1
|
Blair M, Garner E, Ji P, Pruden A. What is the Difference between Conventional Drinking Water, Potable Reuse Water, and Nonpotable Reuse Water? A Microbiome Perspective. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58. [PMID: 39258328 PMCID: PMC11428167 DOI: 10.1021/acs.est.4c04679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024]
Abstract
As water reuse applications expand, there is a need for more comprehensive means to assess water quality. Microbiome analysis could provide the ability to supplement fecal indicators and pathogen profiling toward defining a "healthy" drinking water microbiota while also providing insight into the impact of treatment and distribution. Here, we utilized 16S rRNA gene amplicon sequencing to identify signature features in the composition of microbiota across a wide spectrum of water types (potable conventional, potable reuse, and nonpotable reuse). A clear distinction was found in the composition of microbiota as a function of intended water use (e.g., potable vs nonpotable) across a very broad range of U.S. water systems at both the point of compliance (Betadisper p > 0.01; ANOSIM p < 0.01, r-stat = 0.71) and point of use (Betadisper p > 0.01; ANOSIM p < 0.01, r-stat = 0.41). Core and discriminatory analysis further served in identifying distinct differences between potable and nonpotable water microbiomes. Taxa were identified at both the phylum (Desulfobacterota, Patescibacteria, and Myxococcota) and genus (Aeromonas and NS11.12_marine_group) levels that effectively discriminated between potable and nonpotable waters, with the most discriminatory taxa being core/abundant in nonpotable waters (with few exceptions, such as Ralstonia being abundant in potable conventional waters). The approach and findings open the door to the possibility of microbial community signature profiling as a water quality monitoring approach for assessing efficacy of treatments and suitability of water for intended use/reuse application.
Collapse
Affiliation(s)
- Matthew
F. Blair
- Via
Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Emily Garner
- Wadsworth
Department of Civil and Environmental Engineering, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Pan Ji
- Via
Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Amy Pruden
- Via
Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
2
|
Weiler J, Edel M, Gescher J. Biofilms for Production of Chemicals and Energy. Annu Rev Chem Biomol Eng 2024; 15:361-387. [PMID: 38382126 DOI: 10.1146/annurev-chembioeng-100522-110939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The twenty-first century will be the century of biology. This is not only because of breakthrough advances in molecular biology tools but also because we need to reinvent our economy based on the biological principles of energy efficiency and sustainability. Consequently, new tools for production routines must be developed to help produce platform chemicals and energy sources based on sustainable resources. In this context, biofilm-based processes have the potential to impact future production processes, because they can be carried out continuously and with robust stationary biocatalysts embedded in an extracellular matrix with different properties. We review productive biofilm systems used for heterotrophic and lithoautotrophic production and attempt to identify fundamental reasons why they may be particularly suitable as future production systems.
Collapse
Affiliation(s)
- Janek Weiler
- Institute of Technical Microbiology, Hamburg University of Technology, Hamburg, Germany;
| | - Miriam Edel
- Institute of Technical Microbiology, Hamburg University of Technology, Hamburg, Germany;
| | - Johannes Gescher
- Institute of Technical Microbiology, Hamburg University of Technology, Hamburg, Germany;
| |
Collapse
|
3
|
Troutman JP, Mantha JSP, Li H, Henkelman G, Humphrey SM, Werth CJ. Tuning the Selectivity of Nitrate Reduction via Fine Composition Control of RuPdNP Catalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308593. [PMID: 38326100 DOI: 10.1002/smll.202308593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/15/2023] [Indexed: 02/09/2024]
Abstract
Herein, aqueous nitrate (NO3 -) reduction is used to explore composition-selectivity relationships of randomly alloyed ruthenium-palladium nanoparticle catalysts to provide insights into the factors affecting selectivity during this and other industrially relevant catalytic reactions. NO3 - reduction proceeds through nitrite (NO2 -) and then nitric oxide (NO), before diverging to form either dinitrogen (N2) or ammonium (NH4 +) as final products, with N2 preferred in potable water treatment but NH4 + preferred for nitrogen recovery. It is shown that the NO3 - and NO starting feedstocks favor NH4 + formation using Ru-rich catalysts, while Pd-rich catalysts favor N2 formation. Conversely, a NO2 - starting feedstock favors NH4 + at ≈50 atomic-% Ru and selectivity decreases with higher Ru content. Mechanistic differences have been probed using density functional theory (DFT). Results show that, for NO3 - and NO feedstocks, the thermodynamics of the competing pathways for N-H and N-N formation lead to preferential NH4 + or N2 production, respectively, while Ru-rich surfaces are susceptible to poisoning by NO2 - feedstock, which displaces H atoms. This leads to a decrease in overall reduction activity and an increase in selectivity toward N2 production. Together, these results demonstrate the importance of tailoring both the reaction pathway thermodynamics and initial reactant binding energies to control overall reaction selectivity.
Collapse
Affiliation(s)
- Jacob P Troutman
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, 301 E. Dean Keeton Street Stop C1700, Austin, TX, 78712, USA
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street Stop A5300, Austin, TX, 78712, USA
| | - Jagannath Sai Pavan Mantha
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street Stop A5300, Austin, TX, 78712, USA
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Graeme Henkelman
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street Stop A5300, Austin, TX, 78712, USA
| | - Simon M Humphrey
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street Stop A5300, Austin, TX, 78712, USA
| | - Charles J Werth
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, 301 E. Dean Keeton Street Stop C1700, Austin, TX, 78712, USA
| |
Collapse
|
4
|
Bourgeois AK, Tank SE, Floyd WC, Emelko MB, Amiri F. Hydrology Predominates Over Harvest History and Landscape Variation to Control Water Quality and Disinfection Byproduct Formation Potentials in Forested Pacific Coast Watersheds. ACS ES&T WATER 2024; 4:1335-1345. [PMID: 38633370 PMCID: PMC11020162 DOI: 10.1021/acsestwater.3c00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 04/19/2024]
Abstract
Despite the global importance of forested watersheds as sources of drinking water, few studies have examined the effects of forestry on drinking water treatability. Relatively little is known about how the interaction between landscape variation and flow impacts source water quality and what this interaction means for drinking water treatability. To address this knowledge gap, we examined variability in sediments, dissolved organic matter, and disinfection byproduct formation potentials (DBP-FPs) across a range of flow conditions in four small watersheds with contrasting forest harvest histories and soil characteristics on Vancouver Island. Storm event-driven change in streamflow was the primary driver of water quality and DBP-FPs at our sites, with greater changes during stormflow (e.g., a 3-fold increase in dissolved organic carbon concentrations) than those across contrasting watersheds. Flow-driven changes in water quality and DBP-FPs were not significantly different across watersheds with different harvest histories; muted responses may be attributed to widespread second growth forests (i.e., recent harvesting effects may be confounded by historical harvest), forestry practices (e.g., slash burning), or soils with low organic carbon storage. This study suggests that variation in hydrology predominates over harvest history and soil characteristics to drive water quality and DBP-FPs on the east coast of Vancouver Island.
Collapse
Affiliation(s)
- Alyssa K. Bourgeois
- Department
of Biological Sciences, University of Alberta, Edmonton T6G 2E9, Canada
| | - Suzanne E. Tank
- Department
of Biological Sciences, University of Alberta, Edmonton T6G 2E9, Canada
| | - William C. Floyd
- Department
of Geography, Vancouver Island University, Nanaimo V9R 5S5, Canada
- Ministry
of Forests, Nanaimo V9T 6E9, Canada
| | - Monica B. Emelko
- Water
Science, Technology & Policy Group, Department of Civil &
Environmental Engineering, University of
Waterloo, Waterloo N2L 3G1, Canada
| | - Fariba Amiri
- Water
Science, Technology & Policy Group, Department of Civil &
Environmental Engineering, University of
Waterloo, Waterloo N2L 3G1, Canada
| |
Collapse
|
5
|
Zhang R, Huang T, Wen G, Tian X, Tang Z. Removal of ammonium and manganese from surface water using a MeO x filter system as a pretreatment process. ENVIRONMENTAL TECHNOLOGY 2023; 44:1302-1312. [PMID: 34709999 DOI: 10.1080/09593330.2021.2000040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Residual aluminium from the coagulation-sedimentation process in the treatment of surface water can decrease the catalytic activity of a manganese co-oxide filter film (MeOx) used for ammonium and manganese removal. To solve this problem, a MeOx filter was used as a pretreatment process to filtrate source water directly before the coagulation and sedimentation treatment. The removal performance and the mechanism of change in the activity of MeOx were investigated. The experimental results indicated that the MeOx filter removed ammonium and manganese from surface water sources effectively, and its manganese removal activity was enhanced. The characteristics of MeOx were investigated via SEM, EDS, XPS, and the BET surface area. Analysis of the experimental results showed that the increase in the content of Al under this condition was much lower than that under treatment with the coagulation-sedimentation process. After long-term operation, the amount and surface area of MeOx coated on the filter sand increased significantly, leading to an increase in the catalytic activity. However, in cold water, the catalytic activity of MeOx decreased, and more Mn(II) was obtained on the surface of MeOx. Thus, the morphology of MeOx changed. Fortunately, when water temperature increases, the removal activity can recover immediately. By inactivating microorganisms and comparing the removal performance with that under other conditions, the MeOx activity of the pretreatment process is preserved effectively and no strengthening measures are required. This study will provide a new strategy for the use of the MeOx catalytic technology.
Collapse
Affiliation(s)
- Ruifeng Zhang
- School of Urban Planning and municipal engineering, Xi'an Polytechnic University, Xi'an, PR People's Republic of China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, PR People's Republic of China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, PR People's Republic of China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, PR People's Republic of China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, PR People's Republic of China
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, PR People's Republic of China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, PR People's Republic of China
| | - Xuan Tian
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, PR People's Republic of China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, PR People's Republic of China
| | - Zhangcheng Tang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, PR People's Republic of China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, PR People's Republic of China
| |
Collapse
|
6
|
Blackburn EA, Dickson-Anderson SE, Anderson WB, Emelko MB. Biological Filtration is Resilient to Wildfire Ash-Associated Organic Carbon Threats to Drinking Water Treatment. ACS ES&T WATER 2023; 3:639-649. [PMID: 36936520 PMCID: PMC10013178 DOI: 10.1021/acsestwater.2c00209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Elevated/altered levels of dissolved organic matter (DOM) in water can be challenging to treat after wildfire. Biologically mediated treatment removes some DOM; here, its ability to remove elevated/altered postfire dissolved organic carbon (DOC) resulting from wildfire ash was investigated for the first time. Treatment of wildfire ash-amended (low, moderate, high) source waters by bench-scale biofilters was evaluated in duplicate. Turbidity and DOC were typically well-removed (effluent turbidity ≤0.3 NTU; average DOC removal ∼20%) in all biofilters during periods of stable source water quality. Daily DOC removal across all biofilters (ash-amended and controls) was generally consistent, suggesting that (i) the biofilter DOC biodegradation capacity was not deleteriously impacted by the ash and (ii) the biofilters buffered the ash-associated increases in water extractable organic matter. DOM fractionation indicates this was because the biodegradable low molecular weight neutral fractions of DOM, which increased with ash addition, were reduced by biofiltration while humic substances were largely recalcitrant. Thus, biological filtration was resilient to wildfire ash-associated DOM threats to drinking water treatment, but operational resilience may be compromised if the balance between readily removed and recalcitrant fractions of DOM change, as was observed during brief periods herein.
Collapse
Affiliation(s)
- Emma A.
J. Blackburn
- Water
Science, Technology & Policy Group, Department of Civil and Environmental
Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | | - William B. Anderson
- Water
Science, Technology & Policy Group, Department of Civil and Environmental
Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Monica B. Emelko
- Water
Science, Technology & Policy Group, Department of Civil and Environmental
Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
7
|
Cho Y, Kang H. Influence of the anionic structure and central atom of a cation on the properties of LCST-type draw solutes for forward osmosis. RSC Adv 2022; 12:29405-29413. [PMID: 36320770 PMCID: PMC9557740 DOI: 10.1039/d2ra05131a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/08/2022] [Indexed: 11/07/2022] Open
Abstract
Thermo-responsive ionic compounds were synthesized to examine if they have a powerful ability to draw solutes for forward osmosis (FO). The investigated compounds were tetrabutylammonium benzenesulfonate, tetrabutylphosphonium benzenesulfonate, tetrabutylammonium 2-naphthalenesulfonate, and tetrabutylphosphonium 2-naphthalenesulfonate (abbreviated as [N4444][BS], [P4444][BS], [N4444][NS], and [P4444][NS]). The lower critical solution temperature (LCST) characteristics of the materials that formed the monocyclic aromatic compound [BS] were not confirmed; however, the LCSTs of others that formed the bicyclic aromatic compound [NS] were confirmed to be approximately 37 °C ([N4444][NS]) and 19 °C ([P4444][NS]) at 20 wt% in aqueous solutions; this is valued in reducing the energy required for recovery of the draw solute. In addition, it suggests that ammonium-based ionic compounds have a higher recovery temperature than phosphonium-based ionic compounds. When an active layer was oriented to a draw solution (AL-DS mode) and using 20 wt% aqueous [N4444][NS] draw solution at room temperature, water and reverse solute fluxes were about 3.07 LMH and 0.58 gMH, respectively. Thus, this is the first study to investigate structural transformations of the anion and central atom of the cation and to examine prospective draw solutes of the FO system in this series. Thermo-responsive ionic compounds having lower critical solution temperature were utilized as a draw solute for eco-sustainable forward osmosis.![]()
Collapse
Affiliation(s)
- Yeonsu Cho
- BK-21 Four Graduate Program, Department of Chemical Engineering, Dong-A University37 Nakdong-Daero 550 Beon-Gil, Saha-GuBusan 49315Republic of Korea
| | - Hyo Kang
- BK-21 Four Graduate Program, Department of Chemical Engineering, Dong-A University37 Nakdong-Daero 550 Beon-Gil, Saha-GuBusan 49315Republic of Korea
| |
Collapse
|
8
|
Sharma A, Kumar N, Sillanpää M, Makgwane PR, Kumar S, Kumari K. Carbon nano-structures and functionalized associates: Adsorptive detoxification of organic and inorganic water pollutants. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Abstract
The continuously rising interest in chemical sensors’ applications in environmental monitoring, for soil analysis in particular, is owed to the sufficient sensitivity and selectivity of these analytical devices, their low costs, their simple measurement setups, and the possibility to perform online and in-field analyses with them. In this review the recent advances in chemical sensors for soil analysis are summarized. The working principles of chemical sensors involved in soil analysis; their benefits and drawbacks; and select applications of both the single selective sensors and multisensor systems for assessments of main plant nutrition components, pollutants, and other important soil parameters (pH, moisture content, salinity, exhaled gases, etc.) of the past two decades with a focus on the last 5 years (from 2017 to 2021) are overviewed.
Collapse
|
10
|
Khera R, Ransom P, Guttridge M, Speth TF. Estimating costs for nitrate and perchlorate treatment for small drinking water systems. AWWA WATER SCIENCE 2021; 3. [PMID: 34124609 PMCID: PMC8193740 DOI: 10.1002/aws2.1224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
When choosing a treatment technology for nitrate or perchlorate removal, drinking water utilities overwhelmingly choose ion exchange. However, of late, biological treatment and point-of-use systems have received a great deal of attention. This article utilizes several new U.S. Environmental Protection Agency models to estimate the cost of nitrate and perchlorate treatment for small drinking water systems. The analysis here shows that, when comparing the three technologies for a typical set of design choices and drinking water quality conditions, the least-cost option varies among the three depending on system size. This relationship varies with changes to the water quality and design factors such as, but not restricted to, influent nitrate and perchlorate concentrations, the choice of residual management options, and the presence of co-contaminants and competing ions.
Collapse
Affiliation(s)
- Rajiv Khera
- US Environmental Protection Agency (USEPA), Washington, District of Columbia
| | | | | | - Thomas F Speth
- US Environmental Protection Agency (USEPA), Cincinnati, Ohio
| |
Collapse
|
11
|
Goraj W, Pytlak A, Kowalska B, Kowalski D, Grządziel J, Szafranek-Nakonieczna A, Gałązka A, Stępniewska Z, Stępniewski W. Influence of pipe material on biofilm microbial communities found in drinking water supply system. ENVIRONMENTAL RESEARCH 2021; 196:110433. [PMID: 33166536 DOI: 10.1016/j.envres.2020.110433] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/17/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
The biofilms and water samples from a model installation built of PVC-U, PE-HD and cast iron pipes were investigated using standard heterotrophic plate count and 16S rRNA Next Generation Sequencing. The results of the high throughput identification imply that the construction material strongly influences the microbiome composition. PVC-U and PE-HD pipes were dominated with Proteobacteria (54-60%) while the cast pipe was overgrown by Nitrospirae (64%). It was deduced that the plastic pipes create a more convenient environment for the potentially pathogenic taxa than the cast iron. The 7-year old biofilms were described as complex habitats with sharp oxidation-reduction gradients, where co-existence of methanogenic and methanotrophic microbiota takes place. Furthermore, it was found that the drinking water distribution systems (DWDS) are a useful tool for studying the ecology of rare bacterial phyla. New ecophysiological aspects were described for Aquihabitans, Thermogutta and Vampirovibrio. The discrepancy between identity of HPC-derived bacteria and NGS-revealed composition of biofilm and water microbiomes point to the need of introducing new diagnostical protocols to enable proper assessment of the drinking water safety, especially in DWDSs operating without disinfection.
Collapse
Affiliation(s)
- Weronika Goraj
- Department of Biology and Biotechnology of Microorganisms, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, Konstantynów Street 1 I, 20-708, Lublin, Poland
| | - Anna Pytlak
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland.
| | - Beata Kowalska
- Faculty of Environmental Protection Engineering, Lublin University of Technology, ul. Nadbystrzycka 40B, 20-618, Lublin, Poland
| | - Dariusz Kowalski
- Faculty of Environmental Protection Engineering, Lublin University of Technology, ul. Nadbystrzycka 40B, 20-618, Lublin, Poland
| | - Jarosław Grządziel
- Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation-State Research Institute (IUNG-PIB), Czartoryskich Street 8, 24-100, Puławy, Poland
| | - Anna Szafranek-Nakonieczna
- Department of Biology and Biotechnology of Microorganisms, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, Konstantynów Street 1 I, 20-708, Lublin, Poland
| | - Anna Gałązka
- Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation-State Research Institute (IUNG-PIB), Czartoryskich Street 8, 24-100, Puławy, Poland
| | - Zofia Stępniewska
- Department of Biochemistry and Environmental Chemistry, The John Paul II Catholic University of Lublin, Konstantynów Street 1 I, 20-708, Lublin, Poland
| | - Witold Stępniewski
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland
| |
Collapse
|
12
|
Gul A, Hruza J, Yalcinkaya F. Fouling and Chemical Cleaning of Microfiltration Membranes: A Mini-Review. Polymers (Basel) 2021; 13:846. [PMID: 33801897 PMCID: PMC8002060 DOI: 10.3390/polym13060846] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/03/2022] Open
Abstract
Membrane fouling is one of the main drawbacks encountered during the practical application of membrane separation processes. Cleaning of a membrane is important to reduce fouling and improve membrane performance. Accordingly, an effective cleaning method is currently of crucial importance for membrane separation processes in water treatment. To clean the fouling and improve the overall efficiency of membranes, deep research on the cleaning procedures is needed. So far, physical, chemical, or combination techniques have been used for membrane cleaning. In the current work, we critically reviewed the fouling mechanisms affecting factors of fouling such as the size of particle or solute; membrane microstructure; the interactions between membrane, solute, and solvent; and porosity of the membrane and also examined cleaning methods of microfiltration (MF) membranes such as physical cleaning and chemical cleaning. Herein, we mainly focused on the chemical cleaning process. Factors affecting the chemical cleaning performance, including cleaning time, the concentration of chemical cleaning, and temperature of the cleaning process, were discussed in detail. This review is carried out to enable a better understanding of the membrane cleaning process for an effective membrane separation process.
Collapse
Affiliation(s)
| | | | - Fatma Yalcinkaya
- Centre for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, Studentska 1402/2, 46117 Liberec, Czech Republic; (A.G.); (J.H.)
| |
Collapse
|
13
|
Hu J, Zhao Y, Yang W, Wang J, Liu H, Zheng P, Hu B. Surface ammonium loading rate shifts ammonia-oxidizing communities in surface water-fed rapid sand filters. FEMS Microbiol Ecol 2020; 96:5899051. [PMID: 32860687 DOI: 10.1093/femsec/fiaa179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 08/26/2020] [Indexed: 01/15/2023] Open
Abstract
Nitrification is important in drinking water treatment plants (DWTPs) for ammonia removal and is widely considered as a stepwise process mediated by ammonia- and nitrite-oxidizing microorganisms. The recent discovery of complete ammonia oxidizers (comammox) has challenged the long-held assumption that the division of metabolic labor in nitrification is obligate. However, little is known about the role of comammox Nitrospira in DWTPs. Here, we explored the relative importance of comammox Nitrospira, canonical ammonia-oxidizing archaea (AOA) and bacteria (AOB) in 12 surface water-fed rapid sand filters (RSFs). Quantitative PCR results showed that all the three ammonia-oxidizing guilds had the potential to dominate nitrification in DWTPs. Spearman's correlation and redundancy analysis revealed that the surface ammonium loading rate (SLR) was the key environmental factor influencing ammonia-oxidizing communities. Comammox Nitrospira were likely to dominate the nitrification under a higher SLR. PCR and phylogenetic analysis indicated that most comammox Nitrospira belonged to clade A, with clade B comammox Nitrospira almost absent. This work reveals obvious differences in ammonia-oxidizing communities between surface water-fed and groundwater-fed RSFs. The presence of comammox Nitrospira can support the stability of drinking water production systems under high SLR and warrants further investigation of their impact on drinking water quality.
Collapse
Affiliation(s)
- Jiajie Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Yuxiang Zhao
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Weiling Yang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Jiaqi Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Huan Liu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Ping Zheng
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China.,Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China
| |
Collapse
|
14
|
Chapman J, Truong VK, Elbourne A, Gangadoo S, Cheeseman S, Rajapaksha P, Latham K, Crawford RJ, Cozzolino D. Combining Chemometrics and Sensors: Toward New Applications in Monitoring and Environmental Analysis. Chem Rev 2020; 120:6048-6069. [PMID: 32364371 DOI: 10.1021/acs.chemrev.9b00616] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For many years, an extensive array of chemometric methods have provided a platform upon which a quantitative description of environmental conditions can be obtained. Applying chemometric methods to environmental data allows us to identify and describe the interrelations between certain environmental drivers. They also provide an insight into the interrelationships between these drivers and afford us a greater understanding of the potential impact that these drivers can place upon the environment. However, an effective marriage of these two systems has not been performed. Therefore, it is the aim of this review to highlight the advantages of using chemometrics and sensors to identify hidden trends in environmental parameters, which allow the state of the environment to be effectively monitored. Despite the combination of chemometrics and sensors, to capture new developments and applications in the field of environmental sciences, these methods have not been extensively used. Importantly, although different parameters and monitoring procedures are required for different environments (e.g., air, water, soil), they are not distinct, separate entities. Contemporary developments in the use of chemometrics afford us the ability to predict changes in different aspects of the environment using instrumental methods. This review also provides an insight into the prevailing trends and the future of environmental sensing, highlighting that chemometrics can be used to enhance our ability to monitor the environment. This enhanced ability to monitor environmental conditions and to predict trends would be beneficial to government and research agencies in their ability to develop environmental policies and analysis procedures.
Collapse
Affiliation(s)
- James Chapman
- School of Science, RMIT University, Melbourne 3001, Australia
| | - Vi Khanh Truong
- School of Science, RMIT University, Melbourne 3001, Australia
| | - Aaron Elbourne
- School of Science, RMIT University, Melbourne 3001, Australia
| | | | | | | | - Kay Latham
- School of Science, RMIT University, Melbourne 3001, Australia
| | | | | |
Collapse
|
15
|
Zhao X, Liu B, Wang X, Chen C, Ren N, Xing D. Single molecule sequencing reveals response of manganese-oxidizing microbiome to different biofilter media in drinking water systems. WATER RESEARCH 2020; 171:115424. [PMID: 31887545 DOI: 10.1016/j.watres.2019.115424] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
Rapid sand biofiltration (RSBF) is widely used for the removal of contaminants from drinking water treatment systems. Biofilm microbiomes in the biofilter media play essential roles in biotransformation of contaminants, but is not comprehensively understood. This study reports on Mn(II) oxidation and the core microbiomes in magnetite sand RSBF (MagS-RSBF) and manganese sand RSBF (MnS-RSBF). MnS-RSBF showed a relatively higher Mn(II) removal rate (40-91.2%) than MagS-RSBF during the start-up. MagS-RSBF and MnS-RSBF had similar Mn(II) removal rates (94.13% and 99.16%) over stable operation for 80 days. Mn(II) removal rates at different depths in the MnS-RSBF reactor significantly changed with operation time, and the filter in the upper layer of MnS-RSBF made the largest contribution to Mn(II) oxidation once operation had stabilized. PacBio single molecule sequencing of full-length 16S rRNA gene indicated that biofilter medium had a significant impact on the core microbiomes of the biofilms from the two biofilters. The magnetite sand biofilter facilitated the enrichment of Mn(II)-oxidizing biofilms. The dominant populations consisted of Pedomicrobium, Pseudomonas, and Hyphomicrobium in the RSBF, which have been affiliated with putative manganese-oxidizing bacteria (MnOB). The relative abundance of Pedomicrobium manganicum increased with operation time in both RSBF reactors. In addition, Nordella oligomobilis and Derxia gummosa were statistically correlated with Mn(II) oxidation. Species-species co-occurrence networks indicated that the microbiome of MnS-RSBF had more complex correlations than that of MagS-RSBF, implying that biofilter medium substantially shaped the microbial community in the RSBF. Hyphomicrobium and nitrite-oxidizing Nitrospira moscoviensis were positively correlated. The core microbiomes' composition of both RSBF reactors converged over operation time. A hybrid biofilter medium with magnetite sand and manganese sand may therefore be best in rapid sand filtration for Mn(II) oxidation.
Collapse
Affiliation(s)
- Xin Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Bingfeng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xiuheng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
16
|
Hooper J, Funk D, Bell K, Noibi M, Vickstrom K, Schulz C, Machek E, Huang CH. Pilot testing of direct and indirect potable water reuse using multi-stage ozone-biofiltration without reverse osmosis. WATER RESEARCH 2020; 169:115178. [PMID: 31670085 DOI: 10.1016/j.watres.2019.115178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/18/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
Pilot testing of direct potable reuse (DPR) using multi-stage ozone and biological filtration as an alternative treatment train without reverse osmosis (RO) was investigated. This study examined four blending ratios of advanced treated reclaimed water from the F. Wayne Hill Water Resources Center (FWH WRC) in Gwinnett County, Georgia, combined with the existing drinking water treatment plant raw water supply, Lake Lanier, for potable water production. Baseline testing with 100 percent (%) Lake Lanier water was initially conducted; followed by testing blends of 15, 25, 50, and 100% reclaimed water from FWH WRC. Finished water quality from the DPR pilot was compared to drinking water standards, and emerging microbial and chemical contaminants were also evaluated. Results were benchmarked against a parallel indirect potable reuse (IPR) pilot receiving 100% of the raw water from Lake Lanier. Finished water quality from the DPR pilot at the 15% blend complied with the United States primary and secondary maximum contaminant levels (MCLs and SMCLs, respectively). However, exceedances of one or more MCLs or SMCLs were observed at higher blends. Importantly, reclaimed water from FWH WRC was of equal or better quality for all microbiological targets tested compared to Lake Lanier, indicating that a DPR scenario could lower acute risks from microbial pathogens compared to current practices. Finished water from the DPR pilot had no detections of microorganisms, even at the 100% FWH WRC effluent blend. Microbiological targets tested included heterotrophic plate counts, total and fecal coliforms, Escherichia coli, somatic and male-specific coliphage, Clostridium perfringens, Enterococci, Legionella, Cryptosporidium, and Giardia. There were water quality challenges, primarily associated with nitrate originating from incomplete denitrification and bromate formation from ozonation at the FWH WRC. These challenges highlight the importance of upstream process monitoring and control at the advanced wastewater treatment facility if DPR is considered. This research demonstrated that ozone with biological filtration could achieve potable water quality criteria, without the use of RO, in cases where nitrate is below the MCL of 10 mg nitrogen per liter and total dissolved solids are below the SMCL of 500 mg per liter.
Collapse
Affiliation(s)
- Jennifer Hooper
- CDM Smith, 14432 SE Eastgate Way Suite 100, Bellevue, WA, 98007, USA.
| | - Denise Funk
- Gwinnett County Department of Water Resources, 684 Winder Highway, Lawrenceville, GA, 30045, USA
| | - Kati Bell
- Brown & Caldwell, 220 Athens Way #500, Nashville, TN, 37228, USA
| | - Morayo Noibi
- CDM Smith, 14432 SE Eastgate Way Suite 100, Bellevue, WA, 98007, USA
| | - Kyle Vickstrom
- CDM Smith, 14432 SE Eastgate Way Suite 100, Bellevue, WA, 98007, USA
| | - Chris Schulz
- CDM Smith, 14432 SE Eastgate Way Suite 100, Bellevue, WA, 98007, USA
| | - Eddie Machek
- Georgia Institute of Technology, School of Civil and Environmental Engineering, 200 Bobby Dodd Way, Atlanta, GA, 30332, USA
| | - Ching-Hua Huang
- Georgia Institute of Technology, School of Civil and Environmental Engineering, 200 Bobby Dodd Way, Atlanta, GA, 30332, USA
| |
Collapse
|
17
|
Biofilm systems as tools in biotechnological production. Appl Microbiol Biotechnol 2019; 103:5095-5103. [PMID: 31079168 DOI: 10.1007/s00253-019-09869-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 01/08/2023]
Abstract
The literature provides more and more examples of research projects that develop novel production processes based on microorganisms organized in the form of biofilms. Biofilms are aggregates of microorganisms that are attached to interfaces. These viscoelastic aggregates of cells are held together and are embedded in a matrix consisting of multiple carbohydrate polymers as well as proteins. Biofilms are characterized by a very high cell density and by a natural retentostat behavior. Both factors can contribute to high productivities and a facilitated separation of the desired end-product from the catalytic biomass. Within the biofilm matrix, stable gradients of substrates and products form, which can lead to a differentiation and adaptation of the microorganisms' physiology to the specific process conditions. Moreover, growth in a biofilm state is often accompanied by a higher resistance and resilience towards toxic or growth inhibiting substances and factors. In this short review, we summarize how biofilms can be studied and what most promising niches for their application can be. Moreover, we highlight future research directions that will accelerate the advent of productive biofilms in biology-based production processes.
Collapse
|
18
|
Guo W, Zhang K, Liang Z, Zou R, Xu Q. Electrochemical nitrogen fixation and utilization: theories, advanced catalyst materials and system design. Chem Soc Rev 2019; 48:5658-5716. [DOI: 10.1039/c9cs00159j] [Citation(s) in RCA: 328] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Design and synthesis of advanced nanomaterials towards electrocatalytic nitrogen reduction and transformation are concluded from both structural and compositional aspects.
Collapse
Affiliation(s)
- Wenhan Guo
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials
- Department of Materials Science and Engineering
- College of Engineering
- Peking University
- Beijing 100871
| | - Kexin Zhang
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials
- Department of Materials Science and Engineering
- College of Engineering
- Peking University
- Beijing 100871
| | - Zibin Liang
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials
- Department of Materials Science and Engineering
- College of Engineering
- Peking University
- Beijing 100871
| | - Ruqiang Zou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials
- Department of Materials Science and Engineering
- College of Engineering
- Peking University
- Beijing 100871
| | - Qiang Xu
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL)
- National Institute of Advanced Industrial Science and Technology (AIST)
- Kyoto 606-8501
- Japan
- School of Chemistry & Chemical Engineering
| |
Collapse
|
19
|
Kamira B, Shi LL, Fan LM, Zhang C, Zheng Y, Song C, Meng SL, Hu GD, Bing XW, Chen ZJ, Xu P. Methane-generating ammonia oxidizing nitrifiers within bio-filters in aquaculture tanks. AMB Express 2018; 8:140. [PMID: 30155810 PMCID: PMC6113197 DOI: 10.1186/s13568-018-0668-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 08/17/2018] [Indexed: 11/10/2022] Open
Abstract
The discovery of aerobic and anammox bacteria capable of generating methane in bio-filters in freshwater aquaculture systems is generating interest in studies to understand the activity, diversity, distribution and roles of these environmental bacteria. In this study, we used microbial enrichment of bio-filters to assess their effect on water quality. Profiles of ammonia-oxidizing bacterial communities generated using nested PCR methods and DGGE were used to assess the expression of 16S rRNA genes using DNA sequencing. Five dominant ammonia-oxidizing bacterial strains-clones; KB.13, KB.15, KB.16, KB.17 and KB.18-were isolated and identified by phylogenetic analysis as environmental samples closely related to genera Methylobacillus, Stanieria, Nitrosomonas, and Heliorestis. The methyl ammonia-oxidizing microbes thereby found suggest a biochemical pathway involving electron donors and carbon sources, and all strains were functional in freshwater aquaculture systems. Environmental parameters including TN (2.69-20.43); COD (9.34-31.47); NH4+-N (0.44-11.78); NO2-N (0.00-3.67); NO3-N (0.05-1.82), mg/L and DO (1.47-10.31 µg/L) assessed varied in the ranges in the different tanks. Principal component analysis revealed that these water quality parameters significantly influenced the ammonia oxidizing microbial community composition. Temperature rises to about 40 °C significantly affected environmental characteristics-especially DO, TN and NH4+-N-and directly or indirectly affected the microbial communities. Although the nested PCR design was preferred due to its high sensitivity for amplifying specific DNA regions, a more concise method is recommended, as an equimolar mixture of degenerate PCR primer pairs, CTO189f-GC and CTO654r, never amplified only 16S rRNA of ammonia-oxidizing bacteria.
Collapse
Affiliation(s)
- Barry Kamira
- Nanjing Agricultural University, 1 Weigang, Nanjing, 210095 Jiangsu People’s Republic of China
- Wuxi Fisheries College, 9 East Shan Shui Road, Binhu District, Wuxi, 214081 Jiangsu People’s Republic of China
- Present Address: Freshwater Fisheries Resources Center (FFRC), Chinese Academy of Fisheries Sciences (CAFs), Wuxi, People’s Republic of China
| | - Lei Lei Shi
- Nanjing Agricultural University, 1 Weigang, Nanjing, 210095 Jiangsu People’s Republic of China
- Wuxi Fisheries College, 9 East Shan Shui Road, Binhu District, Wuxi, 214081 Jiangsu People’s Republic of China
| | - Li Min Fan
- Wuxi Fisheries College, 9 East Shan Shui Road, Binhu District, Wuxi, 214081 Jiangsu People’s Republic of China
- Key Laboratory of Freshwater Fisheries Eco-Environment Monitoring Center of Lower Reaches of Yantze River, Ministry of Agriculture; Fishery Environmental Protection Department, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu People’s Republic of China
| | - Cong Zhang
- Wuxi Fisheries College, 9 East Shan Shui Road, Binhu District, Wuxi, 214081 Jiangsu People’s Republic of China
- Key Laboratory of Freshwater Fisheries Eco-Environment Monitoring Center of Lower Reaches of Yantze River, Ministry of Agriculture; Fishery Environmental Protection Department, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu People’s Republic of China
| | - Yao Zheng
- Wuxi Fisheries College, 9 East Shan Shui Road, Binhu District, Wuxi, 214081 Jiangsu People’s Republic of China
- Key Laboratory of Freshwater Fisheries Eco-Environment Monitoring Center of Lower Reaches of Yantze River, Ministry of Agriculture; Fishery Environmental Protection Department, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu People’s Republic of China
| | - Chao Song
- Wuxi Fisheries College, 9 East Shan Shui Road, Binhu District, Wuxi, 214081 Jiangsu People’s Republic of China
- Key Laboratory of Freshwater Fisheries Eco-Environment Monitoring Center of Lower Reaches of Yantze River, Ministry of Agriculture; Fishery Environmental Protection Department, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu People’s Republic of China
| | - Shun Long Meng
- Nanjing Agricultural University, 1 Weigang, Nanjing, 210095 Jiangsu People’s Republic of China
- Wuxi Fisheries College, 9 East Shan Shui Road, Binhu District, Wuxi, 214081 Jiangsu People’s Republic of China
- Key Laboratory of Freshwater Fisheries Eco-Environment Monitoring Center of Lower Reaches of Yantze River, Ministry of Agriculture; Fishery Environmental Protection Department, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu People’s Republic of China
| | - Geng Dong Hu
- Wuxi Fisheries College, 9 East Shan Shui Road, Binhu District, Wuxi, 214081 Jiangsu People’s Republic of China
- Key Laboratory of Freshwater Fisheries Eco-Environment Monitoring Center of Lower Reaches of Yantze River, Ministry of Agriculture; Fishery Environmental Protection Department, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu People’s Republic of China
| | - Xu Wen Bing
- Nanjing Agricultural University, 1 Weigang, Nanjing, 210095 Jiangsu People’s Republic of China
- Wuxi Fisheries College, 9 East Shan Shui Road, Binhu District, Wuxi, 214081 Jiangsu People’s Republic of China
- Key Laboratory of Freshwater Fisheries Eco-Environment Monitoring Center of Lower Reaches of Yantze River, Ministry of Agriculture; Fishery Environmental Protection Department, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu People’s Republic of China
| | - Zhang Jia Chen
- Nanjing Agricultural University, 1 Weigang, Nanjing, 210095 Jiangsu People’s Republic of China
- Wuxi Fisheries College, 9 East Shan Shui Road, Binhu District, Wuxi, 214081 Jiangsu People’s Republic of China
- Key Laboratory of Freshwater Fisheries Eco-Environment Monitoring Center of Lower Reaches of Yantze River, Ministry of Agriculture; Fishery Environmental Protection Department, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu People’s Republic of China
| | - Pao Xu
- Nanjing Agricultural University, 1 Weigang, Nanjing, 210095 Jiangsu People’s Republic of China
- Wuxi Fisheries College, 9 East Shan Shui Road, Binhu District, Wuxi, 214081 Jiangsu People’s Republic of China
- Key Laboratory of Freshwater Fisheries Eco-Environment Monitoring Center of Lower Reaches of Yantze River, Ministry of Agriculture; Fishery Environmental Protection Department, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu People’s Republic of China
| |
Collapse
|
20
|
Adsorption and capacitive regeneration of nitrate using inverted capacitive deionization with surfactant functionalized carbon electrodes. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.11.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Effect of Biological Contact Filters (BCFs) on Membrane Fouling in Drinking Water Treatment Systems. WATER 2017. [DOI: 10.3390/w9120981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Abstract
Abstract
Forward osmosis (FO) has developed rapidly over the past decade. The development of draw solutes, a key component of FO processes, has also progressed remarkably. A wide range of synthetic draw solutes have been explored in recent years. Synthetic draw solutes exhibit superiority over the conventional draw solutes obtained commercially in terms of lower reverse solute fluxes and less energy consumption in draw solute recycling. However, there are still some big challenges for synthetic draw solutes, such as complicated synthetic procedures, low water fluxes, severe concentration polarization (CP) and decreased water recovery efficiency when recycled draw solutes are reused in FO. These challenges are also the current research focus on the exploration of novel draw solutes. This article aims to review the recent progress especially on synthetic draw solutes. Their design strategies, synthesis routes and FO performance are assessed. Some representative applications involving the synthetic draw solutes-facilitated FO processes are exemplified. The advantages and disadvantages of the existing synthetic draw solutions are evaluated. The challenges and future directions in exploring novel draw solutes are highlighted.
Collapse
Affiliation(s)
- Qiaozhen Chen
- College of Environment and Resources , Fuzhou University , No. 2 University of New Garden Road , Fujian 350116 , China
| | - Wenxuan Xu
- College of Environment and Resources , Fuzhou University , No. 2 University of New Garden Road , Fujian 350116 , China
| | - Qingchun Ge
- College of Environment and Resources , Fuzhou University , No. 2 University of New Garden Road , Fujian 350116 , China
| |
Collapse
|
23
|
Carpenter CMG, Helbling DE. Removal of micropollutants in biofilters: Hydrodynamic effects on biofilm assembly and functioning. WATER RESEARCH 2017; 120:211-221. [PMID: 28494247 DOI: 10.1016/j.watres.2017.04.071] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/13/2017] [Accepted: 04/28/2017] [Indexed: 06/07/2023]
Abstract
Global water resources contain a variety of micropollutants (MPs), including pharmaceuticals, personal care products, and pesticides. This study investigated the removal of MPs during drinking water production by means of biofiltration. The objective of this work was to investigate the influence of hydrodynamics on biofilm growth and development in a biofiltration process and the consequent effect on MP biotransformation rates. We operated three groups of biofiltration columns continuously for 381 days under three distinct hydrodynamic regimes (superficial velocity: 10, 20, 40 cm h-1) and fed them a mixture of 29 micropollutants at low concentrations. Total protein concentrations were used as a surrogate measurement for attached biomass and periodic tracer experiments were conducted to estimate dispersivity and assess changes in the depth of the biological zone in each biofilter. These data revealed significant differences in biofilm assembly among the biofilters; higher superficial velocities led to less concentrated surface biomass but a deeper biological zone and more total biomass. Eleven of the 29 MPs were biotransformed and nine of those could be evaluated to estimate biotransformation rates. The second-order rate constants for all nine MPs were not significantly different among the hydrodynamic regimes. However, a depth-based analysis of biotransformation rates revealed significantly greater second-order rate constants for 5 of the MPs at increasing biofilter depths, suggesting that sparse microbial communities found in deeper and more oligotrophic biofilters had a greater activity for the biotransformation of these MPs. The identification of several transformation products at similar relative distributions suggests that the greater activity was not the result of changing metabolic processes under more oligotrophic conditions. These results improve our fundamental understanding of biofilm assembly and functioning in biofiltration processes.
Collapse
Affiliation(s)
- Corey M G Carpenter
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Damian E Helbling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
24
|
Schullehner J, Stayner L, Hansen B. Nitrate, Nitrite, and Ammonium Variability in Drinking Water Distribution Systems. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:E276. [PMID: 28282914 PMCID: PMC5369112 DOI: 10.3390/ijerph14030276] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 02/27/2017] [Accepted: 03/05/2017] [Indexed: 11/17/2022]
Abstract
Accurate assessments of exposure to nitrate in drinking water is a crucial part of epidemiological studies investigating long-term adverse human health effects. However, since drinking water nitrate measurements are usually collected for regulatory purposes, assumptions on (1) the intra-distribution system variability and (2) short-term (seasonal) concentration variability have to be made. We assess concentration variability in the distribution system of nitrate, nitrite, and ammonium, and seasonal variability in all Danish public waterworks from 2007 to 2016. Nitrate concentrations at the exit of the waterworks are highly correlated with nitrate concentrations within the distribution net or at the consumers' taps, while nitrite and ammonium concentrations are generally lower within the net compared with the exit of the waterworks due to nitrification. However, nitrification of nitrite and ammonium in the distribution systems only results in a relatively small increase in nitrate concentrations. No seasonal variation for nitrate, nitrite, or ammonium was observed. We conclude that nitrate measurements taken at the exit of the waterworks are suitable to calculate exposures for all consumers connected to that waterworks and that sampling frequencies in the national monitoring programme are sufficient to describe temporal variations in longitudinal studies.
Collapse
Affiliation(s)
- Jörg Schullehner
- Geological Survey of Denmark and Greenland (GEUS), C.F. Møllers Allé 8, 8000 Aarhus C, Denmark.
- National Centre for Register-Based Research, Department of Economics and Business Economics, School of Business and Social Sciences, Aarhus University, Fuglesangs Allé 4, 8210 Aarhus V, Denmark.
| | - Leslie Stayner
- School of Public Health, Epidemiology and Biostatistics Division, University of Illinois at Chicago, 1603 W. Taylor Street, Chicago, IL 60612, USA.
| | - Birgitte Hansen
- Geological Survey of Denmark and Greenland (GEUS), C.F. Møllers Allé 8, 8000 Aarhus C, Denmark.
| |
Collapse
|
25
|
Wang B, Prinsen P, Wang H, Bai Z, Wang H, Luque R, Xuan J. Macroporous materials: microfluidic fabrication, functionalization and applications. Chem Soc Rev 2017; 46:855-914. [DOI: 10.1039/c5cs00065c] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This article provides an up-to-date highly comprehensive overview (594 references) on the state of the art of the synthesis and design of macroporous materials using microfluidics and their applications in different fields.
Collapse
Affiliation(s)
- Bingjie Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process
- School of Mechanical and Power Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Pepijn Prinsen
- Departamento de Quimica Organica
- Universidad de Cordoba
- Campus de Rabanales
- Cordoba
- Spain
| | - Huizhi Wang
- School of Engineering and Physical Sciences
- Heriot-Watt University
- Edinburgh
- UK
| | - Zhishan Bai
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process
- School of Mechanical and Power Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Hualin Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process
- School of Mechanical and Power Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Rafael Luque
- Departamento de Quimica Organica
- Universidad de Cordoba
- Campus de Rabanales
- Cordoba
- Spain
| | - Jin Xuan
- School of Engineering and Physical Sciences
- Heriot-Watt University
- Edinburgh
- UK
| |
Collapse
|
26
|
Evaluation of backwash strategies on biologically active carbon filters by using chloroacetic acids as indicator chemicals. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.03.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Balkhair KS, Ashraf MA. Field accumulation risks of heavy metals in soil and vegetable crop irrigated with sewage water in western region of Saudi Arabia. Saudi J Biol Sci 2015; 23:S32-44. [PMID: 26858563 PMCID: PMC4705247 DOI: 10.1016/j.sjbs.2015.09.023] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/10/2015] [Accepted: 09/14/2015] [Indexed: 11/04/2022] Open
Abstract
Wastewater irrigated fields can cause potential contamination with heavy metals to soil and groundwater, thus pose a threat to human beings . The current study was designed to investigate the potential human health risks associated with the consumption of okra vegetable crop contaminated with toxic heavy metals. The crop was grown on a soil irrigated with treated wastewater in the western region of Saudi Arabia during 2010 and 2011. The monitored heavy metals included Cd, Cr, Cu, Pb and Zn for their bioaccumulation factors to provide baseline data regarding environmental safety and the suitability of sewage irrigation in the future. The pollution load index (PLI), enrichment factor (EF) and contamination factor (CF) of these metals were calculated. The pollution load index of the studied soils indicated their level of metal contamination. The concentrations of Ni, Pb, Cd and Cr in the edible portions were above the safe limit in 90%, 28%, 83% and 63% of the samples, respectively. The heavy metals in the edible portions were as follows: Cr > Zn > Ni > Cd > Mn > Pb > Cu > Fe. The Health Risk Index (HRI) was >1 indicating a potential health risk. The EF values designated an enhanced bio-contamination compared to other reports from Saudi Arabia and other countries around the world. The results indicated a potential pathway of human exposure to slow poisoning by heavy metals due to the indirect utilization of vegetables grown on heavy metal-contaminated soil that was irrigated by contaminated water sources. The okra tested was not safe for human use, especially for direct consumption by human beings. The irrigation source was identified as the source of the soil pollution in this study.
Collapse
Affiliation(s)
- Khaled S Balkhair
- Department of Hydrology and Water Resources Management, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia; Center of Excellence in Desalination Technology, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
| | - Muhammad Aqeel Ashraf
- Faculty of Science & Natural Resources, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia; Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
28
|
Kaarela OE, Härkki HA, Palmroth MRT, Tuhkanen TA. Bacterial diversity and active biomass in full-scale granular activated carbon filters operated at low water temperatures. ENVIRONMENTAL TECHNOLOGY 2015; 36:681-692. [PMID: 25242545 DOI: 10.1080/09593330.2014.958542] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Granular activated carbon (GAC) filtration enhances the removal of natural organic matter and micropollutants in drinking water treatment. Microbial communities in GAC filters contribute to the removal of the biodegradable part of organic matter, and thus help to control microbial regrowth in the distribution system. Our objectives were to investigate bacterial community dynamics, identify the major bacterial groups, and determine the concentration of active bacterial biomass in full-scale GAC filters treating cold (3.7-9.5°C), physicochemically pretreated, and ozonated lake water. Three sampling rounds were conducted to study six GAC filters of different operation times and flow modes in winter, spring, and summer. Total organic carbon results indicated that both the first-step and second-step filters contributed to the removal of organic matter. Length heterogeneity analysis of amplified 16S rRNA genes illustrated that bacterial communities were diverse and considerably stable over time. α-Proteobacteria, β-Proteobacteria, and Nitrospira dominated in all of the GAC filters, although the relative proportion of dominant phylogenetic groups in individual filters differed. The active bacterial biomass accumulation, measured as adenosine triphosphate, was limited due to low temperature, low flux of nutrients, and frequent backwashing. The concentration of active bacterial biomass was not affected by the moderate seasonal temperature variation. In summary, the results provided an insight into the biological component of GAC filtration in cold water temperatures and the operational parameters affecting it.
Collapse
Affiliation(s)
- Outi E Kaarela
- a Department of Chemistry and Bioengineering , Tampere University of Technology , P.O. Box 541, FI-33101 Tampere , Finland
| | | | | | | |
Collapse
|
29
|
Spatial-temporal survey and occupancy-abundance modeling to predict bacterial community dynamics in the drinking water microbiome. mBio 2014; 5:e01135-14. [PMID: 24865557 PMCID: PMC4045074 DOI: 10.1128/mbio.01135-14] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Bacterial communities migrate continuously from the drinking water treatment plant through the drinking water distribution system and into our built environment. Understanding bacterial dynamics in the distribution system is critical to ensuring that safe drinking water is being supplied to customers. We present a 15-month survey of bacterial community dynamics in the drinking water system of Ann Arbor, MI. By sampling the water leaving the treatment plant and at nine points in the distribution system, we show that the bacterial community spatial dynamics of distance decay and dispersivity conform to the layout of the drinking water distribution system. However, the patterns in spatial dynamics were weaker than those for the temporal trends, which exhibited seasonal cycling correlating with temperature and source water use patterns and also demonstrated reproducibility on an annual time scale. The temporal trends were driven by two seasonal bacterial clusters consisting of multiple taxa with different networks of association within the larger drinking water bacterial community. Finally, we show that the Ann Arbor data set robustly conforms to previously described interspecific occupancy abundance models that link the relative abundance of a taxon to the frequency of its detection. Relying on these insights, we propose a predictive framework for microbial management in drinking water systems. Further, we recommend that long-term microbial observatories that collect high-resolution, spatially distributed, multiyear time series of community composition and environmental variables be established to enable the development and testing of the predictive framework. IMPORTANCE Safe and regulation-compliant drinking water may contain up to millions of microorganisms per liter, representing phylogenetically diverse groups of bacteria, archaea, and eukarya that affect public health, water infrastructure, and the aesthetic quality of water. The ability to predict the dynamics of the drinking water microbiome will ensure that microbial contamination risks can be better managed. Through a spatial-temporal survey of drinking water bacterial communities, we present novel insights into their spatial and temporal community dynamics and recommend steps to link these insights in a predictive framework for microbial management of drinking water systems. Such a predictive framework will not only help to eliminate microbial risks but also help to modify existing water quality monitoring efforts and make them more resource efficient. Further, a predictive framework for microbial management will be critical if we are to fully anticipate the risks and benefits of the beneficial manipulation of the drinking water microbiome.
Collapse
|
30
|
Wang H, Pryor MA, Edwards MA, Falkinham JO, Pruden A. Effect of GAC pre-treatment and disinfectant on microbial community structure and opportunistic pathogen occurrence. WATER RESEARCH 2013; 47:5760-72. [PMID: 23906775 DOI: 10.1016/j.watres.2013.06.052] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 06/21/2013] [Accepted: 06/27/2013] [Indexed: 05/10/2023]
Abstract
Opportunistic pathogens in potable water systems are an emerging health concern; however, the factors influencing their proliferation are poorly understood. Here we investigated the effects of prior granular activated carbon (GAC) biofiltration [GAC-filtered water, unfiltered water, and a blend (30% GAC filtered and 70% unfiltered water)] and disinfectant type (chlorine, chloramine) on opportunistic pathogen occurrence using five annular reactors (ARs) to simulate water distribution systems, particularly premise plumbing. GAC pre-treatment effectively reduced total organic carbon (TOC), resulting in three levels of influent TOC investigated. Quantitative polymerase chain reaction (q-PCR) provided molecular evidence of natural colonization of Legionella spp., Mycobacterium spp., Acanthamoeba spp., Hartmannella vermiformis and Mycobacterium avium on AR coupons. Cultivable mycobacteria and amoeba, including pathogenic species, were also found in bulk water and biofilm samples. While q-PCR tends to overestimate live cells, it provided a quantitative comparison of target organisms colonizing the AR biofilms in terms of gene copy numbers. In most cases, total bacteria and opportunistic pathogens were higher in the three undisinfected ARs, but the levels were not proportional to the level of GAC pre-treatment/TOC. Chlorine was more effective for controlling mycobacteria and Acanthamoeba, whereas chloramine was more effective for controlling Legionella. Both chlorine and chloramine effectively inhibited M. avium and H. vermiformis colonization. Pyrosequencing of 16S rRNA genes in coupon biofilms revealed a significant effect of GAC pre-treatment and disinfectant type on the microbial community structure. Overall, this study provides insights into the potential of different disinfectants and GAC biofilters at the treatment plant and in buildings to control downstream opportunistic pathogens and broader drinking water microbial communities.
Collapse
Affiliation(s)
- Hong Wang
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | | | | | |
Collapse
|
31
|
Stoquart C, Servais P, Bérubé PR, Barbeau B. Hybrid Membrane Processes using activated carbon treatment for drinking water: A review. J Memb Sci 2012. [DOI: 10.1016/j.memsci.2012.04.012] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Pinto AJ, Xi C, Raskin L. Bacterial community structure in the drinking water microbiome is governed by filtration processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:8851-9. [PMID: 22793041 DOI: 10.1021/es302042t] [Citation(s) in RCA: 269] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The bacterial community structure of a drinking water microbiome was characterized over three seasons using 16S rRNA gene based pyrosequencing of samples obtained from source water (a mix of a groundwater and a surface water), different points in a drinking water plant operated to treat this source water, and in the associated drinking water distribution system. Even though the source water was shown to seed the drinking water microbiome, treatment process operations limit the source water's influence on the distribution system bacterial community. Rather, in this plant, filtration by dual media rapid sand filters played a primary role in shaping the distribution system bacterial community over seasonal time scales as the filters harbored a stable bacterial community that seeded the water treatment processes past filtration. Bacterial taxa that colonized the filter and sloughed off in the filter effluent were able to persist in the distribution system despite disinfection of finished water by chloramination and filter backwashing with chloraminated backwash water. Thus, filter colonization presents a possible ecological survival strategy for bacterial communities in drinking water systems, which presents an opportunity to control the drinking water microbiome by manipulating the filter microbial community. Grouping bacterial taxa based on their association with the filter helped to elucidate relationships between the abundance of bacterial groups and water quality parameters and showed that pH was the strongest regulator of the bacterial community in the sampled drinking water system.
Collapse
Affiliation(s)
- Ameet J Pinto
- Department of Civil and Environmental Engineering, University of Michigan, USA
| | | | | |
Collapse
|
33
|
Saeedi R, Naddafi K, Nabizadeh R, Mesdaghinia A, Nasseri S, Alimohammadi M, Nazmara S. Simultaneous Removal of Nitrate and Natural Organic Matter from Drinking Water Using a Hybrid Heterotrophic/Autotrophic/Biological Activated Carbon Bioreactor. ENVIRONMENTAL ENGINEERING SCIENCE 2012; 29:93-100. [PMID: 22479146 PMCID: PMC3267965 DOI: 10.1089/ees.2011.0077] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Accepted: 04/10/2011] [Indexed: 05/27/2023]
Abstract
Simultaneous removal of nitrate ([Formula: see text]) and natural organic matter (NOM) from drinking water using a hybrid heterotrophic/autotrophic/BAC bioreactor (HHABB) was studied in continuous mode. The HHABB consisted of three compartments: ethanol heterotrophic part, sulfur autotrophic part, and biological activated carbon (BAC)-part (including anoxic and aerobic sections). Experiments were performed with [Formula: see text] concentration 30 mg N/L, [Formula: see text] loading rate 0.72 kg N/m(3)/d, C : N ratio 0.53, and three concentrations of NOM (0.6, 2.6, and 5.7 mg C/L). Overall denitrification rate and efficiency of the HHABB were not affected by NOM concentration and were in the suitable ranges of 0.69-0.70 kg N/m(3)/d and 96.0%-97.7%, respectively. NOM removal at concentration 0.6 mg C/L was not efficient because of organic carbon replacement as soluble microbial products. At higher NOM concentrations, total NOM removal efficiencies were 55%-65%, 55%-70%, and 55%-65% for dissolved organic carbon, trihalomethane formation potential, and UV absorbance at 254 nm (UV(254)), respectively. The more efficient compartments of the HHABB for the removal of NOM were the ethanol heterotrophic phase and aerobic BAC-phase. The efficiency of the HHABB in the removal of NOM was considerable, and the effluent dissolved organic carbon and trihalomethane formation potential concentrations were relatively low. This study indicated that the HHABB without the anoxic BAC-phase could be a feasible alternative for simultaneous removal of [Formula: see text] and NOM from drinking water at full scale.
Collapse
Affiliation(s)
- Reza Saeedi
- Department of Environmental Health Engineering, School of Public Health and Center for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Kazem Naddafi
- Department of Environmental Health Engineering, School of Public Health and Center for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Nabizadeh
- Department of Environmental Health Engineering, School of Public Health and Center for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Mesdaghinia
- Department of Environmental Health Engineering, School of Public Health and Center for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Simin Nasseri
- Department of Environmental Health Engineering, School of Public Health and Center for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Alimohammadi
- Department of Environmental Health Engineering, School of Public Health and Center for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrokh Nazmara
- Department of Environmental Health Engineering, School of Public Health and Center for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Backwash intensity and frequency impact the microbial community structure and function in a fixed-bed biofilm reactor. Appl Microbiol Biotechnol 2012; 96:815-27. [PMID: 22258640 DOI: 10.1007/s00253-011-3838-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 12/07/2011] [Accepted: 12/09/2011] [Indexed: 10/14/2022]
Abstract
Linkages among bioreactor operation and performance and microbial community structure were investigated for a fixed-bed biofilm system designed to remove perchlorate from drinking water. Perchlorate removal was monitored to evaluate reactor performance during and after the frequency and intensity of the backwash procedure were changed, while the microbial community structure was studied using clone libraries and quantitative PCR targeting the 16S rRNA gene. When backwash frequency was increased from once per month to once per day, perchlorate removal initially deteriorated and then recovered, and the relative abundance of perchlorate-reducing bacteria (PRB) initially increased and then decreased. This apparent discrepancy suggested that bacterial populations other than PRB played an indirect role in perchlorate removal, likely by consuming dissolved oxygen, a competing electron acceptor. When backwash intensity was increased, the reactor gradually lost its ability to remove perchlorate, and concurrently the relative abundance of PRB decreased. The results indicated that changes in reactor operation had a profound impact on reactor performance through altering the microbial community structure. Backwashing is an important yet poorly characterized procedure when operating fixed-bed biofilm reactors. Compared to backwash intensity, changes in backwash frequency exerted less disturbance on the microbial community in the current study. If this finding can be confirmed in future work, backwash frequency may serve as the primary parameter when optimizing backwash procedures.
Collapse
|
35
|
|
36
|
Vahala R, Nieml RM, Kiuru H, Laukkanen R. The effect of GAC filtration on bacterial regrowth and nitrification in a simulated water main. J Appl Microbiol 2011; 85 Suppl 1:178S-185S. [PMID: 21182707 DOI: 10.1111/j.1365-2672.1998.tb05297.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A 16-month pilot study in two similar 1200 m water mains was conducted to determine the effects of granular activated carbon (GAC) filtration on drinking water quality in a distribution system. The results demonstrated that despite the higher initial disinfectant residue, the increase in bacteria in the conventionally treated and postozonated water was higher than in the water additionally treated with GAC filtration and u.v.-disinfection. Accordingly, a significant decline in assimilable organic carbon in the postozonated water was observed throughout the main, whereas in the GAC-filtered water this decline was shifted to the GAC filters. In the GAC-filtered water the conversion of ammonia to nitrite and nitrite to nitrate was more intense than in postozonated water. The findings confirm that GAC filtration increases the biological stability of drinking water even when treating cold humic waters in which biodegradation is generally limited by phosphorus. However, it appears that biological treatment favours the slow kinetics of nitrifying bacteria, thus allowing nitrification to occur even under cold water conditions in a distribution system.
Collapse
Affiliation(s)
- R Vahala
- Helsinki University of Technology, Laboratory of Environmental Engineering, Helsinki, Finland.
| | | | | | | |
Collapse
|
37
|
Zhu IX, Getting T, Bruce D. Review of biologically active filters in drinking water applications. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/j.1551-8833.2010.tb11364.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
38
|
Li M, Feng C, Zhang Z, Zhao R, Lei X, Chen R, Sugiura N. Application of an electrochemical-ion exchange reactor for ammonia removal. Electrochim Acta 2009. [DOI: 10.1016/j.electacta.2009.08.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Lei X, Li M, Zhang Z, Feng C, Bai W, Sugiura N. Electrochemical regeneration of zeolites and the removal of ammonia. JOURNAL OF HAZARDOUS MATERIALS 2009; 169:746-750. [PMID: 19411139 DOI: 10.1016/j.jhazmat.2009.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 04/01/2009] [Accepted: 04/02/2009] [Indexed: 05/27/2023]
Abstract
The electrochemical regeneration of zeolites was investigated with the objective of removing ammonia from water harmlessly and reusing the regeneration solution in an undivided electrochemical cell assembled with a Ti/IrO(2)-Pt anode and a Cu/Zn cathode. Zeolites could be completely regenerated through the electrochemical method in this study. With NaCl as a supporting electrolyte, the conversion rate of ammonia adsorbed by the zeolites into nitrogen gas was more that 96%, while the conversion rate to nitrate was less than 4%; no ammonia or nitrite was detected in the solution after electrolysis. The surface of the cathode appeared to be rougher after electrolysis than before. More nitrate was produced when the amount of NaCl was raised or when the current density was increased to the range of 20-60 mA/cm(2). The regeneration solution can be repeatedly reused over a long period of time with the proper amount of NaCl added to the solution. Even after the solution was reused for five times, it could still completely regenerate the zeolites, saving both water resources and the chemical reagent.
Collapse
Affiliation(s)
- Xiaohui Lei
- China Institute of Water Resources and Hydropower Research, Beijing, China
| | | | | | | | | | | |
Collapse
|
40
|
Ammonia-oxidizing bacteria and archaea in groundwater treatment and drinking water distribution systems. Appl Environ Microbiol 2009; 75:4687-95. [PMID: 19465520 DOI: 10.1128/aem.00387-09] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ammonia-oxidizing prokaryote (AOP) community in three groundwater treatment plants and connected distribution systems was analyzed by quantitative real-time PCR and sequence analysis targeting the amoA gene of ammonia-oxidizing bacteria (AOB) and archaea (AOA). Results demonstrated that AOB and AOA numbers increased during biological filtration of ammonia-rich anoxic groundwater, and AOP were responsible for ammonium removal during treatment. In one of the treatment trains at plant C, ammonia removal correlated significantly with AOA numbers but not with AOB numbers. Thus, AOA were responsible for ammonia removal in water treatment at one of the studied plants. Furthermore, an observed negative correlation between the dissolved organic carbon (DOC) concentration in the water and AOA numbers suggests that high DOC levels might reduce growth of AOA. AOP entered the distribution system in numbers ranging from 1.5 x 10(3) to 6.5 x 10(4) AOPs ml(-1). These numbers did not change during transport in the distribution system despite the absence of a disinfectant residual. Thus, inactive AOP biomass does not seem to be degraded by heterotrophic microorganisms in the distribution system. We conclude from our results that AOA can be commonly present in distribution systems and groundwater treatment, where they can be responsible for the removal of ammonia.
Collapse
|
41
|
Hallé C, Huck PM, Peldszus S, Haberkamp J, Jekel M. Assessing the performance of biological filtration as pretreatment to low pressure membranes for drinking water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:3878-3884. [PMID: 19544902 DOI: 10.1021/es803615g] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Although the use of ultrafiltration membranes in drinking water treatment is increasing, fouling remains a major challenge. The objective of this study was to evaluate rapid biological filtration (without coagulant addition) as a pretreatmentto reduce fouling. Surface water was first passed through a pilot scale roughing filter followed by two parallel anthracite/sand biofilters having different contact times, before being fed to the ultrafiltration membrane. As a chemical-free pretreatment, this novel application of biofiltration removes biopolymers (polysaccharides and proteins) that are the most important component of organic matter for fouling, as well as removing particulate matter. Biopolymer removal was influenced by contact time and temperature. The biofilter with the longer contact time led to greater reductions in both hydraulically reversible and irreversible fouling. The extent of hydraulically reversible fouling was related to the membrane influent biopolymer concentration, but the level of hydraulically irreversible fouling was not, indicating that the composition of the biopolymer fraction may have been important. Biofiltration as a simple and robust pretreatment may be particularly suited for small drinking water systems.
Collapse
Affiliation(s)
- Cynthia Hallé
- Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West, Ontario, Canada.
| | | | | | | | | |
Collapse
|
42
|
Buchanan W, Roddick F, Porter N. Removal of VUV pre-treated natural organic matter by biologically activated carbon columns. WATER RESEARCH 2008; 42:3335-3342. [PMID: 18502470 DOI: 10.1016/j.watres.2008.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 04/04/2008] [Accepted: 04/11/2008] [Indexed: 05/26/2023]
Abstract
A potential alternative water treatment process using VUV (185 nm+254 nm) irradiation followed by a biological treatment is described. The system uses sufficient VUV radiation (16J cm(-2)) to significantly enhance the production of biologically degradable moieties prior to treatment with biologically activated carbon (BAC). Two similar activated carbons were used, one virgin and one taken from a water treatment plant with an established biofilm. The VUV-BAC process decreased the overall dissolved organic carbon (DOC) concentration of a natural water sample by 54% and 44% for the virgin carbon and previously used BAC, respectively. Furthermore, VUV-BAC treatment decreased the trihalomethane (THM) formation potential (THMFP) by 60-70% and the haloacetic acid (HAA) formation potential (HAAFP) by 74%. The BAC systems effectively removed the hydrogen peroxide residual produced by VUV irradiation. Although nitrite formation can result from VUV treatment of natural organic matter (NOM), none was detected before or after BAC treatment.
Collapse
Affiliation(s)
- W Buchanan
- School of Civil, Environmental and Chemical Engineering, Melbourne, Victoria 3001, Australia
| | | | | |
Collapse
|
43
|
|
44
|
Lou JC, Lin YC. Assessing the feasibility of wastewater recycling and treatment efficiency of wastewater treatment units. ENVIRONMENTAL MONITORING AND ASSESSMENT 2008; 137:471-9. [PMID: 17503196 DOI: 10.1007/s10661-007-9782-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 04/06/2007] [Indexed: 05/15/2023]
Abstract
Wastewater reuse can significantly reduce environmental pollution and save the water sources. The study selected Cheng-Ching Lake water treatment plant in southern Taiwan to discuss the feasibility of wastewater recycling and treatment efficiency of wastewater treatment units. The treatment units of this plant include wastewater basin, sedimentation basin, sludge thickener and sludge dewatering facility. In this study, the treatment efficiency of SS and turbidity were 48.35-99.68% and 24.15-99.36%, respectively, showing the significant removal efficiency of the wastewater process. However, the removal efficiencies of NH(3)-N, total organic carbon (TOC) and chemical oxygen demand (COD) are limited by wastewater treatment processes. Because NH(3)-N, TOC and COD of the mixing supernatant and raw water are regulated raw water quality standards, supernatant reuse is feasible and workable during wastewater processes at this plant. Overall, analytical results indicated that supernatant reuse is feasible.
Collapse
Affiliation(s)
- Jie-Chung Lou
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
| | | |
Collapse
|
45
|
Liu Y, Li J. Role of Pseudomonas aeruginosa biofilm in the initial adhesion, growth and detachment of Escherichia coli in porous media. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:443-9. [PMID: 18284144 DOI: 10.1021/es071861b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
This study systematically investigated the impact of Pseudomonas aeruginosa biofilm on the initial adhesion, growth, and detachment of indicator bacteria Escherichia coli JM109 in porous media. Two P. aeruginosa strains, the mucoid PD0300 and wide type PA01 with different extracellular polymeric substance (EPS) composition and secretion capability, were used to grow biofilm in packed beds. Results from the column breakthrough curves and retained JM109 profiles show that the amount and composition of P. aeruginosa biofilm EPS have a profound impact on the deposition and retention of E. coli in porous media. PAO1 biofilm coating improved E. coli retention in the column, whereas PDO300 biofilm coating had only a small impact on E. coli removal. Biofilm surface hydrophobicity and polymeric interactions between the biofilm and E. coli cell surfaces were found to play important roles in controlling the distribution of E. coli along the columns. After initial attachment, E. coli bacteria were able to survive and grow at similar growth rates in columns coated with either PAO1 or PDO300 biofilms with a relatively low nutrient supply. Biofilm detachment was the major mechanism that introduced E. coli bacteria to the bulk fluid long after the contamination event when E. coli cells became an integral part of the biofilm. Findings of this study suggest that biofilm plays a significant role in controlling the initial attachment, growth, and survival of bacteria in porous media, and that the interaction between bacteria and biofilm surfaces should be considered when predicting bacterial and pathogen migration in the environment.
Collapse
Affiliation(s)
- Yang Liu
- Department of Civil Engineering and Mechanics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, USA
| | | |
Collapse
|
46
|
Emelko MB, Huck PM, Coffey BM, Smith EF. Effects of Media, Backwash, and Temperature on Full-Scale Biological Filtration. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/j.1551-8833.2006.tb07824.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
47
|
Electrolytic decomposition of ammonia to nitrogen in a multi-cell-stacked electrolyzer with a self-pH-adjustment function. J APPL ELECTROCHEM 2006. [DOI: 10.1007/s10800-006-9234-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
48
|
Li J, McLellan S, Ogawa S. Accumulation and fate of green fluorescent labeled Escherichia coli in laboratory-scale drinking water biofilters. WATER RESEARCH 2006; 40:3023-3028. [PMID: 16904721 DOI: 10.1016/j.watres.2006.06.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 06/15/2006] [Accepted: 06/27/2006] [Indexed: 05/11/2023]
Abstract
Biological filters combining microbial activity and rapid sand filtration are used in drinking water treatment plants for enhanced biodegradable organic matters (BOM) removal. Biofilms formed on filter media comprised of bacteria enclosed in a polymeric matrix are responsible for the adsorption of BOM and attachment of planktonic microorganisms. This study investigated the removal of Escherichia coli cells injected into laboratory-scale biofilters and the role of biofilm in retaining the injected E. coli. Green fluorescent protein was used as a specific marker to detect and quantify E. coli in the biofilms. About 35% of the total injected E. coli cells were observed in the filter effluents, when initial cell concentrations were measured at 7.4 x 10(6) CFU/mL and 1.6 x 10(7) CFU/mL in two separate experiments. The results from real-time PCR and plate count analysis indicated that 95% of the E. coli retained inside the filters were either non-viable or could not be recovered by colony counting techniques. Injected cells were unevenly distributed inside the filter with more than 70% located at the top 1/5 of the filter. Images obtained from an epifluorescent microscope showed that E. coli cells were embedded inside the biofilm matrix and presented mainly as microcolonies intertwined with other microorganisms, which was consistent with findings from standard plate count methods and qPCR.
Collapse
Affiliation(s)
- J Li
- Department of Civil Engineering and Mechanics, University of Wisconsin-Milwaukee, EMS 784, 3200 N. Cramer Street, Milwaukee, WI 53201, USA.
| | - S McLellan
- Great Lakes WATER Institute, University of Wisconsin-Milwaukee, 600 E. Greenfield Ave., Milwaukee, WI 53204, USA
| | - S Ogawa
- Department of Civil Engineering and Mechanics, University of Wisconsin-Milwaukee, EMS 784, 3200 N. Cramer Street, Milwaukee, WI 53201, USA; Great Lakes WATER Institute, University of Wisconsin-Milwaukee, 600 E. Greenfield Ave., Milwaukee, WI 53204, USA
| |
Collapse
|
49
|
Good MS, Wend CF, Bond LJ, Mclean JS, Panetta PD, Ahmed S, Crawford SL, Daly DS. An estimate of biofilm properties using an acoustic microscope. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2006; 53:1637-48. [PMID: 16964914 DOI: 10.1109/tuffc.2006.1678192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Noninvasive measurements over a biofilm, a three-dimensional (3-D) community of microorganisms immobilized at a substratum, were made using an acoustic microscope operating at frequencies up to 70 MHz. The microscope scanned a 2.5-mm by 2.5-mm region of a living biofilm having a nominal thickness of 100 microm. Spatial variation of surface heterogeneity, thickness, interior structure, and biomass were estimated. Thickness was estimated as the product of the speed of sound of the medium and the interim between the highest signal peak and that of the substratum plane without biofilm. The thickest portions of biofilm were 145 microm; however, slender structures attributed as streamers extended above, with one obtaining a 274-microm height above the substratum. Three-dimensional iso-contours of amplitude were used to estimate the internal structure of the biofilm. Backscatter amplitude was examined at five zones of increasing height from the substratum to examine biomass distribution. Ultrasound-based estimates of thickness were corroborated with optical microscopy. The experimental acoustic and optical systems, methods used to estimate biofilm properties, and potential applications for the resulting data are discussed.
Collapse
Affiliation(s)
- Morris S Good
- Laboratory Directed Research and Development Program, Northwest National Laboratory, Richland, WA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Kim KW, Kim YJ, Kim IT, Park GI, Lee EH. Electrochemical conversion characteristics of ammonia to nitrogen. WATER RESEARCH 2006; 40:1431-41. [PMID: 16545859 DOI: 10.1016/j.watres.2006.01.042] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 12/28/2005] [Accepted: 01/21/2006] [Indexed: 05/07/2023]
Abstract
In order to evaluate the electrolytic decomposition characteristics of ammonia to nitrogen, this work has studied several experimental variables of electrolytic ammonia decomposition. The effects of the pH and the chloride ion in the solution, kinds of anodes such as IrO(2,) RuO(2), and Pt on the electrolytic decomposition of ammonia were compared, and the existence of a membrane equipped in the cell, the changes of the current density, the initial ammonia concentration, and so on were investigated for the decomposition. The performances of the electrode were totally in the order of RuO(2) approximately IrO(2) > Pt in both the acid and alkali conditions. The ammonia decomposition was the highest at a current density of 80 mA/cm(2), over which it decreased, because the adsorption of the ammonia at the electrode surface was hindered by the hydroxyl ions in the solution. The ammonia decomposition yield increased with the concentration of the chloride ion in the solution. However, the increment rate became much lesser over 10 g/l of the chloride ion. The RuO(2) electrode among the tested anodes generated the most OH radicals which could oxidize the ammonium ion at pH 7.
Collapse
Affiliation(s)
- Kwang-Wook Kim
- Korea Atomic Energy Research Institute, 150 Dukjin, Yusong, Daejeon, 305-600, Korea.
| | | | | | | | | |
Collapse
|