1
|
Bisogni G, Conte A, Costantino U, Lattante S, Bernardo D, Lucioli G, Patanella AK, Cimbolli P, Del Giudice E, Vettor F, Marangi G, Doronzio PN, Zollino M, Sabatelli M. Exploring the Role of CCNF Variants in Italian ALS Patients. Genes (Basel) 2024; 15:1566. [PMID: 39766833 PMCID: PMC11727902 DOI: 10.3390/genes15121566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 01/15/2025] Open
Abstract
Objectives: Variants in Cyclin F (CCNF) have been associated to amyotrophic lateral sclerosis (ALS) and/or frontotemporal dementia (FTD) in a group of cases. The objectives of this study were to determine the contribution of CCNF in a large cohort of Italian ALS patients, to look for genotype-phenotype correlation of the mutations and to evaluate the CCNF-associated clinical features. Methods: We applied next-generation sequencing technologies on 971 unrelated Italian ALS patients and we filtered results to look for variants in CCNF gene. Results: We identified 13 rare missense variants in 16 index cases (2 familial and 14 sporadic), with a cumulative mutational frequency of 1.6%. The most prevalent variant was p.Phe197Leu, found in three patients. The clinical presentation was heterogeneous, with a classic phenotype in eight patients, upper motor neuron dominant (UMN-D) phenotype in four patients, and flail arm in four patients. Clinical evaluation for cognitive impairment was performed in 13 patients using the Edinburgh Cognitive and Behavioural ALS Screen (ECAS) test, demonstrating that almost half of the patients (n = 6) had variable degrees of frontal dysfunction. Discussion: In our cohort, we observed CCNF variants in 1.6% of patients (16/971), a percentage similar to that found in other series. Clinical presentation is heterogeneous, but CCNF variants are significantly associated to cognitive impairment. Conclusions: Our study expands the CCNF genetic variant spectrum in a large cohort of Italian ALS patients. Further studies are needed to assess genotype-phenotype associations of CCNF variants and to specify the role of each variant, which are quite common, especially in sALS patients.
Collapse
Affiliation(s)
- Giulia Bisogni
- Centro Clinico NeMO Adulti, Fondazione Serena Onlus-Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (A.C.); (D.B.); (G.L.); (A.K.P.); (P.C.); (M.S.)
| | - Amelia Conte
- Centro Clinico NeMO Adulti, Fondazione Serena Onlus-Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (A.C.); (D.B.); (G.L.); (A.K.P.); (P.C.); (M.S.)
| | - Umberto Costantino
- Neurology Unit, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy;
| | - Serena Lattante
- Department of Experimental Medicine, Università del Salento, 73100 Lecce, Italy;
| | - Daniela Bernardo
- Centro Clinico NeMO Adulti, Fondazione Serena Onlus-Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (A.C.); (D.B.); (G.L.); (A.K.P.); (P.C.); (M.S.)
| | - Gabriele Lucioli
- Centro Clinico NeMO Adulti, Fondazione Serena Onlus-Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (A.C.); (D.B.); (G.L.); (A.K.P.); (P.C.); (M.S.)
| | - Agata Katia Patanella
- Centro Clinico NeMO Adulti, Fondazione Serena Onlus-Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (A.C.); (D.B.); (G.L.); (A.K.P.); (P.C.); (M.S.)
| | - Paola Cimbolli
- Centro Clinico NeMO Adulti, Fondazione Serena Onlus-Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (A.C.); (D.B.); (G.L.); (A.K.P.); (P.C.); (M.S.)
| | - Elda Del Giudice
- Research & Innovation (R&I Genetics) Srl, 35127 Padova, Italy; (E.D.G.); (F.V.)
| | - Federica Vettor
- Research & Innovation (R&I Genetics) Srl, 35127 Padova, Italy; (E.D.G.); (F.V.)
| | - Giuseppe Marangi
- Section of Genomic Medicine, Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.M.); (P.N.D.); (M.Z.)
- Unit of Medical Genetics, Department of Laboratory and Infectious Disease Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Paolo Niccolò Doronzio
- Section of Genomic Medicine, Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.M.); (P.N.D.); (M.Z.)
- Unit of Medical Genetics, Department of Laboratory and Infectious Disease Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Marcella Zollino
- Section of Genomic Medicine, Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.M.); (P.N.D.); (M.Z.)
- Unit of Medical Genetics, Department of Laboratory and Infectious Disease Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Mario Sabatelli
- Centro Clinico NeMO Adulti, Fondazione Serena Onlus-Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (A.C.); (D.B.); (G.L.); (A.K.P.); (P.C.); (M.S.)
- Institute of Neurology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
2
|
Mouery RD, Lukasik K, Hsu C, Bonacci T, Bolhuis DL, Wang X, Mills CA, Toomer ED, Canterbury OG, Robertson KC, Branigan TB, Brown NG, Herring LE, Gupton SL, Emanuele MJ. Proteomic analysis reveals a PLK1-dependent G2/M degradation program and a role for AKAP2 in coordinating the mitotic cytoskeleton. Cell Rep 2024; 43:114510. [PMID: 39018246 PMCID: PMC11403584 DOI: 10.1016/j.celrep.2024.114510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/24/2024] [Accepted: 06/28/2024] [Indexed: 07/19/2024] Open
Abstract
Ubiquitination is an essential regulator of cell division. The kinase Polo-like kinase 1 (PLK1) promotes protein degradation at G2/M phase through the E3 ubiquitin ligase Skp1-Cul1-F box (SCF)βTrCP. However, the magnitude to which PLK1 shapes the mitotic proteome is uncharacterized. Combining quantitative proteomics with pharmacologic PLK1 inhibition revealed a widespread, PLK1-dependent program of protein breakdown at G2/M. We validated many PLK1-regulated proteins, including substrates of the cell-cycle E3 SCFCyclin F, demonstrating that PLK1 promotes proteolysis through at least two distinct E3 ligases. We show that the protein-kinase-A-anchoring protein A-kinase anchor protein 2 (AKAP2) is cell-cycle regulated and that its mitotic degradation is dependent on the PLK1/βTrCP signaling axis. Expression of a non-degradable AKAP2 mutant resulted in actin defects and aberrant mitotic spindles, suggesting that AKAP2 degradation coordinates cytoskeletal organization during mitosis. These findings uncover PLK1's far-reaching role in shaping the mitotic proteome post-translationally and have potential implications in malignancies where PLK1 is upregulated.
Collapse
Affiliation(s)
- Ryan D Mouery
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kimberly Lukasik
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Carolyn Hsu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Thomas Bonacci
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Derek L Bolhuis
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xianxi Wang
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - C Allie Mills
- UNC Proteomics Core Facility, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - E Drew Toomer
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Owen G Canterbury
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kevin C Robertson
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Timothy B Branigan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas G Brown
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura E Herring
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Proteomics Core Facility, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephanie L Gupton
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael J Emanuele
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
3
|
Gidhi A, Jha SK, Kumar M, Mukhopadhyay K. The F-box protein encoding genes of the leaf-rust fungi Puccinia triticina: genome-wide identification, characterization and expression dynamics during pathogenesis. Arch Microbiol 2024; 206:209. [PMID: 38587657 DOI: 10.1007/s00203-024-03936-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/31/2024] [Accepted: 03/19/2024] [Indexed: 04/09/2024]
Abstract
The F-box proteins in fungi perform diverse functions including regulation of cell cycle, circadian clock, development, signal transduction and nutrient sensing. Genome-wide analysis revealed 10 F-box genes in Puccinia triticina, the causal organism for the leaf rust disease in wheat and were characterized using in silico approaches for revealing phylogenetic relationships, gene structures, gene ontology, protein properties, sequence analysis and gene expression studies. Domain analysis predicted functional domains like WD40 and LRR at C-terminus along with the obvious presence of F-box motif in N-terminus. MSA showed amino acid replacements, which might be due to nucleotide substitution during replication. Phylogenetic analysis revealed the F-box proteins with similar domains to be clustered together while some sequences were spread out in different clades, which might be due to functional diversity. The clustering of Puccinia triticina GG705409 with Triticum aestivum TaAFB4/TaAFB5 in a single clade suggested the possibilities of horizontal gene transfer during the coevolution of P. triticina and wheat. Gene ontological annotation categorized them into three classes and were functionally involved in protein degradation through the protein ubiquitination pathway. Protein-protein interaction network revealed F-box proteins to interact with other components of the SCF complex involved in protein ubiquitination. Relative expression analysis of five F-box genes in a time course experiment denoted their involvement in leaf rust susceptible wheat plants. This study provides information on structure elucidation of F-box proteins of a basidiomycetes plant pathogenic fungi and their role during pathogenesis.
Collapse
Affiliation(s)
- Anupama Gidhi
- School of Genomics and Molecular Breeding, ICAR-Indian Institute of Agricultural Biotechnology, Garhkhatanga, Ranchi, Jharkhand, 834003, India
| | - Shailendra Kumar Jha
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Manish Kumar
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Kunal Mukhopadhyay
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
4
|
Rayner SL, Hogan A, Davidson JM, Cheng F, Luu L, Morsch M, Blair I, Chung R, Lee A. Cyclin F, Neurodegeneration, and the Pathogenesis of ALS/FTD. Neuroscientist 2024; 30:214-228. [PMID: 36062310 DOI: 10.1177/10738584221120182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common form of motor neuron disease and is characterized by the degeneration of upper and lower motor neurons of the brain and spinal cord. ALS is also linked clinically, genetically, and pathologically to a form of dementia known as frontotemporal dementia (FTD). Identifying gene mutations that cause ALS/FTD has provided valuable insight into the disease process. Several ALS/FTD-causing mutations occur within proteins with roles in protein clearance systems. This includes ALS/FTD mutations in CCNF, which encodes the protein cyclin F: a component of a multiprotein E3 ubiquitin ligase that mediates the ubiquitylation of substrates for their timely degradation. In this review, we provide an update on the link between ALS/FTD CCNF mutations and neurodegeneration.
Collapse
Affiliation(s)
| | - Alison Hogan
- Macquarie Medical School, Macquarie University, Sydney, Australia
| | | | - Flora Cheng
- Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Luan Luu
- Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Marco Morsch
- Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Ian Blair
- Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Roger Chung
- Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Albert Lee
- Macquarie Medical School, Macquarie University, Sydney, Australia
| |
Collapse
|
5
|
Zuo Z, Zhou Z, Chang Y, Liu Y, Shen Y, Li Q, Zhang L. Ribonucleotide reductase M2 (RRM2): Regulation, function and targeting strategy in human cancer. Genes Dis 2024; 11:218-233. [PMID: 37588202 PMCID: PMC10425756 DOI: 10.1016/j.gendis.2022.11.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/26/2022] [Accepted: 11/14/2022] [Indexed: 12/29/2022] Open
Abstract
Ribonucleotide reductase M2 (RRM2) is a small subunit in ribonucleotide reductases, which participate in nucleotide metabolism and catalyze the conversion of nucleotides to deoxynucleotides, maintaining the dNTP pools for DNA biosynthesis, repair, and replication. RRM2 performs a critical role in the malignant biological behaviors of cancers. The structure, regulation, and function of RRM2 and its inhibitors were discussed. RRM2 gene can produce two transcripts encoding the same ORF. RRM2 expression is regulated at multiple levels during the processes from transcription to translation. Moreover, this gene is associated with resistance, regulated cell death, and tumor immunity. In order to develop and design inhibitors of RRM2, appropriate strategies can be adopted based on different mechanisms. Thus, a greater appreciation of the characteristics of RRM2 is a benefit for understanding tumorigenesis, resistance in cancer, and tumor microenvironment. Moreover, RRM2-targeted therapy will be more attention in future therapeutic approaches for enhancement of treatment effects and amelioration of the dismal prognosis.
Collapse
Affiliation(s)
- Zanwen Zuo
- Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), and School of Food and Biological Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Zerong Zhou
- Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), and School of Food and Biological Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Yuzhou Chang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| | - Yan Liu
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuping Shen
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan 425199, China
| | - Qizhang Li
- Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), and School of Food and Biological Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Lei Zhang
- Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
6
|
Ragagnin AMG, Sundaramoorthy V, Farzana F, Gautam S, Saravanabavan S, Takalloo Z, Mehta P, Do-Ha D, Parakh S, Shadfar S, Hunter J, Vidal M, Jagaraj CJ, Brocardo M, Konopka A, Yang S, Rayner SL, Williams KL, Blair IP, Chung RS, Lee A, Ooi L, Atkin JD. ALS/FTD-associated mutation in cyclin F inhibits ER-Golgi trafficking, inducing ER stress, ERAD and Golgi fragmentation. Sci Rep 2023; 13:20467. [PMID: 37993492 PMCID: PMC10665471 DOI: 10.1038/s41598-023-46802-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/05/2023] [Indexed: 11/24/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a severely debilitating neurodegenerative condition that is part of the same disease spectrum as frontotemporal dementia (FTD). Mutations in the CCNF gene, encoding cyclin F, are present in both sporadic and familial ALS and FTD. However, the pathophysiological mechanisms underlying neurodegeneration remain unclear. Proper functioning of the endoplasmic reticulum (ER) and Golgi apparatus compartments is essential for normal physiological activities and to maintain cellular viability. Here, we demonstrate that ALS/FTD-associated variant cyclin FS621G inhibits secretory protein transport from the ER to Golgi apparatus, by a mechanism involving dysregulation of COPII vesicles at ER exit sites. Consistent with this finding, cyclin FS621G also induces fragmentation of the Golgi apparatus and activates ER stress, ER-associated degradation, and apoptosis. Induction of Golgi fragmentation and ER stress were confirmed with a second ALS/FTD variant cyclin FS195R, and in cortical primary neurons. Hence, this study provides novel insights into pathogenic mechanisms associated with ALS/FTD-variant cyclin F, involving perturbations to both secretory protein trafficking and ER-Golgi homeostasis.
Collapse
Affiliation(s)
- Audrey M G Ragagnin
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Vinod Sundaramoorthy
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Fabiha Farzana
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Shashi Gautam
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Sayanthooran Saravanabavan
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Zeinab Takalloo
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Prachi Mehta
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Dzung Do-Ha
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | - Sonam Parakh
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Sina Shadfar
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Julie Hunter
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Marta Vidal
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Cyril J Jagaraj
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Mariana Brocardo
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Anna Konopka
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Shu Yang
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Stephanie L Rayner
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Kelly L Williams
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Ian P Blair
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Roger S Chung
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Albert Lee
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Lezanne Ooi
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | - Julie D Atkin
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
7
|
Mouery RD, Hsu C, Bonacci T, Bolhuis DL, Wang X, Mills CA, Toomer ED, Canterbury OG, Robertson KC, Branigan TB, Brown NG, Herring LE, Emanuele MJ. Proteomic Analysis Reveals a PLK1-Dependent G2/M Degradation Program and Links PKA-AKAP2 to Cell Cycle Control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.11.561963. [PMID: 37873169 PMCID: PMC10592729 DOI: 10.1101/2023.10.11.561963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Targeted protein degradation by the ubiquitin-proteasome system is an essential mechanism regulating cellular division. The kinase PLK1 coordinates protein degradation at the G2/M phase of the cell cycle by promoting the binding of substrates to the E3 ubiquitin ligase SCFβTrCP. However, the magnitude to which PLK1 shapes the mitotic proteome has not been characterized. Combining deep, quantitative proteomics with pharmacologic PLK1 inhibition (PLK1i), we identified more than 200 proteins whose abundances were increased by PLK1i at G2/M. We validate many new PLK1-regulated proteins, including several substrates of the cell cycle E3 SCFCyclin F, demonstrating that PLK1 promotes proteolysis through at least two distinct SCF-family E3 ligases. Further, we found that the protein kinase A anchoring protein AKAP2 is cell cycle regulated and that its mitotic degradation is dependent on the PLK1/βTrCP-signaling axis. Interactome analysis revealed that the strongest interactors of AKAP2 function in signaling networks regulating proliferation, including MAPK, AKT, and Hippo. Altogether, our data demonstrate that PLK1 coordinates a widespread program of protein breakdown at G2/M. We propose that dynamic proteolytic changes mediated by PLK1 integrate proliferative signals with the core cell cycle machinery during cell division. This has potential implications in malignancies where PLK1 is aberrantly regulated.
Collapse
Affiliation(s)
- Ryan D Mouery
- Curriculum in Genetics and Molecular Biology. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
| | - Carolyn Hsu
- Lineberger Comprehensive Cancer Center. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
| | - Thomas Bonacci
- Lineberger Comprehensive Cancer Center. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
- Department of Pharmacology. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
| | - Derek L Bolhuis
- Department of Biochemistry and Biophysics. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
| | - Xianxi Wang
- Lineberger Comprehensive Cancer Center. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
- Department of Pharmacology. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
| | - Christine A Mills
- UNC Proteomics Core Facility, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - E Drew Toomer
- Lineberger Comprehensive Cancer Center. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
- Department of Pharmacology. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
| | - Owen G Canterbury
- Department of Pharmacology. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
| | - Kevin C Robertson
- Lineberger Comprehensive Cancer Center. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
- Department of Pharmacology. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
| | - Timothy B Branigan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas G Brown
- Lineberger Comprehensive Cancer Center. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
- Department of Pharmacology. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
| | - Laura E Herring
- Lineberger Comprehensive Cancer Center. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
- Department of Pharmacology. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
- UNC Proteomics Core Facility, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael J Emanuele
- Lineberger Comprehensive Cancer Center. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
- Department of Pharmacology. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
| |
Collapse
|
8
|
Qiu L, Jiang S, Zhou F, Huang J, Guo Y. Molecular cloning and characterization of a cyclin B gene on the ovarian maturation stage of black tiger shrimp (Penaeus monodon). Mol Biol Rep 2023; 50:S1-S8. [PMID: 17245552 DOI: 10.1007/s11033-006-9052-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2006] [Accepted: 12/20/2006] [Indexed: 10/23/2022]
Abstract
The techniques of homology cloning and anchored PCR were used to clone the cyclin B gene from black tiger shrimp. The full length cDNA of black tiger shrimp cyclin B (btscyclin B) contained a 5' untranslated region (UTR) of 102 bp, an ORF of 1,206 bp encoding a polypeptide of 401 amino acids with an estimated molecular mass of 45 kDa and a 3' UTR of 396 bp. The searches for protein sequence similarities with BLAST analysis indicated that the deduced amino acid sequence of btscyclin B was homological to the cyclin B of other species and even the mammalians. Two conserved signature sequences of cyclin B gene family were found in the btscyclin B deduced amino acid sequence. The temporal expressions of cyclin B gene in the different tissues, including liver, ovary, muscle, brain stomach, heart and intestine, were measured by RT-PCR. mRNA expression of cyclin B could be detected in liver, ovary, muscle, brain, stomach, heart and strongest in the ovary, but almost not be detected in the intestine. In ovarian maturation stages, the expression of btscyclin B was different. The result indicated that btscyclin B was constitutive expressed and played an important role in the cell division stage.
Collapse
Affiliation(s)
- Lihua Qiu
- Biotechnology and aquiculture Laboratory, The South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 231 Xingangxi Road, Guangzhou, 510300, P.R. China
| | - Shigui Jiang
- Biotechnology and aquiculture Laboratory, The South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 231 Xingangxi Road, Guangzhou, 510300, P.R. China.
| | - Falin Zhou
- Biotechnology and aquiculture Laboratory, The South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 231 Xingangxi Road, Guangzhou, 510300, P.R. China
| | - Jianhua Huang
- Biotechnology and aquiculture Laboratory, The South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 231 Xingangxi Road, Guangzhou, 510300, P.R. China
| | - Yihui Guo
- Biotechnology and aquiculture Laboratory, The South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 231 Xingangxi Road, Guangzhou, 510300, P.R. China
| |
Collapse
|
9
|
Davidson JM, Wu SSL, Rayner SL, Cheng F, Duncan K, Russo C, Newbery M, Ding K, Scherer NM, Balez R, García-Redondo A, Rábano A, Rosa-Fernandes L, Ooi L, Williams KL, Morsch M, Blair IP, Di Ieva A, Yang S, Chung RS, Lee A. The E3 Ubiquitin Ligase SCF Cyclin F Promotes Sequestosome-1/p62 Insolubility and Foci Formation and is Dysregulated in ALS and FTD Pathogenesis. Mol Neurobiol 2023; 60:5034-5054. [PMID: 37243816 PMCID: PMC10415446 DOI: 10.1007/s12035-023-03355-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 04/15/2023] [Indexed: 05/29/2023]
Abstract
Amyotrophic lateral sclerosis (ALS)- and frontotemporal dementia (FTD)-linked mutations in CCNF have been shown to cause dysregulation to protein homeostasis. CCNF encodes for cyclin F, which is part of the cyclin F-E3 ligase complex SCFcyclinF known to ubiquitylate substrates for proteasomal degradation. In this study, we identified a function of cyclin F to regulate substrate solubility and show how cyclin F mechanistically underlies ALS and FTD disease pathogenesis. We demonstrated that ALS and FTD-associated protein sequestosome-1/p62 (p62) was a canonical substrate of cyclin F which was ubiquitylated by the SCFcyclinF complex. We found that SCFcyclin F ubiquitylated p62 at lysine(K)281, and that K281 regulated the propensity of p62 to aggregate. Further, cyclin F expression promoted the aggregation of p62 into the insoluble fraction, which corresponded to an increased number of p62 foci. Notably, ALS and FTD-linked mutant cyclin F p.S621G aberrantly ubiquitylated p62, dysregulated p62 solubility in neuronal-like cells, patient-derived fibroblasts and induced pluripotent stem cells and dysregulated p62 foci formation. Consistently, motor neurons from patient spinal cord tissue exhibited increased p62 ubiquitylation. We suggest that the p.S621G mutation impairs the functions of cyclin F to promote p62 foci formation and shift p62 into the insoluble fraction, which may be associated to aberrant mutant cyclin F-mediated ubiquitylation of p62. Given that p62 dysregulation is common across the ALS and FTD spectrum, our study provides insights into p62 regulation and demonstrates that ALS and FTD-linked cyclin F mutant p.S621G can drive p62 pathogenesis associated with ALS and FTD.
Collapse
Affiliation(s)
- Jennilee M Davidson
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Road, Sydney, NSW, 2109, Australia.
| | - Sharlynn S L Wu
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Stephanie L Rayner
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Flora Cheng
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Kimberley Duncan
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Carlo Russo
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Michelle Newbery
- Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, NSW, 2522, Australia
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | - Kunjie Ding
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Natalie M Scherer
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Rachelle Balez
- Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, NSW, 2522, Australia
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | - Alberto García-Redondo
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER U-723), Unidad de ELA, Instituto de Investigación Hospital 12 de Octubre de Madrid, SERMAS, Madrid, Spain
| | - Alberto Rábano
- Neuropathology Department and CIEN Tissue Bank, Alzheimer's Centre Reina Sofia-CIEN Foundation, 28031, Madrid, Spain
| | - Livia Rosa-Fernandes
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, NSW, 2522, Australia
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | - Kelly L Williams
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Marco Morsch
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Ian P Blair
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Antonio Di Ieva
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Shu Yang
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Roger S Chung
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Albert Lee
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Road, Sydney, NSW, 2109, Australia
| |
Collapse
|
10
|
Gao X, Bu H, Ge J, Gao X, Wang Y, Zhang Z, Wang L. A Comprehensive Analysis of the Prognostic, Immunological and Diagnostic Role of CCNF in Pan-cancer. J Cancer 2023; 14:2431-2442. [PMID: 37670965 PMCID: PMC10475360 DOI: 10.7150/jca.86597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/17/2023] [Indexed: 09/07/2023] Open
Abstract
Background: Cyclin F (CCNF) represents a pivotal constituent within the family of cell cycle proteins, which also belongs to the F-box protein family and acts as a critical regulatory factor in cell cycle transition. Its heightened expression has been consistently identified across various cancer types, including breast, pancreatic, and colorectal cancer. Nonetheless, a comprehensive exploration of CCNF's involvement in pan-cancer remains lacking. Methods: This study collected transcriptomic data and clinical information from several databases, including The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and BioGPS detabase. Employing bioinformatics methods, we investigated the potential oncogenic role of CCNF, utilizing various databases such as cBioPortal, Human Protein Atlas (HPA), TIMER2, UALCAN, GEPIA, GSCALite, and CTD detabase. These analyses focused on exploring CCNF expression, prognosis, gene mutations, immune cell infiltration, DNA methylation levels, and targeted chemical drugs across different tumor types. Additionally, we obtained CCNF-related genes from GeneMANIA and GEPIA databases and conducted GO and KEGG enrichment analyses to gain deeper insights into the biological processes associated with CCNF. Furthermore, we validated the differential expression of CCNF in normal human breast cancer and breast cancer cell lines using experimental verification. Results: CCNF exhibited upregulation in the majority of cancer types, demonstrating early diagnostic potential in 15 cancers and prognostic implications for adverse outcomes across numerous malignancies. Furthermore, CCNF was found to be linked with markers of the tumor immune microenvironment in various cancers. Additionally, CCNF expression influenced genetic alterations in pan-cancer. Enrichment analysis revealed that CCNF primarily participates in crucial biological pathways such as the cell cycle, p53 signaling pathway, and cellular senescence pathways. RT-qpcr and WB assays further confirmed that CCNF expression was higher in human cancer cell lines than in normal cell lines. Conclusion: The underlying role and mechanism of CCNF in pan-cancer were elucidated through comprehensive bioinformatics analysis and experimental validation. CCNF holds promise as an invaluable early detection indicator and tumor biomarker, offering potential targets for tumor treatment and prevention.
Collapse
Affiliation(s)
- Xiaofeng Gao
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning 437000, Hubei, PR China
- Medicine Research Institute /Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, PR China
| | - Huitong Bu
- College of Biology, Hunan University, Hunan, Changsha, 410012, PR China
| | - Juanjuan Ge
- Medicine Research Institute /Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, PR China
| | - Xuzheng Gao
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning 437000, Hubei, PR China
| | - Ying Wang
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning 437000, Hubei, PR China
| | - Zhenwang Zhang
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning 437000, Hubei, PR China
- Medicine Research Institute /Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, PR China
| | - Long Wang
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning 437000, Hubei, PR China
- Medicine Research Institute /Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, PR China
- School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, PR China
| |
Collapse
|
11
|
Rashpa R, Klages N, Schvartz D, Pasquarello C, Brochet M. The Skp1-Cullin1-FBXO1 complex is a pleiotropic regulator required for the formation of gametes and motile forms in Plasmodium berghei. Nat Commun 2023; 14:1312. [PMID: 36898988 PMCID: PMC10006092 DOI: 10.1038/s41467-023-36999-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Malaria-causing parasites of the Plasmodium genus undergo multiple developmental phases in the human and the mosquito hosts, regulated by various post-translational modifications. While ubiquitination by multi-component E3 ligases is key to regulate a wide range of cellular processes in eukaryotes, little is known about its role in Plasmodium. Here we show that Plasmodium berghei expresses a conserved SKP1/Cullin1/FBXO1 (SCFFBXO1) complex showing tightly regulated expression and localisation across multiple developmental stages. It is key to cell division for nuclear segregation during schizogony and centrosome partitioning during microgametogenesis. It is additionally required for parasite-specific processes including gamete egress from the host erythrocyte, as well as integrity of the apical and the inner membrane complexes (IMC) in merozoite and ookinete, two structures essential for the dissemination of these motile stages. Ubiquitinomic surveys reveal a large set of proteins ubiquitinated in a FBXO1-dependent manner including proteins important for egress and IMC organisation. We additionally demonstrate an interplay between FBXO1-dependent ubiquitination and phosphorylation via calcium-dependent protein kinase 1. Altogether we show that Plasmodium SCFFBXO1 plays conserved roles in cell division and is also important for parasite-specific processes in the mammalian and mosquito hosts.
Collapse
Affiliation(s)
- Ravish Rashpa
- University of Geneva, Faculty of Medicine, Department of Microbiology and Molecular Medicine, Geneva, Switzerland.
| | - Natacha Klages
- University of Geneva, Faculty of Medicine, Department of Microbiology and Molecular Medicine, Geneva, Switzerland
| | - Domitille Schvartz
- University of Geneva, Faculty of Medicine, Proteomics Core Facility, Geneva, Switzerland
| | - Carla Pasquarello
- University of Geneva, Faculty of Medicine, Proteomics Core Facility, Geneva, Switzerland
| | - Mathieu Brochet
- University of Geneva, Faculty of Medicine, Department of Microbiology and Molecular Medicine, Geneva, Switzerland.
| |
Collapse
|
12
|
Inhibition of Cyclin F Promotes Cellular Senescence through Cyclin-dependent Kinase 1-mediated Cell Cycle Regulation. Curr Med Sci 2023; 43:246-254. [PMID: 36602672 DOI: 10.1007/s11596-022-2692-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/01/2022] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Kidney renal clear cell carcinoma (KIRC) is a common renal malignancy that has a poor prognosis. As a member of the F box family, cyclin F (CCNF) plays an important regulatory role in normal tissues and tumors. However, the underlying mechanism by which CCNF promotes KIRC proliferation still remains unclear. METHODS Bioinformatics methods were used to analyze The Cancer Genome Atlas (TCGA) database to obtain gene expression and clinical prognosis data. The CCK8 assay, EdU assay, and xenograft assay were used to detect cell proliferation. The cell senescence and potential mechanism were assessed by SA-β-gal staining, Western blotting, as well as ELISA. RESULTS Our data showed that CCNF was highly expressed in KIRC patients. Meanwhile, downregulation of CCNF inhibited cell proliferation in vivo and in vitro. Further studies showed that the reduction of CCNF promoted cell senescence by decreasing cyclin-dependent kinase 1 (CDK1), increasing the proinflammatory factors interleukin (IL)-6 and IL-8, and then enhancing the expression of p21 and p53. CONCLUSION We propose that the high expression of CCNF in KIRC may play a key role in tumorigenesis by regulating cell senescence. Therefore, CCNF shows promise as a new biomarker to predict the clinical prognosis of KIRC patients and as an effective therapeutic target.
Collapse
|
13
|
MEKs/ERKs-mediated FBXO1/E2Fs interaction interference modulates G 1/S cell cycle transition and cancer cell proliferation. Arch Pharm Res 2023; 46:44-58. [PMID: 36607545 DOI: 10.1007/s12272-023-01426-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/31/2022] [Indexed: 01/07/2023]
Abstract
E2F 1, 2, and 3a, (refer to as E2Fs) are a subfamily of E2F transcription factor family that play essential roles in cell-cycle progression, DNA replication, DNA repair, apoptosis, and differentiation. Although the transcriptional regulation of E2Fs has focused on pocket protein retinoblastoma protein complex, recent studies indicate that post-translational modification and stability regulation of E2Fs play key roles in diverse cellular processes. In this study, we found that FBXO1, a component of S-phase kinase-associated protein 1 (SKP1)-cullin 1-F-box protein (SCF) complex, is an E2Fs binding partner. Furthermore, FBXO1 to E2Fs binding induced K48 ubiquitination and subsequent proteasomal degradation of E2Fs. Binding domain analysis indicated that the Arg (R)/Ile (I) and R/Val (V) motifs, which are located in the dimerization domain of E2Fs, of E2F 1 and 3a and E2F2, respectively, acted as degron motifs (DMs) for FBXO1. Notably, RI/AA or RV/AA mutation in the DMs reduced FBXO1-mediated ubiquitination and prolonged the half-lives of E2Fs. Importantly, the stabilities of E2Fs were affected by phosphorylation of threonine residues located near RI and RV residues of DMs. Phosphorylation prediction database analysis and specific inhibitor analysis revealed that MEK/ERK signaling molecules play key roles in FBXO1/E2Fs' interaction and modulate E2F protein turnover. Moreover, both elevated E2Fs protein levels by knockdown of FBXO1 and decreased E2Fs protein levels by sh-E2F3a delayed G1/S cell cycle transition, resulting in inhibition of cancer cell proliferation. These results demonstrated that FBXO1-E2Fs axis-mediated precise E2Fs stability regulation plays a key role in cell proliferation via G1/S cell cycle transition.
Collapse
|
14
|
Yu Y, Yao W, Wang T, Xue W, Meng Y, Cai L, Jian W, Yu Y, Zhang C. FBXL6 depletion restrains clear cell renal cell carcinoma progression. Transl Oncol 2022; 26:101550. [PMID: 36183674 PMCID: PMC9526225 DOI: 10.1016/j.tranon.2022.101550] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND F-box proteins play important roles in cell cycle and tumorigenesis. However, its prognostic value and molecular function in clear cell renal cell carcinoma (ccRCC) remain unclear. In this study, we established a survival model to evaluate the prognosis of patients with ccRCC using the F-box gene signature and investigated the function of FBXL6 in ccRCC. METHODS Comprehensive bioinformatics analyses were used to identify differentially expressed F-box and hub genes associated with ccRCC carcinogenesis. Based on the F-box gene signature, we constructed a risk model and nomogram to predict the overall survival (OS) of patients with ccRCC and assist clinicians in decision-making. Finally, we verified the function and underlying molecular mechanisms of FBXL6 in ccRCC using CCK-8 and EdU assays, flow cytometry, and subcutaneous xenografts. RESULTS A risk model based on FBXO39, FBXL6, FBXO1, and FBXL16 was developed. In addition, we drew a nomogram based on the risk score and clinical features to assess the prognosis of patients with ccRCC. Subsequently, we identified FBXL6 as an independent prognostic marker that was highly expressed in ccRCC cell lines. In vivo and in vitro assays revealed that the depletion of FBXL6 inhibited cell proliferation and induced apoptosis. We also demonstrated that SP1 regulated the expression of FBXL6. CONCLUSIONS FBXL6 was first identified as a diagnostic and prognostic marker in patients with ccRCC. Loss of FBXL6 attenuates proliferation and induces apoptosis in ccRCC cells. SP1 was also found to regulate the expression of FBXL6.
Collapse
Affiliation(s)
- Yongchun Yu
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Wenhao Yao
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Tengda Wang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Wei Xue
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yuyang Meng
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Licheng Cai
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Wengang Jian
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yipeng Yu
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Cheng Zhang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China; School of Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
15
|
Pan J, Ahmad MZ, Zhu S, Chen W, Yao J, Li Y, Fang S, Li T, Yeboah A, He L, Zhang Y. Identification, Classification and Characterization Analysis of FBXL Gene in Cotton. Genes (Basel) 2022; 13:genes13122194. [PMID: 36553463 PMCID: PMC9777894 DOI: 10.3390/genes13122194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
F-box/LR (FBXL), Leucine-rich repeats in F-box proteins, belongs to the Skp1-Cullin1-F-box protein (SCF) E3 ligase family. FBXL genes play important roles in plant growth, such as plant hormones, responses to environmental stress, and floral organ development. Here, a total of 518 FBXL genes were identified and analyzed in six plant species. Phylogenetic analysis showed that AtFBXLs, VvFBXLs, and GrFBXLs were clustered into three subfamilies (Ⅰ-Ⅲ). Based on the composition of the F-box domain and carboxyl-terminal amino acid sequence, FBXL proteins were classified into three types (Type-A/-B/-C). Whole-genome duplication (WGD) along with tandem duplications and segmental contributed to the expansion of this gene family. The result indicates that four cotton species are also divided into three subfamilies. FBXLs in cotton were classified into three clades by phylogenetic and structural analyses. Furthermore, expression analyses indicated that the expression patterns of GhFBXLs in different cotton tissues were different. The highly expressed of GH_A07G2363 in 5-8 mm anthers, indicates that this gene might play a role in the reproductive process, providing candidate genes for future studies on cotton fertility materials. This study provides an original functional opinion and a useful interpretation of the FBXL protein family in cotton.
Collapse
Affiliation(s)
- Jingwen Pan
- College of Agronomy, Tarim University, Alar 843300, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Muhammad Zulfiqar Ahmad
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Shouhong Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Wei Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Jinbo Yao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yan Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Shengtao Fang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Tengyu Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Akwasi Yeboah
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Liangrong He
- College of Agronomy, Tarim University, Alar 843300, China
- Correspondence: (L.H.); (Y.Z.)
| | - Yongshan Zhang
- College of Agronomy, Tarim University, Alar 843300, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Correspondence: (L.H.); (Y.Z.)
| |
Collapse
|
16
|
Zhan Q, Zhang H, Wu B, Zhang N, Zhang L. E3 ubiquitin ligases in the acute leukemic signaling pathways. Front Physiol 2022; 13:1004330. [PMID: 36439256 PMCID: PMC9691902 DOI: 10.3389/fphys.2022.1004330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022] Open
Abstract
Acute leukemia is a common hematologic tumor with highly genetic heterogeneity, and many factors are involved in the pathogenesis and drug-resistance mechanism. Emerging evidence proves that E3 ubiquitin ligases participate in the acute leukemic signaling pathways via regulating substrates. This review summarized the E3 ligases which can affect the leukemic signal. It is worth noting that the abnormal signal is often caused by a deficiency or a mutation of the E3 ligases. In view of this phenomenon, we envisioned perspectives associated with targeted agonists of E3 ligases and proteolysis-targeting chimera technology. Moreover, we emphasized the significance of research into the upstream factors regulating the expression of E3 ubiquitin ligases. It is expected that the understanding of the mechanism of leukemic signaling pathways with which that E3 ligases are involved will be beneficial to accelerating the process of therapeutic strategy improvement for acute leukemia.
Collapse
Affiliation(s)
- Qianru Zhan
- Department of Hematology, The First Hospital of China Medical University, Shenyang, China
| | - Heyang Zhang
- Department of Hematology, The First Hospital of China Medical University, Shenyang, China
| | - Boquan Wu
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| | - Naijin Zhang
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Lijun Zhang, ; Naijin Zhang,
| | - Lijun Zhang
- Department of Hematology, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Lijun Zhang, ; Naijin Zhang,
| |
Collapse
|
17
|
Sharma SS, Pledger J, Kondaiah P. The deubiquitylase USP7 is a novel cyclin F-interacting protein and regulates cyclin F protein stability. Aging (Albany NY) 2022; 14:8645-8660. [DOI: 10.18632/aging.204372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/31/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Savitha S. Sharma
- , Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, 560012, India
- , Sri Shankara Cancer Hospital and Research Centre, Bengaluru, 560004, India
| | - Jack Pledger
- Department of Surgery, University of Utah Health, Huntsman Cancer Institute, Salt Lake City, UT 84132, USA
| | - Paturu Kondaiah
- , Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, 560012, India
- , Sri Shankara Cancer Hospital and Research Centre, Bengaluru, 560004, India
| |
Collapse
|
18
|
Liu NQ, Cao WH, Wang X, Chen J, Nie J. Cyclin genes as potential novel prognostic biomarkers and therapeutic targets in breast cancer. Oncol Lett 2022; 24:374. [PMID: 36238849 PMCID: PMC9494629 DOI: 10.3892/ol.2022.13494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/15/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Nian-Qiu Liu
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, Yunnan 650000, P.R. China
| | - Wei-Han Cao
- Department of Ultrasound, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - Xing Wang
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, Yunnan 650000, P.R. China
| | - Junyao Chen
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, Yunnan 650000, P.R. China
| | - Jianyun Nie
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, Yunnan 650000, P.R. China
| |
Collapse
|
19
|
Sumiya N. Coordination mechanism of cell and cyanelle division in the glaucophyte alga Cyanophora sudae. PROTOPLASMA 2022; 259:855-867. [PMID: 34553240 DOI: 10.1007/s00709-021-01704-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
In unicellular algae with a single chloroplast, two mechanisms coordinate cell and chloroplast division: the S phase-specific expression of chloroplast division genes and the permission of cell cycle progression from prophase to metaphase by the onset of chloroplast division. This study investigated whether a similar mechanism exists in a unicellular alga with multiple chloroplasts using the glaucophyte alga Cyanophora sudae, which contains four chloroplasts (cyanelles). Cells with eight cyanelles appeared after the S phase arrest with a topoisomerase inhibitor camptothecin, suggesting that the mechanism of S phase-specific expression of cyanelle division genes was conserved in this alga. Inhibition of peptidoglycan synthesis by β-lactam antibiotic ampicillin arrested cells in the S-G2 phase, and inhibition of septum invagination with cephalexin resulted in cells with two nuclei and one cyanelle, despite inhibition of cyanelle division. This indicates that even in the unicellular alga with four chloroplasts, the cell cycle progresses to the M phase following the progression of chloroplast division to a certain division stage. These results suggested that C. sudae has two mechanisms for coordinating cell and cyanelle division, similar to the unicellular algae with a single chloroplast.
Collapse
Affiliation(s)
- Nobuko Sumiya
- Department of Biology, Keio University, 4-1-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8521, Japan.
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan.
| |
Collapse
|
20
|
Lee SB, Garofano L, Ko A, D'Angelo F, Frangaj B, Sommer D, Gan Q, Kim K, Cardozo T, Iavarone A, Lasorella A. Regulated interaction of ID2 with the anaphase-promoting complex links progression through mitosis with reactivation of cell-type-specific transcription. Nat Commun 2022; 13:2089. [PMID: 35440621 PMCID: PMC9018835 DOI: 10.1038/s41467-022-29502-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/13/2022] [Indexed: 12/05/2022] Open
Abstract
Tissue-specific transcriptional activity is silenced in mitotic cells but it remains unclear whether the mitotic regulatory machinery interacts with tissue-specific transcriptional programs. We show that such cross-talk involves the controlled interaction between core subunits of the anaphase-promoting complex (APC) and the ID2 substrate. The N-terminus of ID2 is independently and structurally compatible with a pocket composed of core APC/C subunits that may optimally orient ID2 onto the APCCDH1 complex. Phosphorylation of serine-5 by CDK1 prevented the association of ID2 with core APC, impaired ubiquitylation and stabilized ID2 protein at the mitosis-G1 transition leading to inhibition of basic Helix-Loop-Helix (bHLH)-mediated transcription. The serine-5 phospho-mimetic mutant of ID2 that inefficiently bound core APC remained stable during mitosis, delayed exit from mitosis and reloading of bHLH transcription factors on chromatin. It also locked cells into a "mitotic stem cell" transcriptional state resembling the pluripotent program of embryonic stem cells. The substrates of APCCDH1 SKP2 and Cyclin B1 share with ID2 the phosphorylation-dependent, D-box-independent interaction with core APC. These results reveal a new layer of control of the mechanism by which substrates are recognized by APC.
Collapse
Affiliation(s)
- Sang Bae Lee
- Institute for Cancer Genetics, Columbia University Medical Center, New York, 10032, USA.
- Division of Life Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Luciano Garofano
- Institute for Cancer Genetics, Columbia University Medical Center, New York, 10032, USA
| | - Aram Ko
- Institute for Cancer Genetics, Columbia University Medical Center, New York, 10032, USA
| | - Fulvio D'Angelo
- Institute for Cancer Genetics, Columbia University Medical Center, New York, 10032, USA
| | - Brulinda Frangaj
- Institute for Cancer Genetics, Columbia University Medical Center, New York, 10032, USA
| | - Danika Sommer
- Institute for Cancer Genetics, Columbia University Medical Center, New York, 10032, USA
| | - Qiwen Gan
- Institute for Cancer Genetics, Columbia University Medical Center, New York, 10032, USA
| | - KyeongJin Kim
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Timothy Cardozo
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, 10016, USA
| | - Antonio Iavarone
- Institute for Cancer Genetics, Columbia University Medical Center, New York, 10032, USA.
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, 10032, USA.
- Department of Neurology, Columbia University Medical Center, New York, 10032, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, 10032, USA.
| | - Anna Lasorella
- Institute for Cancer Genetics, Columbia University Medical Center, New York, 10032, USA.
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, 10032, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, 10032, USA.
- Department of Pediatrics, Columbia University Medical Center, New York, 10032, USA.
| |
Collapse
|
21
|
Wu T, Fan CL, Han LT, Guo YB, Liu TB. Role of F-box Protein Cdc4 in Fungal Virulence and Sexual Reproduction of Cryptococcus neoformans. Front Cell Infect Microbiol 2022; 11:806465. [PMID: 35087766 PMCID: PMC8787122 DOI: 10.3389/fcimb.2021.806465] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/17/2021] [Indexed: 01/25/2023] Open
Abstract
Cryptococcus neoformans is an opportunistic yeast-like pathogen that mainly infects immunocompromised individuals and causes fatal meningitis. Sexual reproduction can promote the exchange of genetic material between different strains of C. neoformans, which is one of the reasons leading to the emergence of highly pathogenic and drug-resistant strains of C. neoformans. Although much research has been done on the regulation mechanism of Cryptococcus sexual reproduction, there are few studies on the sexual reproduction regulation of Cryptococcus by the ubiquitin-proteasome system. This study identified an F-box protein, Cdc4, which contains a putative F-box domain and eight WD40 domains. The expression pattern analysis showed that the CDC4 gene was expressed in various developmental stages of C. neoformans, and the Cdc4 protein was localized in the nucleus of cryptococcal cells. In vitro stress responses assays showed that the CDC4 overexpression strains are sensitive to SDS and MMS but not Congo red, implying that Cdc4 may regulate the cell membrane integrity and repair of DNA damage of C. neoformans. Fungal virulence assay showed that although the cdc4Δ mutant grows normally and can produce typical virulence factors such as capsule and melanin, the cdc4Δ mutant completely loses its pathogenicity in a mouse systemic-infection model. Fungal mating assays showed that Cdc4 is also essential for fungal sexual reproduction in C. neoformans. Although normal mating hyphae were observed during mating, the basidiospores' production was blocked in bilateral mating between cdc4Δ mutants. Fungal nuclei development assay showed that the nuclei failed to undergo meiosis after fusion inside the basidia during the bilateral mating of cdc4Δ mutants, indicating that Cdc4 is critical to regulating meiosis during cryptococcal mating. In summary, our study revealed that the F-box protein Cdc4 is critical for fungal virulence and sexual reproduction in C. neoformans.
Collapse
Affiliation(s)
- Ting Wu
- State Key Laboratory of Silkworm Genomic Biology, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Cheng-Li Fan
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Lian-Tao Han
- State Key Laboratory of Silkworm Genomic Biology, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Yuan-Bing Guo
- State Key Laboratory of Silkworm Genomic Biology, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Tong-Bao Liu
- State Key Laboratory of Silkworm Genomic Biology, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China.,Medical Research Institute, Southwest University, Chongqing, China
| |
Collapse
|
22
|
Han LT, Wu YJ, Liu TB. The F-Box Protein Fbp1 Regulates Virulence of Cryptococcus neoformans Through the Putative Zinc-Binding Protein Zbp1. Front Cell Infect Microbiol 2022; 11:794661. [PMID: 35024357 PMCID: PMC8744115 DOI: 10.3389/fcimb.2021.794661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) is the major protein turnover mechanism that plays an important role in regulating various cellular functions. F-box proteins are the key proteins of the UPS, responsible for the specific recognition and ubiquitination of downstream targets. Our previous studies showed that the F-box protein Fbp1 plays an essential role in the virulence of C. neoformans. However, the molecular mechanism of Fbp1 regulating the virulence of C. neoformans is still unclear. In this study, we analyzed the potential Fbp1 substrates using an iTRAQ-based proteomic approach and identified the zinc-binding protein Zbp1 as a substrate of Fbp1. Protein interaction and stability assays showed that Zbp1 interacts with Fbp1 and is a downstream target of Fbp1. Ubiquitination analysis in vivo showed that the ubiquitination of Zbp1 is dependent on Fbp1 in C. neoformans. Subcellular localization analysis revealed that the Zbp1 protein was localized in the nucleus of C. neoformans cells. In addition, both deletion and overexpression of the ZBP1 gene led to the reduced capsule size, while overexpression has a more significant impact on capsule size reduction. Fungal virulence assays showed that although the zbp1Δ mutants are virulent, virulence was significantly attenuated in the ZBP1 overexpression strains. Fungal load assay showed that the fungal burdens recovered from the mouse lungs decreased gradually after infection, while no yeast cells were recovered from the brains and spleens of the mice infected by ZBP1 overexpression strains. Thus, our results revealed a new determinant of fungal virulence involving the post-translational regulation of a zinc-binding protein.
Collapse
Affiliation(s)
- Lian-Tao Han
- State Key Laboratory of Silkworm Genomic Biology, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Yu-Juan Wu
- State Key Laboratory of Silkworm Genomic Biology, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Tong-Bao Liu
- State Key Laboratory of Silkworm Genomic Biology, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China.,Medical Research Institute, Southwest University, Chongqing, China
| |
Collapse
|
23
|
Differential Expression of Mitosis and Cell Cycle Regulatory Genes during Recovery from an Acute Respiratory Virus Infection. Pathogens 2021; 10:pathogens10121625. [PMID: 34959580 PMCID: PMC8708581 DOI: 10.3390/pathogens10121625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/27/2022] Open
Abstract
Acute respiratory virus infections can have profound and long-term effects on lung function that persist even after the acute responses have fully resolved. In this study, we examined gene expression by RNA sequencing in the lung tissue of wild-type BALB/c mice that were recovering from a sublethal infection with the pneumonia virus of mice (PVM), a natural rodent pathogen of the same virus family and genus as the human respiratory syncytial virus. We compared these responses to gene expression in PVM-infected mice treated with Lactobacillus plantarum, an immunobiotic agent that limits inflammation and averts the negative clinical sequelae typically observed in response to acute infection with this pathogen. Our findings revealed prominent differential expression of inflammation-associated genes as well as numerous genes and gene families implicated in mitosis and cell-cycle regulation, including cyclins, cyclin-dependent kinases, cell division cycle genes, E2F transcription factors, kinesins, centromere proteins, and aurora kinases, among others. Of particular note was the differential expression of the cell division cycle gene Cdc20b, which was previously identified as critical for the ex vivo differentiation of multi-ciliated cells. Collectively, these findings provided us with substantial insight into post-viral repair processes and broadened our understanding of the mechanisms underlying Lactobacillus-mediated protection.
Collapse
|
24
|
Enrico TP, Stallaert W, Wick ET, Ngoi P, Wang X, Rubin SM, Brown NG, Purvis JE, Emanuele MJ. Cyclin F drives proliferation through SCF-dependent degradation of the retinoblastoma-like tumor suppressor p130/RBL2. eLife 2021; 10:70691. [PMID: 34851822 PMCID: PMC8670743 DOI: 10.7554/elife.70691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/19/2021] [Indexed: 12/20/2022] Open
Abstract
Cell cycle gene expression programs fuel proliferation and are universally dysregulated in cancer. The retinoblastoma (RB)-family of proteins, RB1, RBL1/p107, and RBL2/p130, coordinately represses cell cycle gene expression, inhibiting proliferation, and suppressing tumorigenesis. Phosphorylation of RB-family proteins by cyclin-dependent kinases is firmly established. Like phosphorylation, ubiquitination is essential to cell cycle control, and numerous proliferative regulators, tumor suppressors, and oncoproteins are ubiquitinated. However, little is known about the role of ubiquitin signaling in controlling RB-family proteins. A systems genetics analysis of CRISPR/Cas9 screens suggested the potential regulation of the RB-network by cyclin F, a substrate recognition receptor for the SCF family of E3 ligases. We demonstrate that RBL2/p130 is a direct substrate of SCFcyclin F. We map a cyclin F regulatory site to a flexible linker in the p130 pocket domain, and show that this site mediates binding, stability, and ubiquitination. Expression of a mutant version of p130, which cannot be ubiquitinated, severely impaired proliferative capacity and cell cycle progression. Consistently, we observed reduced expression of cell cycle gene transcripts, as well a reduced abundance of cell cycle proteins, analyzed by quantitative, iterative immunofluorescent imaging. These data suggest a key role for SCFcyclin F in the CDK-RB network and raise the possibility that aberrant p130 degradation could dysregulate the cell cycle in human cancers.
Collapse
Affiliation(s)
- Taylor P Enrico
- Department of Pharmacology. The University of North Carolina at Chapel Hill, Chapel Hill, United States.,Lineberger Comprehensive Cancer Center. The University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Wayne Stallaert
- Department of Genetics. The University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Elizaveta T Wick
- Department of Pharmacology. The University of North Carolina at Chapel Hill, Chapel Hill, United States.,Lineberger Comprehensive Cancer Center. The University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Peter Ngoi
- Department of Chemistry and Biochemistry. University of California at Santa Cruz, Santa Cruz, United States
| | - Xianxi Wang
- Lineberger Comprehensive Cancer Center. The University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Seth M Rubin
- Department of Chemistry and Biochemistry. University of California at Santa Cruz, Santa Cruz, United States
| | - Nicholas G Brown
- Department of Pharmacology. The University of North Carolina at Chapel Hill, Chapel Hill, United States.,Lineberger Comprehensive Cancer Center. The University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Jeremy E Purvis
- Lineberger Comprehensive Cancer Center. The University of North Carolina at Chapel Hill, Chapel Hill, United States.,Department of Genetics. The University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Michael J Emanuele
- Department of Pharmacology. The University of North Carolina at Chapel Hill, Chapel Hill, United States.,Lineberger Comprehensive Cancer Center. The University of North Carolina at Chapel Hill, Chapel Hill, United States
| |
Collapse
|
25
|
Zelong Y, Han Y, Ting G, Yifei W, Kun H, Haoran H, Yong C. Increased expression of Cyclin F in liver cancer predicts poor prognosis: A study based on TCGA database. Medicine (Baltimore) 2021; 100:e26623. [PMID: 34397798 PMCID: PMC8341327 DOI: 10.1097/md.0000000000026623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 06/21/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Cyclin F (CCNF) dysfunction has been implicated in various forms of cancer, offering a new avenue for understanding the pathogenic mechanisms underlying hepatocellular carcinoma (HCC). We aimed to evaluate the role of CCNF in HCC using publicly available data from The Cancer Genome Atlas (TCGA). METHOD We used TCGA data and Gene Expression Omnibus (GEO) data to analyze the differential expression of CCNF between tumor and adjacent tissues and the relationship between CCNF and clinical characteristics. We compared prognosis of patients with HCC with high and low CCNF expression and constructed receiver operating characteristic (ROC) curves. In addition, we also explored the types of gene mutations in relevant groups and conducted Gene Set Enrichment Analysis (GSEA). RESULTS The expression of CCNF in liver cancer tissues was significantly increased compared with that in adjacent tissues, and patients with high CCNF expression had a worse prognosis than those with low CCNF expression. Patients with high CCNF expression also had more somatic mutations. High expression of CCNF hampers the prognosis independently. The GSEA showed that the "http://www.gsea-msigdb.org/gsea/msigdb/cards/BIOCARTA_WNT_PATHWAY" Wnt pathway, "http://www.gsea-msigdb.org/gsea/msigdb/cards/BIOCARTA_P53_PATHWAY" P53 pathway, "http://www.gsea-msigdb.org/gsea/msigdb/cards/HALLMARK_PI3K_AKT_MTOR_SIGNALING" PI3K/Akt/mTOR pathway, "http://www.gsea-msigdb.org/gsea/msigdb/cards/HALLMARK_NOTCH_SIGNALING" Notch pathway were enriched in patients with the high CCNF expression phenotype. CONCLUSION High CCNF expression can be seen as an independent risk factor for poor survival in HCC. Its expression may serve as a target for the diagnosis and treatment of liver cancer.
Collapse
Affiliation(s)
- Yang Zelong
- Department of Hepatobiliary Surgery, Xi Jing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yang Han
- School of Life Sciences, Central South University, Changsha, China
| | - Guo Ting
- Department of Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Wang Yifei
- Department of Neurology, Fourth Military Medical University, Xi’an, China
| | - He Kun
- Department of Hepatobiliary Surgery, Xi Jing Hospital, Fourth Military Medical University, Xi’an, China
| | - Hu Haoran
- School of Life Sciences, Central South University, Changsha, China
| | - Chen Yong
- Department of Hepatobiliary Surgery, Xi Jing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
26
|
Li S, Wang Z, Wang F, Lv H, Cao M, Zhang N, Li F, Wang H, Li X, Yuan X, Zhao B, Guo YD. A tubby-like protein CsTLP8 acts in the ABA signaling pathway and negatively regulates osmotic stresses tolerance during seed germination. BMC PLANT BIOLOGY 2021; 21:340. [PMID: 34273968 PMCID: PMC8286588 DOI: 10.1186/s12870-021-03126-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/06/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND TLPs (Tubby-like proteins) are widespread in eukaryotes and highly conserved in plants and animals. TLP is involved in many biological processes, such as growth, development, biotic and abiotic stress responses, while the underlying molecular mechanism remains largely unknown. In this paper we characterized the biological function of cucumber (Cucumis sativus L.) Tubby-like protein 8 (CsTLP8) in Arabidopsis. RESULTS In cucumber, the expression of the tubby-like protein CsTLP8 was induced by NaCl treatment, but reduced by PEG (Polyethylene Glycol) and ABA (Abscisic Acid) treatment. Subcellular localization and transcriptional activation activity analysis revealed that CsTLP8 possessed two characteristics of classical transcription factors: nuclear localization and trans-activation activity. Yeast two-hybrid assay revealed interactions of CsTLP8 with CsSKP1a and CsSKP1c, suggesting that CsTLP8 might function as a subunit of E3 ubiquitin ligase. The growth activity of yeast with ectopically expressed CsTLP8 was lower than the control under NaCl and mannitol treatments. Under osmotic and salt stresses, overexpression of CsTLP8 inhibited seed germination and the growth of Arabidopsis seedlings, increased the content of MDA (Malondialdehyde), and decreased the activities of SOD (Superoxide Dismutase), POD (Peroxidase) and CAT (Catalase) in Arabidopsis seedlings. Overexpression of CsTLP8 also increased the sensitivity to ABA during seed germination and ABA-mediated stomatal closure. CONCLUSION Under osmotic stress, CsTLP8 might inhibit seed germination and seedling growth by affecting antioxidant enzymes activities. CsTLP8 acts as a negative regulator in osmotic stress and its effects may be related to ABA.
Collapse
Affiliation(s)
- Shuangtao Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, China
| | - Zhirong Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Fei Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Hongmei Lv
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Meng Cao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Na Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Fengju Li
- Tianjin Academy of Agricultural Sciences, 300192, Tianjin, China
| | - Hao Wang
- Tianjin Academy of Agricultural Sciences, 300192, Tianjin, China
| | - Xingsheng Li
- Shandong Provincial Key Laboratory of Cucurbitaceae Vegetable Biological Breeding, Shandong Huasheng Agriculture Co. Ltd, Qingzhou, 262500, Shandong, China
| | - Xiaowei Yuan
- Shandong Provincial Key Laboratory of Cucurbitaceae Vegetable Biological Breeding, Shandong Huasheng Agriculture Co. Ltd, Qingzhou, 262500, Shandong, China
| | - Bing Zhao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| | - Yang-Dong Guo
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
27
|
Koliopoulos MG, Alfieri C. Cell cycle regulation by complex nanomachines. FEBS J 2021; 289:5100-5120. [PMID: 34143558 DOI: 10.1111/febs.16082] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/05/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022]
Abstract
The cell cycle is the essential biological process where one cell replicates its genome and segregates the resulting two copies into the daughter cells during mitosis. Several aspects of this process have fascinated humans since the nineteenth century. Today, the cell cycle is exhaustively investigated because of its profound connections with human diseases and cancer. At the heart of the molecular network controlling the cell cycle, we find the cyclin-dependent kinases (CDKs) acting as an oscillator to impose an orderly and highly regulated progression through the different cell cycle phases. This oscillator integrates both internal and external signals via a multitude of signalling pathways involving posttranslational modifications including phosphorylation, protein ubiquitination and mechanisms of transcriptional regulation. These tasks are specifically performed by multi-subunit complexes, which are intensively studied both biochemically and structurally with the aim to unveil mechanistic insights into their molecular function. The scope of this review is to summarise the structural biology of the cell cycle machinery, with specific focus on the core cell cycle machinery involving the CDK-cyclin oscillator. We highlight the contribution of cryo-electron microscopy, which has started to revolutionise our understanding of the molecular function and dynamics of the key players of the cell cycle.
Collapse
Affiliation(s)
- Marios G Koliopoulos
- Chester Beatty Laboratories, Structural Biology Division, Institute of Cancer Research, London, UK
| | - Claudio Alfieri
- Chester Beatty Laboratories, Structural Biology Division, Institute of Cancer Research, London, UK
| |
Collapse
|
28
|
Sadat MA, Ullah MW, Bashar KK, Hossen QMM, Tareq MZ, Islam MS. Genome-wide identification of F-box proteins in Macrophomina phaseolina and comparison with other fungus. J Genet Eng Biotechnol 2021; 19:46. [PMID: 33761027 PMCID: PMC7991009 DOI: 10.1186/s43141-021-00143-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/11/2021] [Indexed: 01/01/2023]
Abstract
Background In fungi, like other eukaryotes, protein turnover is an important cellular process for the controlling of various cellular functions. The ubiquitin-proteasome pathway degrades some selected intracellular proteins and F-box proteins are one of the important components controlling protein degradation. F-box proteins are well studied in different model plants however, their functions in the fungi are not clear yet. This study aimed to identify the genes involved in protein degradation for disease development in the Macrophomina phaseolina fungus. Results In this research, in silico studies were done to understand the distribution of F-box proteins in pathogenic fungi including Macrophomina phaseolina fungus. Genome-wide analysis indicates that M. phaseolina fungus contained thirty-one F-box proteins throughout its chromosomes. In addition, there are 17, 37, 16, and 21 F-box proteins have been identified from Puccinia graminis, Colletotrichum graminicola, Ustilago maydis, and Phytophthora infestans, respectively. Analyses revealed that selective fungal genomes contain several additional functional domains along with F-box domain. Sequence alignment showed the substitution of amino acid in several F-box proteins; however, gene duplication was not found among these proteins. Phylogenetic analysis revealed that F-box proteins having similar functional domain was highly diverse form each other showing the possibility of various function. Analysis also found that MPH_00568 and MPH_05531 were closely related to rice blast fungus F-box protein MGG_00768 and MGG_13065, respectively, may play an important role for blast disease development. Conclusion This genome-wide analysis of F-box proteins will be useful for characterization of candidate F-box proteins to understand the molecular mechanisms leading to disease development of M. phaseolina in the host plants. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-021-00143-0.
Collapse
Affiliation(s)
- Md Abu Sadat
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh.
| | - Md Wali Ullah
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh
| | - Kazi Khayrul Bashar
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh
| | - Quazi Md Mosaddeque Hossen
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh
| | - Md Zablul Tareq
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh
| | - Md Shahidul Islam
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh
| |
Collapse
|
29
|
Liu Y, Pan B, Qu W, Cao Y, Li J, Zhao H. Systematic analysis of the expression and prognosis relevance of FBXO family reveals the significance of FBXO1 in human breast cancer. Cancer Cell Int 2021; 21:130. [PMID: 33622332 PMCID: PMC7903729 DOI: 10.1186/s12935-021-01833-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/11/2021] [Indexed: 12/24/2022] Open
Abstract
Background Breast cancer (BC) remains a prevalent and common form of cancer with high heterogeneity. Making efforts to explore novel molecular biomarkers and serve as potential disease indicators, which is essential to effectively enhance the prognosis and individualized treatment of BC. FBXO proteins act as the core component of E3 ubiquitin ligase, which play essential regulators roles in multiple cellular processes. Recently, research has indicated that FBXOs also play significant roles in cancer development. However, the molecular functions of these family members in BC have not been fully elucidated. Methods In this research, we investigated the expression data, survival relevance and mutation situation of 10 FBXO members (FBXO1, 2, 5, 6, 16, 17, 22, 28, 31 and 45) in patients with BC from the Oncomine, GEPIA, HPA, Kaplan–Meier Plotter, UALCAN and cBioPortal databases. The high transcriptional levels of FBXO1 in different subtypes of BC were verified by immunohistochemical staining and the specific mutations of FBXO1 were obtained from COSMIC database. Top 10 genes with the highest correlation to FBXO1 were identified through cBioPortal and COXPRESdb tools. Additionally, functional enrichment analysis, PPI network and survival relevance of FBXO1 and co-expressed genes in BC were obtained from DAVID, STRING, UCSC Xena, GEPIA, bc-GenExMiner and Kaplan–Meier Plotter databases. FBXO1 siRNAs were transfected into MCF-7 and MDA-MB-231 cell lines. Expression of FBXO1 in BC cell lines was detected by western-blot and RT-qPCR. Cell proliferation was detected by using CCK-8 kit and colony formation assay. Cell migration was detected by wound‐healing and transwell migration assay. Results We found that FBXO2, FBXO6, FBXO16 and FBXO17 were potential favorable prognostic factors for BC. FBXO1, FBXO5, FBXO22, FBXO28, FBXO31 and FBXO45 may be the independent poor prognostic factors for BC. All of them were correlated to clinicopathological staging. Moreover, knockdown of FBXO1 in MCF7 and MDA-MB-231 cell lines resulted in decreased cell proliferation and migration in vitro. We identified that FBXO1 was an excellent molecular biomarker and therapeutic target for different molecular typing of BC. Conclusion This study implies that FBXO1, FBXO2, FBXO5, FBXO6, FBXO16, FBXO17, FBXO22, FBXO28, FBXO31 and FBXO45 genes are potential clinical targets and prognostic biomarkers for patients with different molecular typing of BC. In addition, the overexpression of FBXO1 is always found in breast cancer and predicts disadvantageous prognosis, implicating it could as an appealing therapeutic target for breast cancer patients.
Collapse
Affiliation(s)
- Yaqian Liu
- Department of Oncology & Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Bo Pan
- Department of Oncology & Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Weikun Qu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Yilong Cao
- Department of Oncology & Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Jun Li
- Department of Oncology & Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China.
| | - Haidong Zhao
- Department of Oncology & Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China.
| |
Collapse
|
30
|
Sirtuin 5 Is Regulated by the SCF Cyclin F Ubiquitin Ligase and Is Involved in Cell Cycle Control. Mol Cell Biol 2021; 41:MCB.00269-20. [PMID: 33168699 DOI: 10.1128/mcb.00269-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/03/2020] [Indexed: 12/31/2022] Open
Abstract
The ubiquitin-proteasome system is essential for cell cycle progression. Cyclin F is a cell cycle-regulated substrate adapter F-box protein for the Skp1, CUL1, and F-box protein (SCF) family of E3 ubiquitin ligases. Despite its importance in cell cycle progression, identifying cyclin F-bound SCF complex (SCFCyclin F) substrates has remained challenging. Since cyclin F overexpression rescues a yeast mutant in the cdc4 gene, we considered the possibility that other genes that genetically modify cdc4 mutant lethality could also encode cyclin F substrates. We identified the mitochondrial and cytosolic deacylating enzyme sirtuin 5 (SIRT5) as a novel cyclin F substrate. SIRT5 has been implicated in metabolic processes, but its connection to the cell cycle is not known. We show that cyclin F interacts with and controls the ubiquitination, abundance, and stability of SIRT5. We show SIRT5 knockout results in a diminished G1 population and a subsequent increase in both S and G2/M. Global proteomic analyses reveal cyclin-dependent kinase (CDK) signaling changes congruent with the cell cycle changes in SIRT5 knockout cells. Together, these data demonstrate that SIRT5 is regulated by cyclin F and suggest a connection between SIRT5, cell cycle regulation, and metabolism.
Collapse
|
31
|
Krajewski A, Gagat M, Mikołajczyk K, Izdebska M, Żuryń A, Grzanka A. Cyclin F Downregulation Affects Epithelial-Mesenchymal Transition Increasing Proliferation and Migration of the A-375 Melanoma Cell Line. Cancer Manag Res 2020; 12:13085-13097. [PMID: 33376401 PMCID: PMC7765751 DOI: 10.2147/cmar.s279169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/19/2020] [Indexed: 01/22/2023] Open
Abstract
Background Cyclins are well-known cell cycle regulators. The activation of cyclin-dependent kinases by cyclins allows orchestration of the complicated cell cycle machinery and drives the cell from the G1 phase to the end of the mitotic phase. In recent years, it has become evident that cyclins are involved in processes beyond the cell cycle. Cyclin F does not activate CDKs but forms part of the Skp1-Cul1-F-box (SCF) complex where it is responsible for protein target recognition and subsequent degradation in a proteasome-dependent manner. Results Here, we report that the downregulation of cyclin F in the A-375 melanoma cell line increases cell viability and colony formation in a cell cycle independent manner. Lower levels of cyclin F do not appear to affect the cell cycle, based on flow cytometry measuring BrdU incorporation and propidium iodide staining. By means of immunofluorescence staining and Western blot analysis, we observed changes in cell morphology-related markers which suggested ongoing epithelial-mesenchymal transition (EMT) in response to cyclin F downregulation. Increases in vimentin and N-cadherin protein levels, decreases in levels of epithelial markers such as ZO-1, along with changes in morphology to a spindle-like shape with the appearance of actin stress fibers, are all hallmarks of EMT. These changes are associated with increased invasive and migratory potential, based on 2D migration assays. Moreover, we observe an increase in RhoABC, talin and paxillin levels, the proteins involved in controlling cell signaling and motility. Lastly, upon knocking down cyclin F expression, we observed a decrease in thrombospondin-1 expression, suggesting a role of cyclin F in angiogenesis. Conclusion Cyclin F depletion induces proliferation and EMT processes in the A-375 melanoma model.
Collapse
Affiliation(s)
- Adrian Krajewski
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Maciej Gagat
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Klaudia Mikołajczyk
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Magdalena Izdebska
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Agnieszka Żuryń
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Alina Grzanka
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| |
Collapse
|
32
|
Sun Y, Curle AJ, Haider AM, Balmus G. The role of DNA damage response in amyotrophic lateral sclerosis. Essays Biochem 2020; 64:847-861. [PMID: 33078197 PMCID: PMC7588667 DOI: 10.1042/ebc20200002] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly disabling and fatal neurodegenerative disease. Due to insufficient disease-modifying treatments, there is an unmet and urgent need for elucidating disease mechanisms that occur early and represent common triggers in both familial and sporadic ALS. Emerging evidence suggests that impaired DNA damage response contributes to age-related somatic accumulation of genomic instability and can trigger or accelerate ALS pathological manifestations. In this review, we summarize and discuss recent studies indicating a direct link between DNA damage response and ALS. Further mechanistic understanding of the role genomic instability is playing in ALS disease pathophysiology will be critical for discovering new therapeutic avenues.
Collapse
Affiliation(s)
- Yu Sun
- UK Dementia Research Institute at University of Cambridge, Cambridge CB2 0AH, U.K
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0AH, U.K
| | - Annabel J Curle
- UK Dementia Research Institute at University of Cambridge, Cambridge CB2 0AH, U.K
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0AH, U.K
| | - Arshad M Haider
- UK Dementia Research Institute at University of Cambridge, Cambridge CB2 0AH, U.K
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0AH, U.K
| | - Gabriel Balmus
- UK Dementia Research Institute at University of Cambridge, Cambridge CB2 0AH, U.K
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0AH, U.K
| |
Collapse
|
33
|
Li H, Wei C, Meng Y, Fan R, Zhao W, Wang X, Yu X, Laroche A, Kang Z, Liu D. Identification and expression analysis of some wheat F-box subfamilies during plant development and infection by Puccinia triticina. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:535-548. [PMID: 32836199 DOI: 10.1016/j.plaphy.2020.06.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
As one of the largest protein families in plants, F-box proteins are involved in many important cellular processes. Until now, a limited number of investigations have been conducted on wheat F-box genes due to its variable structure and large and polyploid genome. Classification, identification, structural analysis, evolutionary relationship, and chromosomal distribution of some wheat F-box genes are described in the present study. A total number of 1013 potential F-box proteins which are encoded by 409 genes was identified in wheat, and classified into 12 subfamilies based on their C-terminal domain structures. Furthermore, proteins with identical or similar C-terminal domain were clustered together. Location of 409 F-box genes was identified on all 21 wheat chromosomes but showed an uneven distribution. Segmental duplication was the main reason for the increase in the number of wheat F-box genes. Gene expression analysis based on digital PCR showed that most of the F-box genes were highly expressed in the later development stages of wheat, including the formation of spike, grain, flag leaf, and participated in drought stress (DS), heat stress (HS), and their combination (HD). Of the nine F-box genes we investigated using quantitative PCR (qPCR) following fungal pathogen infection, five were involved in wheat resistance to the infection by leaf rust pathogen and one in the susceptible response. These results provide important information on wheat F-box proteins for further functional studies, especially the proteins that played roles in response to heat and drought stresses and leaf rust pathogen infection.
Collapse
Affiliation(s)
- Huying Li
- College of Life Sciences, Hebei Agricultural University/ Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, 071001, China; College of Forestry, Shandong Agricultural University, Taian, Shangdong, 271018, China
| | - Chunru Wei
- College of Life Sciences, Hebei Agricultural University/ Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, 071001, China
| | - Yuyu Meng
- College of Life Sciences, Hebei Agricultural University/ Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, 071001, China
| | - Runqiao Fan
- College of Life Sciences, Hebei Agricultural University/ Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, 071001, China
| | - Weiquan Zhao
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, 071001, China
| | - Xiaodong Wang
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, 071001, China
| | - Xiumei Yu
- College of Life Sciences, Hebei Agricultural University/ Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, 071001, China; Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, 071001, China.
| | - André Laroche
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, T1J 4B1, Canada
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, NWAFU, Yangling, Shaanxi, 712100, China.
| | - Daqun Liu
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, 071001, China.
| |
Collapse
|
34
|
Emanuele MJ, Enrico TP, Mouery RD, Wasserman D, Nachum S, Tzur A. Complex Cartography: Regulation of E2F Transcription Factors by Cyclin F and Ubiquitin. Trends Cell Biol 2020; 30:640-652. [PMID: 32513610 PMCID: PMC7859860 DOI: 10.1016/j.tcb.2020.05.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 02/07/2023]
Abstract
The E2F family of transcriptional regulators sits at the center of cell cycle gene expression and plays vital roles in normal and cancer cell cycles. Whereas control of E2Fs by the retinoblastoma family of proteins is well established, much less is known about their regulation by ubiquitin pathways. Recent studies placed the Skp1-Cul1-F-box-protein (SCF) family of E3 ubiquitin ligases with the F-box protein Cyclin F at the center of E2F regulation, demonstrating temporal proteolysis of both activator and atypical repressor E2Fs. Importantly, these E2F members, in particular activator E2F1 and repressors E2F7 and E2F8, form a feedback circuit at the crossroads of cell cycle and cell death. Moreover, Cyclin F functions in a reciprocal circuit with the cell cycle E3 ligase anaphase-promoting complex/cyclosome (APC/C), which also controls E2F7 and E2F8. This review focuses on the complex contours of feedback within this circuit, highlighting the deep crosstalk between E2F, SCF-Cyclin F, and APC/C in regulating the oscillator underlying human cell cycles.
Collapse
Affiliation(s)
- Michael J Emanuele
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Taylor P Enrico
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ryan D Mouery
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Genetics and Molecular Biology Program, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Danit Wasserman
- Faculty of Life Sciences and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Sapir Nachum
- Faculty of Life Sciences and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Amit Tzur
- Faculty of Life Sciences and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
35
|
Seo J, Park M. Molecular crosstalk between cancer and neurodegenerative diseases. Cell Mol Life Sci 2020; 77:2659-2680. [PMID: 31884567 PMCID: PMC7326806 DOI: 10.1007/s00018-019-03428-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023]
Abstract
The progression of cancers and neurodegenerative disorders is largely defined by a set of molecular determinants that are either complementarily deregulated, or share remarkably overlapping functional pathways. A large number of such molecules have been demonstrated to be involved in the progression of both diseases. In this review, we particularly discuss our current knowledge on p53, cyclin D, cyclin E, cyclin F, Pin1 and protein phosphatase 2A, and their implications in the shared or distinct pathways that lead to cancers or neurodegenerative diseases. In addition, we focus on the inter-dependent regulation of brain cancers and neurodegeneration, mediated by intercellular communication between tumor and neuronal cells in the brain through the extracellular microenvironment. Finally, we shed light on the therapeutic perspectives for the treatment of both cancer and neurodegenerative disorders.
Collapse
Affiliation(s)
- Jiyeon Seo
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Mikyoung Park
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea.
- Department of Neuroscience, Korea University of Science and Technology, Daejeon, 34113, South Korea.
| |
Collapse
|
36
|
Hua R, Wei H, Liu C, Zhang Y, Liu S, Guo Y, Cui Y, Zhang X, Guo X, Li W, Liu M. FBXO47 regulates telomere-inner nuclear envelope integration by stabilizing TRF2 during meiosis. Nucleic Acids Res 2020; 47:11755-11770. [PMID: 31724724 PMCID: PMC7145685 DOI: 10.1093/nar/gkz992] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 02/06/2023] Open
Abstract
During meiosis, telomere attachment to the inner nuclear envelope is required for proper pairing of homologous chromosomes and recombination. Here, we identified F-box protein 47 (FBXO47) as a regulator of the telomeric shelterin complex that is specifically expressed during meiotic prophase I. Knockout of Fbxo47 in mice leads to infertility in males. We found that the Fbxo47 deficient spermatocytes are unable to form a complete synaptonemal complex. FBXO47 interacts with TRF1/2, and the disruption of Fbxo47 destabilizes TRF2, leading to unstable telomere attachment and slow traversing through the bouquet stage. Our findings uncover a novel mechanism of FBXO47 in telomeric shelterin subunit stabilization during meiosis.
Collapse
Affiliation(s)
- Rong Hua
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P.R. China
| | - Huafang Wei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yue Zhang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P.R. China
| | - Siyu Liu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P.R. China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P.R. China
| | - Yiqiang Cui
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P.R. China
| | - Xin Zhang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P.R. China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P.R. China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Mingxi Liu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P.R. China
| |
Collapse
|
37
|
Yumimoto K, Yamauchi Y, Nakayama KI. F-Box Proteins and Cancer. Cancers (Basel) 2020; 12:cancers12051249. [PMID: 32429232 PMCID: PMC7281081 DOI: 10.3390/cancers12051249] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022] Open
Abstract
Controlled protein degradation is essential for the operation of a variety of cellular processes including cell division, growth, and differentiation. Identification of the relations between ubiquitin ligases and their substrates is key to understanding the molecular basis of cancer development and to the discovery of novel targets for cancer therapeutics. F-box proteins function as the substrate recognition subunits of S-phase kinase-associated protein 1 (SKP1)−Cullin1 (CUL1)−F-box protein (SCF) ubiquitin ligase complexes. Here, we summarize the roles of specific F-box proteins that have been shown to function as tumor promoters or suppressors. We also highlight proto-oncoproteins that are targeted for ubiquitylation by multiple F-box proteins, and discuss how these F-box proteins are deployed to regulate their cognate substrates in various situations.
Collapse
|
38
|
do Amaral VSG, Santos SACS, de Andrade PC, Nowatzki J, Júnior NS, de Medeiros LN, Gitirana LB, Pascutti PG, Almeida VH, Monteiro RQ, Kurtenbach E. Pisum sativum Defensin 1 Eradicates Mouse Metastatic Lung Nodules from B16F10 Melanoma Cells. Int J Mol Sci 2020; 21:E2662. [PMID: 32290394 PMCID: PMC7219108 DOI: 10.3390/ijms21082662] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 11/16/2022] Open
Abstract
Psd1 is a pea plant defensin which can be actively expressed in Pichia pastoris and shows broad antifungal activity. This activity is dependent on fungal membrane glucosylceramide (GlcCer), which is also important for its internalization, nuclear localization, and endoreduplication. Certain cancer cells present a lipid metabolism imbalance resulting in the overexpression of GlcCer in their membrane. In this work, in vitroassays using B16F10 cells showed that labeled fluorescein isothiocyanate FITC-Psd1 internalized into live cultured cells and targeted the nucleus, which underwent fragmentation, exhibiting approximately 60% of cells in the sub-G0/G1 stage. This phenomenon was dependent on GlcCer, and the participation of cyclin-F was suggested. In a murine lung metastatic melanoma model, intravenous injection of Psd1 together with B16F10 cells drastically reduced the number of nodules at concentrations above 0.5 mg/kg. Additionally, the administration of 1 mg/kg Psd1 decreased the number of lung inflammatory cells to near zero without weight loss, unlike animals that received melanoma cells only. It is worth noting that 1 mg/kg Psd1 alone did not provoke inflammation in lung tissue or weight or vital signal losses over 21 days, inferring no whole animal cytotoxicity. These results suggest that Psd1 could be a promising prototype for human lung anti-metastatic melanoma therapy.
Collapse
Affiliation(s)
- Virginia Sara Grancieri do Amaral
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil; (V.S.G.d.A.); (S.A.C.S.S.); (P.C.d.A.); (J.N.); (N.S.J.); (L.N.d.M.); (P.G.P.)
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil; (V.H.A.); (R.Q.M.)
| | - Stephanie Alexia Cristina Silva Santos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil; (V.S.G.d.A.); (S.A.C.S.S.); (P.C.d.A.); (J.N.); (N.S.J.); (L.N.d.M.); (P.G.P.)
| | - Paula Cavalcante de Andrade
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil; (V.S.G.d.A.); (S.A.C.S.S.); (P.C.d.A.); (J.N.); (N.S.J.); (L.N.d.M.); (P.G.P.)
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil; (V.H.A.); (R.Q.M.)
| | - Jenifer Nowatzki
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil; (V.S.G.d.A.); (S.A.C.S.S.); (P.C.d.A.); (J.N.); (N.S.J.); (L.N.d.M.); (P.G.P.)
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil; (V.H.A.); (R.Q.M.)
| | - Nilton Silva Júnior
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil; (V.S.G.d.A.); (S.A.C.S.S.); (P.C.d.A.); (J.N.); (N.S.J.); (L.N.d.M.); (P.G.P.)
| | - Luciano Neves de Medeiros
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil; (V.S.G.d.A.); (S.A.C.S.S.); (P.C.d.A.); (J.N.); (N.S.J.); (L.N.d.M.); (P.G.P.)
| | - Lycia Brito Gitirana
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil;
| | - Pedro Geraldo Pascutti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil; (V.S.G.d.A.); (S.A.C.S.S.); (P.C.d.A.); (J.N.); (N.S.J.); (L.N.d.M.); (P.G.P.)
| | - Vitor H. Almeida
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil; (V.H.A.); (R.Q.M.)
| | - Robson Q. Monteiro
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil; (V.H.A.); (R.Q.M.)
| | - Eleonora Kurtenbach
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil; (V.S.G.d.A.); (S.A.C.S.S.); (P.C.d.A.); (J.N.); (N.S.J.); (L.N.d.M.); (P.G.P.)
| |
Collapse
|
39
|
Antwi EB, Olins A, Teif VB, Bieg M, Bauer T, Gu Z, Brors B, Eils R, Olins D, Ishaque N. Whole-genome fingerprint of the DNA methylome during chemically induced differentiation of the human AML cell line HL-60/S4. Biol Open 2020; 9:bio044222. [PMID: 31988093 PMCID: PMC7044446 DOI: 10.1242/bio.044222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 01/13/2020] [Indexed: 12/22/2022] Open
Abstract
Epigenomic regulation plays a vital role in cell differentiation. The leukemic HL-60/S4 [human myeloid leukemic cell line HL-60/S4 (ATCC CRL-3306)] promyelocytic cell can be easily differentiated from its undifferentiated promyelocyte state into neutrophil- and macrophage-like cell states. In this study, we present the underlying genome and epigenome architecture of HL-60/S4 through its differentiation. We performed whole-genome bisulphite sequencing of HL-60/S4 cells and their differentiated counterparts. With the support of karyotyping, we show that HL-60/S4 maintains a stable genome throughout differentiation. Analysis of differential Cytosine-phosphate-Guanine dinucleotide methylation reveals that most methylation changes occur in the macrophage-like state. Differential methylation of promoters was associated with immune-related terms. Key immune genes, CEBPA, GFI1, MAFB and GATA1 showed differential expression and methylation. However, we observed the strongest enrichment of methylation changes in enhancers and CTCF binding sites, implying that methylation plays a major role in large-scale transcriptional reprogramming and chromatin reorganisation during differentiation. Correlation of differential expression and distal methylation with support from chromatin capture experiments allowed us to identify putative proximal and long-range enhancers for a number of immune cell differentiation genes, including CEBPA and CCNF Integrating expression data, we present a model of HL-60/S4 differentiation in relation to the wider scope of myeloid differentiation.
Collapse
Affiliation(s)
- Enoch B Antwi
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Molecular and Cellular Engineering, Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Heidelberg Biosciences International Graduate School (HBIGS), Heidelberg, Germany
| | - Ada Olins
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, Portland, ME, USA
| | - Vladimir B Teif
- School of Life Sciences, University of Essex, Colchester, UK
| | - Matthias Bieg
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Center for Personalized Oncology (DKFZ-HIPO), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health
- Digital Health Centre, Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, 10178 Berlin, Germany
| | - Tobias Bauer
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Center for Personalized Oncology (DKFZ-HIPO), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Zuguang Gu
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Center for Personalized Oncology (DKFZ-HIPO), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Benedikt Brors
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Core Center, Heidelberg, Germany
| | - Roland Eils
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Center for Personalized Oncology (DKFZ-HIPO), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health
- Digital Health Centre, Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, 10178 Berlin, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Donald Olins
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, Portland, ME, USA
| | - Naveed Ishaque
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Center for Personalized Oncology (DKFZ-HIPO), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health
- Digital Health Centre, Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, 10178 Berlin, Germany
| |
Collapse
|
40
|
Nakagawa T, Nakayama K, Nakayama KI. Knockout Mouse Models Provide Insight into the Biological Functions of CRL1 Components. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:147-171. [PMID: 31898227 DOI: 10.1007/978-981-15-1025-0_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The CRL1 complex, also known as the SCF complex, is a ubiquitin ligase that in mammals consists of an adaptor protein (SKP1), a scaffold protein (CUL1), a RING finger protein (RBX1, also known as ROC1), and one of about 70 F-box proteins. Given that the F-box proteins determine the substrate specificity of the CRL1 complex, the variety of these proteins allows the generation of a large number of ubiquitin ligases that promote the degradation or regulate the function of many substrate proteins and thereby control numerous key cellular processes. The physiological and pathological functions of these many CRL1 ubiquitin ligases have been studied by the generation and characterization of knockout mouse models that lack specific CRL1 components. In this chapter, we provide a comprehensive overview of these mouse models and discuss the role of each CRL1 component in mouse physiology and pathology.
Collapse
Affiliation(s)
- Tadashi Nakagawa
- Division of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Keiko Nakayama
- Division of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Japan.
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
41
|
The Biology of F-box Proteins: The SCF Family of E3 Ubiquitin Ligases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:111-122. [PMID: 31898225 DOI: 10.1007/978-981-15-1025-0_8] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
F-box proteins function as substrate adaptors for the S-phase kinase-associated protein 1 (SKP1)-cullin 1 (CUL1)-F-box protein (SCF) ubiquitin ligase complexes, which mediate the proteasomal degradation of a diverse range of regulatory proteins. 20 years since the F-box protein family has been discovered, our understanding of substrate-recognition regulation and the roles F-box proteins play in cellular processes has continued to expand. Here, we provide an introduction to the discovery and classification of F-box proteins, the overall structural assembly of SCF complexes, the varied mechanisms by which F-box proteins recognize their substrates, and the role F-box proteins play in diseases and their potentials in targeted therapies.
Collapse
|
42
|
Sun Y, Fu L, Xue F, Li Y, Xu H, Chen J. Digital gene expression profiling and validation study highlight Cyclin F as an important regulator for sperm motility of chickens. Poult Sci 2019; 98:5118-5126. [PMID: 31329967 DOI: 10.3382/ps/pez212] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/21/2019] [Indexed: 12/13/2022] Open
Abstract
In poultry industry, around 5 to 12% roosters were eliminated from the breeding program because of low sperm motility. Relatively few studies have been directed toward understanding and explaining the genetics mechanisms involved in sperm motility regulation in chickens. In the present study, digital gene expression (DGE) profiling and bioinformation analysis were used to explore the globally differentially expressed genes (DEG) in the testis of low sperm motility and high sperm motility roosters. Further validation study of key candidate genes was also performed. The DGE identified 652 DEGs, including 473 up-regulated and 179 down-regulated genes in the low sperm motility testis. Those DEGs were enriched on 21 terms of biological process category, 10 terms of cellular component category, including motile cilium, and 13 terms of molecular function category including microtubule motor activity and ATP binding. The kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis indicated that these DEGs were involved in the FoxO signaling pathway and insulin resistance pathway. Quantitative real time PCR (qRT-PCR) studies of 8 DEGs were used to validate the DGE results. A key candidate gene Cyclin F (CCNF) was extremely low expressed in the low sperm motility testis (log2 ratio (low sperm motility/high sperm motility) = -5.23). The CCNF gene silencing in the chicken DF-1 cell line induced the reduced cell activity and proliferation. In summary, the present study provides insight into the potential genetic regulation of sperm motility and highlighted the underlying pathways (Insulin resistance and FoxO signaling pathways) and important candidate genes such as CCNF.
Collapse
Affiliation(s)
| | - Li Fu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fuguang Xue
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yunlei Li
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hong Xu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jilan Chen
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
43
|
Lee BR, Rengaraj D, Choi HJ, Han JY. A novel F-box domain containing cyclin F like gene is required for maintaining the genome stability and survival of chicken primordial germ cells. FASEB J 2019; 34:1001-1017. [PMID: 31914591 DOI: 10.1096/fj.201901294r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/25/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022]
Abstract
The stability and survival of germ cells are controlled by the germline-specific genes, however, such genes are less known in the avian species. Using a microarray-based the National Center for Biotechnology Information Gene Expression Omnibus dataset, we found an unigene (Gga.9721) that upregulated in the chicken primordial germ cells (PGCs). The unigene showed 97% identities with an uncharacterized chicken cyclin F like gene. The predicted chicken cyclin F like gene was further characterized through expression and regulation in the chicken PGCs. The sequence analysis revealed that the gene shows identities with cyclin F gene and contains an F-box domain. The expression of chicken cyclin F like was detected specifically in the gonads, PGCs, and germline cells. The knockdown of cyclin F like gene resulted in DNA damage and apoptosis in the PGCs. The genes related to stemness and germness were downregulated, whereas, genes related to apoptosis and DNA damage response were increased in the PGCs after the knockdown of chicken cyclin F like. We further observed that the Nanog homeobox controlled the transcriptional activity of chicken cyclin F like gene in PGCs. Collectively, the chicken cyclin F like gene, which is not reported in any other species, is required for maintaining the genome stability of germ cells.
Collapse
Affiliation(s)
- Bo Ram Lee
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea.,Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Korea
| | - Deivendran Rengaraj
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Hee Jung Choi
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Jae Yong Han
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
44
|
Burdova K, Yang H, Faedda R, Hume S, Chauhan J, Ebner D, Kessler BM, Vendrell I, Drewry DH, Wells CI, Hatch SB, Dianov GL, Buffa FM, D'Angiolella V. E2F1 proteolysis via SCF-cyclin F underlies synthetic lethality between cyclin F loss and Chk1 inhibition. EMBO J 2019; 38:e101443. [PMID: 31424118 PMCID: PMC6792013 DOI: 10.15252/embj.2018101443] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 07/05/2019] [Accepted: 07/29/2019] [Indexed: 12/27/2022] Open
Abstract
Cyclins are central engines of cell cycle progression in conjunction with cyclin-dependent kinases (CDKs). Among the different cyclins controlling cell cycle progression, cyclin F does not partner with a CDK, but instead forms via its F-box domain an SCF (Skp1-Cul1-F-box)-type E3 ubiquitin ligase module. Although various substrates of cyclin F have been identified, the vulnerabilities of cells lacking cyclin F are not known. Thus, we assessed viability of cells lacking cyclin F upon challenging them with more than 180 different kinase inhibitors. The screen revealed a striking synthetic lethality between Chk1 inhibition and cyclin F loss. Chk1 inhibition in cells lacking cyclin F leads to DNA replication catastrophe. Replication catastrophe depends on accumulation of the transcription factor E2F1 in cyclin F-depleted cells. We find that SCF-cyclin F controls E2F1 ubiquitylation and degradation during the G2/M phase of the cell cycle and upon challenging cells with Chk1 inhibitors. Thus, Cyclin F restricts E2F1 activity during the cell cycle and upon checkpoint inhibition to prevent DNA replication stress. Our findings pave the way for patient selection in the clinical use of checkpoint inhibitors.
Collapse
Affiliation(s)
- Kamila Burdova
- Department of OncologyMedical Research Council Institute for Radiation OncologyUniversity of OxfordOxfordUK
| | - Hongbin Yang
- Department of OncologyMedical Research Council Institute for Radiation OncologyUniversity of OxfordOxfordUK
| | - Roberta Faedda
- Department of OncologyMedical Research Council Institute for Radiation OncologyUniversity of OxfordOxfordUK
| | - Samuel Hume
- Department of OncologyMedical Research Council Institute for Radiation OncologyUniversity of OxfordOxfordUK
| | - Jagat Chauhan
- Nuffield Department of Clinical MedicineLudwig Institute for Cancer ResearchUniversity of OxfordHeadington, OxfordUK
| | - Daniel Ebner
- Nuffield Department of MedicineTarget Discovery InstituteUniversity of OxfordOxfordUK
| | - Benedikt M Kessler
- Nuffield Department of MedicineTarget Discovery InstituteUniversity of OxfordOxfordUK
| | - Iolanda Vendrell
- Department of OncologyMedical Research Council Institute for Radiation OncologyUniversity of OxfordOxfordUK
- Nuffield Department of MedicineTarget Discovery InstituteUniversity of OxfordOxfordUK
| | - David H Drewry
- Structural Genomics ConsortiumUNC Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Carrow I Wells
- Structural Genomics ConsortiumUNC Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Stephanie B Hatch
- Nuffield Department of MedicineTarget Discovery InstituteUniversity of OxfordOxfordUK
| | - Grigory L Dianov
- Department of OncologyMedical Research Council Institute for Radiation OncologyUniversity of OxfordOxfordUK
- Institute of Cytology and GeneticsRussian Academy of SciencesNovosibirskRussian Federation
- Novosibirsk State UniversityNovosibirskRussian Federation
| | - Francesca M Buffa
- Department of OncologyMedical Research Council Institute for Radiation OncologyUniversity of OxfordOxfordUK
| | - Vincenzo D'Angiolella
- Department of OncologyMedical Research Council Institute for Radiation OncologyUniversity of OxfordOxfordUK
| |
Collapse
|
45
|
Clijsters L, Hoencamp C, Calis JJA, Marzio A, Handgraaf SM, Cuitino MC, Rosenberg BR, Leone G, Pagano M. Cyclin F Controls Cell-Cycle Transcriptional Outputs by Directing the Degradation of the Three Activator E2Fs. Mol Cell 2019; 74:1264-1277.e7. [PMID: 31130363 PMCID: PMC6588466 DOI: 10.1016/j.molcel.2019.04.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/22/2019] [Accepted: 04/05/2019] [Indexed: 12/19/2022]
Abstract
E2F1, E2F2, and E2F3A, the three activators of the E2F family of transcription factors, are key regulators of the G1/S transition, promoting transcription of hundreds of genes critical for cell-cycle progression. We found that during late S and in G2, the degradation of all three activator E2Fs is controlled by cyclin F, the substrate receptor of 1 of 69 human SCF ubiquitin ligase complexes. E2F1, E2F2, and E2F3A interact with the cyclin box of cyclin F via their conserved N-terminal cyclin binding motifs. In the short term, E2F mutants unable to bind cyclin F remain stable throughout the cell cycle, induce unscheduled transcription in G2 and mitosis, and promote faster entry into the next S phase. However, in the long term, they impair cell fitness. We propose that by restricting E2F activity to the S phase, cyclin F controls one of the main and most critical transcriptional engines of the cell cycle.
Collapse
Affiliation(s)
- Linda Clijsters
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA; Perlmutter NYU Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Claire Hoencamp
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA; Perlmutter NYU Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Jorg J A Calis
- Program of Immunogenomics, The Rockefeller University, New York, NY 10065, USA
| | - Antonio Marzio
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA; Perlmutter NYU Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Shanna M Handgraaf
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA; Perlmutter NYU Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Maria C Cuitino
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Brad R Rosenberg
- Program of Immunogenomics, The Rockefeller University, New York, NY 10065, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gustavo Leone
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA; Perlmutter NYU Cancer Center, New York University School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
46
|
Balachiranjeevi CH, Prahalada GD, Mahender A, Jamaloddin M, Sevilla MAL, Marfori-Nazarea CM, Vinarao R, Sushanto U, Baehaki SE, Li ZK, Ali J. Identification of a novel locus, BPH38(t), conferring resistance to brown planthopper ( Nilaparvata lugens Stal.) using early backcross population in rice ( Oryza sativa L.). EUPHYTICA: NETHERLANDS JOURNAL OF PLANT BREEDING 2019; 215:185. [PMID: 31885402 PMCID: PMC6913135 DOI: 10.1007/s10681-019-2506-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 09/26/2019] [Indexed: 05/05/2023]
Abstract
Rice is the most important staple food crop, and it feeds more than half of the world population. Brown planthopper (BPH) is a major insect pest of rice that causes 20-80% yield loss through direct and indirect damage. The identification and use of BPH resistance genes can efficiently manage BPH. A molecular marker-based genetic analysis of BPH resistance was carried out using 101 BC1F5 mapping population derived from a cross between a BPH-resistant indica variety Khazar and an elite BPH-susceptible line Huang-Huan-Zhan. The genetic analysis indicated the existence of Mendelian segregation for BPH resistance. A total of 702 high-quality polymorphic single nucleotide polymorphism (SNP) markers, genotypic data, and precisely estimated BPH scores were used for molecular mapping, which resulted in the identification of the BPH38(t) locus on the long arm of chromosome 1 between SNP markers 693,369 and id 10,112,165 of 496.2 kb in size with LOD of 20.53 and phenotypic variation explained of 35.91%. A total of 71 candidate genes were predicted in the detected locus. Among these candidate genes, LOC_Os01g37260 was found to belong to the FBXL class of F-box protein possessing the LRR domain, which is reported to be involved in biotic stress resistance. Furthermore, background analysis and phenotypic selection resulted in the identification of introgression lines (ILs) possessing at least 90% recurrent parent genome recovery and showing superior performance for several agro-morphological traits. The BPH resistance locus and ILs identified in the present study will be useful in marker-assisted BPH resistance breeding programs.
Collapse
Affiliation(s)
- C. H. Balachiranjeevi
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - G. D. Prahalada
- Strategic Innovation Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - A. Mahender
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Md. Jamaloddin
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - M. A. L. Sevilla
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - C. M. Marfori-Nazarea
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - R. Vinarao
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - U. Sushanto
- Indonesian Center for Rice Research, Sukamandi, Indonesia
| | - S. E. Baehaki
- Indonesian Center for Rice Research, Sukamandi, Indonesia
| | - Z. K. Li
- Chinese Academy of Agricultural Sciences, Beijing, China
| | - J. Ali
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| |
Collapse
|
47
|
Evans EL, Becker JT, Fricke SL, Patel K, Sherer NM. HIV-1 Vif's Capacity To Manipulate the Cell Cycle Is Species Specific. J Virol 2018; 92:e02102-17. [PMID: 29321323 PMCID: PMC5972884 DOI: 10.1128/jvi.02102-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/02/2018] [Indexed: 02/06/2023] Open
Abstract
Cells derived from mice and other rodents exhibit profound blocks to HIV-1 virion production, reflecting species-specific incompatibilities between viral Tat and Rev proteins and essential host factors cyclin T1 (CCNT1) and exportin-1 (XPO1, also known as CRM1), respectively. To determine if mouse cell blocks other than CCNT1 and XPO1 affect HIV's postintegration stages, we studied HIV-1NL4-3 gene expression in mouse NIH 3T3 cells modified to constitutively express HIV-1-compatible versions of CCNT1 and XPO1 (3T3.CX cells). 3T3.CX cells supported both Rev-independent and Rev-dependent viral gene expression and produced relatively robust levels of virus particles, confirming that CCNT1 and XPO1 represent the predominant blocks to these stages. Unexpectedly, however, 3T3.CX cells were remarkably resistant to virus-induced cytopathic effects observed in human cell lines, which we mapped to the viral protein Vif and its apparent species-specific capacity to induce G2/M cell cycle arrest. Vif was able to mediate rapid degradation of human APOBEC3G and the PPP2R5D regulatory B56 subunit of the PP2A phosphatase holoenzyme in mouse cells, thus demonstrating that VifNL4-3's modulation of the cell cycle can be functionally uncoupled from some of its other defined roles in CUL5-dependent protein degradation. Vif was also unable to induce G2/M cell cycle arrest in other nonhuman cell types, including cells derived from nonhuman primates, leading us to propose that one or more human-specific cofactors underpin Vif's ability to modulate the cell cycle.IMPORTANCE Cells derived from mice and other rodents exhibit profound blocks to HIV-1 replication, thus hindering the development of a low-cost small-animal model for studying HIV/AIDS. Here, we engineered otherwise-nonpermissive mouse cells to express HIV-1-compatible versions of two species-specific host dependency factors, cyclin T1 (CCNT1) and exportin-1 (XPO1) (3T3.CX cells). We show that 3T3.CX cells rescue HIV-1 particle production but, unexpectedly, are completely resistant to virus-induced cytopathic effects. We mapped these effects to the viral accessory protein Vif, which induces a prolonged G2/M cell cycle arrest followed by apoptosis in human cells. Combined, our results indicate that one or more additional human-specific cofactors govern HIV-1's capacity to modulate the cell cycle, with potential relevance to viral pathogenesis in people and existing animal models.
Collapse
Affiliation(s)
- Edward L Evans
- McArdle Laboratory for Cancer Research, Institute for Molecular Virology, & Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jordan T Becker
- McArdle Laboratory for Cancer Research, Institute for Molecular Virology, & Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Stephanie L Fricke
- McArdle Laboratory for Cancer Research, Institute for Molecular Virology, & Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kishan Patel
- McArdle Laboratory for Cancer Research, Institute for Molecular Virology, & Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nathan M Sherer
- McArdle Laboratory for Cancer Research, Institute for Molecular Virology, & Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
48
|
Maurel C, Dangoumau A, Marouillat S, Brulard C, Chami A, Hergesheimer R, Corcia P, Blasco H, Andres CR, Vourc'h P. Causative Genes in Amyotrophic Lateral Sclerosis and Protein Degradation Pathways: a Link to Neurodegeneration. Mol Neurobiol 2018; 55:6480-6499. [PMID: 29322304 DOI: 10.1007/s12035-017-0856-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a disease caused by the degeneration of motor neurons (MNs) leading to progressive muscle weakness and atrophy. Several molecular pathways have been implicated, such as glutamate-mediated excitotoxicity, defects in cytoskeletal dynamics and axonal transport, disruption of RNA metabolism, and impairments in proteostasis. ALS is associated with protein accumulation in the cytoplasm of cells undergoing neurodegeneration, which is a hallmark of the disease. In this review, we focus on mechanisms of proteostasis, particularly protein degradation, and discuss how they are related to the genetics of ALS. Indeed, the genetic bases of the disease with the implication of more than 30 genes associated with familial ALS to date, together with the important increase in understanding of endoplasmic reticulum (ER) stress, proteasomal degradation, and autophagy, allow researchers to better understand the mechanisms underlying the selective death of motor neurons in ALS. It is clear that defects in proteostasis are involved in this type of cellular degeneration, but whether or not these mechanisms are primary causes or merely consequential remains to be clearly demonstrated. Novel cellular and animal models allowing chronic expression of mutant proteins, for example, are required. Further studies linking genetic discoveries in ALS to mechanisms of protein clearance will certainly be crucial in order to accelerate translational and clinical research towards new therapeutic targets and strategies.
Collapse
Affiliation(s)
- C Maurel
- UMR INSERM U1253, Université de Tours, 37032, Tours, France
| | - A Dangoumau
- UMR INSERM U1253, Université de Tours, 37032, Tours, France
| | - S Marouillat
- UMR INSERM U1253, Université de Tours, 37032, Tours, France
| | - C Brulard
- UMR INSERM U1253, Université de Tours, 37032, Tours, France
| | - A Chami
- UMR INSERM U1253, Université de Tours, 37032, Tours, France
| | - R Hergesheimer
- UMR INSERM U1253, Université de Tours, 37032, Tours, France
| | - P Corcia
- UMR INSERM U1253, Université de Tours, 37032, Tours, France
- Service de Neurologie, CHRU de Tours, 37044, Tours, France
| | - H Blasco
- UMR INSERM U1253, Université de Tours, 37032, Tours, France
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37044, Tours, France
| | - C R Andres
- UMR INSERM U1253, Université de Tours, 37032, Tours, France
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37044, Tours, France
| | - P Vourc'h
- UMR INSERM U1253, Université de Tours, 37032, Tours, France.
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37044, Tours, France.
| |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW Amyotrophic lateral sclerosis (ALS), like other neurodegenerative diseases, remains incurable, but gene mutations linked to ALS are providing clues as to how to target therapies. It is important for researchers to keep abreast of the rapid influx of new data in ALS, and we aim to summarize the major genetic advances made in the field over the past 2 years. RECENT FINDINGS Significant variation in seven genes has recently been found in ALS: TBK1, CCNF, GLE1, MATR3, TUBA4A, CHCHD10 and NEK1. These have mostly been identified through large exome screening studies, though traditional linkage approaches and candidate gene screening remain important. We briefly update C9orf72 research, noting in particular the development of reagents to better understand the normal role of C9orf72 protein. SUMMARY Striking advances in our understanding of the genetic heterogeneity of ALS continue to be made, year on year. These implicate proteostasis, RNA export, nuclear transport, the cytoskeleton, mitochondrial function, the cell cycle and DNA repair. Functional studies to integrate these hits are needed. By building a web of knowledge with interlinked genes and mechanisms, it is hoped we can better understand ALS and work toward effective therapies.
Collapse
|
50
|
Galper J, Rayner SL, Hogan AL, Fifita JA, Lee A, Chung RS, Blair IP, Yang S. Cyclin F: A component of an E3 ubiquitin ligase complex with roles in neurodegeneration and cancer. Int J Biochem Cell Biol 2017; 89:216-220. [DOI: 10.1016/j.biocel.2017.06.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/05/2017] [Accepted: 06/22/2017] [Indexed: 12/13/2022]
|