1
|
Jin S, Jung H, Song J, Kim S, Yoon S, Kim JH, Lee JS, Kim YJ, Son D, Shin M. Adhesive and Conductive Fibrous Hydrogel Bandages for Effective Peripheral Nerve Regeneration. Adv Healthc Mater 2025:e2403722. [PMID: 39846266 DOI: 10.1002/adhm.202403722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/15/2025] [Indexed: 01/24/2025]
Abstract
Peripheral nerve injury is a common disease resulting in reversible and irreversible impairments of motor and sensory functions. In addition to conventional surgical interventions such as nerve grafting and neurorrhaphy, nerve guidance conduits are used to effectively support axonal growth without unexpected neuroma formation. However, there are still challenges to secure tissue-mimetic mechanical and electrophysiological properties of the conduit materials. Herein, the phenylborate-tethered hydrogel-assisted doping effect is elucidated on conductive polymers, enhancing peripheral nerve regeneration when used as a sutureless bandage on the injured nerve. The adhesive and conductive nerve bandage consists of biocompatible hyaluronic acid hydrogel microfibers produced by electrospinning, followed by in situ conductive polypyrrole polymerization on the fibrous mat. Particularly, phenylborate groups enable high adsorption of pyrrole without mechanical crack on the hydrogel network and allow tissue-like stretchability and on-nerve adhesiveness. In a rat crushed nerve injury model, the nerve bandage can effectively promote nerve regeneration through stable sutureless wrapping followed by great electrical transmission on the defect region, showing anatomical and functional recovery of the nerve tissues and preventing muscular atrophy. Such hydrogel fibrous bandages will be a promising surgical dressing to be combined with versatile biomedical devices/materials for peripheral nerve repair.
Collapse
Affiliation(s)
- Subin Jin
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
| | - Hyunjin Jung
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jihyang Song
- Department of Artificial Intelligence System Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sumin Kim
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Subeen Yoon
- Department of Biomedical science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jung Hyun Kim
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jung Seung Lee
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Yong Jun Kim
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Donghee Son
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Artificial Intelligence System Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Mikyung Shin
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
2
|
Tsujisaka R, Suzuki T, Shibata S, Iwamoto T, Taguchi T, Nakamura M. Effect of Alaska pollock-gelatin sheet on repair strength and regeneration of nerve. J Hand Surg Eur Vol 2025; 50:76-84. [PMID: 38780096 DOI: 10.1177/17531934241251670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The aim of the study was to investigate the repair strength and the biocompatibility of Alaska pollock-derived gelatin (ApGltn) sheet for nerve repair. Cadaveric digital nerves were repaired with double suture, single suture + ApGltn sheet, single suture + fibrin glue, single suture, ApGltn sheet and fibrin. Maximum failure loads were measured (20 nerves each). Rat sciatic nerves were repaired with double suture, single suture + ApGltn sheet, single suture, ApGltn sheet, fibrin glue and resection (10 nerves each). Macroscopic appearance, muscle weight and histopathological findings were examined 8 weeks postoperatively. The mean failure load of ApGltn sheet (0.39 N) was significantly higher than that of a fibrin (0.05 N), and that of single suture + ApGltn sheet (1.32 N) was significantly higher than that of a single suture alone (0.97 N). Functional and histological assessments showed similar nerve recovery among the suture, ApGltn and fibrin groups. ApGltn sheet has potential for clinical application as an alternative to fibrin.
Collapse
Affiliation(s)
- Ryosuke Tsujisaka
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Taku Suzuki
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Shinsuke Shibata
- Electron Microscope Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Takuji Iwamoto
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Tetsushi Taguchi
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Ibaraki, Japan
- Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, Ibaraki, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Frost SJ, Houang J, Hook JM, Lauto A. Chitosan adhesives with sub-micron structures for photochemical tissue bonding. Laser Ther 2022. [DOI: 10.4081/ltj.2022.306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We describe a method for fabricating biocompatible chitosan-based adhesives with sub-micron structures to enhance tissue bonding. This procedure avoids coating and chemical modification of structures and requires a simple drop-casting step for the adhesive film formation. Chitosan thin films (27±3 μm) were fabricated with sub-micron pillars (rectangular cuboid with height ∼150 nm, square dimension ∼1 μm and pitch ∼2 μm) or holes (diameter ~500 nm or ~1 μm, depth ~100 or 400 nm, pitch of 1 or 2 μm). Polydimethylsiloxane moulds were used as negative templates for the adhesive solution that was cast and then allowed to dry to form thin films. These were applied on bisected rectangular strips of small sheep intestine and photochemically bonded by a green laser (λ= 532 nm, irradiance ∼110 J/cm2). The tissue repair was subsequently measured using a computer-interfaced tensiometer. The mould sub-micron structures were reproduced in the chitosan adhesive with high fidelity. The adhesive with pillars achieved the highest bonding strength (17.1±1.2 kPa) when compared to the adhesive with holes (13.0±1.3 kPa, p<0.0001, one-way ANOVA, n=15). The production of chitosan films with patterned pillars or holes in the sub-micron range was demonstrated, using a polydimethylsiloxane mould and a single drop-casting step. This technique is potentially scalable to produce adhesives of larger surface areas.
Collapse
|
4
|
Hamedi H, Moradi S, Hudson SM, Tonelli AE, King MW. Chitosan based bioadhesives for biomedical applications: A review. Carbohydr Polym 2022; 282:119100. [DOI: 10.1016/j.carbpol.2022.119100] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/21/2021] [Accepted: 01/02/2022] [Indexed: 11/02/2022]
|
5
|
A Novel Alaska Pollock Gelatin Sealant Shows Higher Bonding Strength and Nerve Regeneration Comparable to That of Fibrin Sealant in a Cadaveric Model and a Rat Model. Plast Reconstr Surg 2021; 148:742e-752e. [PMID: 34705777 DOI: 10.1097/prs.0000000000008489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND A novel biocompatible sealant composed of Alaska pollock-derived gelatin (ApGltn) has recently shown good burst strength and biocompatibility in a porcine aorta. The purpose of this study was to investigate the bonding strength and biocompatibility of the ApGltn sealant in transected digital nerves of fresh frozen cadavers and in the sciatic nerves of a rat model. METHODS Eighty human digital nerves of fresh frozen cadavers were transected for biomechanical traction testing. They were treated with four surgical interventions: (1) suture plus ApGltn sealant; (2) suture; (3) ApGltn sealant; and (4) fibrin sealant. Forty-three sciatic nerves of male Wistar rats were used for functional and histopathologic evaluation. They were treated with six surgical interventions: (1) suture plus ApGltn sealant; (2) suture; (3) ApGltn sealant; (4) fibrin sealant; (5) resection with a 5-mm gap (10 rats per group); and (6) sham operation (three rats). Macroscopic confirmation, muscle weight measurement, and histopathologic findings including G-ratio were examined 8 weeks after the procedure. RESULTS The maximum failure load of the ApGltn sealant was significantly higher than that of a fibrin sealant (0.22 ± 0.05 N versus 0.06 ± 0.04 N). The maximum failure load of the ApGltn sealant was significantly lower that of suture plus ApGltn sealant (1.37 N) and suture (1.27 N). Functional evaluation and histologic examination showed that sciatic nerves repaired with ApGltn sealant showed similar nerve recovery compared to repair with the suture and fibrin sealant. CONCLUSION The ApGltn sealant showed higher bonding strength and equal effect of nerve regeneration when compared with the fibrin sealant.
Collapse
|
6
|
Houang J, Halliday C, Chen S, Ho CH, Bekmukhametova A, Lauto A. Effective photodynamic treatment of Trichophyton species with Rose Bengal. JOURNAL OF BIOPHOTONICS 2021; 14:e202000340. [PMID: 33058451 DOI: 10.1002/jbio.202000340] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/30/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Photodynamic therapy (PDT) with Rose Bengal has previously achieved eradication of Trichophyton rubrum infections causing toenail onychomycosis; however, its antifungal activity against other clinically relevant dermatophytes has yet to be studied. Here, we test the efficacy of PDT using Rose Bengal (140 μM) and 532 nm irradiation (101 J/cm2 ) against Trichophyton mentagrophytes and Trichophyton interdigitale spores, in comparison to T. rubrum. A significant reduction (>99%) of T. mentagrophytes and T. interdigitale was observed, while actual eradication of viable T. rubrum was achieved (99.99%). Laser irradiation alone inhibited growth of T. rubrum (55.2%) and T. mentagrophytes (45.2%) significantly more than T. interdigitale (25.5%) (P = .0086), which may indicate an increased presence of fungal pigments, xanthomegnin and melanin. The findings suggest that Rose Bengal-PDT can act against a broader spectrum of fungal pathogens, and with continued development may be employed in a wider range of clinical antifungal applications.
Collapse
Affiliation(s)
- Jessica Houang
- School of Science, Western Sydney University, Penrith, New South Wales, Australia
| | - Catriona Halliday
- Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR, Westmead Hospital, Westmead, New South Wales, Australia
- Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, Westmead, New South Wales, Australia
| | - Sharon Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR, Westmead Hospital, Westmead, New South Wales, Australia
- Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, Westmead, New South Wales, Australia
- Sydney Medical School, University of Sydney, Westmead, New South Wales, Australia
| | - Chun-Hoong Ho
- School of Science, Western Sydney University, Penrith, New South Wales, Australia
| | - Alina Bekmukhametova
- School of Science, Western Sydney University, Penrith, New South Wales, Australia
| | - Antonio Lauto
- School of Science, Western Sydney University, Penrith, New South Wales, Australia
- Biomedical Engineering & Neuroscience Research Group, The MARCS Institute, Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
7
|
Ruprai H, Shanu A, Mawad D, Hook JM, Kilian K, George L, Wuhrer R, Houang J, Myers S, Lauto A. Porous chitosan adhesives with L-DOPA for enhanced photochemical tissue bonding. Acta Biomater 2020; 101:314-326. [PMID: 31683016 DOI: 10.1016/j.actbio.2019.10.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/27/2019] [Accepted: 10/30/2019] [Indexed: 12/23/2022]
Abstract
L-3,4-dihydroxyphenylalanine (L-DOPA) is a naturally occurring catechol that is known to increase the adhesive strength of various materials used for tissue repair. With the aim of fortifying a porous and erodible chitosan-based adhesive film, L-DOPA was incorporated in its fabrication for stronger photochemical tissue bonding (PTB), a repair technique that uses light and a photosensitiser to promote tissue adhesion. The results showed that L-DOPA did indeed increase the tissue bonding strength of the films when photoactivated by a green LED, with a maximum strength recorded of approximately 30 kPa, 1.4 times higher than in its absence. The addition of L-DOPA also did not appreciably change the swelling, mechanical and erodible properties of the film. This study showed that strong, porous and erodible adhesive films for PTB made from biocompatible materials can be obtained through a simple inclusion of a natural additive such as L-DOPA, which was simply mixed with chitosan without any chemical modifications. In vitro studies using human fibroblasts showed no negative effect on cell proliferation indicating that these films are biocompatible. The films are convenient for various surgical applications as they can provide strong tissue support and a microporous environment for cellular infusion without the use of sutures. STATEMENT OF SIGNIFICANCE: Tissue adhesives are not as strong as sutures on wounds under stress. Our group has previously demonstrated that strong sutureless tissue repair can be realised with chitosan-based adhesive films that photochemically bond to tissue when irradiated with green light. The advantage of this technique is that films are easier to handle than glues and sutures, and their crosslinking reactions can be controlled with light. However, these films are not optimal for high-tension tissue regenerative applications because of their non-porous structure, which cannot facilitate cell and nutrient exchange at the wound site. The present study resolves this issue, as we obtained a strong and porous photoactivated chitosan-based adhesive film, by simply using freeze drying and adding L-DOPA.
Collapse
Affiliation(s)
- Herleen Ruprai
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | - Anu Shanu
- School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | - Damia Mawad
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia; Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent BioNano Science and Technology, and Centre for Advanced Macromolecular Design, University of New South Wales, Sydney, NSW 2052, Australia.
| | - James M Hook
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia; School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Kristopher Kilian
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia; School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Laurel George
- Advanced Materials Characterization Facility, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | - Richard Wuhrer
- Advanced Materials Characterization Facility, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | - Jessica Houang
- Biomedical Engineering, School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, NSW 2006, Australia.
| | - Simon Myers
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | - Antonio Lauto
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; Biomedical Engineering and Neuroscience Research Group, The MARCS Institute, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| |
Collapse
|
8
|
Ruprai H, Romanazzo S, Ireland J, Kilian K, Mawad D, George L, Wuhrer R, Houang J, Ta D, Myers S, Lauto A. Porous Chitosan Films Support Stem Cells and Facilitate Sutureless Tissue Repair. ACS APPLIED MATERIALS & INTERFACES 2019; 11:32613-32622. [PMID: 31418544 DOI: 10.1021/acsami.9b09123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photochemical tissue bonding with chitosan-based adhesive films is an experimental surgical technique that avoids the risk of thermal tissue injuries and the use of sutures to maintain strong tissue connection. This technique is advantageous over other tissue repair methods as it is minimally invasive and does not require mixing of multiple components before or during application. To expand the capability of the film to beyond just a tissue bonding device and promote tissue regeneration, in this study, we designed bioadhesive films that could also support stem cells. The films were modified with oligomeric chitosan to tune their erodibility and made porous through freeze-drying for better tissue integration. Of note, porous adhesive films (pore diameter ∼110 μm), with 10% of the chitosan being oligomeric, could retain similar tissue bonding strengths (13-15 kPa) to that of the nonporous chitosan-based adhesives used in previous studies when photoactivated. When tested in vitro, these films exhibited a mass loss of ∼20% after 7 days, swelling ratios of ∼270-300%, a percentage elongation of ∼90%, and both a tensile strength and Young's modulus of ∼1 MPa. The physical properties of the films were suitable for maintaining the viability and multipotency of bone-marrow-derived human mesenchymal stem cells over the duration of culture. Thus, these biocompatible, photoactivated porous, and erodible adhesive films show promise for applications in controlled cell delivery and regenerative medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jessica Houang
- Biomedical Engineering, School of Aerospace, Mechanical and Mechatronic Engineering , University of Sydney , Sydney , NSW 2006 , Australia
| | | | | | | |
Collapse
|
9
|
Principles and development of collagen-mediated tissue fusion induced by laser irradiation. Sci Rep 2019; 9:9383. [PMID: 31253820 PMCID: PMC6598983 DOI: 10.1038/s41598-019-45486-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 06/07/2019] [Indexed: 12/04/2022] Open
Abstract
The mechanism underlying tissue fusion mediated by laser irradiation remains unclear. We clarify the mechanisms underlying laser-mediated tissue fusion using a novel model. Microscopic examinations of morphological changes within the adventitia of a bovine carotid artery and a collagen sheet prepared from bovine dermis showed collagen fibril bundle loosening and collagen fibre swelling following heating at 46 °C. An incised bovine carotid artery covered with a collagen sheet to which pressure and laser heat of 40 °C–52 °C were applied created a structure that was pressure resistant to >300 mmHg. Microscopic analyses of the irradiation site showed collagen fibril interdigitation. Hence, low-temperature laser-mediated tissue fusion causes collagen fibril bundles to loosen and swell, and crimping causes the fibres to intertwine. As the temperature declines, the loosened and swollen fibrils and fibres tighten, and collagen fibre interdigitation is completed. This technology could be applied to fuse tissues during surgery.
Collapse
|
10
|
Sliow A, Ma Z, Gargiulo G, Mahns D, Mawad D, Breen P, Stoodley M, Houang J, Kuchel R, Tettamanzi GC, Tilley RD, Frost SJ, Morley J, Longo L, Lauto A. Stimulation and Repair of Peripheral Nerves Using Bioadhesive Graft-Antenna. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801212. [PMID: 31179205 PMCID: PMC6548953 DOI: 10.1002/advs.201801212] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 03/05/2019] [Indexed: 06/09/2023]
Abstract
An original wireless stimulator for peripheral nerves based on a metal loop (diameter ≈1 mm) that is powered by a transcranial magnetic stimulator (TMS) and does not require circuitry components is reported. The loop can be integrated in a chitosan scaffold that functions as a graft when applied onto transected nerves (graft-antenna). The graft-antenna is bonded to rat sciatic nerves by a laser without sutures; it does not migrate after implantation and is able to trigger steady compound muscle action potentials for 12 weeks (CMAP ≈1.3 mV). Eight weeks postoperatively, axon regeneration is facilitated in transected nerves that are repaired with the graft-antenna and stimulated by the TMS for 1 h per week. The graft-antenna is an innovative and minimally-invasive device that functions concurrently as a wireless stimulator and adhesive scaffold for nerve repair.
Collapse
Affiliation(s)
- Ashour Sliow
- School of Science and HealthWestern Sydney UniversityLocked Bag 1797PenrithNSW2751Australia
| | - Zhi Ma
- School of MedicineWestern Sydney UniversityPenrithNSW2751Australia
| | - Gaetano Gargiulo
- Biomedical Engineering & Neuroscience Research GroupMARCS InstituteWestern Sydney UniversityPenrithNSW2751Australia
| | - David Mahns
- School of MedicineWestern Sydney UniversityPenrithNSW2751Australia
| | - Damia Mawad
- School of Materials Science and EngineeringUniversity of New South WalesKensingtonNSW2052Australia
| | - Paul Breen
- Biomedical Engineering & Neuroscience Research GroupMARCS InstituteWestern Sydney UniversityPenrithNSW2751Australia
| | - Marcus Stoodley
- The Australian School of Advanced MedicineMacquarie UniversityNorth RydeNSW2109Australia
| | - Jessica Houang
- School of Aerospace, Mechanical and Mechatronic EngineeringUniversity of SydneySydneyNSW2006Australia
| | - Rhiannon Kuchel
- Mark Wainwright Analytical CentreUniversity of New South WalesKensingtonNSW2052Australia
| | - Giuseppe C. Tettamanzi
- School of Physical Sciences and Institute for Photonics and Advanced SensingUniversity of AdelaideAdelaideSA5005Australia
| | - Richard D. Tilley
- Mark Wainwright Analytical CentreUniversity of New South WalesKensingtonNSW2052Australia
| | - Samuel J. Frost
- School of Science and HealthWestern Sydney UniversityLocked Bag 1797PenrithNSW2751Australia
| | - John Morley
- School of MedicineWestern Sydney UniversityPenrithNSW2751Australia
| | - Leonardo Longo
- Faculty of Human SciencesUniversity of the Republic of San MarinoContrada Omerelli47890Republic of San Marino
| | - Antonio Lauto
- School of Science and HealthWestern Sydney UniversityLocked Bag 1797PenrithNSW2751Australia
- School of MedicineWestern Sydney UniversityPenrithNSW2751Australia
- Biomedical Engineering & Neuroscience Research GroupMARCS InstituteWestern Sydney UniversityPenrithNSW2751Australia
| |
Collapse
|
11
|
Houang J, Perrone GG, Pedrinazzi C, Longo L, Mawad D, Boughton PC, Ruys AJ, Lauto A. Genetic Tolerance to Rose Bengal Photodynamic Therapy and Antifungal Clinical Application for Onychomycosis. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Jessica Houang
- School of Aerospace; Mechanical and Mechatronic Engineering; University of Sydney; Sydney NSW 2006 Australia
| | - Gabriel G. Perrone
- School of Science and Health; Western Sydney University; Penrith NSW 2751 Australia
| | | | - Leonardo Longo
- School of Medicine; University of Siena; 53100 Siena Italy
| | - Damia Mawad
- School of Materials Science and Engineering; University of New South Wales; Sydney NSW 2052 Australia
- Australian Centre for NanoMedicine and ARC Centre of Excellence in Convergent BioNano Science and Technology; University of New South Wales; Sydney NSW 2052 Australia
- Centre for Advanced Macromolecular Design; University of New South Wales; Sydney NSW 2052 Australia
| | - Philip C. Boughton
- School of Aerospace; Mechanical and Mechatronic Engineering; University of Sydney; Sydney NSW 2006 Australia
| | - Andrew J. Ruys
- School of Aerospace; Mechanical and Mechatronic Engineering; University of Sydney; Sydney NSW 2006 Australia
| | - Antonio Lauto
- School of Science and Health; Western Sydney University; Penrith NSW 2751 Australia
- Biomedical Engineering and Neuroscience Research Group; The MARCS Institute; Western Sydney University; Penrith NSW 2751 Australia
- School of Medicine; Western Sydney University; Penrith NSW 2750 Australia
| |
Collapse
|
12
|
Eren A, Atalar H, Seymen CM, Alpaslan Pınarlı F, Take Kaplanoglu G, Turanlı S. Sutureless approach with vein grafts and mesenchymal stem cells in primary nerve repair: Functional and immunohistological results. Microsurgery 2018; 38:780-789. [DOI: 10.1002/micr.30315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 02/02/2018] [Accepted: 02/16/2018] [Indexed: 01/18/2023]
Affiliation(s)
- Ali Eren
- Department of Orthopedics and Traumatology, Faculty of Medicine; Gazi University; Ankara Turkey
| | - Hakan Atalar
- Department of Orthopedics and Traumatology, Faculty of Medicine; Gazi University; Ankara Turkey
| | - Cemile Merve Seymen
- Department of Histology and Embryology, Faculty of Medicine; Gazi University; Ankara Turkey
| | - Ferda Alpaslan Pınarlı
- Center of Cell Research and Genetic Diagnosis; Dıskapı Yıldırım Beyazıt Research Hospital; Etlik Ankara 06010 Turkey
| | - Gulnur Take Kaplanoglu
- Department of Histology and Embryology, Faculty of Medicine; Gazi University; Ankara Turkey
| | - Sacit Turanlı
- Department of Orthopedics and Traumatology, Faculty of Medicine; Gazi University; Ankara Turkey
| |
Collapse
|
13
|
Frost SJ, Mawad D, Wuhrer R, Myers S, Lauto A. Semitransparent bandages based on chitosan and extracellular matrix for photochemical tissue bonding. Biomed Eng Online 2018; 17:7. [PMID: 29357892 PMCID: PMC5778659 DOI: 10.1186/s12938-018-0444-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/16/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Extracellular matrices (ECMs) are often used in reconstructive surgery to enhance tissue regeneration and remodeling. Sutures and staples are currently used to fix ECMs to tissue although they can be invasive devices. Other sutureless and less invasive techniques, such as photochemical tissue bonding, cannot be coupled to ECMs because of their intrinsic opacity to light. RESULTS We succeeded in fabricating a biocompatible and adhesive device that is based on ovine forestomach matrix (OFM) and a chitosan adhesive. The natural opacity of the OFM has been overcome by adding the adhesive into the matrix that allows for the light to effectively penetrate through it. The OFM-chitosan device is semitransparent (attenuation length ~ 106 µm) and can be photoactivated by green light to bond to tissue. This device does not require sutures or staples and guarantees a bonding strength of ~ 23 kPa. CONCLUSIONS A new semitransparent and biocompatible bandage has been successfully fabricated and characterized for sutureless tissue bonding.
Collapse
Affiliation(s)
- Samuel J Frost
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Damia Mawad
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia.,Australian Centre for NanoMedicine and ARC Centre of Excellence in Convergent BioNano Science and Technology, UNSW Sydney, Sydney, NSW, 2052, Australia.,Centre for Advanced Macromolecular Design, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Richard Wuhrer
- Advanced Materials Characterization Facility (AMCF), Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Simon Myers
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.,School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Antonio Lauto
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia. .,School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia. .,Biomedical Engineering & Neuroscience Research Group, The MARCS Institute, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| |
Collapse
|
14
|
Bhagat V, Becker ML. Degradable Adhesives for Surgery and Tissue Engineering. Biomacromolecules 2017; 18:3009-3039. [DOI: 10.1021/acs.biomac.7b00969] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Vrushali Bhagat
- Department
of Polymer Science and ‡Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Matthew L. Becker
- Department
of Polymer Science and ‡Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
15
|
Bhatt NK, Khan TR, Mejias C, Paniello RC. Nerve transection repair using laser-activated chitosan in a rat model. Laryngoscope 2017; 127:E253-E257. [PMID: 28349572 DOI: 10.1002/lary.26583] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/03/2017] [Accepted: 02/20/2017] [Indexed: 01/20/2023]
Abstract
OBJECTIVES/HYPOTHESIS Cranial nerve transection during head and neck surgery is conventionally repaired with microsuture. Previous studies have demonstrated recovery with laser nerve welding (LNW), a novel alternative to microsuture. LNW has been reported to have poorer tensile strength, however. Laser-activated chitosan, an adhesive biopolymer, may promote nerve recovery while enhancing the tensile strength of the repair. Using a rat posterior tibial nerve injury model, we compared four different methods of nerve repair in this pilot study. STUDY DESIGN Animal study. DESIGN Animals underwent unilateral posterior tibial nerve transection. The injury was repaired by potassium titanyl phosphate (KTP) laser alone (n = 20), KTP + chitosan (n = 12), microsuture + chitosan (n = 12), and chitosan alone (n = 14). Weekly walking tracks were conducted to measure functional recovery (FR). Tensile strength (TS) was measured at 6 weeks. RESULTS At 6 weeks, KTP laser alone had the best recovery (FR = 93.4% ± 8.3%). Microsuture + chitosan, KTP + chitosan, and chitosan alone all showed good FR (87.4% ± 13.5%, 84.6% ± 13.0%, and 84.1% ± 10.0%, respectively). One-way analysis of variance was performed (F(3,56) = 2.6, P = .061). A TS threshold of 3.8 N was selected as a control mean recovery. Three groups-KTP alone, KTP + chitosan, and microsuture + chitosan-were found to meet threshold 60% (95% confidence interval [CI]: 23.1%-88.3%), 75% (95% CI: 46.8%-91.1%), and 100% (95% CI: 75.8%-100.0%), respectively. CONCLUSIONS In the posterior tibial nerve model, all repair methods promoted nerve recovery. Laser-activated chitosan as a biopolymer anchor provided good TS and appears to be a novel alternative to microsuture. This repair method may have surgical utility following cranial nerve injury during head and neck surgery. LEVEL OF EVIDENCE NA Laryngoscope, 127:E253-E257, 2017.
Collapse
Affiliation(s)
- Neel K Bhatt
- Department of Otolaryngology-Head and Neck Surgery, Washington University in St. Louis, St. Louis, Missouri, U.S.A
| | - Taleef R Khan
- Department of Otolaryngology-Head and Neck Surgery, Washington University in St. Louis, St. Louis, Missouri, U.S.A
| | - Christopher Mejias
- Department of Otolaryngology-Head and Neck Surgery, Washington University in St. Louis, St. Louis, Missouri, U.S.A
| | - Randal C Paniello
- Department of Otolaryngology-Head and Neck Surgery, Washington University in St. Louis, St. Louis, Missouri, U.S.A
| |
Collapse
|
16
|
O’Rorke RD, Pokholenko O, Gao F, Cheng T, Shah A, Mogal V, Steele TWJ. Addressing Unmet Clinical Needs with UV Bioadhesives. Biomacromolecules 2017; 18:674-682. [DOI: 10.1021/acs.biomac.6b01743] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Richard D. O’Rorke
- Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372
| | - Oleksandr Pokholenko
- School
of Materials Science and Engineering, Nanyang Technological University, Block N4.1, Nanyang Avenue, Singapore 639798
| | - Feng Gao
- School
of Materials Science and Engineering, Nanyang Technological University, Block N4.1, Nanyang Avenue, Singapore 639798
| | - Ting Cheng
- School
of Materials Science and Engineering, Nanyang Technological University, Block N4.1, Nanyang Avenue, Singapore 639798
| | - Ankur Shah
- School
of Materials Science and Engineering, Nanyang Technological University, Block N4.1, Nanyang Avenue, Singapore 639798
| | - Vishal Mogal
- School
of Materials Science and Engineering, Nanyang Technological University, Block N4.1, Nanyang Avenue, Singapore 639798
- Faculty
of Dentistry, National University of Singapore, 11 Lower Kent Ridge Road, Singapore 119083
| | - Terry W. J. Steele
- School
of Materials Science and Engineering, Nanyang Technological University, Block N4.1, Nanyang Avenue, Singapore 639798
| |
Collapse
|
17
|
Bhatt NK, Mejias C, Kallogjeri D, Gale DC, Park AM, Paniello RC. Potassium titanyl phosphate laser welding following complete nerve transection. Laryngoscope 2016; 127:1525-1530. [DOI: 10.1002/lary.26383] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 09/04/2016] [Accepted: 09/27/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Neel K. Bhatt
- Department of Otolaryngology-Head and Neck Surgery; Washington University in Saint Louis; St. Louis Missouri U.S.A
| | - Christopher Mejias
- Department of Otolaryngology-Head and Neck Surgery; Washington University in Saint Louis; St. Louis Missouri U.S.A
| | - Dorina Kallogjeri
- Department of Otolaryngology-Head and Neck Surgery; Washington University in Saint Louis; St. Louis Missouri U.S.A
| | - Derrick C. Gale
- Department of Otolaryngology-Head and Neck Surgery; Washington University in Saint Louis; St. Louis Missouri U.S.A
| | - Andrea M. Park
- Department of Otolaryngology-Head and Neck Surgery; Washington University in Saint Louis; St. Louis Missouri U.S.A
| | - Randal C. Paniello
- Department of Otolaryngology-Head and Neck Surgery; Washington University in Saint Louis; St. Louis Missouri U.S.A
| |
Collapse
|
18
|
Mawad D, Mansfield C, Lauto A, Perbellini F, Nelson GW, Tonkin J, Bello SO, Carrad DJ, Micolich AP, Mahat MM, Furman J, Payne D, Lyon AR, Gooding JJ, Harding SE, Terracciano CM, Stevens MM. A conducting polymer with enhanced electronic stability applied in cardiac models. SCIENCE ADVANCES 2016; 2:e1601007. [PMID: 28138526 PMCID: PMC5262463 DOI: 10.1126/sciadv.1601007] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 10/27/2016] [Indexed: 05/18/2023]
Abstract
Electrically active constructs can have a beneficial effect on electroresponsive tissues, such as the brain, heart, and nervous system. Conducting polymers (CPs) are being considered as components of these constructs because of their intrinsic electroactive and flexible nature. However, their clinical application has been largely hampered by their short operational time due to a decrease in their electronic properties. We show that, by immobilizing the dopant in the conductive scaffold, we can prevent its electric deterioration. We grew polyaniline (PANI) doped with phytic acid on the surface of a chitosan film. The strong chelation between phytic acid and chitosan led to a conductive patch with retained electroactivity, low surface resistivity (35.85 ± 9.40 kilohms per square), and oxidized form after 2 weeks of incubation in physiological medium. Ex vivo experiments revealed that the conductive nature of the patch has an immediate effect on the electrophysiology of the heart. Preliminary in vivo experiments showed that the conductive patch does not induce proarrhythmogenic activities in the heart. Our findings set the foundation for the design of electronically stable CP-based scaffolds. This provides a robust conductive system that could be used at the interface with electroresponsive tissue to better understand the interaction and effect of these materials on the electrophysiology of these tissues.
Collapse
Affiliation(s)
- Damia Mawad
- Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, U.K
- Department of Materials, Imperial College London, London SW7 2AZ, U.K
- School of Materials Science and Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
- Corresponding author. (D.M.); (M.M.S.)
| | - Catherine Mansfield
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, U.K
| | - Antonio Lauto
- Biomedical Engineering and Neuroscience Research Group, University of Western Sydney, Penrith, New South Wales 2751, Australia
| | - Filippo Perbellini
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, U.K
| | | | - Joanne Tonkin
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, U.K
| | - Sean O. Bello
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, U.K
| | - Damon J. Carrad
- School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Adam P. Micolich
- School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Mohd M. Mahat
- Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, U.K
- Faculty of Applied Sciences Universiti Teknologi Mara, 40450 Shah Alam, Selangor, Malaysia
| | - Jennifer Furman
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, U.K
| | - David Payne
- Department of Materials, Imperial College London, London SW7 2AZ, U.K
| | - Alexander R. Lyon
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, U.K
- National Institute for Health Research Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, London, U.K
| | - J. Justin Gooding
- School of Chemistry, Australian Centre for NanoMedicine and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Sian E. Harding
- National Institute for Health Research Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, London, U.K
| | | | - Molly M. Stevens
- Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, U.K
- Department of Materials, Imperial College London, London SW7 2AZ, U.K
- Corresponding author. (D.M.); (M.M.S.)
| |
Collapse
|
19
|
Frost SJ, Mawad D, Hook J, Lauto A. Micro- and Nanostructured Biomaterials for Sutureless Tissue Repair. Adv Healthc Mater 2016; 5:401-14. [PMID: 26725593 DOI: 10.1002/adhm.201500589] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/23/2015] [Indexed: 01/01/2023]
Abstract
Sutureless procedures for wound repair and closure have recently integrated nanostructured devices to improve their effectiveness and clinical outcome. This review highlights the major advances in gecko-inspired bioadhesives that relies mostly on van der Waals bonding forces. These are challenged by the moist environment of surgical settings that weaken adherence to tissue. The incorporation of nanoparticles in biomatrices and their role in tissue repair and drug delivery is also reviewed with an emphasis on procedures involving adhesives that are laser-activated. Nanostructured adhesive devices have the advantage of being minimally invasive to tissue, can seal wounds, and deliver drugs in situ. All these tasks are very difficult to accomplish by sutures or staples that are invasive to host organs and often cause scarring.
Collapse
Affiliation(s)
- Samuel J. Frost
- School of Science and Health; University of Western Sydney; Penrith NSW 2751 Australia
| | - D. Mawad
- Department of Materials; Imperial College London; SW7 2AZ UK
- School of Materials Science and Engineering; University of New South Wales; Sydney 2052 Australia
| | - J. Hook
- School of Chemistry; University of New South Wales; Sydney 2052 Australia
| | - Antonio Lauto
- School of Science and Health; University of Western Sydney; Penrith NSW 2751 Australia
- The Biomedical Engineering and Neuroscience (BENS) Research Group; The MARCS Institute; Penrith NSW 2751 Australia
| |
Collapse
|
20
|
Mawad D, Warren C, Barton M, Mahns D, Morley J, Pham BT, Pham NT, Kueh S, Lauto A. Lysozyme depolymerization of photo-activated chitosan adhesive films. Carbohydr Polym 2015; 121:56-63. [DOI: 10.1016/j.carbpol.2014.12.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 12/08/2014] [Accepted: 12/10/2014] [Indexed: 02/07/2023]
|
21
|
Barton MJ, Morley JW, Stoodley MA, Shaikh S, Mahns DA, Lauto A. Long term recovery of median nerve repair using laser-activated chitosan adhesive films. JOURNAL OF BIOPHOTONICS 2015; 8:196-207. [PMID: 24132983 DOI: 10.1002/jbio.201300129] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/06/2013] [Accepted: 09/22/2013] [Indexed: 06/02/2023]
Abstract
Sutures remain the standard peripheral nerve repair technique, whether applied directly or indirectly to nerve tissue. Unfortunately, significant postoperative complications can result, such as inflammation, neuroma formation and foreign body reactions. Photochemical-tissue-bonding (PTB) using rose Bengal (RB) integrated into a chitosan bioadhesive is an alternative nerve repair device that removes the need for sutures. Rats were arranged into three groups: RB-chitosan adhesives-repair, end-to-end epineural suture-repair (surgical standard) and sham laser-irradiated control. Groups were compared through histological assessment, electrophysiological recordings and grip motor strength. RB-chitosan adhesive repaired nerves displayed comparable results when compared to the standard suture-repair based on histological and electrophysiological findings. Functionally, RB-chitosan adhesive was associated with a quicker and more pronounced recovery of grip force when compared to the suture-repair.
Collapse
Affiliation(s)
- Matthew J Barton
- School of Medicine, University of Western Sydney, Locked Bag 1797 Penrith, NSW, 2751, Australia
| | | | | | | | | | | |
Collapse
|
22
|
Barton MJ, Morley JW, Stoodley MA, Lauto A, Mahns DA. Nerve repair: toward a sutureless approach. Neurosurg Rev 2014; 37:585-95. [PMID: 25015388 DOI: 10.1007/s10143-014-0559-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 02/04/2014] [Accepted: 04/13/2014] [Indexed: 12/16/2022]
Abstract
Peripheral nerve repair for complete section injuries employ reconstructive techniques that invariably require sutures in their application. Sutures are unable to seal the nerve, thus incapable of preventing leakage of important intraneural fluids from the regenerating nerve. Furthermore, sutures are technically demanding to apply for direct repairs and often induce detrimental scarring that impedes healing and functional recovery. To overcome these limitations, biocompatible and biodegradable glues have been used to seal and repair peripheral nerves. Although creating a sufficient seal, they can lack flexibility and present infection risks or cytotoxicity. Other adhesive biomaterials have recently emerged into practice that are usually based on proteins such as albumin and collagen or polysaccharides like chitosan. These adhesives form their union to nerve tissue by either photothermal (tissue welding) or photochemical (tissue bonding) activation with laser light. These biomaterial adhesives offer significant advantages over sutures, such as their capacity to unite and seal the epineurium, ease of application, reduced invasiveness and add the potential for drug delivery in situ to facilitate regeneration. This paper reviews a number of different peripheral nerve repair (or reconstructive) techniques currently used clinically and in experimental procedures for nerve injuries with or without tissue deficit.
Collapse
Affiliation(s)
- Matthew J Barton
- Griffith Health Institute, Griffith University, Gold Coast Campus, Queensland, 4222, Australia,
| | | | | | | | | |
Collapse
|