1
|
Coker ZN, Troyanova-Wood M, Steelman ZA, Ibey BL, Bixler JN, Scully MO, Yakovlev VV. Brillouin microscopy monitors rapid responses in subcellular compartments. PHOTONIX 2024; 5:9. [PMID: 38618142 PMCID: PMC11006764 DOI: 10.1186/s43074-024-00123-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/12/2024] [Accepted: 03/11/2024] [Indexed: 04/16/2024]
Abstract
Measurements and imaging of the mechanical response of biological cells are critical for understanding the mechanisms of many diseases, and for fundamental studies of energy, signal and force transduction. The recent emergence of Brillouin microscopy as a powerful non-contact, label-free way to non-invasively and non-destructively assess local viscoelastic properties provides an opportunity to expand the scope of biomechanical research to the sub-cellular level. Brillouin spectroscopy has recently been validated through static measurements of cell viscoelastic properties, however, fast (sub-second) measurements of sub-cellular cytomechanical changes have yet to be reported. In this report, we utilize a custom multimodal spectroscopy system to monitor for the very first time the rapid viscoelastic response of cells and subcellular structures to a short-duration electrical impulse. The cytomechanical response of three subcellular structures - cytoplasm, nucleoplasm, and nucleoli - were monitored, showing distinct mechanical changes despite an identical stimulus. Through this pioneering transformative study, we demonstrate the capability of Brillouin spectroscopy to measure rapid, real-time biomechanical changes within distinct subcellular compartments. Our results support the promising future of Brillouin spectroscopy within the broad scope of cellular biomechanics.
Collapse
Affiliation(s)
- Zachary N. Coker
- Department of Physics & Astronomy, Texas A&M University, 4242 TAMU, College Station, TX 77843 USA
- SAIC, Fort Sam Houston, TX 78234 USA
| | | | - Zachary A. Steelman
- Air Force Research Laboratory, JBSA Fort Sam Houston, Fort Sam Houston, TX 78234 USA
| | - Bennett L. Ibey
- Air Force Research Laboratory, JBSA Fort Sam Houston, Fort Sam Houston, TX 78234 USA
| | - Joel N. Bixler
- Air Force Research Laboratory, JBSA Fort Sam Houston, Fort Sam Houston, TX 78234 USA
| | - Marlan O. Scully
- Department of Physics & Astronomy, Texas A&M University, 4242 TAMU, College Station, TX 77843 USA
- Institute for Quantum Science and Engineering, Texas A&M University, College Station, TX 77843 USA
| | - Vladislav V. Yakovlev
- Department of Physics & Astronomy, Texas A&M University, 4242 TAMU, College Station, TX 77843 USA
- Institute for Quantum Science and Engineering, Texas A&M University, College Station, TX 77843 USA
- Department of Biomedical Engineering, Texas A&M University, 3120 TAMU, 101 Bizzell Street, College Station, TX 77843 USA
| |
Collapse
|
2
|
Yang F, Chen W, Chen Z. Photoacoustic micro-viscoelastography for mapping mechanocellular properties. JOURNAL OF BIOPHOTONICS 2024; 17:e202300262. [PMID: 37738101 DOI: 10.1002/jbio.202300262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/22/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Cellular biomechanical properties provide essential insights into biological functions regarding health and disease. Current measurements of the biomechanical properties of cells require physical contact with cells or pre-loading on the cells. Here, we have developed photoacoustic micro-viscoelastography (PAMVE), which utilizes the phase characteristics of photoacoustic (PA) response, for mapping mechanocellular properties in a load-free manner. PAMVE realizes the local viscoelasticity measurement on the macrophages and red blood cells with micrometer scale. Furthermore, PAMVE can successfully identify the adipose cell and skeletal muscle cell due to the difference in their composition-related biomechanical properties. PAMVE represents an irreplaceable option for interrogating characteristic mechanocellular properties, opening the possibility of studying cellular mechanobiology and pathophysiology.
Collapse
Affiliation(s)
- Fen Yang
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong, China
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Wei Chen
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Zhongjiang Chen
- School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| |
Collapse
|
3
|
Yang F, Bevilacqua C, Hambura S, Neves A, Gopalan A, Watanabe K, Govendir M, Bernabeu M, Ellenberg J, Diz-Muñoz A, Köhler S, Rapti G, Jechlinger M, Prevedel R. Pulsed stimulated Brillouin microscopy enables high-sensitivity mechanical imaging of live and fragile biological specimens. Nat Methods 2023; 20:1971-1979. [PMID: 37884795 PMCID: PMC10703689 DOI: 10.1038/s41592-023-02054-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023]
Abstract
Brillouin microscopy is an emerging optical elastography technique capable of assessing mechanical properties of biological samples in a three-dimensional, all-optical and noncontact fashion. The typically weak Brillouin scattering signal can be substantially enhanced via a stimulated Brillouin scattering (SBS) process; however, current implementations require high pump powers, which prohibit applications to photosensitive or live imaging of biological samples. Here we present a pulsed SBS scheme that takes advantage of the nonlinearity of the pump-probe interaction. In particular, we show that the required pump laser power can be decreased ~20-fold without affecting the signal levels or spectral precision. We demonstrate the low phototoxicity and high specificity of our pulsed SBS approach by imaging, with subcellular detail, sensitive single cells, zebrafish larvae, mouse embryos and adult Caenorhabditis elegans. Furthermore, our method permits observing the mechanics of organoids and C. elegans embryos over time, opening up further possibilities for the field of mechanobiology.
Collapse
Affiliation(s)
- Fan Yang
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
- Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China.
| | - Carlo Bevilacqua
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Sebastian Hambura
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Ana Neves
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Anusha Gopalan
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Koki Watanabe
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Matt Govendir
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- European Molecular Biology Laboratory Barcelona, Barcelona, Spain
| | - Maria Bernabeu
- European Molecular Biology Laboratory Barcelona, Barcelona, Spain
| | - Jan Ellenberg
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Simone Köhler
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Georgia Rapti
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Interdisciplinary Center of Neurosciences, Heidelberg University, Heidelberg, Germany
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory, Rome, Italy
| | - Martin Jechlinger
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- MOLIT Institute for Personalized Medicine gGmbH, Heilbronn, Germany
| | - Robert Prevedel
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
- Interdisciplinary Center of Neurosciences, Heidelberg University, Heidelberg, Germany.
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory, Rome, Italy.
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
- German Center for Lung Research (DZL), Heidelberg, Germany.
| |
Collapse
|
4
|
Salzenstein P, Wu TY. Uncertainty Estimation for the Brillouin Frequency Shift Measurement Using a Scanning Tandem Fabry-Pérot Interferometer. MICROMACHINES 2023; 14:1429. [PMID: 37512740 PMCID: PMC10386179 DOI: 10.3390/mi14071429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
The expanded uncertainty of the measured Brillouin scattering shift frequencies is essential in assessing the measurements of parameters of various materials. We describe the general operation principles of a Brillouin light scattering (BLS) spectrometer with a high-power laser and a scanning tandem Fabry-Pérot interferometer (TFPI) for material characterization. Various uncertainty components have been analyzed for the BLS spectrometer following the Guide to the Expression of Uncertainty in Measurement (GUM). The expanded relative uncertainty in the measured Brillouin frequency shift of 15.70 GHz for polymethyl methacrylate (PMMA) was estimated to be 0.26%. The calculated Brillouin frequency shift (based on material properties of PMMA) was determined to be 15.44 GHz with expanded relative uncertainty of 2.13%. It was shown that the measured and calculated Brillouin frequency shifts for PMMA agree within their expanded uncertainties. The TFPI-based BLS spectrometer can be used to measure the longitudinal modulus of materials with an expanded uncertainty of 1.9%, which is smaller than that of the ultrasonic velocity-based method (estimated to be 2.9%).
Collapse
Affiliation(s)
- Patrice Salzenstein
- Centre National de la Recherche Scientifique (CNRS), Franche-Comté Electronique Mécanique Thermique Optique Sciences et Technologies (FEMTO-ST) Institute, Université de Franche-Comté (UFC), 25030 Besançon, France
| | - Thomas Y Wu
- National Metrology Centre (NMC), Agency for Science, Technology and Research (A*STAR), 8 CleanTech Loop, #01-20, Singapore 637145, Singapore
| |
Collapse
|
5
|
Comprehensive single-shot biophysical cytometry using simultaneous quantitative phase imaging and Brillouin spectroscopy. Sci Rep 2022; 12:18285. [PMID: 36316372 PMCID: PMC9622723 DOI: 10.1038/s41598-022-23049-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Single-cell analysis, or cytometry, is a ubiquitous tool in the biomedical sciences. Whereas most cytometers use fluorescent probes to ascertain the presence or absence of targeted molecules, biophysical parameters such as the cell density, refractive index, and viscosity are difficult to obtain. In this work, we combine two complementary techniques-quantitative phase imaging and Brillouin spectroscopy-into a label-free image cytometry platform capable of measuring more than a dozen biophysical properties of individual cells simultaneously. Using a geometric simplification linked to freshly plated cells, we can acquire the cellular diameter, volume, refractive index, mass density, non-aqueous mass, fluid volume, dry volume, the fractional water content of cells, both by mass and by volume, the Brillouin shift, Brillouin linewidth, longitudinal modulus, longitudinal viscosity, the loss modulus, and the loss tangent, all from a single acquisition, and with no assumptions of underlying parameters. Our methods are validated across three cell populations, including a control population of CHO-K1 cells, cells exposed to tubulin-disrupting nocodazole, and cells under hypoosmotic shock. Our system will unlock new avenues of research in biophysics, cell biology, and medicine.
Collapse
|
6
|
Gaipov A, Makhammajanov Z, Dauyey Z, Markhametova Z, Mussina K, Nogaibayeva A, Kozina L, Auganova D, Tarlykov P, Bukasov R, Utegulov Z, Turebekov D, Soler MJ, Ortiz A, Kanbay M. Urinary Protein Profiling for Potential Biomarkers of Chronic Kidney Disease: A Pilot Study. Diagnostics (Basel) 2022; 12:2583. [PMID: 36359427 PMCID: PMC9689510 DOI: 10.3390/diagnostics12112583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022] Open
Abstract
Proteinuria is a risk factor for chronic kidney disease (CKD) progression and associated complications. However, there is insufficient information on individual protein components in urine and the severity of CKD. We aimed to investigate urinary proteomics and its association with proteinuria and kidney function in early-stage CKD and in healthy individuals. A 24 h urine sample of 42 individuals (21-CKD and 21-healthy individuals) was used for mass spectrometry-based proteomics analysis. An exponentially modified protein abundance index (emPAI) was calculated for each protein. Data were analyzed by Mascot software using the SwissProt database and bioinformatics tools. Overall, 298 unique proteins were identified in the cohort; of them, 250 proteins belong to the control group with median (IQR) emPAI 39.1 (19−53) and 142 proteins belong to the CKD group with median (IQR) emPAI 67.8 (49−117). The level of 24 h proteinuria positively correlated with emPAI (r = 0.390, p = 0.011). The emPAI of some urinary proteomics had close positive (ALBU, ZA2G, IGKC) and negative (OSTP, CD59, UROM, KNG1, RNAS1, CD44, AMBP) correlations (r < 0.419, p < 0.001) with 24 h proteinuria levels. Additionally, a few proteins (VTDB, AACT, A1AG2, VTNC, and CD44) significantly correlated with kidney function. In this proteomics study, several urinary proteins correlated with proteinuria and kidney function. Pathway analysis identified subpathways potentially related to early proteinuric CKD, allowing the design of prospective studies that explore their response to therapy and their relationship to long-term outcomes.
Collapse
Affiliation(s)
- Abduzhappar Gaipov
- Department of Medicine, Nazarbayev University School of Medicine, Astana 010000, Kazakhstan
- Clinical Academic Department of Internal Medicine, CF “University Medical Center”, Astana 010000, Kazakhstan
| | - Zhalaliddin Makhammajanov
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana 010000, Kazakhstan
| | - Zhanna Dauyey
- Department of Medicine, Nazarbayev University School of Medicine, Astana 010000, Kazakhstan
| | - Zhannur Markhametova
- Department of Medicine, Nazarbayev University School of Medicine, Astana 010000, Kazakhstan
| | - Kamilla Mussina
- Department of Medicine, Nazarbayev University School of Medicine, Astana 010000, Kazakhstan
| | | | - Larissa Kozina
- Department of Laboratory Diagnostics, National Scientific Medical Center, Astana 010000, Kazakhstan
| | - Dana Auganova
- Department of Proteomics and Mass Spectrometry, National Center for Biotechnology, Astana 010000, Kazakhstan
| | - Pavel Tarlykov
- Department of Proteomics and Mass Spectrometry, National Center for Biotechnology, Astana 010000, Kazakhstan
| | - Rostislav Bukasov
- Department of Chemistry, SSH, Nazarbayev University, Astana 010000, Kazakhstan
| | - Zhandos Utegulov
- Department of Physics, SSH, Nazarbayev University, Astana 010000, Kazakhstan
| | - Duman Turebekov
- Department of Internal Medicine, Astana Medical University, Astana 010000, Kazakhstan
| | - Maria Jose Soler
- Department of Nephrology, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Nephrology and Kidney Transplant Research Group, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain
| | - Alberto Ortiz
- Department of Medicine, Universidad Autonoma de Madrid and IIS-Fundacion Jimenez Diaz, 28040 Madrid, Spain
| | - Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koc University, 34450 Istanbul, Turkey
| |
Collapse
|
7
|
Rix J, Uckermann O, Kirsche K, Schackert G, Koch E, Kirsch M, Galli R. Correlation of biomechanics and cancer cell phenotype by combined Brillouin and Raman spectroscopy of U87-MG glioblastoma cells. JOURNAL OF THE ROYAL SOCIETY, INTERFACE 2022; 19:20220209. [PMID: 35857926 DOI: 10.1098/rsif.2022.0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The elucidation of biomechanics furthers our understanding of brain tumour biology. Brillouin spectroscopy is a new optical method that addresses viscoelastic properties down to subcellular resolution in a contact-free manner. Moreover, it can be combined with Raman spectroscopy to obtain co-localized biochemical information. Here, we applied co-registered Brillouin and Raman spectroscopy to U87-MG human glioblastoma cells in vitro. Using two-dimensional and three-dimensional cultures, we related biomechanical properties to local biochemical composition at the subcellular level, as well as the cell phenotype. Brillouin and Raman mapping of adherent cells showed that the nucleus and nucleoli are stiffer than the perinuclear region and the cytoplasm. The biomechanics of the cell cytoplasm is affected by culturing conditions, i.e. cells grown as spheroids are stiffer than adherent cells. Inside the spheroids, the presence of lipid droplets as assessed by Raman spectroscopy revealed higher Brillouin shifts that are not related to a local increase in stiffness, but are due to a higher refractive index combined with a lower mass density. This highlights the importance of locally defined biochemical reference data for a correct interpretation of the Brillouin shift of cells and tissues in future studies investigating the biomechanics of brain tumour models by Brillouin spectroscopy.
Collapse
Affiliation(s)
- Jan Rix
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, D-01307 Dresden, Germany
| | - Ortrud Uckermann
- Neurosurgery, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, D-01307 Dresden, Germany.,Division of Medical Biology, Department of Psychiatry, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, D-01307 Dresden, Germany
| | - Katrin Kirsche
- Neurosurgery, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, D-01307 Dresden, Germany
| | - Gabriele Schackert
- Neurosurgery, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, D-01307 Dresden, Germany
| | - Edmund Koch
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, D-01307 Dresden, Germany
| | - Matthias Kirsch
- Neurosurgery, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, D-01307 Dresden, Germany.,Klinik für Neurochirurgie, Asklepios Kliniken Schildautal, Karl-Herold-Strasse 1, D-38723 Seesen, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Fetscherstrasse 74, D-01307 Dresden, Germany
| | - Roberta Galli
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, D-01307 Dresden, Germany
| |
Collapse
|
8
|
Alunni Cardinali M, Di Michele A, Mattarelli M, Caponi S, Govoni M, Dallari D, Brogini S, Masia F, Borri P, Langbein W, Palombo F, Morresi A, Fioretto D. Brillouin-Raman microspectroscopy for the morpho-mechanical imaging of human lamellar bone. J R Soc Interface 2022; 19:20210642. [PMID: 35104431 PMCID: PMC8807060 DOI: 10.1098/rsif.2021.0642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Bone has a sophisticated architecture characterized by a hierarchical organization, starting at the sub-micrometre level. Thus, the analysis of the mechanical and structural properties of bone at this scale is essential to understand the relationship between its physiology, physical properties and chemical composition. Here, we unveil the potential of Brillouin-Raman microspectroscopy (BRaMS), an emerging correlative optical approach that can simultaneously assess bone mechanics and chemistry with micrometric resolution. Correlative hyperspectral imaging, performed on a human diaphyseal ring, reveals a complex microarchitecture that is reflected in extremely rich and informative spectra. An innovative method for mechanical properties analysis is proposed, mapping the intermixing of soft and hard tissue areas and revealing the coexistence of regions involved in remodelling processes, nutrient transportation and structural support. The mineralized regions appear elastically inhomogeneous, resembling the pattern of the osteons' lamellae, while Raman and energy-dispersive X-ray images through scanning electron microscopy show an overall uniform distribution of the mineral content, suggesting that other structural factors are responsible for lamellar micromechanical heterogeneity. These results, besides giving an important insight into cortical bone tissue properties, highlight the potential of BRaMS to access the origin of anisotropic mechanical properties, which are almost ubiquitous in other biological tissues.
Collapse
Affiliation(s)
- M. Alunni Cardinali
- Department of Physics and Geology, University of Perugia, Via A. Pascoli, Perugia 06123, Italy
| | - A. Di Michele
- Department of Physics and Geology, University of Perugia, Via A. Pascoli, Perugia 06123, Italy
| | - M. Mattarelli
- Department of Physics and Geology, University of Perugia, Via A. Pascoli, Perugia 06123, Italy
| | - S. Caponi
- Istituto Officina Dei Materiali, National Research Council (IOM-CNR), Unit of Perugia, c/o Department of Physics and Geology, University of Perugia, Via A. Pascoli, Perugia 06123, Italy
| | - M. Govoni
- Reconstructive Orthopaedic Surgery and Innovative Techniques – Musculoskeletal Tissue Bank, IRCCS Istituto Ortopedico Rizzoli, Via G.C. Pupilli 1, Bologna 40136, Italy
| | - D. Dallari
- Reconstructive Orthopaedic Surgery and Innovative Techniques – Musculoskeletal Tissue Bank, IRCCS Istituto Ortopedico Rizzoli, Via G.C. Pupilli 1, Bologna 40136, Italy
| | - S. Brogini
- Complex Structure of Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, Bologna 40136, Italy
| | - F. Masia
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - P. Borri
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - W. Langbein
- School of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF24 3AA, UK
| | - F. Palombo
- School of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, UK
| | - A. Morresi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, Perugia 06123, Italy
| | - D. Fioretto
- Department of Physics and Geology, University of Perugia, Via A. Pascoli, Perugia 06123, Italy
- CEMIN - Center of Excellence for Innovative Nanostructured Material, Via Elce di Sotto 8, Perugia 06123, Italy
| |
Collapse
|
9
|
Kurian AG, Singh RK, Patel KD, Lee JH, Kim HW. Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics. Bioact Mater 2022; 8:267-295. [PMID: 34541401 PMCID: PMC8424393 DOI: 10.1016/j.bioactmat.2021.06.027] [Citation(s) in RCA: 155] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Polymeric hydrogels are fascinating platforms as 3D scaffolds for tissue repair and delivery systems of therapeutic molecules and cells. Among others, methacrylated gelatin (GelMA) has become a representative hydrogel formulation, finding various biomedical applications. Recent efforts on GelMA-based hydrogels have been devoted to combining them with bioactive and functional nanomaterials, aiming to provide enhanced physicochemical and biological properties to GelMA. The benefits of this approach are multiple: i) reinforcing mechanical properties, ii) modulating viscoelastic property to allow 3D printability of bio-inks, iii) rendering electrical/magnetic property to produce electro-/magneto-active hydrogels for the repair of specific tissues (e.g., muscle, nerve), iv) providing stimuli-responsiveness to actively deliver therapeutic molecules, and v) endowing therapeutic capacity in tissue repair process (e.g., antioxidant effects). The nanomaterial-combined GelMA systems have shown significantly enhanced and extraordinary behaviors in various tissues (bone, skin, cardiac, and nerve) that are rarely observable with GelMA. Here we systematically review these recent efforts in nanomaterials-combined GelMA hydrogels that are considered as next-generation multifunctional platforms for tissue therapeutics. The approaches used in GelMA can also apply to other existing polymeric hydrogel systems.
Collapse
Affiliation(s)
- Amal George Kurian
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Rajendra K. Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Kapil D. Patel
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, WC1X8LD, UK
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| |
Collapse
|
10
|
Taylor MA, Kijas AW, Wang Z, Lauko J, Rowan AE. Heterodyne Brillouin microscopy for biomechanical imaging. BIOMEDICAL OPTICS EXPRESS 2021; 12:6259-6268. [PMID: 34745734 PMCID: PMC8548004 DOI: 10.1364/boe.435869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Microscopic variations in material stiffness play a vital role in cellular scale biomechanics, but are difficult to measure in a natural 3D environment. Brillouin microscopy is a promising technology for such applications, providing non-contact label-free measurement of longitudinal modulus at microscopic resolution. Here we develop heterodyne detection to measure Brillouin scattering signals in a confocal microscope setup, providing sensitive detection with excellent frequency resolution and robust operation in the presence of stray light. The functionality of the microscope is characterized and validated, and the imaging capability demonstrated by imaging structure within both a fibrin fiber network and live cells.
Collapse
|
11
|
Rioboó RJJ, Gontán N, Sanderson D, Desco M, Gómez-Gaviro MV. Brillouin Spectroscopy: From Biomedical Research to New Generation Pathology Diagnosis. Int J Mol Sci 2021; 22:8055. [PMID: 34360822 PMCID: PMC8347166 DOI: 10.3390/ijms22158055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/11/2021] [Accepted: 07/23/2021] [Indexed: 01/06/2023] Open
Abstract
Brillouin spectroscopy has recently gained considerable interest within the biomedical field as an innovative tool to study mechanical properties in biology. The Brillouin effect is based on the inelastic scattering of photons caused by their interaction with thermodynamically driven acoustic modes or phonons and it is highly dependent on the material's elasticity. Therefore, Brillouin is a contactless, label-free optic approach to elastic and viscoelastic analysis that has enabled unprecedented analysis of ex vivo and in vivo mechanical behavior of several tissues with a micrometric resolution, paving the way to a promising future in clinical diagnosis. Here, we comprehensively review the different studies of this fast-moving field that have been performed up to date to provide a quick guide of the current literature. In addition, we offer a general view of Brillouin's biomedical potential to encourage its further development to reach its implementation as a feasible, cost-effective pathology diagnostic tool.
Collapse
Affiliation(s)
- Rafael J. Jiménez Rioboó
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), C/Sor Juana Inés de la Cruz, 3, 28049 Madrid, Spain;
| | - Nuria Gontán
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain; (N.G.); (D.S.)
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III, 28911 Madrid, Spain
| | - Daniel Sanderson
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain; (N.G.); (D.S.)
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III, 28911 Madrid, Spain
| | - Manuel Desco
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain; (N.G.); (D.S.)
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III, 28911 Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain
| | - Maria Victoria Gómez-Gaviro
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain; (N.G.); (D.S.)
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III, 28911 Madrid, Spain
| |
Collapse
|
12
|
Lalonde JW, Noojin GD, Pope NJ, Powell SM, Yakovlev VV, Denton ML. Continuous assessment of metabolic activity of mitochondria using resonance Raman microspectroscopy. JOURNAL OF BIOPHOTONICS 2021; 14:e202000384. [PMID: 33438837 DOI: 10.1002/jbio.202000384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/14/2020] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
Dysfunctional mitochondrial activity can lead to a variety of different diseases. As such, there exists a need to quantify changes in mitochondria function as it relates to these specific diseased states. Here, we present the use of resonance Raman (RR) spectroscopy as a tool to determine changes in isolated mitochondrial activity. RR spectroscopy, using 532 nm as the excitation source, specifically provides information on the reduction and oxidation (RedOx) state of cytochrome c, which is determined by the activity of protein complexes in the electron transport chain (ETC). In this model, injection of the substrate succinate into the mitochondrial sample is used to drive the ETC, which causes a subsequent change in cytochrome c RedOx state. This change in RedOx state is tracked by RR spectroscopy. This tool gives real-time information on the rise and fall of the amount of reduced cytochrome c within the mitochondrial sample, providing a method for rapid assessment of mitochondrial metabolism that has broad applications in both basic science and medical research.
Collapse
Affiliation(s)
- Joshua W Lalonde
- Department Biomedical Engineering, Texas A&M University, College Station, Texas, USA
- SAIC, JBSA Fort Sam Houston, San Antonio, Texas, USA
- CRFP, Washington, District of Columbia, USA
| | - Gary D Noojin
- SAIC, JBSA Fort Sam Houston, San Antonio, Texas, USA
| | | | - Samantha M Powell
- National Research Council Research Associateship Programs, JBSA Fort Sam Houston, San Antonio, Texas, USA
| | - Vladislav V Yakovlev
- Department Biomedical Engineering, Texas A&M University, College Station, Texas, USA
- Department Physics/Astronomy, Texas A&M University, College Station, Texas, USA
| | - Michael L Denton
- Air Force Research Laboratory, JBSA Fort Sam Houston, San Antonio, Texas, USA
| |
Collapse
|
13
|
Rolle K, Butt HJ, Fytas G. Flash Brillouin Scattering: A Confocal Technique for Measuring Glass Transitions at High Scan Rates. ACS PHOTONICS 2021; 8:531-539. [PMID: 33634207 PMCID: PMC7898954 DOI: 10.1021/acsphotonics.0c01533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Indexed: 06/12/2023]
Abstract
Glass transition temperatures T g are most commonly measured by differential scanning calorimetry, a method that has been extended to the flash scanning calorimetry (FSC) regime by reducing sample volumes. However, significant manual preparation effort can render FSC impractical for, e.g., local probing of spatially heterogeneous specimens. Another strategy can be to select a small volume by focusing down a laser beam, where Brillouin Light Scattering (BLS) is a proven method for confocal T g measurement. Here, we introduce Flash Brillouin Scattering, which extends BLS to fast scan rates, achieved by periodically heating the probed region with an infrared laser. For comparison with conventional BLS, we first characterize T g of pure glycerol, and show how rapid quenching produces a less packed glass with downshifted sound velocity. We then turn toward its aqueous solutions, which crystallize too fast for a nonflash approach, and demonstrate scan rates in excess of 105 K/s. These results are of interest not only because glycerol is a model system for hydrogen-bonded glass formers, but also because of its applications as a cryoprotectant for frozen biological samples. Light scattering studies of the latter, currently limited to cryo-Raman spectroscopy, are likely to be complemented by the technique introduced here.
Collapse
|
14
|
Zhang J, Scarcelli G. Mapping mechanical properties of biological materials via an add-on Brillouin module to confocal microscopes. Nat Protoc 2021; 16:1251-1275. [PMID: 33452504 PMCID: PMC8218248 DOI: 10.1038/s41596-020-00457-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/04/2020] [Indexed: 01/29/2023]
Abstract
Several techniques have been developed over the past few decades to assess the mechanical properties of biological samples, which has fueled a rapid growth in the fields of biophysics, bioengineering, and mechanobiology. In this context, Brillouin optical spectroscopy has long been known as an intriguing modality for noncontact material characterization. However, limited by speed and sample damage, it had not translated into a viable imaging modality for biomedically relevant materials. Recently, based on a novel spectroscopy strategy that substantially improves the speed of Brillouin measurement, confocal Brillouin microscopy has emerged as a unique complementary tool to traditional methods as it allows noncontact, nonperturbative, label-free measurements of material mechanical properties. The feasibility and potential of this innovative technique at both the cell and tissue level have been extensively demonstrated over the past decade. As Brillouin technology is rapidly recognized, a standard approach for building and operating Brillouin microscopes is required to facilitate the widespread adoption of this technology. In this protocol, we aim to establish a robust approach for instrumentation, and data acquisition and analysis. By carefully following this protocol, we expect that a Brillouin instrument can be built in 5-9 days by a person with basic optics knowledge and alignment experience; the data acquisition as well as postprocessing can be accomplished within 2-8 h.
Collapse
Affiliation(s)
- Jitao Zhang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
| |
Collapse
|
15
|
Wu H, Zhao W, Su Y, Qiu L, Wang Y, Ni H. Divided-aperture confocal Brillouin microscopy for simultaneous high-precision topographic and mechanical mapping. OPTICS EXPRESS 2020; 28:31821-31831. [PMID: 33115147 DOI: 10.1364/oe.405458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Confocal Brillouin microscopy (CBM) is a novel and powerful technique for providing non-contact and direct readout of the micro-mechanical properties of a material, and thus used in a broad range of applications, including biological tissue detection, cell imaging, and material characterization in manufacturing. However, conventional CBMs have not enabled high precision mechanical mapping owing to the limited depth of focus and are subject to system drift during long-term measurements. In this paper, a divided-aperture confocal Brillouin microscopy (DCBM) is proposed to improve the axial focusing capability, stability, and extinction ratio of CBM. We exploit high-sensitivity divided-aperture confocal technology to achieve an unprecedented 100-fold enhancement in the axial focusing sensitivity of the existing CBMs, reaching 5 nm, and to enhance system stability. In addition, the dark-field setup improves the extinction ratio by 20 dB. To the best of our knowledge, our method achieves the first in situ topographic imaging and mechanical mapping of the sample and provides a new approach for Brillouin scattering applications in material characterization.
Collapse
|
16
|
Gaipov A, Utegulov Z, Bukasov R, Turebekov D, Tarlykov P, Markhametova Z, Nurekeyev Z, Kunushpayeva Z, Sultangaziyev A. Development and validation of hybrid Brillouin-Raman spectroscopy for non-contact assessment of mechano-chemical properties of urine proteins as biomarkers of kidney diseases. BMC Nephrol 2020; 21:229. [PMID: 32539773 PMCID: PMC7296939 DOI: 10.1186/s12882-020-01890-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Proteinuria is a major marker of chronic kidney disease (CKD) progression and the predictor of cardiovascular mortality. The rapid development of renal failure is expected in those patients who have higher level of proteinuria however, some patients may have slow decline of renal function despite lower level of urinary protein excretion. The different mechanical (visco-elastic) and chemical properties, as well as the proteome profiles of urinary proteins might explain their tubular toxicity mechanism. Brillouin light scattering (BLS) and surface enhanced Raman scattering (SERS) spectroscopies are non-contact, laser optical-based techniques providing visco-elastic and chemical property information of probed human biofluids. We proposed to study and compare these properties of urinary proteins using BLS and SERS spectroscopies in nephrotic patient and validate hybrid BLS-SERS spectroscopy in diagnostic of urinary proteins as well as their profiling. The project ultimately aims for the development of an optical spectroscopic sensor for rapid, non-contact monitoring of urine samples from patients in clinical settings. METHODS BLS and SERS spectroscopies will be used for non-contact assessment of urinary proteins in proteinuric patients and healthy subjects and will be cross-validated by Liquid Chromatography-Mass Spectrometry (LC-MS). Participants will be followed-up during the 1 year and all adverse events such as exacerbation of proteinuria, progression of CKD, complications of nephrotic syndrome, disease relapse rate and inefficacy of treatment regimen will be registered referencing incident dates. Associations between urinary protein profiles (obtained from BLS and SERS as well as LC-MS) and adverse outcomes will be evaluated to identify most unfavored protein profiles. DISCUSSION This prospective study is focused on the development of non-contact hybrid BLS - SERS sensing tool and its clinical deployment for diagnosis and prognosis of proteinuria. We will identify the most important types of urine proteins based on their visco-elasticity, amino-acid profile and molecular weight responsible for the most severe cases of proteinuria and progressive renal function decline. We will aim for the developed hybrid BLS - SERS sensor, as a new diagnostic & prognostic tool, to be transferred to other biomedical applications. TRIAL REGISTRATION The trial has been approved by ClinicalTrials.gov (Trial registration ID NCT04311684). The date of registration was March 17, 2020.
Collapse
Affiliation(s)
- Abduzhappar Gaipov
- Department of Clinical Sciences, Nazarbayev University School of Medicine, Nur-Sultan, Kazakhstan, 010000.
| | - Zhandos Utegulov
- Department of Physics, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan, 010000
| | - Rostislav Bukasov
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan, 010000
| | - Duman Turebekov
- Department of Internal Medicine, Astana Medical University, Nur-Sultan, Kazakhstan, 010000
| | - Pavel Tarlykov
- Department of Proteomics and Mass Spectrometry, National Center for Biotechnology, Nur-Sultan, Kazakhstan, 010000
| | - Zhannur Markhametova
- Department of Clinical Sciences, Nazarbayev University School of Medicine, Nur-Sultan, Kazakhstan, 010000
| | - Zhangatay Nurekeyev
- Department of Physics, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan, 010000
| | - Zhanar Kunushpayeva
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan, 010000
| | - Alisher Sultangaziyev
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan, 010000
| |
Collapse
|
17
|
Yang F, Chen Z, Xing D. Single-Cell Photoacoustic Microrheology. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:1791-1800. [PMID: 31825862 DOI: 10.1109/tmi.2019.2958112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rheological properties, such as elasticity and viscosity, are fundamental biomechanical parameters that are related to the function and pathological status of cells and tissues. In this paper, an innovative photoacoustic microrheology (PAMR), which utilized the time and phase characteristics of photoacoustic (PA) response, was proposed to extract elastic modulus and viscosity. The feasibility and accuracy of the method were validated by tissue-mimicking agar-gelatin phantoms with various viscoelasticity values. PAMR realized single cell elasticity and viscosity mappings on the adipocyte and myocyte with micrometer scale. In clinical samples, normal blood cells and iron deficiency anemia cells were successfully distinguished due to their various rheological properties. This method expands the scope of conventional PA imaging and opens new possibilities for developing microrheological technology, prefiguring great clinical potential for interrogating mechanocellular properties.
Collapse
|
18
|
Adichtchev SV, Karpegina YA, Okotrub KA, Surovtseva MA, Zykova VA, Surovtsev NV. Brillouin spectroscopy of biorelevant fluids in relation to viscosity and solute concentration. Phys Rev E 2019; 99:062410. [PMID: 31330595 DOI: 10.1103/physreve.99.062410] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Indexed: 01/11/2023]
Abstract
The measurement of intracellular viscoelastic properties by Brillouin scattering is a rapidly developing field in biophysics and medicine. Here, the Brillouin spectroscopy is applied for a number of aqueous solutions of biorelevant molecules to reveal relations between the Brillouin line parameters (frequency and width) and viscosity or solute concentration. It is found that for the majority of the studied biorelevant molecules the solute concentration governs the Brillouin frequency in a universal manner. On the other hand, the relations between the macroscopic viscosity and Brillouin peak parameters are different for different solutes. We conclude that for biological fluids the viscosity evaluation from Brillouin data needs prior knowledge about the chemical composition. This result challenges the fidelity of the indirect experimental determinations of the cellular viscosity, when small molecule solutions are used for the calibration.
Collapse
Affiliation(s)
- S V Adichtchev
- Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Yu A Karpegina
- Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - K A Okotrub
- Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - M A Surovtseva
- Research Institute of Clinical and Experimental Lymphology-Branch of Institute of Cytology and Genetics, Russian Academy of Sciences, 630060 Novosibirsk, Russia
| | - V A Zykova
- Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - N V Surovtsev
- Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
19
|
Sankaran J, Karampatzakis A, Rice SA, Wohland T. Quantitative imaging and spectroscopic technologies for microbiology. FEMS Microbiol Lett 2019; 365:4953418. [PMID: 29718275 DOI: 10.1093/femsle/fny075] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/23/2018] [Indexed: 12/17/2022] Open
Abstract
Light microscopy has enabled the observation of the structure and organisation of biofilms. Typically, the contrast in an image obtained from light microscopy is given by the time-averaged intensity that is effective in visualising the overall structure. Technological advancements in light microscopy have led to the creation of techniques that not only provide a static intensity image of the biofilm, but also enable one to quantify various dynamic physicochemical properties of biomolecules in microbial biofilms. Such light microscopy-based techniques can be grouped into two main classes, those that are based on luminescence and those that are based on scattering. Here, we review the fundamentals and applications of luminescence and scattering-based techniques, specifically, fluorescence lifetime imaging, Förster resonance energy transfer, fluorescence correlation spectroscopy, fluorescence recovery after photobleaching, single-particle tracking, transient state imaging, and Brillouin and Raman microscopy. These techniques provide information about the abundance, interactions and mobility of various molecules in the biofilms and also properties of the local microenvironment at optical resolution. Further, one could use any of these techniques to probe the real-time changes in these physical parameters upon the addition of external agents or at different stages during the growth of biofilms.
Collapse
Affiliation(s)
- Jagadish Sankaran
- Departments of Biological Sciences and Chemistry, National University of Singapore, Singapore 117558, Singapore.,Centre for BioImaging Sciences, National University of Singapore, Singapore 117557, Singapore
| | - Andreas Karampatzakis
- Centre for BioImaging Sciences, National University of Singapore, Singapore 117557, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456, Singapore
| | - Scott A Rice
- Singapore Centre for Environmental Life Sciences Engineering and School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.,ithree Institute, University of Technology, Sydney 2007, Australia
| | - Thorsten Wohland
- Departments of Biological Sciences and Chemistry, National University of Singapore, Singapore 117558, Singapore.,Centre for BioImaging Sciences, National University of Singapore, Singapore 117557, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456, Singapore
| |
Collapse
|
20
|
Liu L, Plawinski L, Durrieu MC, Audoin B. Label-free multi-parametric imaging of single cells: dual picosecond optoacoustic microscopy. JOURNAL OF BIOPHOTONICS 2019; 12:e201900045. [PMID: 31144774 DOI: 10.1002/jbio.201900045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/07/2019] [Accepted: 05/07/2019] [Indexed: 06/09/2023]
Abstract
Advances in microscopy with new visualization possibilities often bring dramatic progress to our understanding of the intriguing cellular machinery. Picosecond optoacoustic micro-spectroscopy is an optical technique based on ultrafast pump-probe generation and detection of hypersound on time durations of picoseconds and length scales of nanometers. It is experiencing a renaissance as a versatile imaging tool for cell biology research after a plethora of applications in solid-state physics. In this emerging context, this work reports on a dual-probe architecture to carry out real-time parallel detection of the hypersound propagation inside a cell that is cultured on a metallic substrate, and of the hypersound reflection at the metal/cell adhesion interface. Using this optoacoustic modality, several biophysical properties of the cell can be measured in a noncontact and label-free manner. Its abilities are demonstrated with the multiple imaging of a mitotic macrophage-like cell in a single run experiment.
Collapse
Affiliation(s)
- Liwang Liu
- CNRS, UMR 5295, I2M, University of Bordeaux, Talence, France
| | - Laurent Plawinski
- CNRS UMR 5248, Bordeaux-INP, CBMN, University of Bordeaux, Pessac, France
| | | | - Bertrand Audoin
- CNRS, UMR 5295, I2M, University of Bordeaux, Talence, France
| |
Collapse
|
21
|
Abstract
Brillouin spectroscopy and imaging are emerging techniques in analytical science, biophotonics, and biomedicine. They are based on Brillouin light scattering from acoustic waves or phonons in the GHz range, providing a nondestructive contactless probe of the mechanics on a microscale. Novel approaches and applications of these techniques to the field of biomedical sciences are discussed, highlighting the theoretical foundations and experimental methods that have been developed to date. Acknowledging that this is a fast moving field, a comprehensive account of the relevant literature is critically assessed here.
Collapse
Affiliation(s)
- Francesca Palombo
- School
of Physics and Astronomy, University of
Exeter, Stocker Road, EX4 4QL Exeter, U.K.
| | - Daniele Fioretto
- Department
of Physics and Geology, University of Perugia, via Alessandro Pascoli, I-06123 Perugia, Italy
| |
Collapse
|
22
|
Ballmann CW, Meng Z, Yakovlev VV. Nonlinear Brillouin spectroscopy: what makes it a better tool for biological viscoelastic measurements. BIOMEDICAL OPTICS EXPRESS 2019; 10:1750-1759. [PMID: 31086701 PMCID: PMC6484976 DOI: 10.1364/boe.10.001750] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 05/24/2023]
Abstract
Brillouin spectroscopy is an emerging tool in biomedical imaging and sensing. It is capable of assessing the high-frequency viscoelastic longitudinal modulus with microscopic spatial resolution. Nonlinear Brillouin spectroscopy based on impulsive stimulated Brillouin scattering offers a number of significant advantages over conventional spontaneous and stimulated Brillouin scattering. In this report, we evaluate the accuracy of Brillouin shift measurements in spontaneous and nonlinear Brillouin microscopy by calculating the Allan variance for both CW excited spontaneous Brillouin measurements and nonlinear Brillouin scattering measurements made with both nanosecond and picosecond pulse excitation. We find that impulsive stimulated Brillouin spectroscopy is superior to spontaneous Brillouin spectroscopy in terms of the accuracy of such measurements and demonstrate its application for assessing tiny changes in Brillouin frequency shifts associated with low concentrations of biologically relevant solutions.
Collapse
Affiliation(s)
| | - Zhaokai Meng
- Texas A&M University, College Station, TX 77843-4242,
USA
| | - Vladislav V. Yakovlev
- Texas A&M University, College Station, TX 77843-4242,
USA
- Zhejiang University, Hangzhou, Zhejiang 310027,
China
| |
Collapse
|
23
|
Mercatelli R, Mattana S, Capozzoli L, Ratto F, Rossi F, Pini R, Fioretto D, Pavone FS, Caponi S, Cicchi R. Morpho-mechanics of human collagen superstructures revealed by all-optical correlative micro-spectroscopies. Commun Biol 2019; 2:117. [PMID: 30937399 PMCID: PMC6435656 DOI: 10.1038/s42003-019-0357-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 02/05/2019] [Indexed: 12/18/2022] Open
Abstract
In every biological tissue, morphological and topological properties strongly affect its mechanical features and behaviour, so that ultrastructure, composition and mechanical parameters are intimately connected. Overall, it is their correct interplay that guarantees the tissue functionality. The development of experimental methods able to correlate these properties would open new opportunities both in the biological and the biomedical fields. Here, we report a correlative study intended to map supramolecular morphology, biochemical composition and viscoelastic parameters of collagen by all-optical microscopies. In particular, using human corneal tissue as a benchmark, we correlate Second-Harmonic Generation maps with mechanical and biochemical imaging obtained by Brillouin and Raman micro-spectroscopy. The study highlights how subtle variations in supramolecular organization originate the peculiar mechanical behavior of different subtypes of corneal lamellae. The presented methodology paves the way to the non-invasive assessment of tissue morpho-mechanics in biological as well as synthetic materials.
Collapse
Affiliation(s)
- Raffaella Mercatelli
- National Institute of Optics, National Research Council (CNR-INO), Via Nello Carrara 1, I-50019 Sesto Fiorentino, Italy
| | - Sara Mattana
- National Institute of Optics, National Research Council (CNR-INO), Via Nello Carrara 1, I-50019 Sesto Fiorentino, Italy
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, I-06123 Perugia, Italy
| | - Laura Capozzoli
- Institute of Applied Physics “Nello Carrara”, National Research Council (CNR-IFAC), Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Italy
- Center of Electron Microscopy “Laura Bonzi” (Ce.M.E), Institute of Chemistry of Organometallic Compounds, National Research Council (CNR-ICCOM), Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Italy
| | - Fulvio Ratto
- Institute of Applied Physics “Nello Carrara”, National Research Council (CNR-IFAC), Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Italy
| | - Francesca Rossi
- Institute of Applied Physics “Nello Carrara”, National Research Council (CNR-IFAC), Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Italy
| | - Roberto Pini
- Institute of Applied Physics “Nello Carrara”, National Research Council (CNR-IFAC), Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Italy
| | - Daniele Fioretto
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, I-06123 Perugia, Italy
- CEMIN-Center of Excellence for Innovative Nanostructured Material, Via Alessandro Pascoli, I-06123 Perugia, Italy
| | - Francesco Saverio Pavone
- National Institute of Optics, National Research Council (CNR-INO), Via Nello Carrara 1, I-50019 Sesto Fiorentino, Italy
- European Laboratory for Non-linear Spectroscopy (LENS), Via Nello Carrara 1, I-50019 Sesto Fiorentino, Italy
- Department of Physics, University of Florence, Via Giovanni Sansone 1, I-50019 Sesto Fiorentino, Italy
| | - Silvia Caponi
- Institute of Materials, National Research Council (CNR-IOM), Unit of Perugia, c/o Department of Physics and Geology, University of Perugia, Via A. Pascoli, I-06123 Perugia, Italy
| | - Riccardo Cicchi
- National Institute of Optics, National Research Council (CNR-INO), Via Nello Carrara 1, I-50019 Sesto Fiorentino, Italy
- European Laboratory for Non-linear Spectroscopy (LENS), Via Nello Carrara 1, I-50019 Sesto Fiorentino, Italy
| |
Collapse
|
24
|
Fiore A, Scarcelli G. Single etalon design for two-stage cross-axis VIPA spectroscopy. BIOMEDICAL OPTICS EXPRESS 2019; 10:1475-1481. [PMID: 30891361 PMCID: PMC6420281 DOI: 10.1364/boe.10.001475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 05/15/2023]
Abstract
Two-stage cross axis VIPA spectrometers have been widely used in Brillouin microscopy since they provide single shot spectral measurements at high throughput and extinction. However, this spectrometer configuration presents challenges such as size, cost and alignment difficulties between the two cascaded etalons. Here, we present a cross-axis VIPA spectrometer that implements a single etalon, using a light recirculation architecture to achieve the multistage configuration.
Collapse
Affiliation(s)
- Antonio Fiore
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742, USA
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742, USA
| |
Collapse
|
25
|
Singaraju AB, Bahl D, Stevens LL. Brillouin Light Scattering: Development of a Near Century-Old Technique for Characterizing the Mechanical Properties of Materials. AAPS PharmSciTech 2019; 20:109. [PMID: 30746575 DOI: 10.1208/s12249-019-1311-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/15/2019] [Indexed: 11/30/2022] Open
Abstract
Brillouin light scattering (BLS), a technique theoretically described nearly a century back by the French physicist Léon Brillouin in 1922, is a light-scattering method for determining the mechanical properties of materials. This inelastic scattering method is described by the Bragg diffraction of light from a propagating fluctuation in the local dielectric. These fluctuations arise spontaneously from thermally populated sound waves intrinsic to all materials, and thus BLS may be broadly applied to transparent samples of any phase. This review begins with a brief historical overview of the development of BLS, from its theoretical prediction to the current state of the art, and notes specific technological advancements that enabled the development of BLS. Despite the broad utility of BLS, no commercial spectrometer is currently available for purchase, but rather individual components are assembled to suit a specific application. Central to any BLS spectrometer is the interferometer, and its performance characteristics-scanning or non-scanning, multi-passing, and stabilization-are critical considerations for spectrometer design. Consistent with any light-scattering method, the frequency shift is a key observable in BLS, and we summarize the connection of this measurement to evaluate the mechanical properties of materials. With emphasis toward pharmaceutical materials analysis, we introduce the traditional BLS approach for single-crystal elasticity, and this is followed by a discussion of more recent developments in powder BLS. We conclude our review with a perspective on future developments in BLS that may enable BLS as a novel addition to the current catalog of process analytical technologies.
Collapse
|
26
|
Noninvasive Imaging: Brillouin Confocal Microscopy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1092:351-364. [DOI: 10.1007/978-3-319-95294-9_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
27
|
Mattana S, Mattarelli M, Urbanelli L, Sagini K, Emiliani C, Serra MD, Fioretto D, Caponi S. Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques. LIGHT, SCIENCE & APPLICATIONS 2018; 7:17139. [PMID: 30839528 PMCID: PMC6060066 DOI: 10.1038/lsa.2017.139] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/23/2017] [Accepted: 10/08/2017] [Indexed: 05/04/2023]
Abstract
Innovative label-free microspectroscopy, which can simultaneously collect Brillouin and Raman signals, is used to characterize the viscoelastic properties and chemical composition of living cells with sub-micrometric resolution. The unprecedented statistical accuracy of the data combined with the high-frequency resolution and the high contrast of the recently built experimental setup permits the study of single living cells immersed in their buffer solution by contactless measurements. The Brillouin signal is deconvoluted in the buffer and the cell components, thereby revealing the mechanical heterogeneity inside the cell. In particular, a 20% increase is observed in the elastic modulus passing from the plasmatic membrane to the nucleus as distinguished by comparison with the Raman spectroscopic marker. Brillouin line shape analysis is even more relevant for the comparison of cells under physiological and pathological conditions. Following oncogene expression, cells show an overall reduction in the elastic modulus (15%) and apparent viscosity (50%). In a proof-of-principle experiment, the ability of this spectroscopic technique to characterize subcellular compartments and distinguish cell status was successfully tested. The results strongly support the future application of this technique for fundamental issues in the biomedical field.
Collapse
Affiliation(s)
- Sara Mattana
- Department of Physics and Geology, University of Perugia, Perugia I-06123, Italy
| | - Maurizio Mattarelli
- Department of Physics and Geology, University of Perugia, Perugia I-06123, Italy
| | - Lorena Urbanelli
- Laboratory of Biochemistry and Molecular Biology, Department of Chemistry, Biology and Biotechnology, University of Perugia, via del Giochetto, Perugia I-06123, Italy
| | - Krizia Sagini
- Laboratory of Biochemistry and Molecular Biology, Department of Chemistry, Biology and Biotechnology, University of Perugia, via del Giochetto, Perugia I-06123, Italy
| | - Carla Emiliani
- Laboratory of Biochemistry and Molecular Biology, Department of Chemistry, Biology and Biotechnology, University of Perugia, via del Giochetto, Perugia I-06123, Italy
- CEMIN-Center of Excellence for Innovative Nanostructured Material, Perugia I-06123, Italy
| | - Mauro Dalla Serra
- Istituto di Biofisica CNR (IBF-CNR), Unità di Trento, and FBK, Via Sommarive 18, Trento 38123, Italy
| | - Daniele Fioretto
- Department of Physics and Geology, University of Perugia, Perugia I-06123, Italy
- CEMIN-Center of Excellence for Innovative Nanostructured Material, Perugia I-06123, Italy
| | - Silvia Caponi
- Istituto Officina dei Materiali del CNR (CNR-IOM)—Unità di Perugia, c/o Department of Physics and Geology, University of Perugia, Perugia I-06123, Italy
| |
Collapse
|
28
|
Troyanova-Wood M, Gobbell C, Meng Z, Gashev AA, Yakovlev VV. Optical assessment of changes in mechanical and chemical properties of adipose tissue in diet-induced obese rats. JOURNAL OF BIOPHOTONICS 2017; 10:1694-1702. [PMID: 28464472 PMCID: PMC5668206 DOI: 10.1002/jbio.201600281] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/22/2017] [Accepted: 02/24/2017] [Indexed: 05/15/2023]
Abstract
Obesity is becoming a leading cause of health problems world-wide. Obesity and overweight are associated with the structural and chemical changes in tissues; however, few methods exist that allow for concurrent measurement of these changes. Using Brillouin and Raman microspectroscopy, both the mechanical and chemical differences can be assessed simultaneously. We hypothesized that Brillouin spectroscopy can measure the adipose tissues' stiffness, which increases in obesity. Samples of brown and white adipose tissues obtained from control and diet-induced obese adult rats were analyzed. The results show that both adipose tissues of the obese group exhibit a greater high-frequency longitudinal elastic modulus than the control samples, and that the brown fat is generally stiffer than white adipose. The Raman spectra indicate that the lipids' accumulation in adipose tissue outpaces the fibrosis, and that the high-fat diet has a greater effect on the brown adipose than the white fat. Overall, the powerful combination of Brillouin and Raman microspectroscopies successfully assessed both the mechanical properties and chemical composition of adipose tissue simultaneously for the first time. The results indicate that the adipose tissue experiences an obesity-induced increase in stiffness and lipid content, with the brown adipose tissue undergoing a more pronounced change compared to white adipose.
Collapse
Affiliation(s)
- Maria Troyanova-Wood
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843-3120, USA
| | - Cassidy Gobbell
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843-3120, USA
| | - Zhaokai Meng
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843-3120, USA
| | - Anatoliy A. Gashev
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, TX, 76504, USA
| | - Vladislav V. Yakovlev
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843-3120, USA
- Corresponding Author:
| |
Collapse
|
29
|
Meng Z, Yakovlev VV. Precise Determination of Brillouin Scattering Spectrum Using a Virtually Imaged Phase Array (VIPA) Spectrometer and Charge-Coupled Device (CCD) Camera. APPLIED SPECTROSCOPY 2016; 70:1356-63. [PMID: 27296309 DOI: 10.1177/0003702816654050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/13/2015] [Indexed: 05/16/2023]
Abstract
Brillouin spectroscopy is an emerging tool for microscopic optical imaging as it allows noninvasive assessment of viscoelastic properties of materials. The use of atomic-molecular absorption cells as ultra-narrow notch filters allows acquisition of Brillouin spectra from turbid samples despite their strong elastic scattering. However, such systems alter the shapes of the Brillouin lines, making the precise determination of the Brillouin shift difficult. In this report, we propose a simple method for analyzing the Brillouin spectrum using a customized least-square fitting algorithm. The absorption spectrum induced by the atomic-molecular cell was taken into consideration. The capability of the method is confirmed by processing experimental spectroscopic data from the pure water at different temperatures. The accuracy of the measurements of ±1 MHz spectral line shift is experimentally demonstrated.
Collapse
Affiliation(s)
- Zhaokai Meng
- Texas A&M University, Biomedical Engineering, College Station, TX, USA
| | | |
Collapse
|