1
|
Abdelhamid MAA, Ki MR, Pack SP. Biominerals and Bioinspired Materials in Biosensing: Recent Advancements and Applications. Int J Mol Sci 2024; 25:4678. [PMID: 38731897 PMCID: PMC11083057 DOI: 10.3390/ijms25094678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Inspired by nature's remarkable ability to form intricate minerals, researchers have unlocked transformative strategies for creating next-generation biosensors with exceptional sensitivity, selectivity, and biocompatibility. By mimicking how organisms orchestrate mineral growth, biomimetic and bioinspired materials are significantly impacting biosensor design. Engineered bioinspired materials offer distinct advantages over their natural counterparts, boasting superior tunability, precise controllability, and the ability to integrate specific functionalities for enhanced sensing capabilities. This remarkable versatility enables the construction of various biosensing platforms, including optical sensors, electrochemical sensors, magnetic biosensors, and nucleic acid detection platforms, for diverse applications. Additionally, bioinspired materials facilitate the development of smartphone-assisted biosensing platforms, offering user-friendly and portable diagnostic tools for point-of-care applications. This review comprehensively explores the utilization of naturally occurring and engineered biominerals and materials for diverse biosensing applications. We highlight the fabrication and design strategies that tailor their functionalities to address specific biosensing needs. This in-depth exploration underscores the transformative potential of biominerals and materials in revolutionizing biosensing, paving the way for advancements in healthcare, environmental monitoring, and other critical fields.
Collapse
Affiliation(s)
- Mohamed A. A. Abdelhamid
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
- Department of Botany and Microbiology, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
- Institute of Industrial Technology, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
| |
Collapse
|
2
|
Mondal MIH, Chandra Chakraborty S, Rahman MS, Marjuban SMH, Ahmed F, Zhou JL, Ahmed MB, Zargar M. Adsorbents from rice husk and shrimp shell for effective removal of heavy metals and reactive dyes in water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123637. [PMID: 38408507 DOI: 10.1016/j.envpol.2024.123637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
Widespread contamination by heavy metals (HMs) and dyes poses a major health risk to people and ecosystems requiring effective treatment. In this work, rice husk (RH) and shrimp shells were extracted to obtain amorphous silica and chitosan, respectively, which were utilized to produce nano-chitosan-coated silica (NCCS). To ensure the stability of the nanoparticles, silica was freeze-dried after being coated with nano-chitosan. Functional groups (-NH2, -OH, P]O) from chitosan nanoparticles (CNPs) were introduced to the surface of silica during this process. Dyes such as brilliant green (BG), methylene blue (MB) and reactive brown (RB) as well as HMs (Cr6+, Pb2+, Cd2+, Ni2+) were removed by adsorbents. CNPs showed the highest adsorption capacity for RB (59.52 mg/g) among dyes and Cr6+ (42.55 mg/g) among HMs. CNPs showed the highest adsorption capacity for HMs among different adsorbents. Although NCCS and CNPs showed similar adsorption capabilities for HMs and dyes, NCCS showed the best stability. The adsorption performance decreased as RB > Cr6+ > MB > BG > Pb2+ > Cd2+ > Ni2+. The adsorption reactions followed both pseudo-first-order and second-order kinetics, and was spontaneous from thermodynamic analysis. In summary, the waste-derived adsorbents demonstrated excellent potential for removing HMs and dyes from water, while supporting effective management solid waste.
Collapse
Affiliation(s)
- Md Ibrahim H Mondal
- Polymer and Textile Research Lab, Department of Applied Chemistry and Chemical Engineering, Rajshahi University, Rajshahi 6205, Bangladesh
| | - Shovra Chandra Chakraborty
- Polymer and Textile Research Lab, Department of Applied Chemistry and Chemical Engineering, Rajshahi University, Rajshahi 6205, Bangladesh
| | - Md Saifur Rahman
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | | | - Firoz Ahmed
- Polymer and Textile Research Lab, Department of Applied Chemistry and Chemical Engineering, Rajshahi University, Rajshahi 6205, Bangladesh; BCSIR Laboratories Rajshahi, Bangladesh Council of Scientific and Industrial Research, Rajshahi 6206, Bangladesh
| | - John L Zhou
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, Sydney, NSW 2007, Australia.
| | - Mohammad Boshir Ahmed
- Institute for Sustainability, Energy and Resources, School of Chemical Engineering, The University of Adelaide, North Terrace Campus, Adelaide 5005, Australia; School of Engineering, Edith Cowan University, 6027 Joondalup, WA, Australia
| | - Masoumeh Zargar
- School of Engineering, Edith Cowan University, 6027 Joondalup, WA, Australia
| |
Collapse
|
3
|
Ilyas A, Dyussupova A, Sultangaziyev A, Shevchenko Y, Filchakova O, Bukasov R. SERS immuno- and apta-assays in biosensing/bio-detection: Performance comparison, clinical applications, challenges. Talanta 2023; 265:124818. [PMID: 37453393 DOI: 10.1016/j.talanta.2023.124818] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023]
Abstract
Surface Enhanced Raman Spectroscopy is increasingly used as a sensitive bioanalytical tool for detection of variety of analytes ranging from viruses and bacteria to cancer biomarkers and toxins, etc. This comprehensive review describes principles of operation and compares the performance of immunoassays and aptamer assays with Surface Enhanced Raman scattering (SERS) detection to each other and to some other bioassay methods, including ELISA and fluorescence assays. Both immuno- and aptamer-based assays are categorized into assay on solid substrates, assays with magnetic nanoparticles and assays in laminar flow or/and strip assays. The best performing and recent examples of assays in each category are described in the text and illustrated in the figures. The average performance, particularly, limit of detection (LOD) for each of those methods reflected in 9 tables of the manuscript and average LODs are calculated and compared. We found out that, on average, there is some advantage in terms of LOD for SERS immunoassays (0.5 pM median LOD of 88 papers) vs SERS aptamer-based assays (1.7 pM median LOD of 51 papers). We also tabulated and analyzed the clinical performance of SERS immune and aptamer assays, where selectivity, specificity, and accuracy are reported, we summarized the best examples. We also reviewed challenges to SERS bioassay performance and real-life application, including non-specific protein binding, nanoparticle aggregation, limited nanotag stability, sometimes, relatively long time to results, etc. The proposed solutions to those challenges are also discussed in the review. Overall, this review may be interesting not only to bioanalytical chemist, but to medical and life science researchers who are interested in improvement of bioanalyte detection and diagnostics.
Collapse
Affiliation(s)
- Aisha Ilyas
- Department of Chemistry, SSH, Nazarbayev University, Astana, Kazakhstan
| | | | | | - Yegor Shevchenko
- Department of Chemistry, SSH, Nazarbayev University, Astana, Kazakhstan
| | - Olena Filchakova
- Department of Biology, SSH, Nazarbayev University, Astana, Kazakhstan
| | - Rostislav Bukasov
- Department of Chemistry, SSH, Nazarbayev University, Astana, Kazakhstan.
| |
Collapse
|
4
|
Allouzi MMA, Allouzi S, Al-Salaheen B, Khoo KS, Rajendran S, Sankaran R, Sy-Toan N, Show PL. Current advances and future trend of nanotechnology as microalgae-based biosensor. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
De Tommasi E, De Luca AC. Diatom biosilica in plasmonics: applications in sensing, diagnostics and therapeutics [Invited]. BIOMEDICAL OPTICS EXPRESS 2022; 13:3080-3101. [PMID: 35774319 PMCID: PMC9203090 DOI: 10.1364/boe.457483] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 06/01/2023]
Abstract
Several living organisms are able to synthesize complex nanostructures provided with peculiar physical and chemical properties by means of finely-tuned, genetically controlled biomineralization processes. Frustules, in particular, are micro- and nano-structured silica shells produced by ubiquitous diatom microalgae, whose optical properties have been recently exploited in photonics, solar energy harvesting, and biosensing. Metallization of diatom biosilica, both in the shape of intact frustules or diatomite particles, can trigger plasmonic effects that in turn can find application in high-sensitive detection platforms, allowing to obtain effective nanosensors at low cost and on a large scale. The aim of the present review article is to provide a wide, complete overview on the main metallization techniques applied to diatom biosilica and on the principal applications of diatom-based plasmonic devices mainly but not exclusively in the fields of biochemical sensing, diagnostics and therapeutics.
Collapse
Affiliation(s)
- Edoardo De Tommasi
- National Research Council, Institute of Applied Sciences and Intelligent Systems "Eduardo Caianiello", Unit of Naples, Via P. Castellino 111, I-80131, Naples, Italy
| | - Anna Chiara De Luca
- National Research Council, Institute for Endocrinology and Experimental Oncology "Gaetano Salvatore", Unit of Naples, Via P. Castellino 111, I-80131, Naples, Italy
| |
Collapse
|
6
|
Diatom Frustule Array for Flow-Through Enhancement of Fluorescent Signal in a Microfluidic Chip. MICROMACHINES 2021; 12:mi12091017. [PMID: 34577659 PMCID: PMC8469004 DOI: 10.3390/mi12091017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022]
Abstract
Diatom frustules are a type of natural biomaterials that feature regular shape and intricate hierarchical micro/nano structures. They have shown excellent performance in biosensing, yet few studies have been performed on flow-through detection. In this study, diatom frustules were patterned into step-through holes and bonded with silicon substrate to form an open-ended filtration array. Then they were fixed into a microfluidic chip with a smartphone-based POCT. Human IgG and FITC-labeled goat–anti-human IgG were adopted to investigate the adsorption enhancement when analyte flowed through diatom frustules. The results indicated up to 16-fold enhancement of fluorescent signal sensitivity for the flow-through mode compared with flow-over mode, at a low concentration of 10.0 μg/mL. Moreover, the maximum flow rate reached 2.0 μL/s, which resulted in a significant decrease in the testing time in POCT. The adsorption simulation results of diatom array embedded in the microchannel shows good agreement with experimental results, which further proves the filtration enrichment effect of the diatom array. The methods put forward in this study may open a new window for the application of diatom frustules in biosensing platforms.
Collapse
|
7
|
Tang Y, Zhang Z, Yang S, Smith GJ, Liu L. Diatomite encapsulated AgNPs as novel hair dye cosmetics: Preparation, performance, and toxicity. Colloids Surf B Biointerfaces 2021; 200:111599. [PMID: 33571866 DOI: 10.1016/j.colsurfb.2021.111599] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 01/17/2021] [Accepted: 01/26/2021] [Indexed: 11/18/2022]
Abstract
Naturally-occurring diatomite has been successfully utilised as a unique encapsulating material to obtain a highly dispersed suspension of uniformly-sized silver nanoparticles (AgNPs). Plant derived gallic acid was used as the reducing and capping agent. High-resolution scanning and transmission electron microscopy results confirmed the attachment of AgNPs on the surface of diatom frustule and maintained an excellent dispersion stability against particle aggregation. The AgNPs obtained were employed for the colouration of bleached human hair owing to the local surface plasmonic absorption (LSPR) of the AgNPs. The effects of Ag/diatomite concentration, dyeing pH, temperature and time on the produced colour were investigated. Hair fibres treated under optimised conditions display good colour fastness toward solar radiation. The morphology and chemical composition of AgNP-dyed hair were determined by energy-dispersive spectroscopy, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy analyses. The biocompatibility of the Ag/diatomite composite, AgNPs, and the dyebaths were confirmed by in vitro acute dermal and ocular toxicity tests. The diatomite supporting AgNPs therefore hold good promise and enormous potential to be exploited for sustainable dyeing of human hair.
Collapse
Affiliation(s)
- Ying Tang
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China; Department of Cosmetics, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China.
| | - Zhaolun Zhang
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China; Department of Cosmetics, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China.
| | - Shuyan Yang
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China; Department of Cosmetics, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China.
| | - Gerald J Smith
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand.
| | - Lei Liu
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China; Department of Cosmetics, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
8
|
Abdelhamid MAA, Pack SP. Biomimetic and bioinspired silicifications: Recent advances for biomaterial design and applications. Acta Biomater 2021; 120:38-56. [PMID: 32447061 DOI: 10.1016/j.actbio.2020.05.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/06/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022]
Abstract
The rational design and controllable synthesis of functional silica-based materials have gained increased interest in a variety of biomedical and biotechnological applications due to their unique properties. The current review shows that marine organisms, such as siliceous sponges and diatoms, could be the inspiration for the fabrication of advanced biohybrid materials. Several biomolecules were involved in the molecular mechanism of biosilicification in vivo. Mimicking their behavior, functional silica-based biomaterials have been generated via biomimetic and bioinspired silicification in vitro. Additionally, several advanced technologies were developed for in vitro and in vivo immobilization of biomolecules with potential applications in biocatalysis, biosensors, bioimaging, and immunoassays. A thin silica layer could coat a single living cell or virus as a protective shell offering new opportunities in biotechnology and nanomedicine fields. Promising nanotechnologies have been developed for drug encapsulation and delivery in a targeted and controlled manner, in particular for poorly soluble hydrophobic drugs. Moreover, biomimetic silica, as a morphogenetically active biocompatible material, has been utilized in the field of bone regeneration and in the development of biomedical implantable devices. STATEMENT OF SIGNIFICANCE: In nature, silica-based biomaterials, such as diatom frustules and sponge spicules, with high mechanical and physical properties were created under biocompatible conditions. The fundamental knowledge underlying the molecular mechanisms of biosilica formation could inspire engineers and chemists to design novel hybrid biomaterials using molecular biomimetic strategies. The production of such biohybrid materials brings the biosilicification field closer to practical applications. This review starts with the biosilicification process of sponges and diatoms with recently updated researches. Then, this article covers recent advances in the design of silica-based biomaterials and their potential applications in the fields of biotechnology and nanomedicine, highlighting several promising technologies for encapsulation of functional proteins and living cells, drug delivery and the preparation of scaffolds for bone regeneration.
Collapse
Affiliation(s)
- Mohamed A A Abdelhamid
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; Department of Botany and Microbiology, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea.
| |
Collapse
|
9
|
Physical, Chemical, and Genetic Techniques for Diatom Frustule Modification: Applications in Nanotechnology. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10238738] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Diatom frustules represent one of the most complex examples of micro- and nano-structured materials found in nature, being the result of a biomineralization process refined through tens of milions of years of evolution. They are constituted by an intricate, ordered porous silica matrix which recently found several applications in optoelectronics, sensing, solar light harvesting, filtering, and drug delivery, to name a few. The possibility to modify the composition and the structure of frustules can further broaden the range of potential applications, adding new functions and active features to the material. In the present work the most remarkable physical and chemical techniques aimed at frustule modification are reviewed, also examining the most recent genetic techniques developed for its controlled morphological mutation.
Collapse
|
10
|
Ford NR, Xiong Y, Hecht KA, Squier TC, Rorrer GL, Roesijadi G. Optimizing the Design of Diatom Biosilica-Targeted Fusion Proteins in Biosensor Construction for Bacillus anthracis Detection. BIOLOGY 2020; 9:biology9010014. [PMID: 31936120 PMCID: PMC7168173 DOI: 10.3390/biology9010014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/24/2019] [Accepted: 01/04/2020] [Indexed: 11/16/2022]
Abstract
In vivo functionalization of diatom biosilica frustules by genetic manipulation requires careful consideration of the overall structure and function of complex fusion proteins. Although we previously had transformed Thalassiosira pseudonana with constructs containing a single domain antibody (sdAb) raised against the Bacillus anthracis Sterne strain, which detected an epitope of the surface layer protein EA1 accessible in lysed spores, we initially were unsuccessful with constructs encoding a similar sdAb that detected an epitope of EA1 accessible in intact spores and vegetative cells. This discrepancy limited the usefulness of the system as an environmental biosensor for B. anthracis. We surmised that to create functional biosilica-localized biosensors with certain constructs, the biosilica targeting and protein trafficking functions of the biosilica-targeting peptide Sil3T8 had to be uncoupled. We found that retaining the ER trafficking sequence at the N-terminus and relocating the Sil3T8 targeting peptide to the C-terminus of the fusion protein resulted in successful detection of EA1 with both sdAbs. Homology modeling of antigen binding by the two sdAbs supported the hypothesis that the rescue of antigen binding in the previously dysfunctional sdAb was due to removal of steric hindrances between the antigen binding loops and the diatom biosilica for that particular sdAb.
Collapse
Affiliation(s)
- Nicole R. Ford
- Marine Biotechnology Group, Pacific Northwest National Laboratory, Sequim, WA 98382, USA
- Correspondence:
| | - Yijia Xiong
- Department of Basic Medical Sciences, Western University of Health Sciences, Lebanon, OR 97355, USA
| | - Karen A. Hecht
- Marine Biotechnology Group, Pacific Northwest National Laboratory, Sequim, WA 98382, USA
| | - Thomas C. Squier
- Department of Basic Medical Sciences, Western University of Health Sciences, Lebanon, OR 97355, USA
| | - Gregory L. Rorrer
- School of Chemical Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - Guritno Roesijadi
- Marine Biotechnology Group, Pacific Northwest National Laboratory, Sequim, WA 98382, USA
- School of Chemical Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
11
|
Liu J, Jalali M, Mahshid S, Wachsmann-Hogiu S. Are plasmonic optical biosensors ready for use in point-of-need applications? Analyst 2019; 145:364-384. [PMID: 31832630 DOI: 10.1039/c9an02149c] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Plasmonics has drawn significant attention in the area of biosensors for decades due to the unique optical properties of plasmonic resonant nanostructures. While the sensitivity and specificity of molecular detection relies significantly on the resonance conditions, significant attention has been dedicated to the design, fabrication, and optimization of plasmonic substrates. The adequate choice of materials, structures, and functionality goes hand in hand with a fundamental understanding of plasmonics to enable the development of practical biosensors that can be deployed in real life situations. Here we provide a brief review of plasmonic biosensors detailing most recent developments and applications. Besides metals, novel plasmonic materials such as graphene are highlighted. Sensors based on Surface Plasmon Resonance (SPR), Localized Surface Plasmon Resonance (LSPR), and Surface Enhanced Raman Spectroscopy (SERS) are presented and classified based on their materials and structure. In addition, most recent applications to environment monitoring, health diagnosis, and food safety are presented. Potential problems related to the implementation in such applications are discussed and an outlook is presented.
Collapse
Affiliation(s)
- Juanjuan Liu
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| | - Mahsa Jalali
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| | - Sara Mahshid
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| | | |
Collapse
|
12
|
Sasirekha R, Sheena TS, Anitha R, Santhanam P, Kulandaivel J. Characterizations and analysis of genus Amphora diatom frustules: a promising biomaterial. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2019. [DOI: 10.1680/jbibn.18.00026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In the present study, the authors have synthesized biosilica from marine diatoms (Amphora sp.) by using an optimized procedure with a combination of acid and salt washing treatments. The purification of frustules employed a simple methodology that combines acid digestion and rinsing with hydrogen peroxide. The content of Amphora sp. biosilica has been analyzed through energy-dispersive spectroscopy. The result declares the purity of biosilica, which is highly pristine in comparison to diatomaceous earth. The structural architecture of Amphora sp. is typically amorphous in nature. Moreover, Amphora sp. biosilica has a mesopore diameter and a surface area of 4·838 nm and 332 m2/g, respectively, which are relatively higher than those from previous reports. The adsorption/desorption isotherm results suggest that the derived frustules have a highly porous architecture, which shows their great potential to be used as drug delivery carriers, biosensors, biocatalysts and adsorbents in the future.
Collapse
Affiliation(s)
- Rajendran Sasirekha
- Department of Marine Science, School of Marine Sciences, Bharathidasan University, Tiruchirapalli, India
| | - Thankaraj Salammal Sheena
- Center for Nanoscience and Nanotechnology, Department of Physics, Bharathidasan University, Tiruchirapalli, India
| | - Radhakrishnan Anitha
- Department of Botany, School of Life Sciences, Bharathidasan University, Tiruchirapalli, India
| | - Perumal Santhanam
- Department of Marine Science, School of Marine Sciences, Bharathidasan University, Tiruchirapalli, India
| | - Jeganathan Kulandaivel
- Center for Nanoscience and Nanotechnology, Department of Physics, Bharathidasan University, Tiruchirapalli, India
| |
Collapse
|
13
|
Panwar V, Dutta T. Diatom Biogenic Silica as a Felicitous Platform for Biochemical Engineering: Expanding Frontiers. ACS APPLIED BIO MATERIALS 2019; 2:2295-2316. [DOI: 10.1021/acsabm.9b00050] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Varsha Panwar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Tanmay Dutta
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
14
|
Sivashanmugan K, Squire K, Tan A, Zhao Y, Kraai JA, Rorrer GL, Wang AX. Trace Detection of Tetrahydrocannabinol in Body Fluid via Surface-Enhanced Raman Scattering and Principal Component Analysis. ACS Sens 2019; 4:1109-1117. [PMID: 30907578 DOI: 10.1021/acssensors.9b00476] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tetrahydrocannabinol (THC) is the main active component in marijuana and the rapid detection of THC in human body fluid plays a critical role in forensic analysis and public health. Surface-enhanced Raman scattering (SERS) sensing has been increasingly used to detect illicit drugs; however, only limited SERS sensing results of THC in methanol solution have been reported, while its presence in body fluids, such as saliva or plasma, has yet to be investigated. In this article, we demonstrate the trace detection of THC in human plasma and saliva solution using a SERS-active substrate formed by in situ growth of silver nanoparticles (Ag NPs) on diatom frustules. THC at extremely low concentration of 1 pM in plasma and purified saliva solutions were adequately distinguished with good reproducibility. The SERS peak at 1603 cm-1 with standard deviation of 3.4 cm-1 was used for the evaluation of THC concentration in a methanol solution. Our SERS measurement also shows that this signature peak experiences a noticeable wavenumber shift and a slightly wider variation in the plasma and saliva solution. Additionally, we observed that THC in plasma or saliva samples produces a strong SERS peak at 1621 cm-1 due to the stretching mode of O-C═O, which is related to the metabolic change of THC structures in body fluid. To conduct a quantitative analysis, principal component analysis (PCA) was applied to analyze the SERS spectra of 1 pM THC in methanol solution, plasma, and purified saliva samples. The maximum variability of the first three principal components was achieved at 71%, which clearly denotes the impact of different biological background signals. Similarly, the SERS spectra of THC in raw saliva solution under various metabolic times were studied using PCA and 98% of the variability is accounted for in the first three principal components. The clear separation of samples measured at different THC resident times can provide time-dependent information on the THC metabolic process in body fluids. A linear regression model was used to estimate the metabolic rate of THC in raw saliva and the predicted metabolic time in the testing data set matched well with the training data set. In summary, the hybrid plasmonic-biosilica SERS substrate can achieve ultrasensitive, near-quantitative detection of trace levels of THC in complex body fluids, which can potentially transform forensic sensing techniques to detect marijuana abuse.
Collapse
|
15
|
Maeda Y, Niwa Y, Tang H, Kisailus D, Yoshino T, Tanaka T. Development of Titania-Integrated Silica Cell Walls of the Titanium-Resistant Diatom, Fistulifera solaris. ACS APPLIED BIO MATERIALS 2018; 1:2021-2029. [PMID: 34996264 DOI: 10.1021/acsabm.8b00520] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the biological synthesis of titania that is integrated into the silica-based cell walls of a titanium-resistant diatom, Fistulifera solaris. Titania is deposited across the diatom cell walls by simply incubating F. solaris in a culture medium containing a high concentration (2 mM) of a water-soluble organo-titanium compound, titanium(IV) bis(ammonium lactato) dihydroxide (TiBALDH) that would otherwise inhibit the growth of other diatom species. Furthermore, we genetically engineered the interfaces of the diatom cell walls with a titanium-associated peptide, which subsequently increased the Ti/Si atomic ratio by more than 50% (i.e., from 6.2 ± 0.2% to 9.7 ± 0.5%, as identified by inductively coupled plasma-atomic emission spectrometry). The titanium content on the F. solaris silica cell walls is one of the highest reported to date, and comparable to that of chemically synthesized TiO2-silica composites. Subsequent thermal annealing at 500 °C in air converted the cell wall-bound titania to nanocrystalline anatase TiO2, a highly photocatalytically active phase. We propose that incubation of the titanium-resistant F. solaris with TiBALDH as demonstrated in this study could be a promising bioprocess toward the scalable synthesis of TiO2. In addition, the genetic engineering we used to modulate the surface properties of diatom silica cell walls could be extended to synthesize controlled nanomaterials for multiple applications including bioremediation, water purification, and energy conversion/storage.
Collapse
Affiliation(s)
- Yoshiaki Maeda
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Yuta Niwa
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Hongjie Tang
- Department of Chemical and Environmental Engineering and Materials Science and Engineering Program, University of California, Riverside, Room 343 Materials Science and Engineering Building, Riverside, California 92521, United States
| | - David Kisailus
- Department of Chemical and Environmental Engineering and Materials Science and Engineering Program, University of California, Riverside, Room 343 Materials Science and Engineering Building, Riverside, California 92521, United States
| | - Tomoko Yoshino
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Tsuyoshi Tanaka
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
16
|
Squire K, Kong X, LeDuff P, Rorrer GL, Wang AX. Photonic crystal enhanced fluorescence immunoassay on diatom biosilica. JOURNAL OF BIOPHOTONICS 2018; 11:e201800009. [PMID: 29767428 DOI: 10.1002/jbio.201800009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
Fluorescence biosensing is one of the most established biosensing methods, particularly fluorescence spectroscopy and microscopy. These are two highly sensitive techniques but require high-grade electronics and optics to achieve the desired sensitivity. Efforts have been made to implement these methods using consumer grade electronics and simple optical setups for applications such as point-of-care diagnostics, but the sensitivity inherently suffers. Sensing substrates, capable of enhancing fluorescence are thus needed to achieve high sensitivity for such applications. In this paper, we demonstrate a photonic crystal-enhanced fluorescence immunoassay biosensor using diatom biosilica, which consists of silica frustules with sub-100 nm periodic pores. Utilizing the enhanced local optical field, the Purcell effect and increased surface area from the diatom photonic crystals, we create ultrasensitive immunoassay biosensors that can significantly enhance fluorescence spectroscopy as well as fluorescence imaging. Using standard antibody-antigen-labeled antibody immunoassay protocol, we experimentally achieved 100× and 10× better detection limit with fluorescence spectroscopy and fluorescence imaging respectively. The limit of detection of the mouse IgG goes down to 10-16 M (14 fg/mL) and 10-15 M (140 fg/mL) for the two respective detection modalities, virtually sensing a single mouse IgG molecule on each diatom frustule. The effectively enhanced fluorescence imaging in conjunction with the simple hot-spot counting analysis method used in this paper proves the great potential of diatom fluorescence immunoassay for point-of-care biosensing.
Collapse
Affiliation(s)
- Kenneth Squire
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon
| | - Xianming Kong
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon
- College of Chemistry, Chemical Engineering and Environment Engineering, Liaoning Shihua University, Fushun, Liaoning, China
| | - Paul LeDuff
- School of Chemical, Biological & Environmental Engineering, Oregon State University, Corvallis, Oregon
| | - Gregory L Rorrer
- School of Chemical, Biological & Environmental Engineering, Oregon State University, Corvallis, Oregon
| | - Alan X Wang
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon
| |
Collapse
|
17
|
Ragni R, Cicco SR, Vona D, Farinola GM. Multiple Routes to Smart Nanostructured Materials from Diatom Microalgae: A Chemical Perspective. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704289. [PMID: 29178521 DOI: 10.1002/adma.201704289] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/30/2017] [Indexed: 06/07/2023]
Abstract
Diatoms are unicellular photosynthetic microalgae, ubiquitously diffused in both marine and freshwater environments, which exist worldwide with more than 100 000 species, each with different morphologies and dimensions, but typically ranging from 10 to 200 µm. A special feature of diatoms is their production of siliceous micro- to nanoporous cell walls, the frustules, whose hierarchical organization of silica layers produces extraordinarily intricate pore patterns. Due to the high surface area, mechanical resistance, unique optical features, and biocompatibility, a number of applications of diatom frustules have been investigated in photonics, sensing, optoelectronics, biomedicine, and energy conversion and storage. Current progress in diatom-based nanotechnology relies primarily on the availability of various strategies to isolate frustules, retaining their morphological features, and modify their chemical composition for applications that are not restricted to those of the bare biosilica produced by diatoms. Chemical or biological methods that decorate, integrate, convert, or mimic diatoms' biosilica shells while preserving their structural features represent powerful tools in developing scalable, low-cost routes to a wide variety of nanostructured smart materials. Here, the different approaches to chemical modification as the basis for the description of applications relating to the different materials thus obtained are presented.
Collapse
Affiliation(s)
- Roberta Ragni
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro,", via Orabona 4, I-70126, Bari, Italy
| | - Stefania R Cicco
- CNR-ICCOM-Bari, Dipartimento di Chimica, via Orabona 4, I-70126, Bari, Italy
| | - Danilo Vona
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro,", via Orabona 4, I-70126, Bari, Italy
| | - Gianluca M Farinola
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro,", via Orabona 4, I-70126, Bari, Italy
| |
Collapse
|
18
|
Managò S, Zito G, Rogato A, Casalino M, Esposito E, De Luca AC, De Tommasi E. Bioderived Three-Dimensional Hierarchical Nanostructures as Efficient Surface-Enhanced Raman Scattering Substrates for Cell Membrane Probing. ACS APPLIED MATERIALS & INTERFACES 2018; 10:12406-12416. [PMID: 29569901 DOI: 10.1021/acsami.7b19285] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In this work, we propose the use of complex, bioderived nanostructures as efficient surface-enhanced Raman scattering (SERS) substrates for chemical analysis of cellular membranes. These structures were directly obtained from a suitable gold metalization of the Pseudonitzchia multistriata diatom silica shell (the so called frustule), whose grating-like geometry provides large light coupling with external radiation, whereas its extruded, subwavelength lateral edge provides an excellent interaction with cells without steric hindrance. We carried out numerical simulations and experimental characterizations of the supported plasmonic resonances and optical near-field amplification. We thoroughly evaluated the SERS substrate enhancement factor as a function of the metalization parameters and finally applied the nanostrucures for discriminating cell membrane Raman signals. In particular, we considered two cases where the membrane composition plays a fundamental role in the assessment of several pathologies, that is, red blood cells and B-leukemia REH cells.
Collapse
Affiliation(s)
| | | | - Alessandra Rogato
- Department of Integrative Marine Ecology , Stazione Zoologica Anton Dohrn , Naples 80121 , Italy
| | | | | | | | | |
Collapse
|
19
|
Diatomite Photonic Crystals for Facile On-Chip Chromatography and Sensing of Harmful Ingredients from Food. MATERIALS 2018; 11:ma11040539. [PMID: 29614728 PMCID: PMC5951423 DOI: 10.3390/ma11040539] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 03/29/2018] [Accepted: 03/29/2018] [Indexed: 11/17/2022]
Abstract
Diatomaceous earth—otherwise called diatomite—is essentially composed of hydrated biosilica with periodic nanopores. Diatomite is derived from fossilized remains of diatom frustules and possesses photonic-crystal features. In this paper, diatomite simultaneously functions as the matrix of the chromatography plate and the substrate for surface-enhanced Raman scattering (SERS), by which the photonic crystal-features could enhance the optical field intensity. The on-chip separation performance of the device was confirmed by separating and detecting industrial dye (Sudan I) in an artificial aqueous mixture containing 4-mercaptobenzoic acid (MBA), where concentrated plasmonic Au colloid was casted onto the analyte spot for SERS measurement. The plasmonic-photonic hybrid mode between the Au nanoparticles (NP) and the diatomite layer could supply nearly 10 times the increment of SERS signal (MBA) intensity compared to the common silica gel chromatography plate. Furthermore, this lab-on-a-chip photonic crystal device was employed for food safety sensing in real samples and successfully monitored histamine in salmon and tuna. This on-chip food sensor can be used as a cheap, robust, and portable sensing platform for monitoring for histamine or other harmful ingredients at trace levels in food products.
Collapse
|
20
|
Kong X, Li E, Squire K, Liu Y, Wu B, Cheng LJ, Wang AX. Plasmonic nanoparticles-decorated diatomite biosilica: extending the horizon of on-chip chromatography and label-free biosensing. JOURNAL OF BIOPHOTONICS 2017; 10:1473-1484. [PMID: 28485498 PMCID: PMC5673565 DOI: 10.1002/jbio.201700045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/10/2017] [Accepted: 04/18/2017] [Indexed: 05/09/2023]
Abstract
Diatomite consists of fossilized remains of ancient diatoms and is a type of naturally abundant photonic crystal biosilica with multiple unique physical and chemical functionalities. In this paper, we explored the fluidic properties of diatomite as the matrix for on-chip chromatography and, simultaneously, the photonic crystal effects to enhance the plasmonic resonances of metallic nanoparticles for surface-enhanced Raman scattering (SERS) biosensing. The plasmonic nanoparticle-decorated diatomite biosilica provides a lab-on-a-chip capability to separate and detect small molecules from mixture samples with ultra-high detection sensitivity down to 1 ppm. We demonstrate the significant potential for biomedical applications by screening toxins in real biofluid, achieving simultaneous label-free biosensing of phenethylamine and miR21cDNA in human plasma with unprecedented sensitivity and specificity. To the best of our knowledge, this is the first time demonstration to detect target molecules from real biofluids by on-chip chromatography-SERS techniques.
Collapse
Affiliation(s)
- Xianming Kong
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Erwen Li
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Kenny Squire
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Ye Liu
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Bo Wu
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Li-Jing Cheng
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Alan X. Wang
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
21
|
Albert K, Huang XC, Hsu HY. Bio-templated silica composites for next-generation biomedical applications. Adv Colloid Interface Sci 2017; 249:272-289. [PMID: 28499603 DOI: 10.1016/j.cis.2017.04.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/13/2017] [Accepted: 04/21/2017] [Indexed: 11/28/2022]
Abstract
Silica-based materials have extensive biomedical applications owing to their unique physical, chemical, and biological properties. Recently, increasing studies have examined the mechanisms involved in biosilicification to develop novel, fine-tunable, eco-friendly materials and/or technologies. In this review, we focus on recent developments in bio-templated silica synthesis and relevant applications in drug delivery systems, tissue engineering, and biosensing.
Collapse
Affiliation(s)
- Karunya Albert
- Institute of Molecular Science, National Chiao-Tung University, No. 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
| | - Xin-Chun Huang
- Department of Applied Chemistry, National Chiao-Tung University, No. 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
| | - Hsin-Yun Hsu
- Institute of Molecular Science, National Chiao-Tung University, No. 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan; Department of Applied Chemistry, National Chiao-Tung University, No. 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan.
| |
Collapse
|
22
|
Kamińska A, Sprynskyy M, Winkler K, Szymborski T. Ultrasensitive SERS immunoassay based on diatom biosilica for detection of interleukins in blood plasma. Anal Bioanal Chem 2017; 409:6337-6347. [PMID: 28852782 PMCID: PMC5641273 DOI: 10.1007/s00216-017-0566-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/07/2017] [Accepted: 08/02/2017] [Indexed: 01/29/2023]
Abstract
An ultrasensitive surface-enhanced Raman scattering (SERS) immunoassay based on diatom biosilica with integrated gold nanoparticles (AuNPs) for the detection of interleukin 8 (IL-8) in blood plasma has been developed. The SERS sensing originates from unique features of the diatom frustules, which are capable of enhancing the localized surface-plasmon resonance of metal nanostructures. The SERS immune tags ware fabricated by functionalizing 70-nm Au nanoparticles with DTNB (i.e., 5,5′-dithiobis(2-nitrobenzoic acid)), which acted as a Raman reporter molecule, as well as the specific antibodies. These DTNB-labeled immune-AuNPs can form a sandwich structure with IL-8 antigens (infection marker) and the antibodies immobilized on the biosilica material. Our method showed an improved IL-8 detection limit in comparison to standard ELISA methods. The current detection limit for IL-8 using a conventional ELISA test is about 15.6 pg mL−1. The lower detection limit for IL-8 in blood plasma was estimated to be 6.2 pg mL−1. To the best of our knowledge, this is the first report on the recognition of IL-8 in human samples using a SERS-based method. This method clearly possesses high sensitivity to clinically relevant interleukin concentrations in body fluids. The average relative standard deviation of this method is less than 8%, which is sufficient for analytical analysis and comparable to those of classical ELISA methods. This SERS immunoassay also exhibits high biological specificity for the detection of IL-8 antigens. The established SERS immunoassay offers a valuable platform for the ultrasensitive and highly specific detection of immune biomarkers in a clinical setting for medical diagnostics. The SERS-based immunoassay based on naturally generated photonic biosilica for the detection of interleukin 8 (IL-8) in human plasma samples ![]()
Collapse
Affiliation(s)
- Agnieszka Kamińska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| | - Myroslav Sprynskyy
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina Str, 87-100, Toruń, Poland
| | - Katarzyna Winkler
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Tomasz Szymborski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
23
|
Hassoun M, W.Schie I, Tolstik T, Stanca SE, Krafft C, Popp J. Surface-enhanced Raman spectroscopy of cell lysates mixed with silver nanoparticles for tumor classification. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:1183-1190. [PMID: 28685119 PMCID: PMC5480329 DOI: 10.3762/bjnano.8.120] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 05/08/2017] [Indexed: 05/27/2023]
Abstract
The throughput of spontaneous Raman spectroscopy for cell identification applications is limited to the range of one cell per second because of the relatively low sensitivity. Surface-enhanced Raman scattering (SERS) is a widespread way to amplify the intensity of Raman signals by several orders of magnitude and, consequently, to improve the sensitivity and throughput. SERS protocols using immuno-functionalized nanoparticles turned out to be challenging for cell identification because they require complex preparation procedures. Here, a new SERS strategy is presented for cell classification using non-functionalized silver nanoparticles and potassium chloride to induce aggregation. To demonstrate the principle, cell lysates were prepared by ultrasonication that disrupts the cell membrane and enables interaction of released cellular biomolecules to nanoparticles. This approach was applied to distinguish four cell lines - Capan-1, HepG2, Sk-Hep1 and MCF-7 - using SERS at 785 nm excitation. Six independent batches were prepared per cell line to check the reproducibility. Principal component analysis was applied for data reduction and assessment of spectral variations that were assigned to proteins, nucleotides and carbohydrates. Four principal components were selected as input for classification models based on support vector machines. Leave-three-batches-out cross validation recognized four cell lines with sensitivities, specificities and accuracies above 96%. We conclude that this reproducible and specific SERS approach offers prospects for cell identification using easily preparable silver nanoparticles.
Collapse
Affiliation(s)
- Mohamed Hassoun
- Leibniz Institute of Photonic Technology, Albert Einstein Str. 9, 07745 Jena, Germany
- Institute of Physical Chemistry & Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Iwan W.Schie
- Leibniz Institute of Photonic Technology, Albert Einstein Str. 9, 07745 Jena, Germany
| | - Tatiana Tolstik
- Leibniz Institute of Photonic Technology, Albert Einstein Str. 9, 07745 Jena, Germany
- Department of Internal Medicine IV, Division of Gastroenterology, Hepatology and Infectious Diseases, Jena University Hospital, Erlanger Allee 101, 07745 Jena, Germany
| | - Sarmiza E Stanca
- Leibniz Institute of Photonic Technology, Albert Einstein Str. 9, 07745 Jena, Germany
| | - Christoph Krafft
- Leibniz Institute of Photonic Technology, Albert Einstein Str. 9, 07745 Jena, Germany
| | - Juergen Popp
- Leibniz Institute of Photonic Technology, Albert Einstein Str. 9, 07745 Jena, Germany
- Institute of Physical Chemistry & Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| |
Collapse
|
24
|
Wang Z, Zong S, Wu L, Zhu D, Cui Y. SERS-Activated Platforms for Immunoassay: Probes, Encoding Methods, and Applications. Chem Rev 2017; 117:7910-7963. [DOI: 10.1021/acs.chemrev.7b00027] [Citation(s) in RCA: 368] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhuyuan Wang
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Shenfei Zong
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Lei Wu
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Dan Zhu
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Yiping Cui
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| |
Collapse
|
25
|
Kim K, Liang Z, Liu M, Fan DE. Biobased High-Performance Rotary Micromotors for Individually Reconfigurable Micromachine Arrays and Microfluidic Applications. ACS APPLIED MATERIALS & INTERFACES 2017; 9:6144-6152. [PMID: 28032745 DOI: 10.1021/acsami.6b13997] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this work, we report an innovative type of rotary biomicromachines by using diatom frustules as integrated active components, including the assembling, operation, and performance characterization. We further investigate and demonstrate unique applications of the biomicromachines in achieving individually reconfigurable micromachine arrays and microfluidic mixing. Diatom frustules are porous cell walls of diatoms made of silica. We assembled rotary micromachines consisting of diatom frustules serving as rotors and patterned magnets serving as bearings in electric fields. Ordered arrays of micromotors can be integrated and rotated with controlled orientation and a speed up to ∼3000 rpm, one of the highest rotational speeds in biomaterial-based rotary micromachines. Moreover, by exploiting the distinct electromechanical properties of diatom frustules and metallic nanowires, we realized the first reconfigurable rotary micro/nanomachine arrays with controllability in individual motors. Finally, the diatom micromachines are successfully integrated in microfluidic channels and operated as mixers. This work demonstrated the high-performance rotary micromachines by using bioinspired diatom frustules and their applications, which are essential for low-cost bio-microelectromechanical system/nanoelectromechanical system (bio-MEMS/NEMS) devices and relevant to microfluidics.
Collapse
Affiliation(s)
- Kwanoh Kim
- Department of Mechanical Engineering, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Zexi Liang
- Materials Science and Engineering Program, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Minliang Liu
- Department of Mechanical Engineering, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Donglei Emma Fan
- Department of Mechanical Engineering, The University of Texas at Austin , Austin, Texas 78712, United States
- Materials Science and Engineering Program, The University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
26
|
Kong X, Xi Y, Le Duff P, Chong X, Li E, Ren F, Rorrer GL, Wang AX. Detecting explosive molecules from nanoliter solution: A new paradigm of SERS sensing on hydrophilic photonic crystal biosilica. Biosens Bioelectron 2017; 88:63-70. [PMID: 27471144 PMCID: PMC5371024 DOI: 10.1016/j.bios.2016.07.062] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/05/2016] [Accepted: 07/19/2016] [Indexed: 10/21/2022]
Abstract
We demonstrate a photonic crystal biosilica surface-enhanced Raman scattering (SERS) substrate based on a diatom frustule with in-situ synthesized silver nanoparticles (Ag NPs) to detect explosive molecules from nanoliter (nL) solution. By integrating high density Ag NPs inside the nanopores of diatom biosilica, which is not achievable by traditional self-assembly techniques, we obtained ultra-high SERS sensitivity due to dual enhancement mechanisms. First, the hybrid plasmonic-photonic crystal biosilica with three dimensional morphologies was obtained by electroless-deposited Ag seeds at nanometer sized diatom frustule surface, which provides high density hot spots as well as strongly coupled optical resonances with the photonic crystal structure of diatom frustules. Second, we discovered that the evaporation-driven microscopic flow combined with the strong hydrophilic surface of diatom frustules is capable of concentrating the analyte molecules, which offers a simple yet effective mechanism to accelerate the mass transport into the SERS substrate. Using the inkjet printing technology, we are able to deliver multiple 100pico-liter (pL) volume droplets with pinpoint accuracy into a single diatom frustule with dimension around 30µm×7µm×5µm, which allows for label-free detection of explosive molecules such as trinitrotoluene (TNT) down to 10-10M in concentration and 2.7×10-15g in mass from 120nL solution. Our research illustrates a new paradigm of SERS sensing to detect trace level of chemical compounds from minimum volume of analyte using nature created photonic crystal biosilica materials.
Collapse
Affiliation(s)
- Xianming Kong
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331 USA
| | - Yuting Xi
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331 USA
| | - Paul Le Duff
- School of Chemical, Biological & Environmental Engineering, Oregon State University, Corvallis, OR, 97331 USA
| | - Xinyuan Chong
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331 USA
| | - Erwen Li
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331 USA
| | - Fanghui Ren
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331 USA
| | - Gregory L Rorrer
- School of Chemical, Biological & Environmental Engineering, Oregon State University, Corvallis, OR, 97331 USA
| | - Alan X Wang
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331 USA.
| |
Collapse
|
27
|
Shen Y. Rice Husk Silica-Derived Nanomaterials for Battery Applications: A Literature Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:995-1004. [PMID: 28052201 DOI: 10.1021/acs.jafc.6b04777] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Silica-rich rice husk (RH) is an abundant and sustainable agricultural waste. The recovery of value-added products from RH or its ash to explore an economic way for the valorization of agricultural wastes has attracted wide attention. For instance, RH can be converted to biofuels and biochars simultaneously via thermochemical processes. In general, the applications of RH biochars include soil remediation, pollutant removal, silicon battery materials, and so forth. This review concludes recent progress in the synthesis of RH-derived silicon materials for lithium-ion battery (LIB) applications. Silica nanomaterials produced from RH are initially discussed. RH amorphous silica can also be fabricated to crystal silicon used for battery materials via widely used magnesiothermic reduction. However, the RH-derived Si nanoparticles suffer from a low Coulombic efficiency in the initial charge/discharge and limited cycle life as anode materials due to high surface reactions and low thermodynamic stability. The synthesis of Si materials with nano/microhierarchical structure would be an ideal way to improve their electrochemical performances. Embedding nano-Si into 3D conductive matrix is an effective way to improve the structural stability. Among the Si/carbon composite materials, carbon nanotubdes (CNTs) are a promising matrix due to the wired morphology, high electronic conductivity, and robust structure. Additionally, CNTs can easily form 3D cross-linked conducting networks, ensuring effective electron transportation among active particles. Si nanomaterials with microhierarchical structures in which CNTs are tightly intertwined between the RH-derived Si nanoparticles have been proven to be ideal LIB anode materials.
Collapse
Affiliation(s)
- Yafei Shen
- Jiangsu Engineering and Technology Research Center of Environmental Cleaning Materials (ECM), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology , Nanjing 210044, China
- Department of Environmental Science and Technology, Tokyo Institute of Technology , Yokohama 226-8502, Japan
| |
Collapse
|
28
|
Farrell ME, Strobbia P, Pellegrino PM, Cullum B. Surface regeneration and signal increase in surface-enhanced Raman scattering substrates. APPLIED OPTICS 2017; 56:B198-B213. [PMID: 28157898 DOI: 10.1364/ao.56.00b198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Regenerated surface-enhanced Raman scattering (SERS) substrates allow users the ability to not only reuse sensing surfaces, but also tailor them to the sensing application needs (wavelength of the available laser, plasmon band matching). In this review, we discuss the development of SERS substrates for response to emerging threats and some of our collaborative efforts to improve on the use of commercially available substrate surfaces. Thus, we are able to extend the use of these substrates to broader Army needs (like emerging threat response).
Collapse
|
29
|
Kong X, Squire K, Li E, LeDuff P, Rorrer GL, Tang S, Chen B, McKay CP, Navarro-Gonzalez R, Wang AX. Chemical and Biological Sensing Using Diatom Photonic Crystal Biosilica With In-Situ Growth Plasmonic Nanoparticles. IEEE Trans Nanobioscience 2016; 15:828-834. [PMID: 27959817 DOI: 10.1109/tnb.2016.2636869] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this paper, we described a new type of bioenabled nano-plasmonic sensors based on diatom photonic crystal biosilica with in-situ growth silver nanoparticles and demonstrated label-free chemical and biological sensing based on surface-enhanced Raman scattering (SERs) from complex samples. Diatoms are photosynthetic marine micro-organisms that create their own skeletal shells of hydrated amorphous silica, called frustules, which possess photonic crystal-like hierarchical micro- & nanoscale periodic pores. Our research shows that such hybrid plasmonic-biosilica nanostructures formed by cost-effective and eco-friendly bottom-up processes can achieve ultra-high limit of detection for medical applications, food sensing, water/air quality monitoring and geological/space research. The enhanced sensitivity comes from the optical coupling of the guided-mode resonance of the diatom frustules and the localized surface plasmons of the silver nanoparticles. Additionally, the nanoporous, ultra-hydrophilic diatom biosilica with large surface-to-volume ratio can concentrate more analyte molecules to the surface of the SERS substrates, which can help to detect biomolecules that cannot be easily adsorbed by metallic nanoparticles.
Collapse
|
30
|
Leonardo S, Prieto-Simón B, Campàs M. Past, present and future of diatoms in biosensing. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2015.11.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
Wang AX, Kong X. Review of Recent Progress of Plasmonic Materials and Nano-Structures for Surface-Enhanced Raman Scattering. MATERIALS (BASEL, SWITZERLAND) 2015; 8:3024-3052. [PMID: 26900428 PMCID: PMC4758820 DOI: 10.3390/ma8063024] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/20/2015] [Indexed: 01/20/2023]
Abstract
Surface-enhanced Raman scattering (SERS) has demonstrated single-molecule sensitivity and is becoming intensively investigated due to its significant potential in chemical and biomedical applications. SERS sensing is highly dependent on the substrate, where excitation of the localized surface plasmons (LSPs) enhances the Raman scattering signals of proximate analyte molecules. This paper reviews research progress of SERS substrates based on both plasmonic materials and nano-photonic structures. We first discuss basic plasmonic materials, such as metallic nanoparticles and nano-rods prepared by conventional bottom-up chemical synthesis processes. Then, we review rationally-designed plasmonic nano-structures created by top-down approaches or fine-controlled synthesis with high-density hot-spots to provide large SERS enhancement factors (EFs). Finally, we discuss the research progress of hybrid SERS substrates through the integration of plasmonic nano-structures with other nano-photonic devices, such as photonic crystals, bio-enabled nanomaterials, guided-wave systems, micro-fluidics and graphene.
Collapse
Affiliation(s)
- Alan X. Wang
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331, USA
| | - Xianming Kong
- Department of Forest Products Technology, School of Chemical Technology, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland; E-Mail:
| |
Collapse
|
32
|
Hidi IJ, Jahn M, Weber K, Cialla-May D, Popp J. Droplet based microfluidics: spectroscopic characterization of levofloxacin and its SERS detection. Phys Chem Chem Phys 2015; 17:21236-42. [DOI: 10.1039/c4cp04970e] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The determination of the absorption behavior of levofloxacin (levaquin) on the surface of silver nanoparticles and its determination in aqueous solution by droplet based microfluidics combined with surface enhanced Raman spectroscopy.
Collapse
Affiliation(s)
- I. J. Hidi
- Friedrich Schiller University Jena
- Institute of Physical Chemistry and Abbe Center of Photonics
- 07745 Jena
- Germany
| | - M. Jahn
- Friedrich Schiller University Jena
- Institute of Physical Chemistry and Abbe Center of Photonics
- 07745 Jena
- Germany
| | - K. Weber
- Friedrich Schiller University Jena
- Institute of Physical Chemistry and Abbe Center of Photonics
- 07745 Jena
- Germany
- Leibniz Institute of Photonic Technology Jena
| | - D. Cialla-May
- Friedrich Schiller University Jena
- Institute of Physical Chemistry and Abbe Center of Photonics
- 07745 Jena
- Germany
- Leibniz Institute of Photonic Technology Jena
| | - J. Popp
- Friedrich Schiller University Jena
- Institute of Physical Chemistry and Abbe Center of Photonics
- 07745 Jena
- Germany
- Leibniz Institute of Photonic Technology Jena
| |
Collapse
|