1
|
Liu N, Zhang B, Lin N. Review on the role of autophagy in the toxicity of nanoparticles and the signaling pathways involved. Chem Biol Interact 2025; 406:111356. [PMID: 39701490 DOI: 10.1016/j.cbi.2024.111356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
As the development of nanotechnology, the application of nanoproducts and the advancement of nanomedicine, the contact of nanoparticles (NPs) with human body is becoming increasingly prevalent. This escalation elevates the risk of NPs exposure for workers, consumers, researchers, and both aquatic and terrestrial organisms throughout the production, usage, and disposal stages. Consequently, evaluating nanotoxicity remains critically important, though standardized assessment criteria are still lacking. The diverse and complex properties of NPs further complicate the understanding of their toxicological mechanisms. Autophagy, a fundamental cellular process, exhibits dual functions-both pro-survival and pro-death. This review offers an updated perspective on the dual roles of autophagy in nanotoxicity and examines the factors influencing autophagic responses. However, no definitive framework exists for predicting NPs-induced autophagy. Beyond the conventional autophagy pathways, the review highlights specific transcription factors activated by NPs and explores metabolic reprogramming. Particular attention is given to NPs-induced selective autophagy, including mitophagy, ER-phagy, ferritinophagy, lysophagy, and lipophagy. Additionally, the review investigates autophagy's involvement in NPs-mediated biological processes such as ferroptosis, inflammation, macrophage polarization, epithelial-mesenchymal transition, tumor cell proliferation and drug resistance, as well as liver and kidney injury, neurotoxicity, and other diseases. In summary, this review presents a novel update on selective autophagy-mediated nanotoxicity and elucidates the broader interactions of autophagy in NPs-induced biological processes. Collectively, these insights offer valuable strategies for mitigating nanotoxicity through autophagy modulation and advancing the development of NPs in biomedical applications.
Collapse
Affiliation(s)
- Na Liu
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
| | - Bo Zhang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China.
| | - Nengming Lin
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China.
| |
Collapse
|
2
|
Başak F, Kuşat T, Ersan Y, Kahraman T. Titanium dioxide-induced fibrotic liver model and the therapeutic effect of resveratrol by modulation of α-SMA and 8-oHdG expressions, oxidative stress, and inflammation. Tissue Cell 2025; 93:102748. [PMID: 39847895 DOI: 10.1016/j.tice.2025.102748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 01/25/2025]
Abstract
The research sought to assess the therapeutic impact of resveratrol by biochemical, immunohistochemical, and histopathological analyses in a TiO2-induced liver fibrosis model. Titanium dioxide (100 mg/kg body weight) was delivered for 15 days to induce liver fibrosis, either alone or in conjunction with resveratrol (30 mg/kg body weight) therapy for the same duration. Resveratrol has been identified as a crucial therapeutic drug that provides an alternative treatment method for TiO2-induced liver fibrosis by mitigating inflammation, oxidative stress, and the expressions of α-SMA and 8-OHdG. Resveratrol treatment mitigated TiO2-induced liver fibrosis by repairing hepatocellular injury and decreasing plasma AST, ALT, and ALP levels. Resveratrol improves the activity of superoxide dismutase (SOD) and catalase (CAT), crucial enzymes for antioxidant defense, and elevates glutathione peroxidase (GSH-Px) levels, so augmenting antioxidant function. Furthermore, resveratrol decreased hepatic inflammation (IL-6 and IL-1β) and oxidative stress markers. Furthermore, histological alterations and immunohistochemistry expression of α-SMA and 8-OhdG were reinstated after resveratrol administration in the TiO2-induced liver fibrosis model. Our research indicates that resveratrol administration effectively protects against liver fibrosis produced by TiO2.
Collapse
Affiliation(s)
- Feyza Başak
- Karabuk University, Faculty of Medicine, Department of Histology and Embryology, Karabuk, Turkey.
| | - Tansu Kuşat
- Karabuk University, Faculty of Medicine, Department of Histology and Embryology, Karabuk, Turkey
| | - Yusuf Ersan
- Karabuk University, Faculty of Medicine, Department of Histology and Embryology, Karabuk, Turkey
| | - Tahir Kahraman
- Karabuk University, Faculty of Medicine, Department of Medical Biochemistry, Karabuk, Turkey
| |
Collapse
|
3
|
Muhammad W, Liang M, Wang B, Xie J, Ahmed W, Gao C. NAC-Grafted ROS-Scavenging Polymer Nanoparticles for Modulation of Acute Lung Injury Microenvironment In Vivo. Biomacromolecules 2025; 26:528-540. [PMID: 39729531 DOI: 10.1021/acs.biomac.4c01290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
N-Acetyl cysteine (NAC) is an essential molecule that boosts acute lung injury (ALI) defense via its direct antioxidant capability. Nevertheless, the therapeutic use of NAC is limited due to its poor bioavailability and short half-life. In this study, NAC was grafted to the polyurethane consisting of poly(propylene fumarate), poly(thioketal), and 1,6-hexamethylene diisocyanate (PFTU) to reduce excessive oxidative stress and inflammatory factors in ALI. The NAC-grafted polymer nanoparticles (NPT@NPs) were prepared as a drug delivery system, which could effectively scavenge free radicals and reduce inflammation in vitro. The administration of NPT@NPs exhibited notable efficacy in ameliorating pulmonary edema, attenuating the presence of inflammatory cells, suppressing myeloperoxidase expression, diminishing the levels of pro-inflammatory cytokines, and reversing cell apoptosis in an ALI model induced by lipopolysaccharide (LPS). The NPT@NPs demonstrated significantly better efficacy compared to the free NAC in mitigating the deleterious effects of LPS on pulmonary tissue, thereby providing more effective protection against pulmonary inflammation.
Collapse
Affiliation(s)
- Wali Muhammad
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Min Liang
- Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312099, China
| | - Beiduo Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jieqi Xie
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Wajiha Ahmed
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
- Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312099, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Kim EH, Baek SM, Park HJ, Bian Y, Chung HY, Bae ON. Polystyrene nanoplastics promote the blood-brain barrier dysfunction through autophagy pathway and excessive erythrophagocytosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117471. [PMID: 39657384 DOI: 10.1016/j.ecoenv.2024.117471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/24/2024] [Accepted: 12/03/2024] [Indexed: 12/12/2024]
Abstract
There is increasing concern regarding the risks posed by plastics to human health. Nano-sized plastics enter the body through various exposure routes. Although nano-sized particles circulate through the bloodstream and access the blood-brain barrier (BBB), the harmful impacts of nano-sized plastics on BBB function including endothelial cells are not well known. In this study, polystyrene nanoplastics (PS-NP) resulted in hyperpermeability and damaged tight junction proteins in brain endothelial cells. We identified that PS-NP increased intracellular iron levels by inhibiting the autophagy pathway in brain endothelial cells. Our study showed that dysregulated autophagy pathways led to increased BBB permeability induced by PS-NP treatment. In addition, PS-NP caused excessive erythrophagocytosis in brain endothelial cells via damaged red blood cells. PS-NP-treated RBCs (NP-RBC) induced the BBB dysfunction and increased intracellular iron levels and ferroptosis in brain endothelial cells. We provide novel insights into the potential risks of nano-sized plastics in BBB function by interaction between cells as well as direct exposure. Our study will help to understand the cardiovascular toxicity of nano-sized plastics.
Collapse
Affiliation(s)
- Eun-Hye Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Seung Mi Baek
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Han Jin Park
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Yiying Bian
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Han Young Chung
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ok-Nam Bae
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 15588, Republic of Korea.
| |
Collapse
|
5
|
Sharma I, Bhardwaj S, Karwasra R, Kaushik D, Sharma S. The Emergence of Nanotechnology in the Prognosis and Treatment of Myocardial Infarctions. RECENT PATENTS ON NANOTECHNOLOGY 2025; 19:35-55. [PMID: 37904554 DOI: 10.2174/1872210517666230721123453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 11/01/2023]
Abstract
Myocardial infarction (MI), commonly known as a heart attack, is a critical cardiovascular condition associated with high morbidity and mortality rates worldwide. Despite significant advancements in traditional treatment modalities, there remains a need for innovative approaches to improve the prognosis and treatment outcomes of MI. The emergence of nanotechnology has provided a promising avenue for revolutionizing the management of this life-threatening condition. This manuscript aims to explore the role of nanotechnology in the prognosis and treatment of myocardial infarctions. Nanotechnology offers unique advantages in the field of cardiovascular medicine, including targeted drug delivery, precise imaging and diagnosis, regenerative medicine approaches, biosensors and monitoring, and the integration of therapy and diagnostics (theragnostic). One of the key advantages of nanotechnology is the ability to deliver therapeutic agents directly to the affected site. Nanoparticles can be engineered to carry drugs specifically to damaged heart tissue, enhancing their efficacy while minimizing off-target effects. Additionally, nanoparticles can serve as contrast agents, facilitating high-resolution imaging and accurate diagnosis of infarcted heart tissue. Furthermore, nanotechnology-based regenerative approaches show promise in promoting tissue healing and regeneration after MI. Nanomaterials can provide scaffolding structures or release growth factors to stimulate the growth of new blood vessels and support tissue repair. This regenerative potential holds significant implications for restoring cardiac function and minimizing long-term complications. Nanotechnology also enables real-time monitoring of critical parameters within the heart, such as oxygen levels, pH, and electrical activity, through the utilization of nanoscale devices and sensors. This capability allows for the early detection of complications and facilitates timely interventions. Moreover, the integration of therapy and diagnostics through nanotechnology- based platforms, known as theragnostic, holds tremendous potential. Nanoparticles can simultaneously deliver therapeutic agents while providing imaging capabilities, enabling personalized treatment strategies tailored to individual patients. This manuscript will review the recent advancements, clinical trials, and patents in nanotechnology for the prognosis and treatment of myocardial infarctions. By leveraging nanotechnology's unique properties and applications, researchers and clinicians can develop innovative therapeutic approaches that enhance patient outcomes, improve prognosis, and ultimately revolutionize the management of myocardial infarctions.
Collapse
Affiliation(s)
- Isha Sharma
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram, 122018, India
| | - Shivani Bhardwaj
- ICAR- Central Institute for Research on Buffaloes Hisar, Haryana, 125001, India
| | - Ritu Karwasra
- Central Council for Research in Unani Medicine, Ministry of Ayush, Govt. of India, New Delhi, 110058, India
| | - Dhirender Kaushik
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram, 122018, India
| | - Shivkant Sharma
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram, 122018, India
| |
Collapse
|
6
|
Alam MW, Junaid PM, Gulzar Y, Abebe B, Awad M, Quazi SA. Advancing agriculture with functional NM: "pathways to sustainable and smart farming technologies". DISCOVER NANO 2024; 19:197. [PMID: 39636344 PMCID: PMC11621287 DOI: 10.1186/s11671-024-04144-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024]
Abstract
The integration of nanotechnology in agriculture offers a transformative approach to improving crop yields, resource efficiency, and ecological sustainability. This review highlights the application of functional NM, such as nano-formulated agrochemicals, nanosensors, and slow-release fertilizers, which enhance the effectiveness of fertilizers and pesticides while minimizing environmental impacts. By leveraging the unique properties of NM, agricultural practices can achieve better nutrient absorption, reduced chemical runoff, and improved water conservation. Innovations like nano-priming can enhance seed germination and drought resilience, while nanosensors enable precise monitoring of soil and crop health. Despite the promising commercial potential, significant challenges persist regarding the safety, ecological impact, and regulatory frameworks for nanomaterial use. This review emphasizes the need for comprehensive safety assessments and standardized risk evaluation protocols to ensure the responsible implementation of nanotechnology in agriculture.
Collapse
Affiliation(s)
- Mir Waqas Alam
- Department of Physics, College of Science, King Faisal University, 31982, Al-Ahsa, Saudi Arabia.
| | - Pir Mohammad Junaid
- Department of Post Harvest Engineering and Technology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, India
| | - Yonis Gulzar
- Department of Management Information Systems, College of Business Administration, King Faisal University, 31982, Al-Ahsa, Saudi Arabia
| | - Buzuayehu Abebe
- Department of Applied Chemistry, School of Applied Natural Sciences, Adama Science and Technology University, P.O. Box: 1888, Adama, Ethiopia.
| | - Mohammed Awad
- Department of Chemical Engineering, Toronto Metropolitan University, Toronto, ON, Canada
| | - S A Quazi
- Bapumiya Sirajoddin Patel Arts, Commerce and Science College, Pimpalgaon Kale, Jalgaon Jamod Dist, Buldhana, Maharashtra, India
| |
Collapse
|
7
|
Xiao X, Trinh TX, Gerelkhuu Z, Ha E, Yoon TH. Automated machine learning in nanotoxicity assessment: A comparative study of predictive model performance. Comput Struct Biotechnol J 2024; 25:9-19. [PMID: 38414794 PMCID: PMC10899003 DOI: 10.1016/j.csbj.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/24/2024] [Accepted: 02/05/2024] [Indexed: 02/29/2024] Open
Abstract
Computational modeling has earned significant interest as an alternative to animal testing of toxicity assessment. However, the process of selecting an appropriate algorithm and fine-tuning hyperparameters for the developing of optimized models takes considerable time, expertise, and an intensive search. The recent emergence of automated machine learning (autoML) approaches, available as user-friendly platforms, has proven beneficial for individuals with limited knowledge in ML-based predictive model development. These autoML platforms automate crucial steps in model development, including data preprocessing, algorithm selection, and hyperparameter tuning. In this study, we used seven previously published and publicly available datasets for oxides and metals to develop nanotoxicity prediction models. AutoML platforms, namely Vertex AI, Azure, and Dataiku, were employed and performance measures such as accuracy, F1 score, precision, and recall for these autoML-based models were then compared with those of conventional ML-based models. The results demonstrated clearly that the autoML platforms produced more reliable nanotoxicity prediction models, outperforming those built with conventional ML algorithms. While none of the three autoML platforms significantly outperformed the others, distinctions exist among them in terms of the available options for choosing technical features throughout the model development steps. This allows users to select an autoML platform that aligns with their knowledge of predictive model development and its technical features. Additionally, prediction models constructed from datasets with better data quality displayed, enhanced performance than those built from datasets with lower data quality, indicating that future studies with high-quality datasets can further improve the performance of those autoML-based prediction models.
Collapse
Affiliation(s)
- Xiao Xiao
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, the Republic of Korea
| | - Tung X Trinh
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, the Republic of Korea
- Institute of Next Generation Material Design, Hanyang University, Seoul 04763, the Republic of Korea
| | - Zayakhuu Gerelkhuu
- Institute of Next Generation Material Design, Hanyang University, Seoul 04763, the Republic of Korea
- Yoon Idea Lab. Co. Ltd, Seoul 04763, the Republic of Korea
| | - Eunyong Ha
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, the Republic of Korea
| | - Tae Hyun Yoon
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, the Republic of Korea
- Institute of Next Generation Material Design, Hanyang University, Seoul 04763, the Republic of Korea
- Yoon Idea Lab. Co. Ltd, Seoul 04763, the Republic of Korea
| |
Collapse
|
8
|
Liu CH, Rethi L, Weng PW, Trung Nguyen H, Chuang AEY. Cutting-edge advances in nano/biomedicine: A review on transforming thrombolytic therapy. Biochem Pharmacol 2024; 229:116523. [PMID: 39251141 DOI: 10.1016/j.bcp.2024.116523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Thrombotic blockages within blood vessels give rise to critical cardiovascular disorders, including ischemic stroke, venous thromboembolism, and myocardial infarction. The current approach to the therapy of thrombolysis involves administering Plasminogen Activators (PA), but it is hindered by fast drug elimination, narrow treatment window, and the potential for bleeding complications. Leveraging nanomedicine to encapsulate and deliver PA offers a solution by improving the efficacy of therapy, safeguarding the medicine from proteinase biodegradation, and reducing unwanted effects in in vivo trials. In this review, we delve into the underlying venous as well as arterial thrombus pathophysiology and provide an overview of clinically approved PA used to address acute thrombotic conditions. We explore the existing challenges and potential directions within recent pivotal research on a variety of targeted nanocarriers, such as lipid, polymeric, inorganic, and biological carriers, designed for precise delivery of PA to specific sites. We also discuss the promising role of microbubbles and ultrasound-assisted Sono thrombolysis, which have exhibited enhanced thrombolysis in clinical studies. Furthermore, our review delves into approaches for the strategic development of nano-based carriers tailored for targeting thrombolytic action and efficient encapsulation of PA, considering the intricate interaction in biology systems as well as nanomaterials. In conclusion, the field of nanomedicine offers a valuable method for the exact and effective therapy of severe thrombus conditions, presenting a pathway toward improved patient outcomes and reduced complications.
Collapse
Affiliation(s)
- Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan; Department of Urology, Shuang Ho Hospital, Taipei Medical University, 291 Zhongzheng Road, Zhonghe District, New Taipei City 23561, Taiwan
| | - Lekshmi Rethi
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Pei-Wei Weng
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Viet Nam
| | - Andrew E-Y Chuang
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei 11696, Taiwan.
| |
Collapse
|
9
|
Abdel-Azeem HH, Mohamed AH, Osman GY, AbdElhafez AR, Sheir SK. The potential ameliorative role of Dimercaptosuccinic acid against the toxicity of Titanium Dioxide Nanoparticles on Caelatura nilotica clams. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:1053-1065. [PMID: 39034478 DOI: 10.1002/jez.2848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 07/23/2024]
Abstract
The prevalent use of nanoparticles has adverse negative effects on biosystems. Subsequently, this study aimed to use Caelatura nilotica to assess the ecotoxicity of TiO2 NPs and how Dimercaptosuccinic acid (DMSA) improves these effects. Two concentrations of TiO2 NPs (25 and 150 µg/L) were used for 28 days. TiO2 NPs bioaccumulation, gonadal weight, gonado-somatic index, and histopathological alterations of gonads were determined. The tissues' accumulation of TiO2 NPs was concentration-time-dependent: it was 78.5 ± 28.93 μg/g dry weight in the exposed clams to 150 µg/L TiO2 NPs after 4 weeks of exposure. The gonadal weight and gonado-somatic index significantly decreased of the exposed group to 150 µg/L TiO2 NPs over the experimental period that they ended with values (1.01 ± 0.57 gm, 19.15 ± 7.75%, respectively). There are some histological alterations in the gonads of C. nilotica such as necrosis, deteriorated connective tissue, increased fibrous tissue, a reduced presence of mature sperms and mature ova, and irregular shapes of testicular/ovarian follicles. When using Dimercaptosuccinic acid (DMSA), this led to a reduction in accumulation of TiO2 NPs by the end of the experiment. So, C. nilotica is a promising model to reflect the adverse nano-toxics. DMSA emerges as a potentially valuable chelating agent that abolishes the negative effects of these nanoparticles.
Collapse
Affiliation(s)
- Hoda H Abdel-Azeem
- Department of Zoology, Faculty of Sciences, Menoufia University, Shebeen El-Koom, Egypt
| | - Azza H Mohamed
- Department of Zoology, Faculty of Sciences, Menoufia University, Shebeen El-Koom, Egypt
| | - Gamalat Y Osman
- Department of Zoology, Faculty of Sciences, Menoufia University, Shebeen El-Koom, Egypt
| | | | - Sherin K Sheir
- Department of Zoology, Faculty of Sciences, Menoufia University, Shebeen El-Koom, Egypt
| |
Collapse
|
10
|
Scanlon SE, Shanahan RM, Bin-Alamer O, Bouras A, Mattioli M, Huq S, Hadjipanayis CG. Sonodynamic therapy for adult-type diffuse gliomas: past, present, and future. J Neurooncol 2024; 169:507-516. [PMID: 39042302 DOI: 10.1007/s11060-024-04772-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/06/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Intra-axial brain tumors persist as significant clinical challenges. Aggressive surgical resection carries risk of morbidity, and the blood-brain barrier (BBB) prevents optimal pharmacological interventions. There is a clear clinical demand for innovative and less invasive therapeutic strategies for patients, especially those that can augment established treatment protocols. Focused ultrasound (FUS) has emerged as a promising approach to manage brain tumors. Sonodynamic therapy (SDT), a subset of FUS, utilizes sonosensitizers activated by ultrasound waves to generate reactive oxygen species (ROS) and induce tumor cell death. OBJECTIVE This review explores the historical evolution and rationale behind SDT, focusing on its mechanisms of action and potential applications in brain tumor management. METHOD A systematic review was conducted using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. RESULTS Preclinical studies have demonstrated the efficacy of various sonosensitizers, including 5-aminolevulinic acid (5-ALA), fluorescein, porphyrin derivatives, and nanoparticles, in conjunction with FUS for targeted tumor therapy and BBB disruption. Clinical trials have shown promising results in terms of safety and efficacy, although further research is needed to fully understand the potential adverse effects and optimize treatment protocols. Challenges such as skull thickness affecting FUS penetration, and the kinetics of BBB opening require careful consideration for the successful implementation of SDT in clinical practice. Future directions include comparative studies of different sonosensitizers, optimization of FUS parameters, and exploration of SDT's immunomodulatory effects. CONCLUSION SDT represents a promising frontier in the treatment of aggressive brain tumors, offering hope for improved patient outcomes.
Collapse
Affiliation(s)
- Sydney E Scanlon
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Regan M Shanahan
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Othman Bin-Alamer
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Alexandros Bouras
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Milena Mattioli
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Sakibul Huq
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | | |
Collapse
|
11
|
Lu D, Fan X. Insights into the prospects of nanobiomaterials in the treatment of cardiac arrhythmia. J Nanobiotechnology 2024; 22:523. [PMID: 39215361 PMCID: PMC11363662 DOI: 10.1186/s12951-024-02805-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Cardiac arrhythmia, a disorder of abnormal electrical activity of the heart that disturbs the rhythm of the heart, thereby affecting its normal function, is one of the leading causes of death from heart disease worldwide and causes millions of deaths each year. Currently, treatments for arrhythmia include drug therapy, radiofrequency ablation, cardiovascular implantable electronic devices (CIEDs), including pacemakers, defibrillators, and cardiac resynchronization therapy (CRT). However, these traditional treatments have several limitations, such as the side effects of medication, the risks of device implantation, and the complications of invasive surgery. Nanotechnology and nanomaterials provide safer, effective and crucial treatments to improve the quality of life of patients with cardiac arrhythmia. The large specific surface area, controlled physical and chemical properties, and good biocompatibility of nanobiomaterials make them promising for a wide range of applications, such as cardiovascular drug delivery, tissue engineering, and the diagnosis and therapeutic treatment of diseases. However, issues related to the genotoxicity, cytotoxicity and immunogenicity of nanomaterials remain and require careful consideration. In this review, we first provide a brief overview of cardiac electrophysiology, arrhythmia and current treatments for arrhythmia and discuss the potential applications of nanobiomaterials before focusing on the promising applications of nanobiomaterials in drug delivery and cardiac tissue repair. An in-depth study of the application of nanobiomaterials is expected to provide safer and more effective therapeutic options for patients with cardiac arrhythmia, thereby improving their quality of life.
Collapse
Affiliation(s)
- Dingkun Lu
- Cardiac Arrhythmia Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaohan Fan
- Cardiac Arrhythmia Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
12
|
Huang H, Zheng Y, Chang M, Song J, Xia L, Wu C, Jia W, Ren H, Feng W, Chen Y. Ultrasound-Based Micro-/Nanosystems for Biomedical Applications. Chem Rev 2024; 124:8307-8472. [PMID: 38924776 DOI: 10.1021/acs.chemrev.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Due to the intrinsic non-invasive nature, cost-effectiveness, high safety, and real-time capabilities, besides diagnostic imaging, ultrasound as a typical mechanical wave has been extensively developed as a physical tool for versatile biomedical applications. Especially, the prosperity of nanotechnology and nanomedicine invigorates the landscape of ultrasound-based medicine. The unprecedented surge in research enthusiasm and dedicated efforts have led to a mass of multifunctional micro-/nanosystems being applied in ultrasound biomedicine, facilitating precise diagnosis, effective treatment, and personalized theranostics. The effective deployment of versatile ultrasound-based micro-/nanosystems in biomedical applications is rooted in a profound understanding of the relationship among composition, structure, property, bioactivity, application, and performance. In this comprehensive review, we elaborate on the general principles regarding the design, synthesis, functionalization, and optimization of ultrasound-based micro-/nanosystems for abundant biomedical applications. In particular, recent advancements in ultrasound-based micro-/nanosystems for diagnostic imaging are meticulously summarized. Furthermore, we systematically elucidate state-of-the-art studies concerning recent progress in ultrasound-based micro-/nanosystems for therapeutic applications targeting various pathological abnormalities including cancer, bacterial infection, brain diseases, cardiovascular diseases, and metabolic diseases. Finally, we conclude and provide an outlook on this research field with an in-depth discussion of the challenges faced and future developments for further extensive clinical translation and application.
Collapse
Affiliation(s)
- Hui Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yi Zheng
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Jun Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wei Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yu Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
13
|
Jiang M, Zhang GH, Yu Y, Zhao YH, Liu J, Zeng Q, Feng MY, Ye F, Xiong DS, Wang L, Zhang YN, Yu L, Wei JJ, He LB, Zhi W, Du XR, Li NJ, Han CL, Yan HQ, Zhou ZT, Miao YB, Wang W, Liu WX. De novo design of a nanoregulator for the dynamic restoration of ovarian tissue in cryopreservation and transplantation. J Nanobiotechnology 2024; 22:330. [PMID: 38862987 PMCID: PMC11167790 DOI: 10.1186/s12951-024-02602-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024] Open
Abstract
The cryopreservation and transplantation of ovarian tissue underscore its paramount importance in safeguarding reproductive capacity and ameliorating reproductive disorders. However, challenges persist in ovarian tissue cryopreservation and transplantation (OTC-T), including the risk of tissue damage and dysfunction. Consequently, there has been a compelling exploration into the realm of nanoregulators to refine and enhance these procedures. This review embarks on a meticulous examination of the intricate anatomical structure of the ovary and its microenvironment, thereby establishing a robust groundwork for the development of nanomodulators. It systematically categorizes nanoregulators and delves deeply into their functions and mechanisms, meticulously tailored for optimizing ovarian tissue cryopreservation and transplantation. Furthermore, the review imparts valuable insights into the practical applications and obstacles encountered in clinical settings associated with OTC-T. Moreover, the review advocates for the utilization of microbially derived nanomodulators as a potent therapeutic intervention in ovarian tissue cryopreservation. The progression of these approaches holds the promise of seamlessly integrating nanoregulators into OTC-T practices, thereby heralding a new era of expansive applications and auspicious prospects in this pivotal domain.
Collapse
Affiliation(s)
- Min Jiang
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Guo-Hui Zhang
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Yuan Yu
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yu-Hong Zhao
- School of Clinical Laboratory Medicine, Chengdu Medical College, Chengdu, 610083, China
| | - Jun Liu
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Qin Zeng
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Meng-Yue Feng
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Fei Ye
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Dong-Sheng Xiong
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Li Wang
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Ya-Nan Zhang
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Ling Yu
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Jia-Jing Wei
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Li-Bing He
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Weiwei Zhi
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Xin-Rong Du
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Ning-Jing Li
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Chang-Li Han
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - He-Qiu Yan
- School of Clinical Laboratory Medicine, Chengdu Medical College, Chengdu, 610083, China
| | - Zhuo-Ting Zhou
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yang-Bao Miao
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, China.
| | - Wen Wang
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, China.
| | - Wei-Xin Liu
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China.
| |
Collapse
|
14
|
Chu HW, Chen WJ, Liu KH, Mao JY, Harroun SG, Unnikrishnan B, Lin HJ, Ma YH, Chang HT, Huang CC. Carbonization of quercetin into nanogels: a leap in anticoagulant development. J Mater Chem B 2024; 12:5391-5404. [PMID: 38716492 DOI: 10.1039/d4tb00228h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Quercetin, a flavonoid abundantly found in onions, fruits, and vegetables, is recognized for its pharmacological potential, especially for its anticoagulant properties that work by inhibiting thrombin and coagulation factor Xa. However, its clinical application is limited due to poor water solubility and bioavailability. To address these limitations, we engineered carbonized nanogels derived from quercetin (CNGsQur) using controlled pyrolysis and polymerization techniques. This led to substantial improvements in its anticoagulation efficacy, water solubility, and biocompatibility. We generated a range of CNGsQur by subjecting quercetin to varying pyrolytic temperatures and then assessed their anticoagulation capacities both in vitro and in vivo. Coagulation metrics, including thrombin clotting time (TCT), activated partial thromboplastin time (aPTT), and prothrombin time (PT), along with a rat tail bleeding assay, were utilized to gauge the efficacy. CNGsQur showed a pronounced extension of coagulation time compared to uncarbonized quercetin. Specifically, CNGsQur synthesized at 270 °C (CNGsQur270) exhibited the most significant enhancement in TCT, with a binding affinity to thrombin exceeding 400 times that of quercetin. Moreover, variants synthesized at 310 °C (CNGsQur310) and 290 °C (CNGsQur290) showed the most substantial delays in PT and aPTT, respectively. Our findings indicate that the degree of carbonization significantly influences the transformation of quercetin into various CNGsQur forms, each affecting distinct coagulation pathways. Additionally, both intravenous and oral administrations of CNGsQur were found to extend rat tail bleeding times by up to fivefold. Our studies also demonstrate that CNGsQur270 effectively delays and even prevents FeCl3-induced vascular occlusion in a dose-dependent manner in mice. Thus, controlled pyrolysis offers an innovative approach for generating quercetin-derived CNGs with enhanced anticoagulation properties and water solubility, revealing the potential for synthesizing self-functional carbonized nanomaterials from other flavonoids for diverse biomedical applications.
Collapse
Affiliation(s)
- Han-Wei Chu
- Department of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan
| | - Wan-Jyun Chen
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan.
| | - Ko-Hsin Liu
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Ju-Yi Mao
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan.
| | - Scott G Harroun
- Department of Engineering Physics, Polytechnique Montréal, Montréal, Québec H3T 1J4, Canada
| | - Binesh Unnikrishnan
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan.
| | - Han-Jia Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan.
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Yunn-Hwa Ma
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Huan-Tsung Chang
- Department of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan
- Center for Advanced Biomaterials and Technology Innovation, Chang Gung University, Taoyuan 33302, Taiwan
- Division of Breast Surgery, Department of General Surgery, Chang-Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan.
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
15
|
Sharma N, Kurmi BD, Singh D, Mehan S, Khanna K, Karwasra R, Kumar S, Chaudhary A, Jakhmola V, Sharma A, Singh SK, Dua K, Kakkar D. Nanoparticles toxicity: an overview of its mechanism and plausible mitigation strategies. J Drug Target 2024; 32:457-469. [PMID: 38328920 DOI: 10.1080/1061186x.2024.2316785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Over the last decade, nanoparticles have found great interest among scientists and researchers working in various fields within the realm of biomedicine including drug delivery, gene delivery, diagnostics, targeted therapy and biomarker mapping. While their physical and chemical properties are impressive, there is growing concern about the toxicological potential of nanoparticles and possible adverse health effects as enhanced exposure of biological systems to nanoparticles may result in toxic effects leading to serious contraindications. Toxicity associated with nanoparticles (nanotoxicity) may include the undesired response of several physiological mechanisms including the distressing of cells by external and internal interaction with nanoparticles. However, comprehensive knowledge of nanotoxicity mechanisms and mitigation strategies may be useful to overcome the hazardous situation while treating diseases with therapeutic nanoparticles. With the same objectives, this review discusses various mechanisms of nanotoxicity and provides an overview of the current state of knowledge on the impact of nanotoxicity on biological control systems and organs including liver, brain, kidneys and lungs. An attempt also been made to present various approaches of scientific research and strategies that could be useful to overcome the effect of nanotoxicity during the development of nanoparticle-based systems including coating, doping, grafting, ligation and addition of antioxidants.
Collapse
Affiliation(s)
- Nitin Sharma
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Dilpreet Singh
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Sidharth Mehan
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Kushagra Khanna
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Ritu Karwasra
- Central Council for Research in Unani Medicine, Ministry of AYUSH, Janakpuri, New Delhi, India
| | - Shobhit Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET), Meerut, Uttar Pradesh, India
| | - Amit Chaudhary
- Chitkara University School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Vikash Jakhmola
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttrakhand, India
| | | | - Sachin Kumar Singh
- School of Pharmacy and Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, Australia
| | - Dipti Kakkar
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig SK Mazumdar Marg, Delhi, India
| |
Collapse
|
16
|
Huang Q, Tang J, Ding Y, Li F. Application and design considerations of ROS-based nanomaterials in diabetic kidney disease. Front Endocrinol (Lausanne) 2024; 15:1351497. [PMID: 38742196 PMCID: PMC11089164 DOI: 10.3389/fendo.2024.1351497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/12/2024] [Indexed: 05/16/2024] Open
Abstract
Diabetic nephropathy (DKD) is a common chronic complication of diabetes mellitus and an important cause of cardiovascular-related death. Oxidative stress is a key mechanism leading to diabetic nephropathy. However, the current main therapeutic approach remains combination therapy and lacks specific therapies targeting oxidative stress. With the development of nanotechnology targeting ROS, therapeutic fluids regarding their treatment of diabetic nephropathy have attracted attention. In this review, we provide a brief overview of various ROS-based nanomaterials for DKD, including ROS-scavenging nanomaterials, ROS-associated nanodelivery materials, and ROS-responsive nanomaterials. In addition, we summarize and discuss key factors that should be considered when designing ROS-based nanomaterials, such as biosafety, efficacy, targeting, and detection and monitoring of ROS.
Collapse
Affiliation(s)
| | | | - Yunchuan Ding
- Department of Endocrinology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Fangping Li
- Department of Endocrinology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
17
|
Cheng K, Pan Y, Yuan B. Cytotoxicity prediction of nano metal oxides on different lung cells via Nano-QSAR. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123405. [PMID: 38244905 DOI: 10.1016/j.envpol.2024.123405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/27/2023] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
In recent years, nanomaterials have found extensive applications across diverse domains owing to their distinctive physical and chemical characteristics. It is of great importance in theoretical and practical terms to carry out the relationship between structural characteristics of nanomaterials and different cytotoxicity and to achieve practical assessment and prediction of cytotoxicity. This study investigated the intrinsic quantitative constitutive relationships between the cytotoxicity of nano-metal oxides on human normal lung epithelial cells and human lung adenocarcinoma cells. We first employed quasi-SMILES-based nanostructural descriptors by selecting the five physicochemical properties that are most closely related to the cytotoxicity of nanometal oxides, then established SMILES-based descriptors that can effectively describe and characterize the molecular structure of nanometal oxides, and then built the corresponding Nano-Quantitative Structure-Activity Relationship (Nano-QSAR) prediction models, finally, combined with the theory of reactive oxygen species (ROS) biotoxicity, to reveal the mechanism of toxicity and differences between the two cell types. The established model can efficiently and accurately predict the properties of targets, reveal the corresponding toxicity mechanisms, and guide the safe design, synthesis, and application of nanometal oxides.
Collapse
Affiliation(s)
- Kaixiao Cheng
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, PR China.
| | - Yong Pan
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, PR China.
| | - Beilei Yuan
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, PR China
| |
Collapse
|
18
|
Chen M, Wu T. Nanoparticles and neurodegeneration: Insights on multiple pathways of programmed cell death regulated by nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168739. [PMID: 38008311 DOI: 10.1016/j.scitotenv.2023.168739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/13/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Currently, nanoparticles (NPs) are extensively applied in the diagnosis and treatment of neurodegenerative diseases (NDs). With the rapid development and increasing exposure to the public, the potential neurotoxicity associated with NDs caused by NPs has attracted the researchers' attentions but their biosafety assessments are still far behind relevant application studies. Based on recent research, this review aims to conduct a comprehensive and systematic analysis of neurotoxicity induced by NPs. The 191 studies selected according to inclusion and exclusion criteria were imported into the software, and the co-citations and keywords of the included literatures were analyzed to find the breakthrough point of previous studies. According to the available studies, the routes of NPs entering into the normal and injured brain were various, and then to be distributed and accumulated in living bodies. When analyzing the adverse effects induced by NPs, we focused on multiple programmed cell deaths (PCDs), especially ferroptosis triggered by NPs and their tight connection and crosstalk that have been found playing critical roles in the pathogenesis of NDs and their underlying toxic mechanisms. The activation of multiple PCD pathways by NPs provides a scientific basis for the occurrence and development of NDs. Furthermore, the adoption of new methodologies for evaluating the biosafety of NPs would benefit the next generation risk assessment (NGRA) of NPs and their toxic interventions. This would help ensure their safe application and sustainable development in the field of medical neurobiology.
Collapse
Affiliation(s)
- Min Chen
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, PR China.
| |
Collapse
|
19
|
Guo Y, Awais MM, Fei S, Xia J, Sun J, Feng M. Applications and Potentials of a Silk Fibroin Nanoparticle Delivery System in Animal Husbandry. Animals (Basel) 2024; 14:655. [PMID: 38396623 PMCID: PMC10885876 DOI: 10.3390/ani14040655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Silk fibroin (SF), a unique natural polymeric fibrous protein extracted from Bombyx mori cocoons, accounts for approximately 75% of the total mass of silk. It has great application prospects due to its outstanding biocompatibility, biodegradability, low immunogenicity, and mechanical stability. Additionally, it is non-toxic and environmentally friendly. Nanoparticle delivery systems constructed with SF can improve the bioavailability of the carriers, increase the loading rates, control the release behavior of the deliverables, and enhance their action efficiencies. Animal husbandry is an integral part of agriculture and plays a vital role in the development of the rural economy. However, the pillar industry experiences a lot of difficulties, like drug abuse while treating major animal diseases, and serious environmental pollution, restricting sustainable development. Interestingly, the limited use cases of silk fibroin nanoparticle (SF NP) delivery systems in animal husbandry, such as veterinary vaccines and feed additives, have shown great promise. This paper first reviews the SF NP delivery system with regard to its advantages, disadvantages, and applications. Moreover, we describe the application status and developmental prospects of SF NP delivery systems to provide theoretical references for further development in livestock production and promote the high-quality and healthy development of animal husbandry.
Collapse
Affiliation(s)
| | | | | | | | | | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.G.); (M.M.A.); (S.F.); (J.X.); (J.S.)
| |
Collapse
|
20
|
Li C, Tang M. The toxicological effects of nano titanium dioxide on target organs and mechanisms of toxicity. J Appl Toxicol 2024; 44:152-164. [PMID: 37655586 DOI: 10.1002/jat.4534] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/04/2023] [Accepted: 08/13/2023] [Indexed: 09/02/2023]
Abstract
Nano-titanium dioxide (TiO2 NPs) is widely used for its extremely high stability, corrosion resistance, and photocatalytic properties and has penetrated into various fields of production and life. Assessing its toxicity to different organs should be a key part of preclinical toxicity assessment of TiO2 NPs, which is relatively incomprehensive yet. Therefore, this review focuses on the toxic effects of TiO2 NPs on various organs in mammals and biological mechanisms from different organs. The commonality of toxic effects on various target organs reflected in tissue structure damage and dysfunction, such as liver damage and dysfunction; pulmonary fibrosis; and renal impairment (including hematuria and nephritis); damage of brain tissue and neurons; alteration of intestinal villi; and weight loss. And effects on the reproductive system are affected by different sexes, including ovarian dysfunction, testicular development damage, and sperm viability reduction. We believe that the toxic mechanisms of TiO2 NPs in target organs have commonalities, such as oxidative stress, inflammatory responses, and organelle damage. However, different target organ toxicities also have their specificities. TiO2 NPs disturb the intestinal flora and cause undesirable changes in feces products. And in spleen are infiltration of neutrophils and lymphadenopathy and eventually immune deficiency. Although the toxic pathways are different, but there may be a close link between the different toxic pathways. In this article, the main manifestations of the toxic effects of titanium dioxide nanoparticles on major mammalian organs are reviewed, in order to provide basic data for their better application from a medical perspective.
Collapse
Affiliation(s)
- Congcong Li
- Key Laboratory of Environmental Medicine of Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Meng Tang
- Key Laboratory of Environmental Medicine of Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
21
|
Lin X, Wang W, Chang X, Chen C, Guo Z, Yu G, Shao W, Wu S, Zhang Q, Zheng F, Li H. ROS/mtROS promotes TNTs formation via the PI3K/AKT/mTOR pathway to protect against mitochondrial damages in glial cells induced by engineered nanomaterials. Part Fibre Toxicol 2024; 21:1. [PMID: 38225661 PMCID: PMC10789074 DOI: 10.1186/s12989-024-00562-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/04/2024] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND As the demand and application of engineered nanomaterials have increased, their potential toxicity to the central nervous system has drawn increasing attention. Tunneling nanotubes (TNTs) are novel cell-cell communication that plays a crucial role in pathology and physiology. However, the relationship between TNTs and nanomaterials neurotoxicity remains unclear. Here, three types of commonly used engineered nanomaterials, namely cobalt nanoparticles (CoNPs), titanium dioxide nanoparticles (TiO2NPs), and multi-walled carbon nanotubes (MWCNTs), were selected to address this limitation. RESULTS After the complete characterization of the nanomaterials, the induction of TNTs formation with all of the nanomaterials was observed using high-content screening system and confocal microscopy in both primary astrocytes and U251 cells. It was further revealed that TNT formation protected against nanomaterial-induced neurotoxicity due to cell apoptosis and disrupted ATP production. We then determined the mechanism underlying the protective role of TNTs. Since oxidative stress is a common mechanism in nanotoxicity, we first observed a significant increase in total and mitochondrial reactive oxygen species (namely ROS, mtROS), causing mitochondrial damage. Moreover, pretreatment of U251 cells with either the ROS scavenger N-acetylcysteine or the mtROS scavenger mitoquinone attenuated nanomaterial-induced neurotoxicity and TNTs generation, suggesting a central role of ROS in nanomaterials-induced TNTs formation. Furthermore, a vigorous downstream pathway of ROS, the PI3K/AKT/mTOR pathway, was found to be actively involved in nanomaterials-promoted TNTs development, which was abolished by LY294002, Perifosine and Rapamycin, inhibitors of PI3K, AKT, and mTOR, respectively. Finally, western blot analysis demonstrated that ROS and mtROS scavengers suppressed the PI3K/AKT/mTOR pathway, which abrogated TNTs formation. CONCLUSION Despite their biophysical properties, various types of nanomaterials promote TNTs formation and mitochondrial transfer, preventing cell apoptosis and disrupting ATP production induced by nanomaterials. ROS/mtROS and the activation of the downstream PI3K/AKT/mTOR pathway are common mechanisms to regulate TNTs formation and mitochondrial transfer. Our study reveals that engineered nanomaterials share the same molecular mechanism of TNTs formation and intercellular mitochondrial transfer, and the proposed adverse outcome pathway contributes to a better understanding of the intercellular protection mechanism against nanomaterials-induced neurotoxicity.
Collapse
Affiliation(s)
- Xinpei Lin
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
- Fujian Provincial Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, 350004, Fujian Province, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Wei Wang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
- Fujian Provincial Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, 350004, Fujian Province, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Xiangyu Chang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
- Fujian Provincial Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, 350004, Fujian Province, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Cheng Chen
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Zhenkun Guo
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Guangxia Yu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Wenya Shao
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Siying Wu
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Qunwei Zhang
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, USA
| | - Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China.
- Fujian Provincial Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, 350004, Fujian Province, China.
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China.
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China.
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China.
| |
Collapse
|
22
|
Huang X, Li C, Wei T, Liu N, Yao Y, Wang Z, Hu Y, Fang Q, Guan S, Xue Y, Wu T, Zhang T, Tang M. Oropharyngeal aspirated Ag/TiO 2 nanohybrids: Transformation, distribution and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168309. [PMID: 37944607 DOI: 10.1016/j.scitotenv.2023.168309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
The wide application of Ag-loaded TiO2 nanohybrids photocatalysts on environment and energy increases the lung exposure risk to humans. Ag/TiO2 nanohybrids inhalation can cause pulmonary toxicity, and there are concerns about whether the loaded silver can be released and cause toxic effects on extrapulmonary organs. Therefore, in this study, the possible biotransformation, biodistribution, and toxicity of oropharyngeal aspirated Ag/TiO2 nanohybrids were investigated first time in vitro and in vivo to answer this question. Firstly, the results of biotransformation showed that the ultrafine silver nanoparticles (~3.5 nm, 2 w/w%) loaded on the surface of nano-TiO2 (~25 nm) could agglomerate and release in Gamble's solution, and the hydrodynamic diameter of the nanohybrids agglomerates increased from about 200 nm to 1 μm. Furthermore, after exposure 10 mg/kg Ag/TiO2 nanohybrids to C57BL/6 J male mice by oropharyngeal aspiration weekly, the biodistribution results showed that the released silver could result in blood, liver, and brain distribution within 28 d. Finally, body weight, organ coefficient, blood biochemical indicators of liver and kidney function, and pathological images demonstrated that although silver could release and lead to extrapulmonary organ distribution, it did not cause obvious extrapulmonary organ damage. The original lung was still the main toxicity and accumulation target organ of Ag/TiO2 nanohybrids, which mainly manifested as the pro-inflammatory and pro-fibrotic effects that should be focused on in the future. Therefore, this study is of great significance in evaluating the safety of Ag-loaded TiO2 nanoparticles and predicting their toxic mechanisms.
Collapse
Affiliation(s)
- Xiaoquan Huang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Congcong Li
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Tingting Wei
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Na Liu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Yongshuai Yao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Zhihui Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Yuanyuan Hu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Qing Fang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Shujing Guan
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China.
| |
Collapse
|
23
|
Chaudhari V, Vairagade V, Thakkar A, Shende H, Vora A. Nanotechnology-based fungal detection and treatment: current status and future perspective. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:77-97. [PMID: 37597093 DOI: 10.1007/s00210-023-02662-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/02/2023] [Indexed: 08/21/2023]
Abstract
Fungal infections impose a significant impact on global health and encompass major expenditures in medical treatments. Human mycoses, a fungal co-infection associated with SARS-CoV-2, is caused by opportunistic fungal pathogens and is often overlooked or misdiagnosed. Recently, there is increasing threat about spread of antimicrobial resistance in fungus, mostly in hospitals and other healthcare facilities. The diagnosis and treatment of fungal infections are associated with several issues, including tedious and non-selective detection methods, the growth of drug-resistant bacteria, severe side effects, and ineffective drug delivery. Thus, a rapid and sensitive diagnostic method and a high-efficacy and low-toxicity therapeutic approach are needed. Nanomedicine has emerged as a viable option for overcoming these limitations. Due to the unique physicochemical and optical properties of nanomaterials and newer biosensing techniques, nanodiagnostics play an important role in the accurate and prompt differentiation and detection of fungal diseases. Additionally, nano-based drug delivery techniques can increase drug permeability, reduce adverse effects, and extend systemic circulation time and drug half-life. This review paper is aimed at highlighting recent, promising, and unique trends in nanotechnology to design and develop diagnostics and treatment methods for fungal diseases.
Collapse
Affiliation(s)
- Vinay Chaudhari
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Vaishnavi Vairagade
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Ami Thakkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Himani Shende
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Amisha Vora
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India.
| |
Collapse
|
24
|
Fayyazi F, Ebrahimi V, Mamaghani MM, Abgharmi BA, Zarrini G, Mosarrezaii A, Charkhian H, Gholinejad Z. N-Acetyl cysteine amide and cerium oxide nanoparticles as a drug delivery for ischemic stroke treatment: Inflammation and oxidative stress crosstalk. J Trace Elem Med Biol 2023; 80:127300. [PMID: 37741051 DOI: 10.1016/j.jtemb.2023.127300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND Inflammation and oxidative stress crosstalk is involved in the ischemic stroke(IS) pathogenesis and the new therapeutic options should be offered based on the targets that are critical in the golden hour of IS. YKL-40 and total antioxidant capacity(TAC), the inflammation and oxidative stress biomarkers, provide us with clues for proper intervention targets. N-acetyl cysteine amide (NACA), a lipophilic antioxidant, with a nanoparticle-based drug delivery system is permeable enough to penetrate blood-brain barrier (BBB) and was proposed as a new treatment option for IS. In this study, we evaluated the YKL-40 and TAC levels in the sera of IS patients to elucidate the best intervention target. A rat tissue model is used to assess the NACA efficiency. The microbiology tests performed to figure out the potential NACA and antibiotics interactions. MATERIAL AND METHODS The YKL-40 and TAC were measured in the serum of IS patients by ELISA and FRAP methods, respectively. The serum samples were obtained 12 h after the patient's admission and meantime other laboratory findings and NIHSS-based prognosis were recorded. In the animal study, the brain cortex, liver, kidney, adipose, and the heart of healthy rats were dissected and then incubated in DMEM cell culture media containing 50 micrograms/milliliter of nanoparticles; the nanoparticles were titanium dioxide nanoparticles (TiO2 NPs), copper oxide nanoparticles (CuO NPs) and cerium dioxide nanoparticles (CeO2 NPs). Olive oil and human serum albumin solution were exposed to the nanoparticles with and without NACA. TAC was measured in the supernatant culture media. With similar concentrations and settings, we evaluated the NACA, nanoparticle, and antibiotics interactions on pseudomonas aeruginosa. RESULTS There was a nonparametric correlation between YKL-40 levels and post stroke serum TAC levels. Nonsmokers had higher YKL-40 and TAC levels than smokers. A new calculated variable, urea*lymphocyte/age, predicts a poor prognosis with an acceptable AUC (0.708). Exposing to the nanoparticles, the liver, kidney, and brain had a significantly higher TAC than adipose and cardiac tissue. The NACA had an ameliorative effect against TiO2 NPs in the brain. This effectiveness of NACA was also observed against CuO NPs treatment. However, the CeO2 NPs exert a strong antioxidant property by reducing the TAC in the brain tissue but not the others. Albumin showed antioxidant properties by itself, but olive oil had an inert behavior. NACA had no interaction with the action of routine antibiotics. CONCLUSION Oxidative stress but not inflammation is the best point for intervention in IS patients because YKL-40 has not a relationship with NIHSS score. The CeO2 NPs and NACA combination are eligible option to develop antioxidant-based drug for the treatment of IS. As a complementary finding, the urea*lymphocyte/age is proposed as a NIHSS-based prognosis biomarker.
Collapse
Affiliation(s)
- Farzin Fayyazi
- Department of Neurology, Urmia University of Medical Sciences, Urmia, Iran
| | - Vahed Ebrahimi
- Department of Biochemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Benyamin Azad Abgharmi
- Department of Microbiology Science, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Gholamreza Zarrini
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Arash Mosarrezaii
- Department of Neurology, Urmia University of Medical Sciences, Urmia, Iran.
| | - Hamed Charkhian
- Young Researchers and Elite Club, Islamic Azad University, Urmia Branch, Urmia, Iran
| | - Zafar Gholinejad
- Department of Medical Laboratory Science, Urmia Branch, Islamic Azad University, Urmia, Iran.
| |
Collapse
|
25
|
García-Fernández A, Sancho M, Garrido E, Bisbal V, Sancenón F, Martínez-Máñez R, Orzáez M. Targeted Delivery of the Pan-Inflammasome Inhibitor MM01 as an Alternative Approach to Acute Lung Injury Therapy. Adv Healthc Mater 2023; 12:e2301577. [PMID: 37515468 DOI: 10.1002/adhm.202301577] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/14/2023] [Indexed: 07/30/2023]
Abstract
Acute lung injury (ALI) is a severe pulmonary disorder responsible for high percentage of mortality and morbidity in intensive care unit patients. Current treatments are ineffective, so the development of efficient and specific therapies is an unmet medical need. The activation of NLPR3 inflammasome during ALI produces the release of proinflammatory factors and pyroptosis, a proinflammatory form of cell death that contributes to lung damage spreading. Herein, it is demonstrated that modulating inflammasome activation through inhibition of ASC oligomerization by the recently described MM01 compound can be an alternative pharmacotherapy against ALI. Besides, the added efficacy of using a drug delivery nanosystem designed to target the inflamed lungs is determined. The MM01 drug is incorporated into mesoporous silica nanoparticles capped with a peptide (TNFR-MM01-MSNs) to target tumor necrosis factor receptor-1 (TNFR-1) to proinflammatory macrophages. The prepared nanoparticles can deliver the cargo in a controlled manner after the preferential uptake by proinflammatory macrophages and exhibit anti-inflammatory activity. Finally, the therapeutic effect of MM01 free or nanoparticulated to inhibit inflammatory response and lung injury is successfully demonstrated in lipopolysaccharide-mouse model of ALI. The results suggest the potential of pan-inflammasome inhibitors as candidates for ALI therapy and the use of nanoparticles for targeted lung delivery.
Collapse
Affiliation(s)
- Alba García-Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camí de vera s/n, Valencia, 46022, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos, 3-5, Madrid, 28029, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, Valencia, 46012, Spain
| | - Mónica Sancho
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, Valencia, 46012, Spain
- Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera 3, Valencia, 46012, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, E-46100, Spain
| | - Eva Garrido
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camí de vera s/n, Valencia, 46022, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos, 3-5, Madrid, 28029, Spain
| | - Viviana Bisbal
- Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera 3, Valencia, 46012, Spain
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camí de vera s/n, Valencia, 46022, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos, 3-5, Madrid, 28029, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, Valencia, 46012, Spain
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe. Av. Fernando Abril Martorell, 106 Torre A 7ª planta, Valencia, 46026, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camí de vera s/n, Valencia, 46022, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos, 3-5, Madrid, 28029, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, Valencia, 46012, Spain
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe. Av. Fernando Abril Martorell, 106 Torre A 7ª planta, Valencia, 46026, Spain
| | - Mar Orzáez
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, Valencia, 46012, Spain
- Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera 3, Valencia, 46012, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, E-46100, Spain
| |
Collapse
|
26
|
Chen Q, Yuan L, Chou WC, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE, Lin Z. Meta-Analysis of Nanoparticle Distribution in Tumors and Major Organs in Tumor-Bearing Mice. ACS NANO 2023; 17:19810-19831. [PMID: 37812732 PMCID: PMC10604101 DOI: 10.1021/acsnano.3c04037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/24/2023] [Indexed: 10/11/2023]
Abstract
Low tumor delivery efficiency is a critical barrier in cancer nanomedicine. This study reports an updated version of "Nano-Tumor Database", which increases the number of time-dependent concentration data sets for different nanoparticles (NPs) in tumors from the previous version of 376 data sets with 1732 data points from 200 studies to the current version of 534 data sets with 2345 data points from 297 studies published from 2005 to 2021. Additionally, the current database includes 1972 data sets for five major organs (i.e., liver, spleen, lung, heart, and kidney) with a total of 8461 concentration data points. Tumor delivery and organ distribution are calculated using three pharmacokinetic parameters, including delivery efficiency, maximum concentration, and distribution coefficient. The median tumor delivery efficiency is 0.67% injected dose (ID), which is low but is consistent with previous studies. Employing the best regression model for tumor delivery efficiency, we generate hypothetical scenarios with different combinations of NP factors that may lead to a higher delivery efficiency of >3%ID, which requires further experimentation to confirm. In healthy organs, the highest NP accumulation is in the liver (10.69%ID/g), followed by the spleen 6.93%ID/g and the kidney 3.22%ID/g. Our perspective on how to facilitate NP design and clinical translation is presented. This study reports a substantially expanded "Nano-Tumor Database" and several statistical models that may help nanomedicine design in the future.
Collapse
Affiliation(s)
- Qiran Chen
- Department
of Environmental and Global Health, College of Public Health and Health
Professions, University of Florida, Gainesville, Florida 32608, United States
- Center
for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32610, United States
| | - Long Yuan
- Department
of Environmental and Global Health, College of Public Health and Health
Professions, University of Florida, Gainesville, Florida 32608, United States
- Center
for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32610, United States
| | - Wei-Chun Chou
- Department
of Environmental and Global Health, College of Public Health and Health
Professions, University of Florida, Gainesville, Florida 32608, United States
- Center
for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32610, United States
| | - Yi-Hsien Cheng
- Department
of Anatomy and Physiology, Kansas State
University, Manhattan, Kansas 66506, United States
- Institute
of Computational Comparative Medicine, Kansas
State University, Manhattan, Kansas 66506, United States
| | - Chunla He
- Department
of Environmental and Global Health, College of Public Health and Health
Professions, University of Florida, Gainesville, Florida 32608, United States
- Department
of Biostatistics College of Public Health and Health Professions, University of Florida, Gainesville, Florida 32608, United States
| | - Nancy A. Monteiro-Riviere
- Nanotechnology
Innovation Center of Kansas State, Kansas
State University, Manhattan, Kansas 66506, United States
- Center
for Chemical Toxicology Research and Pharmacokinetics, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Jim E. Riviere
- Center
for Chemical Toxicology Research and Pharmacokinetics, North Carolina State University, Raleigh, North Carolina 27606, United States
- 1
Data Consortium, Kansas State University, Olathe, Kansas 66061, United States
| | - Zhoumeng Lin
- Department
of Environmental and Global Health, College of Public Health and Health
Professions, University of Florida, Gainesville, Florida 32608, United States
- Center
for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
27
|
Setia A, Mehata AK, Priya V, Pawde DM, Jain D, Mahto SK, Muthu MS. Current Advances in Nanotheranostics for Molecular Imaging and Therapy of Cardiovascular Disorders. Mol Pharm 2023; 20:4922-4941. [PMID: 37699355 DOI: 10.1021/acs.molpharmaceut.3c00582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Cardiovascular diseases (CVDs) refer to a collection of conditions characterized by abnormalities in the cardiovascular system. They are a global problem and one of the leading causes of mortality and disability. Nanotheranostics implies to the combination of diagnostic and therapeutic capabilities inside a single nanoscale platform that has allowed for significant advancement in cardiovascular diagnosis and therapy. These advancements are being developed to improve imaging capabilities, introduce personalized therapies, and boost cardiovascular disease patient treatment outcomes. Significant progress has been achieved in the integration of imaging and therapeutic capabilities within nanocarriers. In the case of cardiovascular disease, nanoparticles provide targeted delivery of therapeutics, genetic material, photothermal, and imaging agents. Directing and monitoring the movement of these therapeutic nanoparticles may be done with pinpoint accuracy by using imaging modalities such as cardiovascular magnetic resonance (CMR), computed tomography (CT), positron emission tomography (PET), photoacoustic/ultrasound, and fluorescence imaging. Recently, there has been an increasing demand of noninvasive for multimodal nanotheranostic platforms. In these platforms, various imaging technologies such as optical and magnetic resonance are integrated into a single nanoparticle. This platform helps in acquiring more accurate descriptions of cardiovascular diseases and provides clues for accurate diagnosis. Advances in surface functionalization methods have strengthened the potential application of nanotheranostics in cardiovascular diagnosis and therapy. In this Review, we have covered the potential impact of nanomedicine on CVDs. Additionally, we have discussed the recently developed various nanoparticles for CVDs imaging. Moreover, advancements in the CMR, CT, PET, ultrasound, and photoacoustic imaging for the CVDs have been discussed. We have limited our discussion to nanomaterials based clinical trials for CVDs and their patents.
Collapse
Affiliation(s)
- Aseem Setia
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Vishnu Priya
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Datta Maroti Pawde
- School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be University, Shirpur, Dhule, Maharashtra 425405, India
| | - Dharmendra Jain
- Department of Cardiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sanjeev Kumar Mahto
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
28
|
Li M, Wang L, Du J. Clinical observation of liposomal doxorubicin on liver and renal function in patients with breast cancer. Toxicol Res (Camb) 2023; 12:807-813. [PMID: 37915489 PMCID: PMC10615824 DOI: 10.1093/toxres/tfad072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/18/2023] [Accepted: 08/08/2023] [Indexed: 11/03/2023] Open
Abstract
Background Doxorubicin has become the first-line antitumor drug clinically, but severely limited by multiple side effects, especially cardiotoxicity. Liposomal doxorubicin therefore replaced traditional doxorubicin for low toxicity and high efficiency. Previous studies have suggested liver and kidney may be the main organs affected by liposomal doxorubicin. Due to insufficient clinical evidence, we set out to analyze the effect of liposomal doxorubicin on liver and renal function in breast cancer patients. Materials and Methods Our retrospective analysis included breast cancer patients aged 30-70 years old who were assigned to two groups based on liposomal doxorubicin intake. We evaluated changes in liver and renal function. Multivariate logistic regression model was used to assess the risk factors of liver function damage. Results Ultimately, 631 patients for liver function analysis cohort and 611 cases for renal function analysis cohort. Patients receiving liposomal doxorubicin had significantly higher liver function damage rate compared to control group (52.20% vs 9.82%, p < 0.001), but there was no difference in the incidence of renal damage events between the two groups. Multivariate analysis shows total doses divided by body surface area is a significant, independent risk factor for liver function damage (odds ratio 1.005 [1.002-1.018], p < 0.001). Conclusion Liposomal doxorubicin treatment is associated with higher liver function damage in breast cancer patients, but has no effect on renal function. Together with risk factor analysis, our study underlines the importance to pay attention for patient's age before taking liposomal doxorubicin, alongside liver function after the first and long-term treatments.
Collapse
Affiliation(s)
- Mingliang Li
- Department of Urology, The Third Hospital of Changsha, No. 176, Labor West Road, Tianxin District, Changsha, Hunan 410035, China
| | - Ling Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Kaifu District, Changsha, Hunan 410008, China
| | - Jie Du
- Department of Pharmacy, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Kaifu District, Changsha, Hunan 410008, China
| |
Collapse
|
29
|
Lérida-Viso A, Estepa-Fernández A, García-Fernández A, Martí-Centelles V, Martínez-Máñez R. Biosafety of mesoporous silica nanoparticles; towards clinical translation. Adv Drug Deliv Rev 2023; 201:115049. [PMID: 37573951 DOI: 10.1016/j.addr.2023.115049] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/14/2023] [Accepted: 08/04/2023] [Indexed: 08/15/2023]
Abstract
Mesoporous silica nanoparticles (MSNs) have attracted the attention of chemists, who have developed numerous systems for the encapsulation of a plethora of molecules, allowing the use of mesoporous silica nanoparticles for biomedical applications. MSNs have been extensively studied for their use in nanomedicine, in applications such as drug delivery, diagnosis, and bioimaging, demonstrating significant in vivo efficacy in different preclinical models. Nevertheless, for the transition of MSNs into clinical trials, it is imperative to understand the characteristics that make MSNs effective and safe. The biosafety properties of MSNs in vivo are greatly influenced by their physicochemical characteristics such as particle shape, size, surface modification, and silica framework. In this review, we compile the most relevant and recent progress in the literature up to the present by analyzing the contributions on biodistribution, biodegradability, and clearance of MSNs. Furthermore, the ongoing clinical trials and the potential challenges related to the administration of silica materials for advanced therapeutics are discussed. This approach aims to provide a solid overview of the state-of-the-art in this field and to encourage the translation of MSNs to the clinic.
Collapse
Affiliation(s)
- Araceli Lérida-Viso
- Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, IIS La Fe. Av. Fernando Abril Martorell, 106 Torre A 7ª planta. 46026, Valencia, Spain; Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València. Camino de Vera, s/n. 46022, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3. 46012, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain
| | - Alejandra Estepa-Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València. Camino de Vera, s/n. 46022, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3. 46012, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain
| | - Alba García-Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València. Camino de Vera, s/n. 46022, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3. 46012, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain.
| | - Vicente Martí-Centelles
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València. Camino de Vera, s/n. 46022, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain
| | - Ramón Martínez-Máñez
- Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, IIS La Fe. Av. Fernando Abril Martorell, 106 Torre A 7ª planta. 46026, Valencia, Spain; Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València. Camino de Vera, s/n. 46022, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3. 46012, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain.
| |
Collapse
|
30
|
Xuan L, Ju Z, Skonieczna M, Zhou P, Huang R. Nanoparticles-induced potential toxicity on human health: Applications, toxicity mechanisms, and evaluation models. MedComm (Beijing) 2023; 4:e327. [PMID: 37457660 PMCID: PMC10349198 DOI: 10.1002/mco2.327] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Nanoparticles (NPs) have become one of the most popular objects of scientific study during the past decades. However, despite wealth of study reports, still there is a gap, particularly in health toxicology studies, underlying mechanisms, and related evaluation models to deeply understanding the NPs risk effects. In this review, we first present a comprehensive landscape of the applications of NPs on health, especially addressing the role of NPs in medical diagnosis, therapy. Then, the toxicity of NPs on health systems is introduced. We describe in detail the effects of NPs on various systems, including respiratory, nervous, endocrine, immune, and reproductive systems, and the carcinogenicity of NPs. Furthermore, we unravels the underlying mechanisms of NPs including ROS accumulation, mitochondrial damage, inflammatory reaction, apoptosis, DNA damage, cell cycle, and epigenetic regulation. In addition, the classical study models such as cell lines and mice and the emerging models such as 3D organoids used for evaluating the toxicity or scientific study are both introduced. Overall, this review presents a critical summary and evaluation of the state of understanding of NPs, giving readers more better understanding of the NPs toxicology to remedy key gaps in knowledge and techniques.
Collapse
Affiliation(s)
- Lihui Xuan
- Department of Occupational and Environmental HealthXiangya School of Public HealthCentral South UniversityChangshaHunanChina
| | - Zhao Ju
- Department of Occupational and Environmental HealthXiangya School of Public HealthCentral South UniversityChangshaHunanChina
| | - Magdalena Skonieczna
- Department of Systems Biology and EngineeringInstitute of Automatic ControlSilesian University of TechnologyGliwicePoland
- Biotechnology Centre, Silesian University of TechnologyGliwicePoland
| | - Ping‐Kun Zhou
- Beijing Key Laboratory for RadiobiologyDepartment of Radiation BiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Ruixue Huang
- Department of Occupational and Environmental HealthXiangya School of Public HealthCentral South UniversityChangshaHunanChina
| |
Collapse
|
31
|
Yadav A, Yadav K, Abd-Elsalam KA. Exploring the potential of nanofertilizers for a sustainable agriculture. PLANT NANO BIOLOGY 2023; 5:100044. [DOI: 10.1016/j.plana.2023.100044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
32
|
Swastha D, Varsha N, Aravind S, Samyuktha KB, Yokesh MM, Balde A, Ayilya BL, Benjakul S, Kim SK, Nazeer RA. Alginate-based drug carrier systems to target inflammatory bowel disease: A review. Int J Biol Macromol 2023:125472. [PMID: 37336375 DOI: 10.1016/j.ijbiomac.2023.125472] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Inflammatory bowel disease (IBD) is an inflammatory disorder that affects the gastrointestinal tract. IBD has become an increasingly common condition in both developed and developing nations over the last few decades, owing to a variety of factors like a rising population and diets packed with processed and junk foods. While the root pathophysiology of IBD is unknown, treatments are focused on medications aimed to mitigate symptoms. Alginate (AG), a marine-derived polysaccharide, is extensively studied for its biocompatibility, pH sensitivity, and crosslinking nature. This polymer is thoroughly researched in drug delivery systems for IBD treatment, as it is naturally available, non-toxic, cost effective, and can be easily and safely cross-linked with other polymers to form an interconnected network, which helps in controlling the release of drugs over an extended period. There are various types of drug delivery systems developed from AG to deliver therapeutic agents; among them, nanotechnology-based systems and hydrogels are popular due to their ability to facilitate targeted drug delivery, reduce dosage, and increase the therapeutic efficiency. AG-based carrier systems are not only used for the sustained release of drug, but also used in the delivery of siRNA, interleukins, and stem cells for site directed drug delivery and tissue regenerating ability respectively. This review is focussed on pathogenesis and currently studied medications for IBD, AG-based drug delivery systems and their properties for the alleviation of IBD. Moreover, future challenges are also be discoursed to improve the research of AG in the field of biopharmaceuticals and drug delivery.
Collapse
Affiliation(s)
- Dinakar Swastha
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Nambolan Varsha
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Suresh Aravind
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Kavassery Balasubramanian Samyuktha
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Muruganandam Mohaneswari Yokesh
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Akshad Balde
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Bakthavatchalam Loganathan Ayilya
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Soottawat Benjakul
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkhla University, 90112 Hat Yai, Songkhla, Thailand
| | - Se-Kwon Kim
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan, 11558, Gyeonggi-do, South Korea
| | - Rasool Abdul Nazeer
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India.
| |
Collapse
|
33
|
Boswell-Patterson CA, Hétu MF, Pang SC, Herr JE, Zhou J, Jain S, Bambokian A, Johri AM. Novel theranostic approaches to neovascularized atherosclerotic plaques. Atherosclerosis 2023; 374:1-10. [PMID: 37149970 DOI: 10.1016/j.atherosclerosis.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/05/2023] [Accepted: 04/17/2023] [Indexed: 05/09/2023]
Abstract
As the global burden of atherosclerotic cardiovascular disease continues to rise, there is an increased demand for improved imaging techniques for earlier detection of atherosclerotic plaques and new therapeutic targets. Plaque lesions, vulnerable to rupture and thrombosis, are thought to be responsible for the majority of cardiovascular events, and are characterized by a large lipid core, a thin fibrous cap, and neovascularization. In addition to supplying the plaque core with increased inflammatory factors, these pathological neovessels are tortuous and leaky, further increasing the risk of intraplaque hemorrhage. Clinically, plaque neovascularization has been shown to be a significant and independent predictor of adverse cardiovascular outcomes. Microvessels can be detected through contrast-enhanced ultrasound (CEUS) imaging, however, clinical assessment in vivo is generally limited to qualitative measures of plaque neovascularization. There is no validated standard for quantitative assessment of the microvessel networks found in plaques. Advances in our understanding of the pathological mechanisms underlying plaque neovascularization and its significant role in the morbidity and mortality associated with atherosclerosis have made it an attractive area of research in translational medicine. Current areas of research include the development of novel therapeutic and diagnostic agents to target plaque neovascularization stabilization. With recent progress in nanotechnology, nanoparticles have been investigated for their ability to specifically target neovascularization. Contrast microbubbles have been similarly engineered to carry loads of therapeutic agents and can be visualized using CEUS. This review summarizes the pathogenesis, diagnosis, clinical significance of neovascularization, and importantly the emerging areas of theranostic tool development.
Collapse
Affiliation(s)
| | - Marie-France Hétu
- Department of Medicine, Cardiovascular Imaging Network at Queen's (CINQ), Queen's University, Canada
| | - Stephen C Pang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Julia E Herr
- Department of Medicine, Cardiovascular Imaging Network at Queen's (CINQ), Queen's University, Canada
| | - Jianhua Zhou
- Department of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Shagun Jain
- Department of Medicine, Cardiovascular Imaging Network at Queen's (CINQ), Queen's University, Canada
| | - Alexander Bambokian
- Department of Medicine, Cardiovascular Imaging Network at Queen's (CINQ), Queen's University, Canada
| | - Amer M Johri
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada; Department of Medicine, Cardiovascular Imaging Network at Queen's (CINQ), Queen's University, Canada.
| |
Collapse
|
34
|
Gambles MT, Yang J, Kopeček J. Multi-targeted immunotherapeutics to treat B cell malignancies. J Control Release 2023; 358:232-258. [PMID: 37121515 PMCID: PMC10330463 DOI: 10.1016/j.jconrel.2023.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
The concept of multi-targeted immunotherapeutic systems has propelled the field of cancer immunotherapy into an exciting new era. Multi-effector molecules can be designed to engage with, and alter, the patient's immune system in a plethora of ways. The outcomes can vary from effector cell recruitment and activation upon recognition of a cancer cell, to a multipronged immune checkpoint blockade strategy disallowing evasion of the cancer cells by immune cells, or to direct cancer cell death upon engaging multiple cell surface receptors simultaneously. Here, we review the field of multi-specific immunotherapeutics implemented to treat B cell malignancies. The mechanistically diverse strategies are outlined and discussed; common B cell receptor antigen targeting strategies are outlined and summarized; and the challenges of the field are presented along with optimistic insights for the future.
Collapse
Affiliation(s)
- M Tommy Gambles
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| | - Jiyuan Yang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jindřich Kopeček
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
35
|
Yuan B, Wang Y, Zong C, Sang L, Chen S, Liu C, Pan Y, Zhang H. Modeling study for predicting altered cellular activity induced by nanomaterials based on Dlk1-Dio3 gene expression and structural relationships. CHEMOSPHERE 2023; 335:139090. [PMID: 37268226 DOI: 10.1016/j.chemosphere.2023.139090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
Nanomaterials have been widely applied and developed due to its unique physicochemical characteristics, such as their small size. The environmental and biological effects caused by nanomaterials have raised concerns. In particular, some nanometal oxides have obvious biological toxicity and pose a major safety problem. The prediction model established by combining the expression levels of key genes with quantitative structure-activity relationship (QSAR) studies can predict the biotoxicity of nanomaterials by relying on both structural information and gene regulation information. This model can fill the gap of missing mechanisms in QSAR studies. In this study, we exposed A549 cells and BEAS-2B cells to 21 nanometal oxides for 24 h. Cell viability was assessed by measuring absorbance values using the CCK8 assay, and the expression levels of the Dlk1-Dio3 gene cluster were measured. By using the theoretical basis of the nano-QSAR model and the improved principles of the SMILES-based descriptors to combine specific gene expression and structural factors, new models were constructed using Monte Carlo partial least squares (MC-PLS) for the biotoxicity of the nanometal oxides on two different lung cells. The overall quality of the nano-QSAR models constructed by combining specific gene expression and structural parameters for A549 and BEAS-2B cells was better than that of the models constructed based on structural parameters only. The coefficient of determination (R2) of the A549 cell model increased from 0.9044 to 0.9969, and the Root Mean Square Error (RMSE) decreased from 0.1922 to 0.0348. The R2 of the BEAS-2B cell model increased from 0.9355 to 0.9705, and the RMSE decreased from 0.1206 to 0.0874. The model validation proved the proposed models have a good prediction, generalization ability and model stability. This study offers a new research perspective for the toxicity assessment of nanometal oxides, contributing to a more systematic safety evaluation of nanomaterials.
Collapse
Affiliation(s)
- Beilei Yuan
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China.
| | - Yunlin Wang
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China.
| | - Cheng Zong
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China.
| | - Leqi Sang
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China.
| | - Shuang Chen
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China.
| | - Chengzhi Liu
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China.
| | - Yong Pan
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China.
| | - Huazhong Zhang
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
36
|
Scalisi EM, Pecoraro R, Salvaggio A, Capparucci F, Fortuna CG, Zimbone M, Impellizzeri G, Brundo MV. Titanium Dioxide Nanoparticles: Effects on Development and Male Reproductive System. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111783. [PMID: 37299686 DOI: 10.3390/nano13111783] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
Titanium dioxide nanoparticles (TiO2-NPs) are used intensively. Thanks to their extremely small size (1-100 nm), TiO2-NPs are more absorbable by living organisms; consequently, they can cross the circulatory system and then be distributed in various organs including the reproductive organs. We have evaluated the possible toxic effect of TiO2-NPs on embryonic development and the male reproductive system using Danio rerio as an organism model. TiO2-NPs (P25, Degussa) were tested at concentrations of 1 mg/L, 2 mg/L, and 4 mg/L. TiO2-NPs did not interfere with the embryonic development of Danio rerio, however, in the male gonads the TiO2-NPs caused an alteration of the morphological/structural organization. The immunofluorescence investigation showed positivity for biomarkers of oxidative stress and sex hormone binding globulin (SHBG), both confirmed by the results of qRT-PCR. In addition, an increased expression of the gene responsible for the conversion of testosterone to dihydrotestosterone was found. Since Leydig cells are mainly involved in this activity, an increase in gene activity can be explained by the ability of TiO2-NPs to act as endocrine disruptors, and, therefore, with androgenic activity.
Collapse
Affiliation(s)
- Elena Maria Scalisi
- Department of Biological, Geological and Environmental Science, University of Catania, 95124 Catania, Italy
| | - Roberta Pecoraro
- Department of Biological, Geological and Environmental Science, University of Catania, 95124 Catania, Italy
| | - Antonio Salvaggio
- Experimental Zooprophylactic Institute of Sicily "A. Mirri", 90129 Palermo, Italy
| | - Fabiano Capparucci
- Department of Chemical, Biological, Pharmacological and Environmental Science, University of Messina, 98166 Messina, Italy
| | | | | | | | - Maria Violetta Brundo
- Department of Biological, Geological and Environmental Science, University of Catania, 95124 Catania, Italy
| |
Collapse
|
37
|
Jones M, Kovacevic B, Ionescu CM, Wagle SR, Quintas C, Wong EYM, Mikov M, Mooranian A, Al-Salami H. The applications of Targeted Delivery for Gene Therapies in Hearing Loss. J Drug Target 2023:1-22. [PMID: 37211674 DOI: 10.1080/1061186x.2023.2216900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/07/2022] [Accepted: 04/09/2023] [Indexed: 05/23/2023]
Abstract
Gene therapies are becoming more abundantly researched for use in a multitude of potential treatments, including for hearing loss. Hearing loss is a condition which impacts an increasing number of the population each year, with significant burdens associated. As such, this review will present the concept that delivering a gene effectively to the inner ear may assist in expanding novel treatment options and improving patient outcomes. Historically, several drawbacks have been associated with the use of gene therapies, some of which may be overcome via targeted delivery. Targeted delivery has the potential to alleviate off-target effects and permit a safer delivery profile. Viral vectors have often been described as a delivery method, however, there is an emerging depiction of the potential for nanotechnology to be used. Resulting nanoparticles may also be tuned to allow for targeted delivery. Therefore, this review will focus on hearing loss, gene delivery techniques and inner ear targets, including highlighting promising research. Targeted delivery is a key concept to permitting gene delivery in a safe effective manner, however, further research is required, both in the determination of genes to use in functional hearing recovery and formulating nanoparticles for targeted delivery.
Collapse
Affiliation(s)
- Melissa Jones
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Christina Quintas
- School of human sciences, University of Western Australia, Crawley 6009, Perth, Western Australia, Australia
| | - Elaine Y M Wong
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21101 Novi Sad, Serbia
| | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
- School of Pharmacy, University of Otago, Dunedin, Otago, New Zealand
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
- Medical School, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
38
|
Yu J, Xu J, Li H, Wu P, Zhu S, Huang X, Shen C, Zheng B, Li W. Gold nanoparticles retrogradely penetrate through testicular barriers via Sertoli-cells mediated endocytosis/exocytosis and induce immune response in mouse. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114827. [PMID: 36965276 DOI: 10.1016/j.ecoenv.2023.114827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 06/18/2023]
Abstract
Despite the rapidly growing interest in nanoparticle-mediated controllable male contraception and recovery of male fertility, novel applications of nanoparticles in these processes are limited by a knowledge gap regarding their transport and distribution in the testes. Here, we investigated the fate of gold nanoparticles in the mouse testes using two injection methods, namely, interstitial testicular injection (IT-AuNPs, AuNPs exposure in the interstitial compartment of the testes) and rete testis injection (RT-AuNPs, AuNPs exposure in the adluminal compartment of the seminiferous tubules). In this study, we used 100 nm spherical AuNPs and microinjected with 5 μL AuNPs (30 mg/mL) for the experiments. For IT-AuNP injection, we found that AuNPs could not penetrate through the Sertoli cell-mediated blood-testis barrier (BTB) of the seminiferous tubules, and no male reproductive toxicity was observed. For RT-AuNP injection, AuNPs could be retrogradely transported from the adluminal compartment to the interstitial compartment of the testes via Sertoli cell-mediated endocytosis/exocytosis, resulting in damage and the release of inflammatory cytokines in the mouse testis. Our results highlight a retrograde nanoparticle transport function of Sertoli cells, thereby providing a mechanistic overview of the development and use of nanobiotechnology in male reproduction. SYNOPSIS: This study provides new insights into male reproductive immunotoxicity for AuNPs exposure and elucidates a mechanism via Sertoli cell-mediated endocytosis/exocytosis.
Collapse
Affiliation(s)
- Jun Yu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong 226001, China.
| | - Jinfu Xu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| | - Hong Li
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, the Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou 215002, China
| | - Pengfei Wu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong 226001, China
| | - Shiyao Zhu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong 226001, China
| | - Xiaoyan Huang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| | - Cong Shen
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, the Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou 215002, China
| | - Bo Zheng
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, the Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou 215002, China.
| | - Wenqing Li
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong 226001, China.
| |
Collapse
|
39
|
Park HY, Chung C, Eiken MK, Baumgartner KV, Fahy KM, Leung KQ, Bouzos E, Asuri P, Wheeler KE, Riley KR. Silver nanoparticle interactions with glycated and non-glycated human serum albumin mediate toxicity. FRONTIERS IN TOXICOLOGY 2023; 5:1081753. [PMID: 36926649 PMCID: PMC10011623 DOI: 10.3389/ftox.2023.1081753] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/17/2023] [Indexed: 03/08/2023] Open
Abstract
Introduction: Biomolecules bind to and transform nanoparticles, mediating their fate in biological systems. Despite over a decade of research into the protein corona, the role of protein modifications in mediating their interaction with nanomaterials remains poorly understood. In this study, we evaluated how glycation of the most abundant blood protein, human serum albumin (HSA), influences the formation of the protein corona on 40 nm silver nanoparticles (AgNPs) and the toxicity of AgNPs to the HepG2 human liver cell line. Methods: The effects of glycation on AgNP-HSA interactions were quantified using circular dichroism spectroscopy to monitor protein structural changes, dynamic light scattering to assess AgNP colloidal stability, zeta potential measurements to measure AgNP surface charge, and UV-vis spectroscopy and capillary electrophoresis (CE) to evaluate protein binding affinity and kinetics. The effect of the protein corona and HSA glycation on the toxicity of AgNPs to HepG2 cells was measured using the WST cell viability assay and AgNP dissolution was measured using linear sweep stripping voltammetry. Results and Discussion: Results from UV-vis and CE analyses suggest that glycation of HSA had little impact on the formation of the AgNP protein corona with protein-AgNP association constants of ≈2x107 M-1 for both HSA and glycated HSA (gHSA). The formation of the protein corona itself (regardless of whether it was formed from HSA or glycated HSA) caused an approximate 2-fold decrease in cell viability compared to the no protein AgNP control. While the toxicity of AgNPs to cells is often attributed to dissolved Ag(I), dissolution studies showed that the protein coated AgNPs underwent less dissolution than the no protein control, suggesting that the protein corona facilitated a nanoparticle-specific mechanism of toxicity. Overall, this study highlights the importance of protein coronas in mediating AgNP interactions with HepG2 cells and the need for future work to discern how protein coronas and protein modifications (like glycation) may alter AgNP reactivity to cellular organisms.
Collapse
Affiliation(s)
- Hee-Yon Park
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA, United States
| | - Christopher Chung
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA, United States
| | - Madeline K. Eiken
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA, United States
| | - Karl V. Baumgartner
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA, United States
| | - Kira M. Fahy
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA, United States
| | - Kaitlyn Q. Leung
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA, United States
| | - Evangelia Bouzos
- Department of Bioengineering, Santa Clara University, Santa Clara, CA, United States
| | - Prashanth Asuri
- Department of Bioengineering, Santa Clara University, Santa Clara, CA, United States
| | - Korin E. Wheeler
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA, United States
| | - Kathryn R. Riley
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA, United States
| |
Collapse
|
40
|
Fahy KM, Eiken MK, Baumgartner KV, Leung KQ, Anderson SE, Berggren E, Bouzos E, Schmitt LR, Asuri P, Wheeler KE. Silver Nanoparticle Surface Chemistry Determines Interactions with Human Serum Albumin and Cytotoxic Responses in Human Liver Cells. ACS OMEGA 2023; 8:3310-3318. [PMID: 36713725 PMCID: PMC9878656 DOI: 10.1021/acsomega.2c06882] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/19/2022] [Indexed: 06/01/2023]
Abstract
Engineered nanomaterials (ENMs) are synthesized with a diversity of surface chemistries that mediate biochemical interactions and physiological response to the particles. In this work, silver engineered nanomaterials (AgENMs) are used to evaluate the role of surface charge in protein interactions and cellular cytotoxicity. The most abundant protein in blood, human serum albumin (HSA), was interacted with 40 nm AgENMs with a range of surface-charged coatings: positively charged branched polyethyleneimine (bPEI), negatively charged citrate (CIT), and circumneutral poly(ethylene glycol) (PEG). HSA adsorption to AgENMs was monitored by UV-vis spectroscopy and dynamic light scattering, while changes to the protein structure were evaluated with circular dichroism spectroscopy. Binding affinity for citrate-coated AgENMs and HSA is largest among the three AgENM coatings; yet, HSA lost the most secondary structure upon interaction with bPEI-coated AgENMs compared to the other two coatings. HSA increased AgENM oxidative dissolution across all particle types, with the greatest dissolution for citrate-coated AgENMs. Results indicate that surface coating is an important consideration in transformation of both the particle and protein upon interaction. To connect results to cellular outcomes, we also performed cytotoxicity experiments with HepG2 cells across all three AgENM types with and without HSA. Results show that bPEI-coated AgENMs cause the greatest loss of cell viability, both with and without inclusion of HSA with the AgENMs. Thus, surface coatings on AgENMs alter both biophysical interactions with proteins and particle cytotoxicity. Within this study set, positively charged bPEI-coated AgENMs cause the greatest disruption to HSA structure and cell viability.
Collapse
Affiliation(s)
- Kira M. Fahy
- Department
of Chemistry & Biochemistry, Santa Clara
University, Santa
Clara, California95053, United States
| | - Madeline K. Eiken
- Department
of Chemistry & Biochemistry, Santa Clara
University, Santa
Clara, California95053, United States
- Department
of Bioengineering, Santa Clara University, Santa Clara, California95053, United States
| | - Karl V. Baumgartner
- Department
of Chemistry & Biochemistry, Santa Clara
University, Santa
Clara, California95053, United States
- Department
of Bioengineering, Santa Clara University, Santa Clara, California95053, United States
| | - Kaitlyn Q. Leung
- Department
of Chemistry & Biochemistry, Santa Clara
University, Santa
Clara, California95053, United States
| | - Sarah E. Anderson
- Department
of Chemistry & Biochemistry, Santa Clara
University, Santa
Clara, California95053, United States
| | - Erik Berggren
- Department
of Chemistry & Biochemistry, Santa Clara
University, Santa
Clara, California95053, United States
| | - Evangelia Bouzos
- Department
of Chemistry & Biochemistry, Santa Clara
University, Santa
Clara, California95053, United States
- Department
of Bioengineering, Santa Clara University, Santa Clara, California95053, United States
| | - Lauren R. Schmitt
- Department
of Chemistry & Biochemistry, Santa Clara
University, Santa
Clara, California95053, United States
| | - Prashanth Asuri
- Department
of Bioengineering, Santa Clara University, Santa Clara, California95053, United States
| | - Korin E. Wheeler
- Department
of Chemistry & Biochemistry, Santa Clara
University, Santa
Clara, California95053, United States
| |
Collapse
|
41
|
Marques AC, Costa PC, Velho S, Amaral MH. Lipid Nanoparticles Functionalized with Antibodies for Anticancer Drug Therapy. Pharmaceutics 2023; 15:216. [PMID: 36678845 PMCID: PMC9864942 DOI: 10.3390/pharmaceutics15010216] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Nanotechnology takes the lead in providing new therapeutic options for cancer patients. In the last decades, lipid-based nanoparticles-solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), liposomes, and lipid-polymer hybrid nanoparticles-have received particular interest in anticancer drug delivery to solid tumors. To improve selectivity for target cells and, thus, therapeutic efficacy, lipid nanoparticles have been functionalized with antibodies that bind to receptors overexpressed in angiogenic endothelial cells or cancer cells. Most papers dealing with the preclinical results of antibody-conjugated nanoparticles claim low systemic toxicity and effective tumor inhibition, which have not been successfully translated into clinical use yet. This review aims to summarize the current "state-of-the-art" in anticancer drug delivery using antibody-functionalized lipid-based nanoparticles. It includes an update on promising candidates that entered clinical trials and some explanations for low translation success.
Collapse
Affiliation(s)
- Ana Camila Marques
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Paulo C. Costa
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Sérgia Velho
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, R. Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - Maria Helena Amaral
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
42
|
Naji RM, Bashandy MA, Fathy AH. Ameliorative Effects of some Natural Antioxidants against Blood and Cardiovascular Toxicity of Oral Subchronic Exposure to Silicon Dioxide, Aluminum Oxide, or Zinc Oxide Nanoparticles in Wistar Rats. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2023; 2023:8373406. [PMID: 36942197 PMCID: PMC10024631 DOI: 10.1155/2023/8373406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/14/2023] [Accepted: 02/08/2023] [Indexed: 03/13/2023]
Abstract
The present study determines the possible protective role of fig fruit extract with olive oil and date palm fruit extract (FOD) in decreasing the oral subchronic blood and cardiovascular toxicity of SiO2NPs, Al2O3NPs, or ZnONPs. The present study used 80 male Wistar rats (8 groups, n = 10) distributed according to the treatment. The FOD treatments were used at their recommended antioxidant doses. All nanoparticles (NPs) were given orally and daily at doses of 100 mg/kg for 75 days. The oral administration of different NPs alone led to dramatic, oxidative stress, inflammatory markers, blood coagulation, endothelial dysfunction markers, myocardial enzymes, hematological parameters, lipid profile, and histopathological features compared with the control group. The FOD-NP-treated groups recorded significantly ameliorated blood and cardiovascular toxicity hazards compared to the groups administered with the NPs alone. In conclusion, the administration of FOD provides considerable chemopreventive and ameliorative effects against NP toxicity.
Collapse
Affiliation(s)
- Riyadh Musaed Naji
- 1Department of Zoology, Faculty of Science, Al-Azhar University, Cairo 11651, Egypt
- 2Department of Zoology, Faculty of Science and Education, Aden University, Yemen
| | - Mohamed A. Bashandy
- 1Department of Zoology, Faculty of Science, Al-Azhar University, Cairo 11651, Egypt
| | - Abdallah H. Fathy
- 3Department of Animal House Facility, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
43
|
Yang K, Shang Y, Yang N, Pan S, Jin J, He Q. Application of nanoparticles in the diagnosis and treatment of chronic kidney disease. Front Med (Lausanne) 2023; 10:1132355. [PMID: 37138743 PMCID: PMC10149997 DOI: 10.3389/fmed.2023.1132355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/22/2023] [Indexed: 05/05/2023] Open
Abstract
With the development of nanotechnology, nanoparticles have been used in various industries. In medicine, nanoparticles have been used in the diagnosis and treatment of diseases. The kidney is an important organ for waste excretion and maintaining the balance of the internal environment; it filters various metabolic wastes. Kidney dysfunction may result in the accumulation of excess water and various toxins in the body without being discharged, leading to complications and life-threatening conditions. Based on their physical and chemical properties, nanoparticles can enter cells and cross biological barriers to reach the kidneys and therefore, can be used in the diagnosis and treatment of chronic kidney disease (CKD). In the first search, we used the English terms "Renal Insufficiency, Chronic" [Mesh] as the subject word and terms such as "Chronic Renal Insufficiencies," "Chronic Renal Insufficiency," "Chronic Kidney Diseases," "Kidney Disease, Chronic," "Renal Disease, Chronic" as free words. In the second search, we used "Nanoparticles" [Mesh] as the subject word and "Nanocrystalline Materials," "Materials, Nanocrystalline," "Nanocrystals," and others as free words. The relevant literature was searched and read. Moreover, we analyzed and summarized the application and mechanism of nanoparticles in the diagnosis of CKD, application of nanoparticles in the diagnosis and treatment of renal fibrosis and vascular calcification (VC), and their clinical application in patients undergoing dialysis. Specifically, we found that nanoparticles can detect CKD in the early stages in a variety of ways, such as via breath sensors that detect gases and biosensors that detect urine and can be used as a contrast agent to avoid kidney damage. In addition, nanoparticles can be used to treat and reverse renal fibrosis, as well as detect and treat VC in patients with early CKD. Simultaneously, nanoparticles can improve safety and convenience for patients undergoing dialysis. Finally, we summarize the current advantages and limitations of nanoparticles applied to CKD as well as their future prospects.
Collapse
Affiliation(s)
- Kaibi Yang
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yiwei Shang
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Nan Yang
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Shujun Pan
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Juan Jin
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- *Correspondence: Juan Jin,
| | - Qiang He
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- Qiang He,
| |
Collapse
|
44
|
Magdy MT, EL-Ghareeb AELWA, Attaby FA, Abd El-Rahman HA. Assessment of nano-iron particles impact on the reproductive health of female Wistar rats. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00274-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Iron oxide nanoparticles, especially nano-magnetite, are promising candidates for use in a variety of applications. The present study aimed to investigate the effect of nano-magnetite on the reproductive health of female Wistar rats. Twenty-one adult female rats were divided into three groups: Group 1 served as the control group, Group 2 received a low dose of 5 mg/kg of nano-magnetite, and Group 3 received a high dose of 10 mg/kg of nano-magnetite. For 30 days, rats were intraperitoneally injected three times per week.
The main findings
Revealed that nano-magnetite did not induce a change in body weight or absolute as well as relative reproductive organs weight. Nano-magnetite nanoparticles influenced the reproductive serum hormone levels as well as imbalanced the ovarian and uterine malondialdehyde and total antioxidant activity. After nano-magnetite nanoparticle injection, the histopathological examination revealed apoptosis of granulosa cells of various types of follicles, degenerated corpora lutea, congested blood vessels, and uterine epithelial cells of uterine tissue showed a high level of apoptosis and inflammation. Immunohistochemistry studies demonstrated a significant increase in activated caspase-3 following nano-magnetite injection, indicating an increase in cell apoptosis.
Conclusion
This study demonstrated the negative effect of magnetite nanoparticle on reproductive health and increased the likelihood of infertility.
Collapse
|
45
|
Zhang N, Xiong G, Liu Z. Toxicity of metal-based nanoparticles: Challenges in the nano era. Front Bioeng Biotechnol 2022; 10:1001572. [PMID: 36619393 PMCID: PMC9822575 DOI: 10.3389/fbioe.2022.1001572] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/25/2022] [Indexed: 11/12/2022] Open
Abstract
With the rapid progress of nanotechnology, various nanoparticles (NPs) have been applicated in our daily life. In the field of nanotechnology, metal-based NPs are an important component of engineered NPs, including metal and metal oxide NPs, with a variety of biomedical applications. However, the unique physicochemical properties of metal-based NPs confer not only promising biological effects but also pose unexpected toxic threats to human body at the same time. For safer application of metal-based NPs in humans, we should have a comprehensive understanding of NP toxicity. In this review, we summarize our current knowledge about metal-based NPs, including the physicochemical properties affecting their toxicity, mechanisms of their toxicity, their toxicological assessment, the potential strategies to mitigate their toxicity and current status of regulatory movement on their toxicity. Hopefully, in the near future, through the convergence of related disciplines, the development of nanotoxicity research will be significantly promoted, thereby making the application of metal-based NPs in humans much safer.
Collapse
Affiliation(s)
- Naiding Zhang
- Department of Vascular Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Guiya Xiong
- Department of Science and Research, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhenjie Liu
- Department of Vascular Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,*Correspondence: Zhenjie Liu,
| |
Collapse
|
46
|
Liu J, Zhao W, Song F, Huang C, Zhang Z, Cao Y. Graphene oxide exposure suppresses immune responses and increases the sensitivities of zebrafishes to lipopolysaccharides via the down-regulation of Toll-like receptors. ECOLOGICAL INDICATORS 2022; 144:109563. [DOI: 10.1016/j.ecolind.2022.109563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
|
47
|
Wang Z, Tong Q, Li T, Qian Y. Nano drugs delivery system: A novel promise for the treatment of atrial fibrillation. Front Cardiovasc Med 2022; 9:906350. [PMID: 36386310 PMCID: PMC9645120 DOI: 10.3389/fcvm.2022.906350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/08/2022] [Indexed: 07/30/2023] Open
Abstract
Atrial fibrillation (AF) is one of the most common sustained tachyarrhythmias worldwide, and its prevalence is positively correlated with aging. AF not only significantly reduces the quality of life of patients but also causes a series of complications, such as thromboembolism, stroke, and heart failure, increases the average number of hospitalizations of patients, and places a huge economic burden on patients and society. Traditional drug therapy and ablation have unsatisfactory success rates, high recurrence rates, and the risk of serious complications. Surgical treatment is highly traumatic. The nano drug delivery system has unique physical and chemical properties, and in the application of AF treatment, whether it is used to assist in enhancing the ablation effect or for targeted therapy, it provides a safer, more effective and more economical treatment strategy.
Collapse
|
48
|
Al Harby NF, El-Batouti M, Elewa MM. Prospects of Polymeric Nanocomposite Membranes for Water Purification and Scalability and their Health and Environmental Impacts: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12203637. [PMID: 36296828 PMCID: PMC9610978 DOI: 10.3390/nano12203637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 05/26/2023]
Abstract
Water shortage is a major worldwide issue. Filtration using genuine polymeric membranes demonstrates excellent pollutant separation capabilities; however, polymeric membranes have restricted uses. Nanocomposite membranes, which are produced by integrating nanofillers into polymeric membrane matrices, may increase filtration. Carbon-based nanoparticles and metal/metal oxide nanoparticles have received the greatest attention. We evaluate the antifouling and permeability performance of nanocomposite membranes and their physical and chemical characteristics and compare nanocomposite membranes to bare membranes. Because of the antibacterial characteristics of nanoparticles and the decreased roughness of the membrane, nanocomposite membranes often have greater antifouling properties. They also have better permeability because of the increased porosity and narrower pore size distribution caused by nanofillers. The concentration of nanofillers affects membrane performance, and the appropriate concentration is determined by both the nanoparticles' characteristics and the membrane's composition. Higher nanofiller concentrations than the recommended value result in deficient performance owing to nanoparticle aggregation. Despite substantial studies into nanocomposite membrane manufacturing, most past efforts have been restricted to the laboratory scale, and the long-term membrane durability after nanofiller leakage has not been thoroughly examined.
Collapse
Affiliation(s)
- Nouf F. Al Harby
- Department of Chemistry, College of Science, Qassim University, Qassim 52571, Saudi Arabia
| | - Mervette El-Batouti
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21526, Egypt
| | - Mahmoud M. Elewa
- Arab Academy for Science, Technology and Maritime Transport, Alexandria P.O. Box 1029, Egypt
| |
Collapse
|
49
|
Zhang T, Li D, Zhu X, Zhang M, Guo J, Chen J. Nano-Al 2O 3 particles affect gut microbiome and resistome in an in vitro simulator of the human colon microbial ecosystem. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129513. [PMID: 35870212 DOI: 10.1016/j.jhazmat.2022.129513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/12/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Nano-Al2O3 has been widely used in various consumer products and water treatment processes because of its unique physicochemical properties. The probability of human exposure to nano-Al2O3 increases significantly, of which oral ingestion is an important route. However, effects and underlying mechanisms of nano-Al2O3 on gut microbiota and resistome are still not well delineated. Here, we systematically investigated the effects of nano-Al2O3 on the human gut microbiome by an in vitro simulator of human colon microbial ecosystem. Results indicated that nano-Al2O3 interfered with the gut microbiota, and significantly suppressed the short-chain fatty acids metabolism, which might pose adverse effects on the host. More seriously, high level of nano-Al2O3 (50 mg/L) was more destructive to the gut flora, though the damage might be temporary. In addition, sub-inhibitory low-dose of nano-Al2O3 (0.1 mg/L) significantly enhanced the abundance of antibiotic resistance genes (ARGs) after 7-day exposure. This is attributed to that low concentration of nano-Al2O3 can promote horizontal transfer of ARGs by increasing cell membrane permeability and relative abundance of transposase (e.g. tnpA, IS613, and Tp614). Our findings confirmed the adverse effects of nano-Al2O3 on the human gut resistome and emphasized the necessity to assess potential risks of nanomaterials on the human gut health.
Collapse
Affiliation(s)
- Tingting Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan Tyndall Centre, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Academy of Environmental Planning & Design, Co., Ltd. Nanjing University, Nanjing 210093, China
| | - Dan Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan Tyndall Centre, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Xuan Zhu
- School of Food Science and Bioengineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Minglu Zhang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control,Beijing Technology and Business University, Beijing 100048, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan Tyndall Centre, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
50
|
Yao Y, Chen Z, Zhang T, Tang M. Adverse reproductive and developmental consequences of quantum dots. ENVIRONMENTAL RESEARCH 2022; 213:113666. [PMID: 35697086 DOI: 10.1016/j.envres.2022.113666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/16/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Quantum dots (QDs), with a size of 1-10 nm, are luminescent semiconductor nanocrystals characterized by a shell-core structure. Notably, QDs have potential application in bioimaging owing to their higher fluorescence performance than conventional fluorescent dyes. To date, QDs has been widely used in photovoltaic devices, supercapacitors, electrocatalysis, photocatalysis. In recent years, scientists have focused on whether the use of QDs can interfere with the reproductive and developmental processes of organisms, resulting in serious population and community problems. In this study, we first analyze the possible reproductive and development toxicity of QDs. Next, we summarize the possible mechanisms underlying QDs' interference with reproduction and development, including oxidative stress, altered gametogenesis and fetal development gene expression, autophagy and apoptosis, and release of metal ions. Thereafter, we highlight some potential aspects that can be used to eliminate or reduce QDs toxicity. Based on QDs' unique physical and chemical properties, a comprehensive range of toxicity test data is urgently needed to build structure-activity relationship to quickly evaluate the ecological safety of each kind of QDs.
Collapse
Affiliation(s)
- Yongshuai Yao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Zhaofang Chen
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China.
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China.
| |
Collapse
|