or induce growth factors and cytokines to actively prompt vascular hyperpermeability that compromises endothelial barrier function and facilitates transmigration of cancer cells through the vascular wall. Elucidation of the mechanisms underlying metastatic dissemination may help develop new anti-metastasis therapeutics.
Collapse
Affiliation(s)
- Anitha K Shenoy
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, United States.
| | - Jianrong Lu
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, United States.
| |
Collapse
|
13
|
Alizadeh AM, Shiri S, Farsinejad S. Metastasis review: from bench to bedside. Tumour Biol 2014; 35:8483-523. [PMID: 25104089 DOI: 10.1007/s13277-014-2421-z] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/29/2014] [Indexed: 12/19/2022] Open
Abstract
Cancer is the final result of uninhibited cell growth that involves an enormous group of associated diseases. One major aspect of cancer is when cells attack adjacent components of the body and spread to other organs, named metastasis, which is the major cause of cancer-related mortality. In developing this process, metastatic cells must successfully negotiate a series of complex steps, including dissociation, invasion, intravasation, extravasation, and dormancy regulated by various signaling pathways. In this review, we will focus on the recent studies and collect a comprehensive encyclopedia in molecular basis of metastasis, and then we will discuss some new potential therapeutics which target the metastasis pathways. Understanding the new aspects on molecular mechanisms and signaling pathways controlling tumor cell metastasis is critical for the development of therapeutic strategies for cancer patients that would be valuable for researchers in both fields of molecular and clinical oncology.
Collapse
Affiliation(s)
- Ali Mohammad Alizadeh
- Cancer Research Center, Tehran University of Medical Sciences, Tehran, 1419733141, Iran,
| | | | | |
Collapse
|
14
|
Sadler NM, Harris BR, Metzger BA, Kirshner J. N-cadherin impedes proliferation of the multiple myeloma cancer stem cells. AMERICAN JOURNAL OF BLOOD RESEARCH 2013; 3:271-285. [PMID: 24396705 PMCID: PMC3875273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/06/2013] [Indexed: 06/03/2023]
Abstract
Multiple myeloma (MM) is an incurable malignancy of the plasma cells localized to the bone marrow. A rare population of MM cancer stem cells (MM-CSCs) has been shown to be responsible for maintaining the pull of residual disease and to contribute to myeloma relapse. The stem cells are found in a bone marrow niche in contact with the stromal cells that are responsible for maintaining the proliferative quiescence of the MM-CSC and regulate its self-renewal and differentiation decisions. Here we show that both MM and bone marrow stromal cells express N-cadherin, a cell-cell adhesion molecule shown to maintain a pool of leukemic stem cells. Inhibition of N-cadherin using a neutralizing antibody led to an increase in the MM cell proliferation. A decrease in MM cell adhesion to the bone marrow stroma was observed in the first 24 hours of co-culture followed by a 2.3-30-fold expansion of the adherent cells. Moreover, inhibition of N-cadherin led to a 4.8-9.6-fold expansion of the MM-CSC population. Surprisingly, addition of the N-cadherin antagonist peptide resulted in massive death of the non-adherent MM cells, while the viability of the adherent cells and MM-CSCs remained unaffected. Interestingly, the proliferative effects of N-cadherin inhibition were not mediated by the nuclear translocation of β-catenin. Taken together, our findings demonstrate the crucial role of N-cadherin in regulating MM cell proliferation and viability and open an interesting avenue of investigation to understand how structural modifications of N-cadherin can affect MM cell behavior. Our findings suggest that targeting N-cadherin may be a useful therapeutic strategy to treat MM in conjunction with an agent that has anti-MM-CSC activity.
Collapse
Affiliation(s)
- Nicole M Sadler
- Department of Biological Sciences, Purdue University West Lafayette, IN, 47907, USA
| | - Britney R Harris
- Department of Biological Sciences, Purdue University West Lafayette, IN, 47907, USA
| | - Brittany A Metzger
- Department of Biological Sciences, Purdue University West Lafayette, IN, 47907, USA
| | - Julia Kirshner
- Department of Biological Sciences, Purdue University West Lafayette, IN, 47907, USA
| |
Collapse
|
15
|
Twiss F, de Rooij J. Cadherin mechanotransduction in tissue remodeling. Cell Mol Life Sci 2013; 70:4101-16. [PMID: 23563964 PMCID: PMC11113614 DOI: 10.1007/s00018-013-1329-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 03/19/2013] [Accepted: 03/19/2013] [Indexed: 12/15/2022]
Abstract
Mechanical forces are increasingly recognized as central factors in the regulation of tissue morphogenesis and homeostasis. Central to the transduction of mechanical information into biochemical signaling is the contractile actomyosin cytoskeleton. Fluctuations in actomyosin contraction are sensed by tension sensitive systems at the interface between actomyosin and cell adhesion complexes. We review the current knowledge about the mechanical coupling of cell-cell junctions to the cytoskeleton and highlight the central role of α-catenin in this linkage. We assemble current knowledge about α-catenin's regulation by tension and about its interactions with a diversity of proteins. We present a model in which α-catenin is a force-regulated platform for a machinery of proteins that orchestrates local cortical remodeling in response to force. Finally, we highlight recently described fundamental processes in tissue morphogenesis and argue where and how this α-catenin-dependent cadherin mechanotransduction may be involved.
Collapse
Affiliation(s)
- Floor Twiss
- Hubrecht Institute for Developmental Biology and Stem Cell Research and University Medical Centre Utrecht, Uppsalalaan 8, 3884 CT, Utrecht, The Netherlands,
| | | |
Collapse
|
16
|
Kamm RD, Bashir R. Creating living cellular machines. Ann Biomed Eng 2013; 42:445-59. [PMID: 24006130 DOI: 10.1007/s10439-013-0902-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 08/23/2013] [Indexed: 12/16/2022]
Abstract
Development of increasingly complex integrated cellular systems will be a major challenge for the next decade and beyond, as we apply the knowledge gained from the sub-disciplines of regenerative medicine, synthetic biology, micro-fabrication and nanotechnology, systems biology, and developmental biology. In this prospective, we describe the current state-of-the-art in the assembly of source cells, derived from pluripotent cells, into populations of a single cell type to produce the components or building blocks of higher order systems and finally, combining multiple cell types, possibly in combination with scaffolds possessing specific physical or chemical properties, to produce higher level functionality. We also introduce the issue, questions and ample research opportunities to be explored by others in the field. As these "living machines" increase in capabilities, exhibit emergent behavior and potentially reveal the ability for self-assembly, self-repair, and even self-replication, questions arise regarding the ethical implications of this work. Future prospects as well as ways of addressing these complex ethical questions will be discussed.
Collapse
Affiliation(s)
- Roger D Kamm
- Massachusetts Institute of Technology, Cambridge, MA, USA,
| | | |
Collapse
|
17
|
Rangarajan ES, Izard T. Dimer asymmetry defines α-catenin interactions. Nat Struct Mol Biol 2013; 20:188-93. [PMID: 23292143 PMCID: PMC3805043 DOI: 10.1038/nsmb.2479] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 11/27/2012] [Indexed: 01/19/2023]
Abstract
The F-actin binding cytoskeletal protein α-catenin interacts with
β-catenin-cadherin complexes and stabilizes cell-cell junctions. The
β-catenin–α-catenin complex cannot bind to F-actin,
whereas interactions of α-catenin with the cytoskeletal protein vinculin
appear necessary to stabilize adherens junctions. Here we report the crystal
structure of nearly full-length human α-catenin at 3.7 Å
resolution. α-Catenin forms an asymmetric dimer, where the four-helix
bundle domains of each subunit engage in distinct intermolecular interactions.
This results in a left handshake-like dimer, where the two subunits have
remarkably different conformations. The crystal structure explains why dimeric
α-catenin has a higher affinity for F-actin than monomeric
α-catenin, why the β-catenin–α-catenin complex
does not bind to F-actin, how activated vinculin links the cadherin-catenin
complex to the cytoskeleton, and why α-catenin but not inactive vinculin
can bind to F-actin.
Collapse
Affiliation(s)
- Erumbi S Rangarajan
- Department of Cancer Biology, Scripps Research Institute, Jupiter, Florida, USA
| | | |
Collapse
|
18
|
Radice GL. N-cadherin-mediated adhesion and signaling from development to disease: lessons from mice. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 116:263-89. [PMID: 23481199 PMCID: PMC6047516 DOI: 10.1016/b978-0-12-394311-8.00012-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Of the 20 classical cadherin subtypes identified in mammals, the functions of the two initially identified family members E- (epithelial) and N- (neural) cadherin have been most extensively studied. E- and N-Cadherin have mostly mutually exclusive expression patterns, with E-cadherin expressed primarily in epithelial cells, whereas N-cadherin is found in a variety of cells, including neural, muscle, and mesenchymal cells. N-Cadherin function, in particular, appears to be cell context-dependent, as it can mediate strong cell-cell adhesion in the heart but induces changes in cell behavior in favor of a migratory phenotype in the context of epithelial-mesenchymal transition (EMT). The ability of tumor cells to alter their cadherin expression profile, for example, E- to N-cadherin, is critical for malignant progression. Recent advances in mouse molecular genetics, and specifically tissue-specific knockout and knockin alleles of N-cadherin, have provided some unexpected results. This chapter highlights some of the genetic studies that explored the complex role of N-cadherin in embryonic development and disease.
Collapse
Affiliation(s)
- Glenn L Radice
- Department of Medicine, Center for Translational Medicine, Jefferson Medical College, Philadelphia, Pennsylvania, USA
| |
Collapse
|
19
|
Abstract
In order to metastasize, cancer cells must first detach from the primary tumor, migrate, invade through tissues, and attach to a second site. Hakai was discovered as an E3 ubiquitin-ligase that mediates the posttranslational downregulation of E-cadherin, a major component of adherens junctions in epithelial cells that is characterized as a potent tumor suppressor and is modulated during various processes including epithelial–mesenchymal transition. Recent data have provided evidences for novel biological functional role of Hakai during tumor progression and other diseases. Here, we will review the knowledge that has been accumulated since Hakai discovery 10 years ago and its implication in human cancer disease. We will highlight the different signaling pathways leading to the influence on Hakai and suggest its potential usefulness as therapeutic target for cancer.
Collapse
|
20
|
Balse E, Steele DF, Abriel H, Coulombe A, Fedida D, Hatem SN. Dynamic of Ion Channel Expression at the Plasma Membrane of Cardiomyocytes. Physiol Rev 2012; 92:1317-58. [DOI: 10.1152/physrev.00041.2011] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cardiac myocytes are characterized by distinct structural and functional entities involved in the generation and transmission of the action potential and the excitation-contraction coupling process. Key to their function is the specific organization of ion channels and transporters to and within distinct membrane domains, which supports the anisotropic propagation of the depolarization wave. This review addresses the current knowledge on the molecular actors regulating the distinct trafficking and targeting mechanisms of ion channels in the highly polarized cardiac myocyte. In addition to ubiquitous mechanisms shared by other excitable cells, cardiac myocytes show unique specialization, illustrated by the molecular organization of myocyte-myocyte contacts, e.g., the intercalated disc and the gap junction. Many factors contribute to the specialization of the cardiac sarcolemma and the functional expression of cardiac ion channels, including various anchoring proteins, motors, small GTPases, membrane lipids, and cholesterol. The discovery of genetic defects in some of these actors, leading to complex cardiac disorders, emphasizes the importance of trafficking and targeting of ion channels to cardiac function. A major challenge in the field is to understand how these and other actors work together in intact myocytes to fine-tune ion channel expression and control cardiac excitability.
Collapse
Affiliation(s)
- Elise Balse
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - David F. Steele
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - Hugues Abriel
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - Alain Coulombe
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - David Fedida
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - Stéphane N. Hatem
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| |
Collapse
|
21
|
Abstract
Adherens junctions are the most common junction type found in animal epithelia. Their core components are classical cadherins and catenins, which form membrane-spanning complexes that mediate intercellular binding on the extracellular side and associate with the actin cytoskeleton on the intracellular side. Junctional cadherin-catenin complexes are key elements involved in driving animal morphogenesis. Despite their ubiquity and importance, comparative studies of classical cadherins, catenins and their related molecules suggest that the cadherin/catenin-based adherens junctions have undergone structural and compositional transitions during the diversification of animal lineages. This chapter describes the molecular diversities related to the cadherin-catenin complex, based on accumulated molecular and genomic information. Understanding when and how the junctional cadherin-catenin complex originated, and its subsequent diversification in animals, promotes a comprehensive understanding of the mechanisms of animal morphological diversification.
Collapse
Affiliation(s)
- Oda Hiroki
- JT Biohistory Research Hall, 1-1 Murasaki-cho, 569-1125, Takatsuki, Osaka, Japan,
| |
Collapse
|
22
|
|
23
|
Lekka M, Gil D, Dąbroś W, Jaczewska J, Kulik AJ, Lekki J, Stachura Z, Stachura J, Laidler P. Characterization of N-cadherin unbinding properties in non-malignant (HCV29) and malignant (T24) bladder cells. J Mol Recognit 2011; 24:833-42. [DOI: 10.1002/jmr.1123] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
24
|
Piven OO, Kostetskii IE, Macewicz LL, Kolomiets YM, Radice GL, Lukash LL. Requirement for N-cadherin-catenin complex in heart development. Exp Biol Med (Maywood) 2011; 236:816-22. [PMID: 21680756 DOI: 10.1258/ebm.2011.010362] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cell adhesion, mediated by N-cadherin, is critical for embryogenesis since N-cadherin-null embryos die during mid-gestation with multiple developmental defects. To investigate the role of N-cadherin in heart muscle development, N-cadherin was specifically deleted from myocardial cells in mice. The structural integrity of the myocardial cell wall was compromised in the N-cadherin mutant embryos, leading to a malformed heart and a delay in embryonic development. In contrast, cardiac-specific deletion of αE-catenin, found in adherens junctions, or β-catenin, did not cause any morphological defects in the embryonic heart, presumably due to compensation by αT-catenin that is normally found in intercalated disks and γ-catenin (plakoglobin), respectively. Embryos lacking β-catenin in the heart also exhibited a cardiac defect, but only later in development resulting in partial lethality. These genetic studies underscore the importance of the N-cadherin/catenin complex in cardiogenesis.
Collapse
Affiliation(s)
- Oksana O Piven
- Іnstitute of Molecular Biology and Genetic, Kyiv, Ukraine
| | | | | | | | | | | |
Collapse
|
25
|
Xu C, Police S, Hassanipour M, Li Y, Chen Y, Priest C, O'Sullivan C, Laflamme MA, Zhu WZ, Van Biber B, Hegerova L, Yang J, Delavan-Boorsma K, Davies A, Lebkowski J, Gold JD. Efficient generation and cryopreservation of cardiomyocytes derived from human embryonic stem cells. Regen Med 2011; 6:53-66. [PMID: 21175287 DOI: 10.2217/rme.10.91] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AIM Human embryonic stem cells (hESCs) represent a novel cell source to treat diseases such as heart failure and for use in drug screening. In this study, we aim to promote efficient generation of cardiomyocytes from hESCs by combining the current optimal techniques of controlled growth of undifferentiated cells and specific induction for cardiac differentiation. We also aim to examine whether these methods are scalable and whether the differentiated cells can be cryopreserved. METHODS & RESULTS hESCs were maintained without conditioned medium or feeders and were sequentially treated with activin A and bone morphogenetic protein-4 in a serum-free medium. This led to differentiation into cell populations containing high percentages of cardiomyocytes. The differentiated cells expressed appropriate cardiomyocyte markers and maintained contractility in culture, and the majority of the cells displayed working chamber (atrial and ventricular) type electrophysiological properties. In addition, the cell growth and differentiation process was adaptable to large culture formats. Moreover, the cardiomyocytes survived following cryopreservation, and viable cardiac grafts were detected after transplantation of cryopreserved cells into rat hearts following myocardial infarctions. CONCLUSION These results demonstrate that cardiomyocytes of high quality can be efficiently generated and cryopreserved using hESCs maintained in serum-free medium, a step forward towards the application of these cells to human clinical use or drug discovery.
Collapse
Affiliation(s)
- Chunhui Xu
- Geron Corporation, Menlo Park, CA 94025, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
New insights into vinculin function and regulation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 287:191-231. [PMID: 21414589 DOI: 10.1016/b978-0-12-386043-9.00005-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vinculin is a cytoplasmic actin-binding protein enriched in focal adhesions and adherens junctions that is essential for embryonic development. Much is now known regarding the role of vinculin in governing cell-matrix adhesion. In the past decade that the crystal structure of vinculin and the molecular details for how vinculin regulates adhesion events have emerged. The recent data suggests a critical function for vinculin in regulating integrin clustering, force generation, and strength of adhesion. In addition to an important role in cell-matrix adhesion, vinculin is also emerging as a regulator of apoptosis, Shigella entry into host cells, and cadherin-based cell-cell adhesion. A close inspection of this work reveals that there are similarities between vinculin's role in focal adhesions and these processes and also some intriguing differences.
Collapse
|
27
|
Johansson JK, Voss U, Kesavan G, Kostetskii I, Wierup N, Radice GL, Semb H. N-cadherin is dispensable for pancreas development but required for beta-cell granule turnover. Genesis 2010; 48:374-81. [PMID: 20533404 DOI: 10.1002/dvg.20628] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The cadherin family of cell adhesion molecules mediates adhesive interactions that are required for the formation and maintenance of tissues. Previously, we demonstrated that N-cadherin, which is required for numerous morphogenetic processes, is expressed in the pancreatic epithelium at E9.5, but later becomes restricted to endocrine aggregates in mice. To study the role of N-cadherin during pancreas formation and function we generated a tissue-specific knockout of N-cadherin in the early pancreatic epithelium by inter-crossing N-cadherin-floxed mice with Pdx1Cre mice. Analysis of pancreas-specific ablation of N-cadherin demonstrates that N-cadherin is dispensable for pancreatic development, but required for beta-cell granule turnover. The number of insulin secretory granules is significantly reduced in N-cadherin-deficient beta-cells, and as a consequence insulin secretion is decreased.
Collapse
Affiliation(s)
- Jenny K Johansson
- Stem Cell Center, Department of Laboratory Medicine, Lund University, Sweden
| | | | | | | | | | | | | |
Collapse
|
28
|
Novel insight into the function and regulation of alphaN-catenin by Snail2 during chick neural crest cell migration. Dev Biol 2010; 344:896-910. [PMID: 20542025 DOI: 10.1016/j.ydbio.2010.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 06/02/2010] [Accepted: 06/02/2010] [Indexed: 12/18/2022]
Abstract
The neural crest is a transient population of migratory cells that differentiates to form a variety of cell types in the vertebrate embryo, including melanocytes, the craniofacial skeleton, and portions of the peripheral nervous system. These cells initially exist as adherent epithelial cells in the dorsal aspect of the neural tube and only later become migratory after an epithelial-to-mesenchymal transition (EMT). Snail2 plays a critical role in mediating chick neural crest cell EMT and migration due to its expression by both premigratory and migratory cranial neural crest cells and its ability to down-regulate intercellular junctions components. In an attempt to delineate the role of cellular junction components in the neural crest, we have identified the adherens junction molecule neural alpha-catenin (alphaN-catenin) as a Snail2 target gene whose repression is critical for chick neural crest cell migration. Knock-down and overexpression of alphaN-catenin enhances and inhibits neural crest cell migration, respectively. Furthermore, our results reveal that alphaN-catenin regulates the appropriate movement of neural crest cells away from the neural tube into the embryo. Collectively, our data point to a novel function of an adherens junction protein in facilitating the proper migration of neural crest cells during the development of the vertebrate embryo.
Collapse
|
29
|
Bassnett S, Wilmarth PA, David LL. The membrane proteome of the mouse lens fiber cell. Mol Vis 2009; 15:2448-63. [PMID: 19956408 PMCID: PMC2786885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 11/18/2009] [Indexed: 11/16/2022] Open
Abstract
PURPOSE Fiber cells of the ocular lens are bounded by a highly specialized plasma membrane. Despite the pivotal role that membrane proteins play in the physiology and pathophysiology of the lens, our knowledge of the structure and composition of the fiber cell plasma membrane remains fragmentary. In the current study, we utilized mass spectrometry-based shotgun proteomics to provide a comprehensive survey of the mouse lens fiber cell membrane proteome. METHODS Membranes were purified from young mouse lenses and subjected to MudPIT (Multidimensional protein identification technology) analysis. The resulting proteomic data were analyzed further by reference to publically available microarray databases. RESULTS More than 200 membrane proteins were identified by MudPIT, including Type I, Type II, Type III (multi-pass), lipid-anchored, and GPI-anchored membrane proteins, in addition to membrane-associated cytoskeletal elements and extracellular matrix components. The membrane proteins of highest apparent abundance included Mip, Lim2, and the lens-specific connexin proteins Gja3, Gja8, and Gje1. Significantly, many proteins previously unsuspected in the lens were also detected, including proteins with roles in cell adhesion, solute transport, and cell signaling. CONCLUSIONS The MudPIT technique constitutes a powerful technique for the analysis of the lens membrane proteome and provides valuable insights into the composition of the lens fiber cell unit membrane.
Collapse
Affiliation(s)
- Steven Bassnett
- Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO
| | - Phillip A. Wilmarth
- Biochemistry & Molecular Biology, Oregon Health & Science University, Portland, OR
| | - Larry L. David
- Biochemistry & Molecular Biology, Oregon Health & Science University, Portland, OR
| |
Collapse
|
30
|
Ozaki C, Obata S, Yamanaka H, Tominaga S, Suzuki ST. The extracellular domains of E- and N-cadherin determine the scattered punctate localization in epithelial cells and the cytoplasmic domains modulate the localization. J Biochem 2009; 147:415-25. [PMID: 19919954 DOI: 10.1093/jb/mvp192] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The accumulation of classical cadherins is essential for their function, but the mechanism is poorly understood. Hence, we investigated the accumulation of E- and N-cadherin and the formation of cell junctions in epithelial cells. Immunostaining revealed a scattered dot-like accumulation of E- and N-cadherin throughout the lateral membrane in MDCK II and other epithelial cells. Mutant E-cadherin lacking the beta-catenin binding site accumulated granularly at cell-cell contact sites and showed weak cell aggregation activity in cadherin-deficient epithelial cells, MIA PaCa2 cells. Mutant E-cadherin lacking the p120-catenin binding site exhibited scattered punctate accumulation and strong cell adhesion activity in MIA PaCa2 cells. Electron microscopy demonstrated that MIA PaCa2 transfectants of E-cadherin containing beta-catenin binding site formed adherens junction, whereas E-cadherin lacking the binding site did not. Mutant N-cadherins showed accumulation properties similar to those of corresponding mutant E-cadherins. Moreover, wild type and mutant N-cadherin lacking the p120-catenin binding site showed subapical accumulation in polarized DLD-1 cells, whereas mutant N-cadherin lacking beta-catenin binding site did not. These results indicate that the extracellular domains of E- and N-cadherin determines the basic localization pattern, whereas the cytoplasmic domains modulate it thereby affects the cell adhesion activity, subapical accumulation, and the formation of adherens junction.
Collapse
Affiliation(s)
- Chisa Ozaki
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda-shi, Hyogo-ken, Japan
| | | | | | | | | |
Collapse
|
31
|
Pieperhoff S, Bennett W, Farrell AP. The intercellular organization of the two muscular systems in the adult salmonid heart, the compact and the spongy myocardium. J Anat 2009; 215:536-47. [PMID: 19627390 PMCID: PMC2780571 DOI: 10.1111/j.1469-7580.2009.01129.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2009] [Indexed: 01/12/2023] Open
Abstract
The ventricle of the salmonid heart consists of an outer compact layer of circumferentially arranged cardiomyocytes encasing a spongy myocardium that spans the lumen of the ventricle with a fine arrangement of muscular trabeculae. While many studies have detailed the anatomical structure of fish hearts, few have considered how these two cardiac muscle architectures are attached to form a functional working unit. The present study considers how the spindle-like cardiomyocytes, unlike the more rectangular structure of adult mammalian cardiomyocytes, form perpendicular connections between the two muscle layers that withstand the mechanical forces generated during cardiac systole and permit a simultaneous, coordinated contraction of both ventricular components. Therefore, hearts of rainbow trout (Oncorhynchus mykiss) and sockeye salmon (Oncorhynchus nerka) were investigated in detail using scanning electron microscopy (SEM) and various light microscopic techniques. In contrast to earlier suggestions, we found no evidence for a distinct connective tissue layer between the two muscle architectures that might 'glue' together the compact and the spongy myocardium. Instead, the contact layer between the compact and the spongy myocardium was characterized by a significantly higher amount of desmosome-like (D) and fascia adhaerens-like (FA) adhering junctions compared with either region alone. In addition, we observed that the trabeculae form muscular sheets of fairly uniform thickness and variable width rather than thick cylinders of variable diameter. This sheet-like trabecular anatomy would minimize diffusion distance while maximizing the area of contact between the trabecular muscle and the venous blood as well as the muscle tension generated by a single trabecular sheet.
Collapse
Affiliation(s)
- Sebastian Pieperhoff
- Department of Zoology and Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada.
| | | | | |
Collapse
|
32
|
Watanabe M, Kobayashi H, Yao R, Maisel H. Adhesion and junction molecules in embryonic and adult lens cell differentiation. Acta Ophthalmol 2009:46-52. [PMID: 1332413 DOI: 10.1111/j.1755-3768.1992.tb02180.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The expression of the neural cell adhesion molecule NCAM and its polysialic acid (PSA) moiety was documented during embryonic development and adult differentiation of chicken lens cells. In both the embryo and adult, NCAM is predominantly found in the epithelium and the zone of young elongating cells of the annular pad. NCAM abundance drops markedly in the cortical fibers and is further reduced in the lens nucleus. Epithelial cell NCAM is more highly poly-sialylated in the adult than in the embryonic lens. Three isoforms of NCAM at 180, 140, and 120 kDa were detected in the lens and predominantly associated with the unit membrane-enriched plasma membranes of fiber cells. The distribution of NCAM relative to MP26 and the adherence junction-associated glycoprotein N-cadherin suggests that NCAM could influence the formation of fiber cell gap junctions and adherence junctions.
Collapse
Affiliation(s)
- M Watanabe
- Department of Pediatrics, Case Western Reserve University, School of Medicine, Cleveland, Ohio
| | | | | | | |
Collapse
|
33
|
Wang YP, Hang PZ, Sun LH, Zhang Y, Zhao JL, Pan ZW, Ji HR, Wang LA, Bi H, Du ZM. M3 muscarinic acetylcholine receptor is associated with beta-catenin in ventricular myocytes during myocardial infarction in the rat. Clin Exp Pharmacol Physiol 2009; 36:995-1001. [PMID: 19473345 DOI: 10.1111/j.1440-1681.2009.05176.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
1. The present study was designed to investigate whether the M(3) muscarinic acetylcholine receptors (mAChR) is associated with beta-catenin in the ventricular myocardium during ischaemic myocardial injury and to determine the possible mechanism/s involved. 2. Rat hearts were subjected to coronary artery ligation for 1 and 6 h or 1 month to establish a myocardial ischaemia (MI) model. In the acute MI model, 16 rats were randomized into four groups: (i) control; (ii) ischaemia (rats were subjected to 20 min coronary occlusion); (iii) choline (10 mg/kg, i.v., choline chloride, an M(3) receptor agonist, was administered 15 min before occlusion); and (iv) 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP; 0.12 mg/kg 4-DAMP, an M(3) receptor antagonist, was administered 20 min before occlusion, followed 5 min later by 10 mg/kg, i.v., choline chloride). Immunochemistry, western blot analysis and immunoprecipitation were used to determine the expression and localization of beta-catenin and the M(3) mAChR. 3. Myocardial ischaemia caused a time-dependent increase in the expression of beta-catenin. Moreover, a physical association was found between beta-catenin and the M(3) mAChR in intercalated discs. This association was enhanced by prolonged ischaemia. Administration of choline before ischaemia not only increased beta-catenin expression, but also strengthened the association between beta-catenin and the M(3) mAChR. However, blockade of M(3) mAChR by 4-DAMP completely inhibited the effect of choline on the expression of beta-catenin. In addition, MI increased phosphorylation of the M(3) mAChR. 4. The results indicate that increased beta-catenin activity is associated with M(3) mAChR during MI. This association is likely to play a role in heart signal transduction during ischaemia between neighbouring ventricular myocardiocum.
Collapse
Affiliation(s)
- Yu-Ping Wang
- Institute of Clinical Pharmacology of Second Hospital, Harbin Medical University, Harbin, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Mosnier JF, Kandel C, Cazals-Hatem D, Bou-Hanna C, Gournay J, Jarry A, Laboisse CL. N-cadherin serves as diagnostic biomarker in intrahepatic and perihilar cholangiocarcinomas. Mod Pathol 2009; 22:182-90. [PMID: 18622386 DOI: 10.1038/modpathol.2008.123] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
As a definite immunoprofile of this tumor is missing, the histopathologic diagnosis of intrahepatic cholangiocarcinoma is difficult. The aim of this study was to explore E- and N-cadherin expressions in intrahepatic bile duct tumors, and to determine their potential interest in differential diagnosis. Normal liver tissue, 5 cirrhosis with ductular reaction, 5 focal nodular hyperplasia, 5 bile duct hamartomas, 5 bile duct adenomas, and 45 intrahepatic cholangiocarcinomas from Caucasian patients were studied. Tissue-microarrays including 20 esophageal, 86 gastric, 8 small bowel, 64 colonic, 18 pancreatic, 6 gallbladder, and 7 extrahepatic biliary tract adenocarcinomas, 22 hepatocellular carcinomas, and normal tissues were constructed. Immunohistochemistry was performed using E-cadherin, N-cadherin, NCAM, Hep Par1, and cytokeratins 7, 19 and 20. Immunoblot analysis of frozen liver tissues was performed to control the specificity of E- and N-cadherin antibodies used. In normal liver, epithelial cells of intrahepatic bile ducts, whatever their caliber, as well as hepatocytes, coexpressed E- and N-cadherins at their plasma membranes. In cirrhosis, ductular reactions completely expressed E- and N-cadherins. All the benign lesions and 30 of the 45 intrahepatic cholangiocarcinomas (23/29 peripheral and 7/16 hilar) also expressed N-cadherin. E-cadherin was detected in all the lesions. The expression of N-cadherin at the plasma membrane of tumor cells was significantly more frequent in peripheral than in hilar intrahepatic cholangiocarcinomas (P=0.003). Among noncholangiocarcinomas, only 1% gastric and 66% gallbladder adenocarcinomas and all the hepatocellular carcinomas expressed N-cadherin at the membrane of tumor cells. Finally, for the diagnosis of intrahepatic cholangiocarcinomas, the specificity value of membranous expression of N-cadherin was 88%, whereas that of the combination cytokeratin 7/membranous N-cadherin was 98%. In the gastrointestinal and liver tract, membranous N-cadherin is restricted to the hepatocytes and intrahepatic biliary cells. In combination with cytokeratin 7 and Hep Par1, N-cadherin is a reliable tool for the histopathological diagnosis of primary hepatic tumors.
Collapse
|
35
|
The direction of gut looping is established by changes in the extracellular matrix and in cell:cell adhesion. Proc Natl Acad Sci U S A 2008; 105:8499-506. [PMID: 18574143 DOI: 10.1073/pnas.0803578105] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The counterclockwise coiling of the intestines is initiated by a leftward tilt of the primitive gut tube, imparted by left-right asymmetries in the architecture of the dorsal mesentery. In silico analysis suggests that this is achieved by synergistic changes in its epithelium and mesenchyme. Within the mesenchymal compartment, cells are more densely packed on the left than on the right. In silico results indicate that this property can result from asymmetries in both extracellular matrix (ECM) and cell:cell adhesion. We find that the dorsal mesentery ECM is indeed left-right asymmetric and moreover that the adhesion molecule N-cadherin is expressed exclusively on the left side. These asymmetries are regulated by the asymmetrically expressed transcription factors Pitx2 and Isl1. Functional studies demonstrate that N-cadherin acts upstream of the changes in the ECM and is both necessary and sufficient to explain the asymmetric packing of the mesenchymal cells.
Collapse
|
36
|
Pieperhoff S, Franke WW. The area composita of adhering junctions connecting heart muscle cells of vertebrates. VI. Different precursor structures in non-mammalian species. Eur J Cell Biol 2008; 87:413-30. [PMID: 18420304 DOI: 10.1016/j.ejcb.2008.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 02/06/2008] [Accepted: 02/08/2008] [Indexed: 12/29/2022] Open
Abstract
Recent studies on the formation and molecular organization of the mammalian heart have emphasized the architectural and functional importance of the adhering junctions (AJs), which are densely clustered in the bipolar end regions (intercalated disks, IDs) connecting the elongated cardiomyocytes of the adult heart. Moreover, we learned from genetic studies of mutated AJ proteins that desmosomal proteins, which for the most part are integral components of ID-specific composite AJs (areae compositae, AC), are essential in heart development and function. Developmental studies have shown that the bipolar concentration of cardiomyocyte AJs in IDs is a rather late process and only completed postnatally. Here we report that in the adult hearts of diverse lower vertebrates (fishes, amphibia, birds) most AJs remain separate and distinct in molecular character, representing either fasciae adhaerentes, maculae adhaerentes (desmosomes) or--less frequently--some form of AC. In the mature hearts of the amphibian and fish species examined a large proportion of the AJs connecting cardiomyocytes is not clustered in the IDs but remains located on the lateral surfaces where they appear either as puncta adhaerentia or as desmosomes. In many places, these puncta connect parallel cardiomyocytes in spectacular ladder-like regular arrays (scalae adhaerentes) correlated with--and connected by--electron-dense plaque-like material to sarcomeric Z-bands. In the avian hearts, on the other hand, most AJs are clustered in the IDs but only a small proportion of the desmosomes appears as AC, compared to the dominance of distinct fasciae adhaerentes. We conclude that the fusion and amalgamation of AJs and desmosomes to ACs is a late process both in ontogenesis and in evolution. The significance and possible functional implications of the specific junctional structures in vertebrate evolution and the class-specific requirements of architectural and molecular assembly adaptation during regeneration processes are discussed.
Collapse
Affiliation(s)
- Sebastian Pieperhoff
- Division of Cell Biology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | |
Collapse
|
37
|
Zemljic-Harpf AE, Miller JC, Henderson SA, Wright AT, Manso AM, Elsherif L, Dalton ND, Thor AK, Perkins GA, McCulloch AD, Ross RS. Cardiac-myocyte-specific excision of the vinculin gene disrupts cellular junctions, causing sudden death or dilated cardiomyopathy. Mol Cell Biol 2007; 27:7522-37. [PMID: 17785437 PMCID: PMC2169049 DOI: 10.1128/mcb.00728-07] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 06/17/2007] [Accepted: 08/24/2007] [Indexed: 11/20/2022] Open
Abstract
Vinculin is a ubiquitously expressed multiliganded protein that links the actin cytoskeleton to the cell membrane. In myocytes, it is localized in protein complexes which anchor the contractile apparatus to the sarcolemma. Its function in the myocardium remains poorly understood. Therefore, we developed a mouse model with cardiac-myocyte-specific inactivation of the vinculin (Vcl) gene by using Cre-loxP technology. Sudden death was found in 49% of the knockout (cVclKO) mice younger than 3 months of age despite preservation of contractile function. Conscious telemetry documented ventricular tachycardia as the cause of sudden death, while defective myocardial conduction was detected by optical mapping. cVclKO mice that survived through the vulnerable period of sudden death developed dilated cardiomyopathy and died before 6 months of age. Prior to the onset of cardiac dysfunction, ultrastructural analysis of cVclKO heart tissue showed abnormal adherens junctions with dissolution of the intercalated disc structure, expression of the junctional proteins cadherin and beta1D integrin were reduced, and the gap junction protein connexin 43 was mislocalized to the lateral myocyte border. This is the first report of tissue-specific inactivation of the Vcl gene and shows that it is required for preservation of normal cell-cell and cell-matrix adhesive structures.
Collapse
|
38
|
Franke WW, Cowin P, Schmelz M, Kapprell HP. The desmosomal plaque and the cytoskeleton. CIBA FOUNDATION SYMPOSIUM 2007; 125:26-48. [PMID: 3103993 DOI: 10.1002/9780470513408.ch3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Two major plasma membrane domains are involved in the architectural organization of the cytoskeleton. Both are junctions of the adherens category characterized by the presence of dense plaques associated with the cytoplasmic surface of their membranes. The plaques serve as specific anchorage structures for two different types of cytoplasmic filaments. Intermediate-sized filaments (IF) of several types, i.e. cytokeratin IF in epithelial cells, desmin IF in cardiac myocytes and vimentin IF in arachnoidal cells of meninges, meningiomas and several other cells, attach to the desmosomal plaques, whereas actin-containing microfilaments associate with non-desmosomal adhering junctions such as the zonula adherens, fascia adherens and punctum adherens. The plaques of both kinds of adhering junctions contain a common acidic polypeptide of Mr 83,000 identical to 'band 5 protein' of bovine snout epidermal desmosomes. However, other plaque components are mutually exclusive to one of the two subclasses of adhering junctions. The desmosomal plaque structure, which does not contain vinculin and alpha-actinin, comprises representatives of cytoplasmic, non-membrane-integrated proteins such as desmoplakin(s) and the cytoplasmic portions of transmembrane glycoproteins such as 'band 3 glycoprotein'. The analysis of both categories of junction-associated plaques should provide a basis for understanding the establishment and the dynamics of junction-cytoskeleton interaction.
Collapse
|
39
|
Koutsouki E, Lam RS, Seebohm G, Ureche ON, Ureche L, Baltaev R, Lang F. Modulation of human Kv1.5 channel kinetics by N-cadherin. Biochem Biophys Res Commun 2007; 363:18-23. [PMID: 17868645 DOI: 10.1016/j.bbrc.2007.07.181] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Accepted: 07/27/2007] [Indexed: 11/25/2022]
Abstract
Kv1.5 is expressed in multiple tissues including heart, brain, macrophages, as well as vascular, airway, and intestinal smooth muscle cells. Kv1.5 currents contribute to cardiac repolarization. In cardiac myocytes Kv1.5 colocalizes with N-cadherin. As Kv1.5 expression increases following establishment of cell-cell contacts and N-cadherin influences the activity of other ion channels, we explored whether N-cadherin participates in the regulation of Kv1.5 activity. To this end, we expressed Kv1.5 in Xenopus oocytes with or without additional expression of N-cadherin. Coexpression of N-cadherin was followed by a approximately 2- to 3-fold increase of Kv1.5 induced current. The effect of N-cadherin was not paralleled by significant alterations of Kv1.5 channel abundance within the oocyte cell membrane but resulted primarily from accelerated recovery from inactivation. In conclusion, N-cadherin modifies Kv1.5 channel activity and is thus a novel candidate signaling molecule participating in the regulation of a variety of functions including cardiac action potential and vascular tone.
Collapse
Affiliation(s)
- Evgenia Koutsouki
- Department of Physiology, University of Tübingen, Gmelinstr. 5, D-72076 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
40
|
Zhang SW, Liu Y, Huang GZ, Liu L. Aconitine alters connexin43 phosphorylation status and [Ca2+] oscillation patterns in cultured ventricular myocytes of neonatal rats. Toxicol In Vitro 2007; 21:1476-85. [PMID: 17728094 DOI: 10.1016/j.tiv.2007.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 05/30/2007] [Accepted: 06/13/2007] [Indexed: 10/23/2022]
Abstract
Aconitine, a highly poisonous type of alkaloid, has a widespread effect in stimulating the membranes of cardiomyocyte. However, other effects of aconitine on cardiomyocyte are unknown. In this study, we investigated whether aconitine also affects the phosphorylation status of connexin43 (Cx43) and intracellular [Ca(2+)] oscillation patterns in cultured ventricular myocytes of neonatal rats. As determined by Western blot analysis, a decreased percentage (47.68+/-2.29%) of phosphorylated Cx43 (P-Cx43) and a concomitant increased percentage (52.32+/-2.29%) of nonphosphorylated Cx43 (NP-Cx43) were found in aconitine-treated cultures, compared to the controls (82.77+/-2.04% for P-Cx43 and 17.23+/-2.04% for NP-Cx43). Quantitative immunofluorescent microscopy revealed similar changes in phosphorylation status occurring in Cx43 containing gap junctions in the cultures under the same treatment conditions. Real-time laser scanning microscopy indicated that intracellular [Ca(2+)] oscillations were relatively stable in control cultures, with occasional calcium sparks; after being treated with aconitine, high frequency [Ca(2+)] oscillations emerged, whereas typical calcium sparks disappeared. Furthermore, Western blot analysis revealed that, after aconitine treatment, the amount of phosphorylated PKCalpha decreased significantly. These observations suggest that aconitine not only induces dephosphorylation of Cx43 and PKCalpha, but also alters intracellular [Ca(2+)] oscillation patterns in cultured cardiomyocytes.
Collapse
Affiliation(s)
- Shi-Wei Zhang
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | | | | | | |
Collapse
|
41
|
Mariotti A, Perotti A, Sessa C, Rüegg C. N-cadherin as a therapeutic target in cancer. Expert Opin Investig Drugs 2007; 16:451-65. [PMID: 17371194 DOI: 10.1517/13543784.16.4.451] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
During tumor progression, cancer cells undergo dramatic changes in the expression profile of adhesion molecules resulting in detachment from original tissue and acquisition of a highly motile and invasive phenotype. A hallmark of this change, also referred to as the epithelial-mesenchymal transition, is the loss of E- (epithelial) cadherin and the de novo expression of N- (neural) cadherin adhesion molecules. N-cadherin promotes tumor cell survival, migration and invasion, and a high level of its expression is often associated with poor prognosis. N-cadherin is also expressed in endothelial cells and plays an essential role in the maturation and stabilization of normal vessels and tumor-associated angiogenic vessels. Increasing experimental evidence suggests that N-cadherin is a potential therapeutic target in cancer. A peptidic N-cadherin antagonist (ADH-1) has been developed and has entered clinical testing. In this review, the authors discuss the biochemical and functional features of N-cadherin, its potential role in cancer and angiogenesis, and summarize the preclinical and clinical results achieved with ADH-1.
Collapse
Affiliation(s)
- Agnese Mariotti
- Centre Pluridisciplinaire d'Oncologie, Division of Experimental Oncology, Lausanne Cancer Center, and Swiss Institute for Experimental Cancer Research (ISREC), NCCR Molecular Oncology, Epalinges, Switzerland.
| | | | | | | |
Collapse
|
42
|
Xu C, He JQ, Kamp TJ, Police S, Hao X, O'Sullivan C, Carpenter MK, Lebkowski J, Gold JD. Human embryonic stem cell-derived cardiomyocytes can be maintained in defined medium without serum. Stem Cells Dev 2007; 15:931-41. [PMID: 17253954 DOI: 10.1089/scd.2006.15.931] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Current procedures for the maintenance of cardiomyocytes from human embryonic stem (hES) cells rely on either co-culture with mouse cells or medium containing fetal bovine serum (FBS). Due to exposure to animal products, these methods carry the risk of potential pathogen contamination and increased immunogenicity. Additionally, FBS introduces inherent variability in the cultures due to the inevitable differences in serum lots. Here we investigated whether a defined serum-free medium containing creatine, carnitine, taurine, and insulin (CCTI) could maintain hES cell-derived cardiomyocytes. We show that hES cell-derived cardiomyocytes maintained in the CCTI medium in the absence of any feeders exhibit similar phenotypes to those maintained in serum, as indicated by the following observations: (1) comparable levels of cardiac gene transcription were found in cells grown in serum-containing medium versus those in the CCTI medium; (2) cardiomyocyte-associated proteins were expressed in cells cultured in the CCTI medium; (3) beating cells in the CCTI medium responded to pharmacological agents in a dose-dependent manner; and (4) the vast majority of the beating embryoid bodies displayed ventricular-like action potentials (APs), and the ventricular cells in serum-containing medium and the CCTI medium had indistinguishable AP properties. Therefore, culturing hES cell-derived cardiomyocytes in serum-free medium as described here should facilitate the use of the cells for in vitro and in vivo applications.
Collapse
Affiliation(s)
- Chunhui Xu
- Geron Corporation, Menlo Park, CA 94025, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ultrastructural analysis of development of myocardium in calreticulin-deficient mice. BMC DEVELOPMENTAL BIOLOGY 2006; 6:54. [PMID: 17112388 PMCID: PMC1660575 DOI: 10.1186/1471-213x-6-54] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Accepted: 11/19/2006] [Indexed: 01/24/2023]
Abstract
BACKGROUND Calreticulin is a Ca2+ binding chaperone of the endoplasmic reticulum which influences gene expression and cell adhesion. The levels of both vinculin and N-cadherin are induced by calreticulin expression, which play important roles in cell adhesiveness. Cardiac development is strictly dependent upon the ability of cells to adhere to their substratum and to communicate with their neighbours. RESULTS We show here that the levels of N-cadherin are downregulated in calreticulin-deficient mouse embryonic hearts, which may lead to the disarray and wavy appearance of myofibrils in these mice, which we detected at all investigated stages of cardiac development. Calreticulin wild type mice exhibited straight, thick and abundant myofibrils, which were in stark contrast to the thin, less numerous, disorganized myofibrils of the calreticulin-deficient hearts. Interestingly, these major differences were only detected in the developing ventricles while the atria of both calreticulin phenotypes were similar in appearance at all developmental stages. Glycogen also accumulated in the ventricles of calreticulin-deficient mice, indicating an abnormality in cardiomyocyte metabolism. CONCLUSION Calreticulin is temporarily expressed during heart development where it is required for proper myofibrillogenesis. We postulate that calreticulin be considered as a novel cardiac fetal gene.
Collapse
|
44
|
Umeda K, Ikenouchi J, Katahira-Tayama S, Furuse K, Sasaki H, Nakayama M, Matsui T, Tsukita S, Furuse M, Tsukita S. ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-junction strand formation. Cell 2006; 126:741-54. [PMID: 16923393 DOI: 10.1016/j.cell.2006.06.043] [Citation(s) in RCA: 602] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 05/18/2006] [Accepted: 06/06/2006] [Indexed: 12/14/2022]
Abstract
A fundamental question in cell and developmental biology is how epithelial cells construct the diffusion barrier allowing them to separate different body compartments. Formation of tight junction (TJ) strands, which are crucial for this barrier, involves the polymerization of claudins, TJ adhesion molecules, in temporal and spatial manners. ZO-1 and ZO-2 are major PDZ-domain-containing TJ proteins and bind directly to claudins, yet their functional roles are poorly understood. We established cultured epithelial cells (1(ko)/2(kd)) in which the expression of ZO-1/ZO-2 was suppressed by homologous recombination and RNA interference, respectively. These cells were well polarized, except for a complete lack of TJs. When exogenously expressed in 1(ko)/2(kd) cells, ZO-1 and ZO-2 were recruited to junctional areas where claudins were polymerized, but truncated ZO-1 (NZO-1) containing only domains PDZ1-3 was not. When NZO-1 was forcibly recruited to lateral membranes and dimerized, claudins were dramatically polymerized. These findings indicate that ZO-1 and ZO-2 can independently determine whether and where claudins are polymerized.
Collapse
Affiliation(s)
- Kazuaki Umeda
- Department of Cell Biology, Kyoto University Faculty of Medicine, Yoshida-Konoe, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Callegari F, Sosa S, Ferrari S, Soranzo MR, Pierotti S, Yasumoto T, Tubaro A, Rossini GP. Oral administration of yessotoxin stabilizes E-cadherin in mouse colon. Toxicology 2006; 227:145-55. [PMID: 16950554 DOI: 10.1016/j.tox.2006.07.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Revised: 07/28/2006] [Accepted: 07/28/2006] [Indexed: 11/18/2022]
Abstract
YTX has been shown to disrupt the E-cadherin-catenin system in cultured epithelial cells, raising some concern that ingestion of seafood contaminated by YTX might favour tumour spreading and metastasis formation in vivo. In order to probe whether YTX might affect cadherin systems in vivo, we have set up a study involving repeated oral dosing of the toxin in mice (1mg/kg/day, for 7 days) and analysis of E-cadherin and N-cadherin in tissue extracts obtained at the end of the dosing scheme, as well as 1 and 3 months after YTX administration. We found that the E-cadherin pools obtained from lung and kidney were not altered by YTX in any of our experimental conditions. Extracts from mouse colon contained intact E-cadherin and an E-cadherin fragment of about 90 kDa (ECRA(90)), displaying a molecular alteration resembling that caused by YTX in cultured cells. We found that the relative proportion of ECRA(90), as compared to intact E-cadherin, was higher in colon extracts from control mice than from YTX-treated animals, indicating that oral administration of YTX to mice stabilizes E-cadherin of mouse colon. No significant difference could be detected in samples prepared from colons obtained 30 or 90 days after termination of YTX treatment. Oral administration of YTX to mice did not lead to a significant increase in the fragments of E-cadherin detectable in serum, neither it altered the N-cadherin pool of mouse heart. Electron microscopy analysis showed no substantial ultrastructural differences between controls and YTX-treated mice. Our findings show that ingestion of food contaminated by YTX poses a low risk of disruption of the E-cadherin system in vivo.
Collapse
Affiliation(s)
- Federica Callegari
- Dipartimento di Scienze Biomediche, Università di Modena e Reggio Emilia, Via G. Campi 287, I-41100 Modena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Tsuchiya B, Sato Y, Kameya T, Okayasu I, Mukai K. Differential expression of N-cadherin and E-cadherin in normal human tissues. ARCHIVES OF HISTOLOGY AND CYTOLOGY 2006; 69:135-45. [PMID: 16819153 DOI: 10.1679/aohc.69.135] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
E-cadherin, which expressed in various epithelial tissues, is important for the maintenance of normal epithelial phenotypes. However, the distribution of N-cadherin in normal human tissues has not been defined systemically. In the present study, we employed a sensitive, reliable immunohistochemical detection system for N-cadherin on formalin-fixed, paraffin-embedded tissue sections, and succeeded in demonstrating N- and E-cadherin protein expressions and their distribution in normal human tissues. E-cadherin immunoreactivity was detected in all the epithelial tissues examined, except for the adrenal cortical cells and granulosa cells. N-cadherin was selectively expressed on epithelial cells of the thymus, pituitary, pancreas, liver, adrenal, endometrium of the uterus, ovary, and stomach as well as in neuronal tissues. Double immunostaining revealed that N-cadherin expression was closely associated with the hormone-producing ability of cells in the pancreas and pituitary. Thus, this study indicated the possibility that N-cadherin is selectively expressed in relation to hormonal regulation in some organs and plays different functions in different situations. The method presented here should prove useful for the further investigation of the N-cadherin expression and function in several disease conditions on formalin-fixed, paraffin-embedded archival tissues.
Collapse
Affiliation(s)
- Benio Tsuchiya
- Department of Molecular Diagnostics, Kitasato University School of Allied Health Sciences, Sagamihara, Kanagawa, Japan.
| | | | | | | | | |
Collapse
|
47
|
Deramaudt TB, Takaoka M, Upadhyay R, Bowser MJ, Porter J, Lee A, Rhoades B, Johnstone CN, Weissleder R, Hingorani SR, Mahmood U, Rustgi AK. N-cadherin and keratinocyte growth factor receptor mediate the functional interplay between Ki-RASG12V and p53V143A in promoting pancreatic cell migration, invasion, and tissue architecture disruption. Mol Cell Biol 2006; 26:4185-200. [PMID: 16705170 PMCID: PMC1489079 DOI: 10.1128/mcb.01055-05] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 07/10/2005] [Accepted: 03/17/2006] [Indexed: 01/24/2023] Open
Abstract
The genetic basis of pancreatic ductal adenocarcinoma, which constitutes the most common type of pancreatic malignancy, involves the sequential activation of oncogenes and inactivation of tumor suppressor genes. Among the pivotal genetic alterations are Ki-RAS oncogene activation and p53 tumor suppressor gene inactivation. We explain that the combination of these genetic events facilitates pancreatic carcinogenesis as revealed in novel three-dimensional cell (spheroid cyst) culture and in vivo subcutaneous and orthotopic xenotransplantation models. N-cadherin, a member of the classic cadherins important in the regulation of cell-cell adhesion, is induced in the presence of Ki-RAS mutation but subsequently downregulated with the acquisition of p53 mutation as revealed by gene microarrays and corroborated by reverse transcription-PCR and Western blotting. N-cadherin modulates the capacity of pancreatic ductal cells to migrate and invade, in part via complex formation with keratinocyte growth factor receptor and neural cell adhesion molecule and in part via interaction with p120-catenin. However, modulation of these complexes by Ki-RAS and p53 leads to enhanced cell migration and invasion. This preferentially induces the downstream effector AKT over mitogen-activated protein kinase to execute changes in cellular behavior. Thus, we are able to define molecules that in part are directly affected by Ki-RAS and p53 during pancreatic ductal carcinogenesis, and this provides a platform for potential new molecularly based therapeutic interventions.
Collapse
Affiliation(s)
- Therese B Deramaudt
- Gastroenterology Division, University of Pennsylvania, 415 Curie Boulevard, Philadelphia, PA 19104-2144, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Borrmann CM, Grund C, Kuhn C, Hofmann I, Pieperhoff S, Franke WW. The area composita of adhering junctions connecting heart muscle cells of vertebrates. II. Colocalizations of desmosomal and fascia adhaerens molecules in the intercalated disk. Eur J Cell Biol 2006; 85:469-85. [PMID: 16600422 DOI: 10.1016/j.ejcb.2006.02.009] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Revised: 02/14/2006] [Accepted: 02/15/2006] [Indexed: 12/17/2022] Open
Abstract
Using immunofluorescence histochemistry and immunoelectron microscopy on sections through myocardiac tissues of diverse mammalian (human, cow, rat, mouse) and fish species we show that both desmosomal and fascia adhaerens proteins identified by gel electrophoresis and immunoblot occur in the area composita, the by far major type of plaque-bearing junctions of the intercalated disks (IDs) connecting cardiomyocytes. Specifically, we demonstrate that desmoplakin and the other desmosomal proteins occur in these junctions, together with N-cadherin, cadherin-11, alpha- and beta-catenin as well as vinculin, afadin and proteins p120(ctn), ARVCF, p0071, and ZO-1, suggestive of colocalization. We conclude that the predominant type of adhering junction present in IDs is a junction sui generis, termed area composita, that is characterized by an unusually high molecular complexity and an intimate association of molecules of both ensembles, the desmosomal one and the fascia adhaerens category. We discuss possible myocardium-specific, complex-forming interactions between members of the two ensembles and the relevance of our findings for the formation and functioning of the heart and for the understanding of hereditary and other cardiomyopathies. We further propose to use this highly characteristic area composita ensemble of molecules as cardiomyocyte markers for the monitoring of cardiomyogenesis, cardiomyocyte regeneration and possible cardiomyocyte differentiation from mesenchymal stem cells.
Collapse
Affiliation(s)
- Carola M Borrmann
- Division of Cell Biology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Cinnamon Y, Ben-Yair R, Kalcheim C. Differential effects of N-cadherin-mediated adhesion on the development of myotomal waves. Development 2006; 133:1101-12. [PMID: 16481350 DOI: 10.1242/dev.02291] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Myotomal fibers form by a first wave of pioneer myoblasts from the medial epithelial somite, and by a second wave from all four lips of the dermomyotome. Then, a third wave of mitotic progenitors colonizes the myotome,initially stemming from the extreme lips and, later, from the central dermomyotome sheet. In vitro studies have suggested that N-cadherin plays a role in myogenesis, but its role in vivo remains poorly understood. We find that during the growth phase of the dermomyotome sheet, when the orientation of mitotic spindles is parallel to the mediolateral extent of the epithelium,N-cadherin protein is inherited by both daughter cells. Prior to dermomyotome dissociation into dermis and muscle progenitors, when mitoses become perpendicularly oriented, N-cadherin remains associated only with the apical cell located in apposition to the myotome, generating molecular asymmetry between basal and apical progeny. Local gene missexpression confirms that N-cadherin-mediated adhesion is sufficient to promote myotome colonization,whereas its absence drives cells towards the subectodermal domain, hence coupling the asymmetric distribution of N-cadherin to a shift in mitotic orientation and to fate segregation. Site-directed electroporation to additional, discrete somite regions, further reveals that N-cadherin-mediated adhesion is necessary for maintaining the epithelial configuration of all dermomyotome domains while promoting the onset of Myod transcription and the translocation into the myotome of myofibers and/or of Pax-positive progenitors. By contrast, N-cadherin has no effect on migration or differentiation of the first wave of myotomal pioneers. Altogether, we show for the first time that the asymmetric localization of N-cadherin during mitosis indirectly influences fate segregation by differentially driving the allocation of progenitors to muscle versus dermal primordia, that the adhesive domain of N-cadherin maintains the integrity of the dermomyotome epithelium,which is necessary for myogenic specification, and that different molecular mechanisms underlie the establishment of pioneer and later myotomal waves.
Collapse
Affiliation(s)
- Yuval Cinnamon
- Department of Anatomy and Cell Biology, Hebrew University-Hadassah Medical School, PO Box 12272, Jerusalem 91120, Israel
| | | | | |
Collapse
|
50
|
Franke WW, Borrmann CM, Grund C, Pieperhoff S. The area composita of adhering junctions connecting heart muscle cells of vertebrates. I. Molecular definition in intercalated disks of cardiomyocytes by immunoelectron microscopy of desmosomal proteins. Eur J Cell Biol 2006; 85:69-82. [PMID: 16406610 DOI: 10.1016/j.ejcb.2005.11.003] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Revised: 11/18/2005] [Accepted: 11/21/2005] [Indexed: 12/17/2022] Open
Abstract
Among sarcomeric muscles the cardiac muscle cells are unique by, inter alia, a systemic and extended cell-cell contact structure, the intercalated disk (ID), comprising frequent and closely spaced arrays of plaque-coated cell-cell adhering junctions (AJs). As some of these junctions may look somewhat like desmosomes and others like fasciae adhaerentes, the dogma has emerged in the literature that IDs contain - like epithelial cells - both kinds of AJs formed by - for the most - mutually exclusive molecular ensembles. This, however, is not the case. In comprehensive immunoelectron microscopic studies of mammalian (human, bovine, rat, mouse) and non-mammalian (chicken, amphibia, fishes) heart muscle tissues, we have localized major constituents of the desmosomal plaques of polar epithelia, desmoplakin, plakophilin-2 and plakoglobin, as well as the desmosomal cadherins, desmoglein Dsg2 and desmocollin Dsc2, in both kinds of ID AJs, independent of the specific morphological appearance. The desmosomal molecules are not restricted to the desmosome-like-looking junctions but can also be detected in junctions appearing similar to the zonula or fascia adhaerens structures. These AJs of cardiac ID are therefore subsumed under the collective term area composita. We discuss our results with respect to the importance of ID junction molecules for the formation, maintenance and function of the heart, particularly in relation to recent findings that deletions of - or mutations in - genes encoding such proteins can cause severe, sometimes lethal damages.
Collapse
Affiliation(s)
- Werner W Franke
- Division of Cell Biology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|