1
|
Ramli H, Yusop N, Ramli R, Berahim Z, Peiris R, Ghani N. Application of neurotransmitters and dental stem cells for pulp regeneration: A review. Saudi Dent J 2023; 35:387-394. [PMID: 37520592 PMCID: PMC10373085 DOI: 10.1016/j.sdentj.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/07/2023] [Accepted: 05/07/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Although there have been many studies on stem cells, few have investigated how neurotransmitters and stem cell proliferation interact to regenerate dental pulp. Dental pulp regeneration is an innovative procedure for reviving dental pulp, if feasible for the entire tooth. Upon tooth injury, activated platelets release serotonin and dopamine in bulk to mobilize dental pulp stem cells to mediate natural dental repair. This has induced research on the role of neurotransmitters in increasing the proliferation rate of stem cells. This review also covers prospective future treatments for dental pulp regeneration. Methods A literature search was performed via PubMed and ScienceDirect from 2001 to 2022, using the keywords "neurotransmitter," "stem cell," "tooth regeneration," "tooth repair," "regenerative dentistry," and "dental pulp." Different inclusion/exclusion criteria were used, and the search was restricted to English articles. Results Nine publications reporting neurotransmitter interactions with stem cells for tooth and pulp regeneration were selected. Conclusion Neurotransmitters were found to interact with dental stem cells. Evidence pointing to neurotransmitters as a factor in the increased proliferation of stem cells was found. This review thus gives hope for tooth pulp regeneration and repair.
Collapse
Affiliation(s)
- Hidayah Ramli
- Basic and Medical Sciences Unit, School of Dental Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
| | - Norhayati Yusop
- Basic and Medical Sciences Unit, School of Dental Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
| | - Rosmaliza Ramli
- Basic and Medical Sciences Unit, School of Dental Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
| | - Zurairah Berahim
- Periodontic Unit, School of Dental Sciences, Health Campus, Universiti Sains Malaysia, Kelantan 16150, Kota Bharu, Malaysia
| | - Roshan Peiris
- Department of Basic Sciences, Faculty of Dental Sciences, University of Peradeniya, 20400 Peradeniya, Sri Lanka
| | - Nurhafizah Ghani
- Basic and Medical Sciences Unit, School of Dental Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
| |
Collapse
|
2
|
Application of Injectable, Crosslinked, Fibrin-Containing Hyaluronic Acid Scaffolds for In Vivo Remodeling. J Funct Biomater 2022; 13:jfb13030119. [PMID: 35997457 PMCID: PMC9396986 DOI: 10.3390/jfb13030119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
The present research aimed to characterize soft tissue implants that were prepared with the use of crosslinked hyaluronic acid (HA) using two different crosslinkers and multiple reagent concentrations, alone or in combination with fibrin. The effect of the implants was evaluated in an in vivo mouse model, after 4 weeks in one group and after 12 weeks in the other. The explants were compared using analytical methods, evaluating microscopic images, and a histology analysis. The kinetics of the degradation and remodeling of explants were found to be greatly dependent on the concentration and type of crosslinker; generally, divinyl sulfone (DVS) resists degradation more effectively compared to butanediol diglycidyl ether (BDDE). The presence of fibrin enhances the formation of blood vessels, and the infiltration of cells and extracellular matrix. In summary, if the aim is to create a soft tissue implant with easier degradation of the HA content, then the use of 2-5% BDDE is found to be optimal. For a longer degradation time, 5% DVS is the more suitable crosslinker. The use of fibrin was found to support the biological process of remodeling, while keeping the advances of HA in void filling, enabling the parallel degradation and remodeling processes.
Collapse
|
3
|
Hinsenkamp A, Ézsiás B, Pál É, Hricisák L, Fülöp Á, Besztercei B, Somkuti J, Smeller L, Pinke B, Kardos D, Simon M, Lacza Z, Hornyák I. Crosslinked Hyaluronic Acid Gels with Blood-Derived Protein Components for Soft Tissue Regeneration. Tissue Eng Part A 2020; 27:806-820. [PMID: 32854588 DOI: 10.1089/ten.tea.2020.0197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hyaluronic acid (HA) is an ideal initial material for preparing hydrogels, which may be used as scaffolds in soft tissue engineering based on their advantageous physical and biological properties. In this study, two crosslinking agents, divinyl sulfone (DVS) and butanediol diglycidyl ether, were used to investigate their effect on the properties of HA hydrogels. As HA hydrogels alone do not promote cell adhesion on the scaffold, fibrin and serum from platelet-rich fibrin (SPRF) were combined with the scaffold; the aim was to create a material intended to be used as soft tissue implant that facilitates new tissue formation, and degrades over time. The chemical changes were characterized and cell attachment capacity of the protein-containing gels was examined using human mesenchymal stem cells, and viability was assessed using live-dead staining. Fourier-transform infrared measurements revealed that linking fibrin into the gel was more effective than linking SPRF. The scaffolds were found to be able to support cell adherence onto the hydrogels, and the best result was achieved when HA was crosslinked with DVS and contained fibrin. The most promising derivative, 5% DVS-crosslinked fibrin-containing hydrogel, was injected subcutaneously into C57BL/6 mice for 12 weeks. The scaffold was proven to be biocompatible, remodeling, and vascularization occurred, while shape and integrity were maintained. Impact statement Fibrin was combined with crosslinked hyaluronic acid (HA) for regenerative application, the structure of the combination of crosslinked HA with blood-derived protein was analyzed and effective coating was proven. It was observed that the fibrin content led to better mesenchymal stem cell attachment in vitro. The compositions showed biocompatibility, connective tissue and vascularization took place when implanted in vivo. Thus, a biocompatible, injectable gel was produced, which is a potential candidate for soft tissue implantation.
Collapse
Affiliation(s)
- Adél Hinsenkamp
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Bence Ézsiás
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Éva Pál
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - László Hricisák
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Ágnes Fülöp
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Balázs Besztercei
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Judit Somkuti
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - László Smeller
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Balázs Pinke
- Department of Polymer Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary
| | - Dorottya Kardos
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Melinda Simon
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Zsombor Lacza
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary.,Orthosera GmbH, Krems an der Donau, Austria.,Institute of Sport and Health Sciences, University of Physical Education, Budapest, Hungary
| | - István Hornyák
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary.,Orthosera GmbH, Krems an der Donau, Austria
| |
Collapse
|
4
|
Jazayeri HE, Lee SM, Kuhn L, Fahimipour F, Tahriri M, Tayebi L. Polymeric scaffolds for dental pulp tissue engineering: A review. Dent Mater 2019; 36:e47-e58. [PMID: 31791734 DOI: 10.1016/j.dental.2019.11.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 10/30/2019] [Accepted: 11/15/2019] [Indexed: 12/23/2022]
Abstract
OBJECTIVES The purpose of this review is to describe recent developments in pulp tissue engineering using scaffolds and/or stem cells. It is crucial to understand how this approach can revitalize damaged dentin-pulp tissue. Widespread scaffold materials, both natural and synthetic, and their fabrication methods, and stem-progenitor cells with the potential of pulp regeneration will be discussed. DATA AND SOURCES A review of literature was conducted through online databases, including MEDLINE by using the PubMed search engine, Scopus, and the Cochrane Library. STUDY SELECTION Studies were selected based on relevance, with a preference given to recent research, particularly from the past decade. CONCLUSIONS The use of biomaterial scaffolds and stem cells can be safe and potent for the regeneration of pulp tissue and re-establishment of tooth vitality. Natural and synthetic polymers have distinct advantages and limitations and in vitro and in vivo testing have produced positive results for cell attachment, proliferation, and angiogenesis. The type of biomaterial used for scaffold fabrication also facilitates stem cell differentiation into odontoblasts and the resulting biochemistry of tissue repair for each polymer and cell type was discussed. Multiple methods of scaffold design exist for pulp tissue engineering, which demonstrates the variability in tissue engineering applications in endodontics. This review explains the potential of evidence-based tissue engineering strategies and outcomes in pulp regeneration.
Collapse
Affiliation(s)
- Hossein E Jazayeri
- School of Dental Medicine, University of Pennsylvania, 240 S. 40th Street, Philadelphia, PA 19104, United States
| | - Su-Min Lee
- Department of Endodontics, School of Dental Medicine, University of Pennsylvania, 240 S. 40th Street, Philadelphia, PA 19104, United States
| | - Lauren Kuhn
- Department of Oral Rehabilitation, Division of Endodontics, Medical University of South Carolina, 29 Bee Street, Charleston, SC 29403, United States.
| | - Farahnaz Fahimipour
- Department of Developmental Sciences, Marquette University School of Dentistry, 1801 W Wisconsin Ave, Milwaukee, WI 53233, United States
| | - Mohammadreza Tahriri
- Department of Developmental Sciences, Marquette University School of Dentistry, 1801 W Wisconsin Ave, Milwaukee, WI 53233, United States
| | - Lobat Tayebi
- Department of Developmental Sciences, Marquette University School of Dentistry, 1801 W Wisconsin Ave, Milwaukee, WI 53233, United States
| |
Collapse
|
5
|
Fallacara A, Marchetti F, Pozzoli M, Citernesi UR, Manfredini S, Vertuani AS. Formulation and Characterization of Native and Crosslinked Hyaluronic Acid Microspheres for Dermal Delivery of Sodium Ascorbyl Phosphate: A Comparative Study. Pharmaceutics 2018; 10:E254. [PMID: 30513791 PMCID: PMC6321467 DOI: 10.3390/pharmaceutics10040254] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/20/2018] [Accepted: 11/26/2018] [Indexed: 01/14/2023] Open
Abstract
The present work evaluates for the first time the use of urea-crosslinked hyaluronic acid (HA-CL), a novel derivative of native hyaluronic acid (HA), to produce microspheres (MS) by emulsification-solvent evaporation, for dermal delivery of sodium ascorbyl phosphate (SAP). As the term of comparison, HA MS were prepared. A pre-formulation study-investigation of the effects of polymers solutions properties (pH, viscosity) and working conditions-led to the - production of optimized HA-CL MS and HA-CL-SAP MS with: almost unimodal size distributions; mean diameter of 13.0 ± 0.7 and 9.9 ± 0.8 µm, respectively; spherical shape and rough surface; high yield, similar to HA MS and HA⁻SAP MS (≈ 85%). SAP was more efficiently encapsulated into HA-CL MS (78.8 ± 2.6%) compared to HA MS (69.7 ± 4.6%). Physical state, thermal properties, relative moisture stability of HA-CL MS and HA-CL⁻SAP MS were comparable to those of HA MS and HA⁻SAP MS. However, HA-CL⁻SAP MS exhibited an extended drug release compared to HA⁻SAP MS, despite the same kinetic mechanism-contemporaneous drug diffusion and polymer swelling/dissolution. Therefore, HA-CL formulation showed a greater potential as microcarrier (for encapsulation efficiency and release kinetic), that could be improved, in future, using suitable excipients.
Collapse
Affiliation(s)
- Arianna Fallacara
- Department of Life Sciences and Biotechnology, Master Course in Cosmetic Science and Technology (COSMAST), University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara (FE), Italy.
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, 431 Glebe Point Road, Glebe, NSW 2037, Australia.
- I.R.A. Istituto Ricerche Applicate s.r.l., Via Del Lavoro 4a/6, 20865 Usmate-Velate (MB), Italy.
| | - Filippo Marchetti
- Department of Life Sciences and Biotechnology, Master Course in Cosmetic Science and Technology (COSMAST), University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara (FE), Italy.
| | - Michele Pozzoli
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, 431 Glebe Point Road, Glebe, NSW 2037, Australia.
| | - Ugo Raffaello Citernesi
- I.R.A. Istituto Ricerche Applicate s.r.l., Via Del Lavoro 4a/6, 20865 Usmate-Velate (MB), Italy.
| | - Stefano Manfredini
- Department of Life Sciences and Biotechnology, Master Course in Cosmetic Science and Technology (COSMAST), University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara (FE), Italy.
- Ambrosialab Srl, Via Mortara 171, 44121 Ferrara (FE), Italy.
| | - And Silvia Vertuani
- Department of Life Sciences and Biotechnology, Master Course in Cosmetic Science and Technology (COSMAST), University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara (FE), Italy.
- Ambrosialab Srl, Via Mortara 171, 44121 Ferrara (FE), Italy.
| |
Collapse
|
6
|
Morotomi T, Washio A, Kitamura C. Current and future options for dental pulp therapy. JAPANESE DENTAL SCIENCE REVIEW 2018; 55:5-11. [PMID: 30733839 PMCID: PMC6354285 DOI: 10.1016/j.jdsr.2018.09.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/13/2018] [Accepted: 09/10/2018] [Indexed: 01/01/2023] Open
Abstract
Dental pulp is a connective tissue and has functions that include initiative, formative, protective, nutritive, and reparative activities. However, it has relatively low compliance, because it is enclosed in hard tissue. Its low compliance against damage, such as dental caries, results in the frequent removal of dental pulp during endodontic therapy. Loss of dental pulp frequently leads to fragility of the tooth, and eventually, a deterioration in the patient’s quality of life. With the development of biomaterials such as bioceramics and advances in pulp biology such as the identification of dental pulp stem cells, novel ideas for the preservation of dental pulp, the regenerative therapy of dental pulp, and new biomaterials for direct pulp capping have now been proposed. Therapies for dental pulp are classified into three categories; direct pulp capping, vital pulp amputation, and treatment for non-vital teeth. In this review, we discuss current and future treatment options in these therapies.
Collapse
Affiliation(s)
- Takahiko Morotomi
- Division of Endodontics and Restorative Dentistry, Department of Science of Oral Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan
| | - Ayako Washio
- Division of Endodontics and Restorative Dentistry, Department of Science of Oral Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan
| | - Chiaki Kitamura
- Division of Endodontics and Restorative Dentistry, Department of Science of Oral Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan
| |
Collapse
|
7
|
Shiekh PA, Singh A, Kumar A. Engineering Bioinspired Antioxidant Materials Promoting Cardiomyocyte Functionality and Maturation for Tissue Engineering Application. ACS APPLIED MATERIALS & INTERFACES 2018; 10:3260-3273. [PMID: 29303551 DOI: 10.1021/acsami.7b14777] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Oxidative stress plays an important role in various pathological conditions, such as wound healing, inflammation, myocardial infarction, and biocompatibility of the materials. Antioxidant polymers to attenuate oxidative stress is an emerging field of biomaterial research with a huge impact in the field of tissue engineering and regenerative medicine. We describe here the fabrication and evaluation of an elastomeric antioxidant polyurethane (PUAO) for tissue engineering applications. Uniaxial and cyclic tensile testing, thermal analysis, degradation, cytotoxicity and antioxidant analysis was carried out. An in vitro oxidative stress model demonstrated that PUAO reduced intracellular oxidative stress in H9C2 cardiomyocytes (p < 0.05) and attenuated reactive oxygen species (ROS) induced cell death (p < 0.001). Under simulated ischemic reperfusion, PUAO could rescue hypoxia induced cell death. Further as a proof of concept, neonatal rat cardiomyocytes cultured on PUAO film displayed synchronous beating with mature phenotype showing expression of cardiac specific α-actinin, troponin-T, and connexin-43 proteins. Intracellular calcium transients established the functionality of cultured cardiomyocytes on PUAO film. Our study demonstrated the potential of this biomaterial to be developed into tissue engineered scaffold to attenuate oxidative stress for treatment of diseased conditions with increased oxidative stress, such as cardiovascular diseases, chronic wound healing, and myocardial infarction.
Collapse
Affiliation(s)
- Parvaiz A Shiekh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur , Kanpur-208016, Uttar Pradesh, India
| | - Anamika Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur , Kanpur-208016, Uttar Pradesh, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur , Kanpur-208016, Uttar Pradesh, India
| |
Collapse
|
8
|
Morozova S, Muthukumar M. Elasticity at Swelling Equilibrium of Ultrasoft Polyelectrolyte Gels: Comparisons of Theory and Experiments. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02656] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Svetlana Morozova
- Polymer Science and Engineering
Department, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Murugappan Muthukumar
- Polymer Science and Engineering
Department, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
9
|
Hemshekhar M, Thushara RM, Chandranayaka S, Sherman LS, Kemparaju K, Girish KS. Emerging roles of hyaluronic acid bioscaffolds in tissue engineering and regenerative medicine. Int J Biol Macromol 2016; 86:917-28. [DOI: 10.1016/j.ijbiomac.2016.02.032] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 02/09/2016] [Accepted: 02/11/2016] [Indexed: 12/16/2022]
|
10
|
Rodríguez-Pérez E, Lloret Compañ A, Monleón Pradas M, Martínez-Ramos C. Scaffolds of Hyaluronic Acid-Poly(Ethyl Acrylate) Interpenetrating Networks: Characterization and In Vitro Studies. Macromol Biosci 2016; 16:1147-57. [DOI: 10.1002/mabi.201600028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 02/29/2016] [Indexed: 12/22/2022]
Affiliation(s)
- E. Rodríguez-Pérez
- Center for Biomaterials and Tissue Engineering; Universitat Politècnica de València; 46022 Valencia Spain
| | - A. Lloret Compañ
- Center for Biomaterials and Tissue Engineering; Universitat Politècnica de València; 46022 Valencia Spain
| | - M. Monleón Pradas
- Center for Biomaterials and Tissue Engineering; Universitat Politècnica de València; 46022 Valencia Spain
- Networking Research Center on Bioengineering; Biomaterials and Nanomedicine (CIBERBBN); Valencia Spain
| | - C. Martínez-Ramos
- Center for Biomaterials and Tissue Engineering; Universitat Politècnica de València; 46022 Valencia Spain
| |
Collapse
|
11
|
Synthesis, characterization and antioxidant activity of a novel electroactive and biodegradable polyurethane for cardiac tissue engineering application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 44:24-37. [DOI: 10.1016/j.msec.2014.07.061] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 07/08/2014] [Accepted: 07/25/2014] [Indexed: 02/01/2023]
|
12
|
Rossi F, Santoro M, Perale G. Polymeric scaffolds as stem cell carriers in bone repair. J Tissue Eng Regen Med 2013; 9:1093-119. [DOI: 10.1002/term.1827] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/29/2013] [Accepted: 08/30/2013] [Indexed: 12/16/2022]
Affiliation(s)
- Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering; 'Giulio Natta' Politecnico di Milano; Milan Italy
| | - Marco Santoro
- Department of Chemical and Biomolecular Engineering; Rice University; Houston TX USA
| | - Giuseppe Perale
- Department of Chemistry, Materials and Chemical Engineering; 'Giulio Natta' Politecnico di Milano; Milan Italy
- Department of Innovative Technologies; University of Southern Switzerland; Manno Switzerland
- Swiss Institute for Regenerative Medicine; Taverne Switzerland
| |
Collapse
|
13
|
Khan F, Ahmad SR. Biomimetic Polysaccharides and Derivatives for Cartilage Tissue Regeneration. Biomimetics (Basel) 2013. [DOI: 10.1002/9781118810408.ch1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
14
|
Khan F, Ahmad SR. Polysaccharides and Their Derivatives for Versatile Tissue Engineering Application. Macromol Biosci 2013; 13:395-421. [DOI: 10.1002/mabi.201200409] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/06/2013] [Indexed: 12/13/2022]
|
15
|
Hui JHP, Buhary KS, Chowdhary A. Implantation of orthobiologic, biodegradable scaffolds in osteochondral repair. Orthop Clin North Am 2012; 43:255-61, vii. [PMID: 22480474 DOI: 10.1016/j.ocl.2012.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The treatment of articular cartilage lesions is complicated, but novel tissue engineering approaches seem to improve the outcome. A tissue engineering approach is less invasive and reduces surgical time, periosteal hypertrophy, and morbidity. Cell-based therapies using scaffolds have advantages compared with microfracture techniques, but the efficacy and cost-effectiveness need to be investigated. Second-generation cell-based therapies have lower morbidity and the ease of the technique is not significantly different from that of first-generation autologous chondrocyte implantation techniques. Third-generation cell-based therapies such as the use of tissue engineered scaffolds need to be studied in more detail.
Collapse
Affiliation(s)
- James H P Hui
- Division of Paediatric Orthopaedics, National University Hospital, 5, Lower Kent Ridge Road, Kent Ridge Wing 2, Level 3, 119074, Singapore.
| | | | | |
Collapse
|
16
|
Bashur CA, Venkataraman L, Ramamurthi A. Tissue engineering and regenerative strategies to replicate biocomplexity of vascular elastic matrix assembly. TISSUE ENGINEERING PART B-REVIEWS 2012; 18:203-17. [PMID: 22224468 DOI: 10.1089/ten.teb.2011.0521] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cardiovascular tissues exhibit architecturally complex extracellular matrices, of which the elastic matrix forms a major component. The elastic matrix critically maintains native structural configurations of vascular tissues, determines their ability to recoil after stretch, and regulates cell signaling pathways involved in morphogenesis, injury response, and inflammation via biomechanical transduction. The ability to tissue engineer vascular replacements that incorporate elastic matrix superstructures unique to cardiac and vascular tissues is thus important to maintaining vascular homeostasis. However, the vascular elastic matrix is particularly difficult to tissue engineer due to the inherently poor ability of adult vascular cells to synthesize elastin precursors and organize them into mature structures in a manner that replicates the biocomplexity of elastic matrix assembly during development. This review discusses current tissue engineering materials (e.g., growth factors and scaffolds) and methods (e.g., dynamic stretch and contact guidance) used to promote cellular synthesis and assembly of elastic matrix superstructures, and the limitations of these approaches when applied to smooth muscle cells, the primary elastin-generating cell type in vascular tissues. The potential application of these methods for in situ regeneration of disrupted elastic matrix at sites of proteolytic vascular disease (e.g., abdominal aortic aneurysms) is also discussed. Finally, the review describes the potential utility of alternative cell types to elastic tissue engineering and regenerative matrix repair. Future progress in the field is contingent on developing a thorough understanding of developmental elastogenesis and then mimicking the spatiotemporal changes in the cellular microenvironment that occur during that phase. This will enable us to tissue engineer clinically applicable elastic vascular tissue replacements and to develop elastogenic therapies to restore homeostasis in de-elasticized vessels.
Collapse
Affiliation(s)
- Chris A Bashur
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | |
Collapse
|
17
|
Local regeneration of dentin-pulp complex using controlled release of fgf-2 and naturally derived sponge-like scaffolds. Int J Dent 2011; 2012:190561. [PMID: 22174717 PMCID: PMC3227515 DOI: 10.1155/2012/190561] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 09/08/2011] [Indexed: 01/09/2023] Open
Abstract
Restorative and endodontic procedures have been recently developed in an attempt to preserve the vitality of dental pulp after exposure to external stimuli, such as caries infection or traumatic injury. When damage to dental pulp is reversible, pulp wound healing can proceed, whereas irreversible damage induces pathological changes in dental pulp, eventually requiring its removal. Nonvital teeth lose their defensive abilities and become severely damaged, resulting in extraction. Development of regeneration therapy for the dentin-pulp complex is important to overcome limitations with presently available therapies. Three strategies to regenerate the dentin-pulp complex have been proposed; regeneration of the entire tooth, local regeneration of the dentin-pulp complex from amputated dental pulp, and regeneration of dental pulp from apical dental pulp or periapical tissues. In this paper, we focus on the local regeneration of the dentin-pulp complex by application of exogenous growth factors and scaffolds to amputated dental pulp.
Collapse
|
18
|
Regeneration Approaches for Dental Pulp and Periapical Tissues with Growth Factors, Biomaterials, and Laser Irradiation. Polymers (Basel) 2011. [DOI: 10.3390/polym3041776] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
19
|
Hyaluronic acid-based hydrogels crosslinked by copper-catalyzed azide-alkyne cycloaddition with tailorable mechanical properties. Int J Artif Organs 2011; 34:192-7. [PMID: 21374560 DOI: 10.5301/ijao.2011.6394] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2011] [Indexed: 11/20/2022]
Abstract
Biopolymers of the extracellular matrix are attractive starting materials for providing degradable and biocompatible biomaterials. In this study, hyaluronic acid-based hydrogels with tunable mechanical properties were prepared by the use of copper- catalyzed azide-alkyne cycloaddition (known as "click chemistry"). Alkyne-functionalized hyaluronic acid was crosslinked with linkers having two terminal azide functionalities, varying crosslinker density as well as the lengths and rigidity of the linker molecules. By variation of the crosslinker density and crosslinker type, hydrogels with elastic moduli in the range of 0.5-4 kPa were prepared. The washed materials contained a maximum of 6.8 mg copper per kg dry weight and the eluate of the gel crosslinked with diazidostilbene did not show toxic effects on L929 cells. The hyaluronic acid-based hydrogels have potential as biomaterials for cell culture or soft tissue regeneration applications.
Collapse
|
20
|
Schanté CE, Zuber G, Herlin C, Vandamme TF. Chemical modifications of hyaluronic acid for the synthesis of derivatives for a broad range of biomedical applications. Carbohydr Polym 2011. [DOI: 10.1016/j.carbpol.2011.03.019] [Citation(s) in RCA: 434] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
21
|
Gacchina CE, Ramamurthi A. Impact of pre-existing elastic matrix on TGFβ1 and HA oligomer-induced regenerative elastin repair by rat aortic smooth muscle cells. J Tissue Eng Regen Med 2011; 5:85-96. [PMID: 20653044 DOI: 10.1002/term.286] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Regenerating elastic matrices lost to disease (e.g. in aneurysms) is vital to re-establishing vascular homeostasis but is challenged by the poor elastogenicity of post-neonatal cells. We previously showed that exogenous hyaluronan oligomers (HA-o) and TGFβ1 synergistically enhance tropo- and matrix elastin deposition by healthy adult rat aortic SMCs (RASMCs). Towards treating aortic aneurysms (AAs), which exhibit cause- and site-specific heterogeneity in matrix content/structure and contain proteolytically-injured SMCs, we investigated the impact of pre-existing elastic matrix degeneration on elastogenic induction of injured RASMCs. Elastin-rich RASMC layers at 21 days of culture were treated with 0.15 U/ml (PPE15) and 0.75 U/ml (PPE75) porcine pancreatic elastase to degrade the elastic matrix variably, or left uninjured (control). One set of cultures was harvested at 21 days, before and after injury, to quantify viable cell count, matrix elastin loss. Other injured cell layers were cultured to 42 days with or without factors (0.2 µg/ml HA oligomers, 1 ng/ml TGFβ1). We showed that: (a) the ability of cultures to self-repair and regenerate elastic matrices following proteolysis is limited when elastolysis is severe; (b) HA oligomers and TGFβ1 elastogenically stimulate RASMCs in mildly-injured (i.e. PPE15) cultures to restore both elastic matrix amounts and elastic fibre deposition to levels in healthy cultures; and (c) in severely injured (i.e. PPE75) cultures, the factors stimulate matrix elastin synthesis and crosslinking, although not to control levels. The outcomes underscore the need to enhance elastogenic factor doses based on the severity of elastin loss. This study will help in customizing therapies for elastin regeneration within AAs, based on cause and location.
Collapse
Affiliation(s)
- Carmen E Gacchina
- Department of Bioengineering, Clemson University, 173 Ashley Avenue, Clemson, SC 29425, USA
| | | |
Collapse
|
22
|
Zhang F, He C, Cao L, Feng W, Wang H, Mo X, Wang J. Fabrication of gelatin–hyaluronic acid hybrid scaffolds with tunable porous structures for soft tissue engineering. Int J Biol Macromol 2011; 48:474-81. [DOI: 10.1016/j.ijbiomac.2011.01.012] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 01/06/2011] [Accepted: 01/11/2011] [Indexed: 02/07/2023]
|
23
|
Ibrahim S, Kothapalli CR, Kang QK, Ramamurthi A. Characterization of glycidyl methacrylate - crosslinked hyaluronan hydrogel scaffolds incorporating elastogenic hyaluronan oligomers. Acta Biomater 2011; 7:653-65. [PMID: 20709199 DOI: 10.1016/j.actbio.2010.08.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 08/02/2010] [Accepted: 08/09/2010] [Indexed: 11/18/2022]
Abstract
Prior studies on two-dimensional cell cultures suggest that hyaluronic acid (HA) stimulates cell-mediated regeneration of extracellular matrix structures, specifically those containing elastin, though such biologic effects are dependent on HA fragment size. Towards being able to regenerate three-dimensional (3-D) elastic tissue constructs, the present paper studies photo-crosslinked hydrogels containing glycidyl methacrylate (GM)-derivatized bio-inert high molecular weight (HMW) HA (1 × 10(6)Da) and a bioactive HA oligomer mixture (HA-o: MW ∼0.75 kDa). The mechanical (rheology, degradation) and physical (apparent crosslinking density, swelling ratio) properties of the gels varied as a function of incorporated HA oligomer content; however, overall, the mechanics of these hydrogels were too weak for vascular applications as stand-alone materials. Upon in vivo subcutaneous implantation, only a few inflammatory cells were evident around GM-HA gels, however their number increased as HA-o content within the gels increased, and the collagen I distribution was uniform. Smooth muscle cells (SMC) were encapsulated into GM hydrogels, and calcein acetoxymethyl detection revealed that the cells were able to endure twofold the level of UV exposure used to crosslink the gels. After 21 days of culture, SMC elastin production, measured by immunofluorescence quantification, showed HA-o to increase cellular deposition of elastic matrix twofold relative to HA-o-free GM-HA gels. These results demonstrate that cell response to HA/HA-o is not altered by their methacrylation and photo-crosslinking into a hydrogel, and that HA-o incorporation into cell-encapsulating hydrogel scaffolds can be useful for enhancing their production of elastic matrix structures in a 3-D space, important for regenerating elastic tissues.
Collapse
Affiliation(s)
- S Ibrahim
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | | | | | | |
Collapse
|
24
|
Ibrahim S, Kang QK, Ramamurthi A. The impact of hyaluronic acid oligomer content on physical, mechanical, and biologic properties of divinyl sulfone-crosslinked hyaluronic acid hydrogels. J Biomed Mater Res A 2010; 94:355-70. [PMID: 20186732 DOI: 10.1002/jbm.a.32704] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In recent studies, we showed that exogenous hyaluronic acid oligomers (HA-o) stimulate functional endothelialization, though native long-chain HA is more bioinert and possibly more biocompatible. Thus, in this study, hydrogels containing high molecular weight (HMW) HA (1 x 10(6) Da) and HA-o mixtures (HA-o: 0.75-10 kDa) were created by crosslinking with divinyl sulfone (DVS). The incorporation of HA-o was found to compromise the physical and mechanical properties of the gels (rheology, apparent crosslinking density, swelling ratio, degradation) and to very mildly enhance inflammatory cell recruitment in vivo; increasing the DVS crosslinker content within the gels in general, had the opposite effect, though the relatively high concentration of DVS within these gels (necessary to create a solid gel) also stimulated a mild subcutaneous inflammatory response in vivo and VCAM-1 expression by endothelial cells (ECs) cultured atop; ICAM-expression levels remained very low irrespective extent of DVS crosslinking or HA-o content. The greatest EC attachment and proliferation (MTT assay) was observed on gels that contained the highest amount of HA-o. The study shows that the beneficial EC response to HA-o and biocompatibility of HA is mostly unaltered by their chemical derivatization and crosslinking into a hydrogel. However, the study also demonstrates that the relatively high concentrations of DVS, necessary to create solid gels, compromise their biocompatibility. Moreover, the poor mechanics of even these heavily crosslinked gels, in the context of vascular implantation, necessitates the investigation of other, more appropriate crosslinking agents. Alternately, the outcomes of this study may be used to guide an approach based on chemical immobilization and controlled surface-presentation of both bioactive HA-o and more biocompatible HMW HA on synthetic or tissue engineered grafts already in use, without the use of a crosslinker, so that improved, predictable, and functional endothelialization can be achieved, and the need to create a mechanically compliant biomaterial for standalone use, circumvented.
Collapse
Affiliation(s)
- Samir Ibrahim
- Department of Bioengineering, Clemson University, Clemson, South Carolina 29634, USA
| | | | | |
Collapse
|
25
|
Carvalho J, Moreira S, Maia J, Gama FM. Characterization of dextrin-based hydrogels: rheology, biocompatibility, and degradation. J Biomed Mater Res A 2010; 93:389-99. [PMID: 19569221 DOI: 10.1002/jbm.a.32553] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A new class of degradable dextrin-based hydrogels (dextrin-HEMA) was developed. The hydroxyethyl methacrylate ester (HEMA) hydroxyl groups were activated with N,N'-carbonyldiimidazole (CDI), followed by their coupling to dextrin, yielding a derivatized material that can be polymerized in aqueous solution to form hydrogels. A comparative study of the stability of the dextrin-HEMA hydrogels and dextrin-vinyl acrylate (dextrin-VA, produced in previous work) revealed that only the firsts are effectively hydrolyzed under physiological conditions. A severe mass loss of dextrin-HEMA gels occurs over time, culminating in the complete dissolution of the gels. Rheologic analysis confirmed that physical structuring is less pronounced when dextrin is modified with methacrylate side groups. The biocompatibility results revealed that the dextrin hydrogels have negligible cell toxicity, irrespective of the hydrogel type (HEMA and VA), allowing cell adhesion and proliferation. Gathering the biocompatibility and the ability to tailor the release profiles, we consider dextrin a promising biomaterial for biomedical applications, namely for controlled release.
Collapse
Affiliation(s)
- Joana Carvalho
- Department of Biological Engineering, Universidade do Minho, 4710-057 Braga, Portugal
| | | | | | | |
Collapse
|
26
|
Inuyama Y, Kitamura C, Nishihara T, Morotomi T, Nagayoshi M, Tabata Y, Matsuo K, Chen KK, Terashita M. Effects of hyaluronic acid sponge as a scaffold on odontoblastic cell line and amputated dental pulp. J Biomed Mater Res B Appl Biomater 2010; 92:120-8. [PMID: 19802830 DOI: 10.1002/jbm.b.31497] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
It is important to develop a suitable three-dimensional scaffold for the regeneration therapy of dental pulp. In the present study, the effects of hyaluronic acid (HA) sponge on responses of the odontoblastic cell line (KN-3 cells) in vitro, as well as responses of amputated dental pulp of rat molar in vivo, were examined. In vitro, KN-3 cells adhered to the stable structure of HA sponge and that of collagen sponge. In vivo, dental pulp proliferation and vessel invasion were observed in both sponges implanted at dentin defect area above amputated dental pulp, and the cell-rich reorganizing tissue was observed in the dentin defect when HA sponge was implanted as compared with collagen sponge. Expression levels of IL-6 and TNF-alpha in KN-3 cells seeded in HA sponge were nearly the same with those in the cells seeded in collagen sponge, while the numbers (0.67 x 10(3) at 1 week and 0.7 x 10(3) at 3 weeks) of granulated leukocytes that invaded into HA sponge from amputated dental pulp was significantly lower than those (1.22 x 10(3) at 1 week and 1.1 x 10(3) at 3 weeks) of collagen sponge (p < 0.01 at 1 week and p < 0.05 at 3 weeks). These results suggest that HA sponge has an appropriate structure, biocompatibility, and biodegradation for use as a scaffold for dental pulp regeneration.
Collapse
Affiliation(s)
- Yoshio Inuyama
- Division of Pulp Biology, Operative Dentistry, and Endodontics, Department of Cariology and Periodontology, Kyushu Dental College, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Alauzun JG, Young S, D'Souza R, Liu L, Brook MA, Sheardown HD. Biocompatible, hyaluronic acid modified silicone elastomers. Biomaterials 2010; 31:3471-8. [PMID: 20138660 DOI: 10.1016/j.biomaterials.2010.01.069] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 01/10/2010] [Indexed: 11/18/2022]
Abstract
Although silicones possess many useful properties as biomaterials, their hydrophobicity can be problematic. To a degree, this issue can be addressed by surface modification with hydrophilic polymers such as poly(ethylene glycol), but the resulting structures are usually not conducive to cell growth. In the present work, we describe the synthesis and characterization of covalently linked hyaluronic acid (HA) (35 kDa) to poly(dimethylsiloxane) (PDMS) elastomer surfaces. HA is of interest because of its known biological properties; its presence on a surface was expected to improve the biocompatibility of silicone materials for a wide range of bioapplications. HA was introduced with a coupling agent in two steps from high-density, tosyl-modified, poly(ethylene glycol) tethered silicone surfaces. All materials synthesized were characterized by water contact angle, ATR-FTIR, XPS and (13)C solid state NMR spectroscopy. Biological interactions with these modified silicone surfaces were assessed by examining interactions with fibrinogen as a model protein as well as determining the in vitro response of fibroblast (3T3) and human corneal epithelial cells relative to unmodified poly(dimethylsiloxane) controls. The results suggest that HA modification significantly enhances cell interactions while decreasing protein adsorption and may therefore be effective for improving biocompatibility of PDMS and other materials.
Collapse
Affiliation(s)
- Johan G Alauzun
- Department of Chemistry, McMaster University, 1280 Main St. W., Hamilton ON L8S 4M1, Canada
| | | | | | | | | | | |
Collapse
|
28
|
Jin SG, Jeong YI, Jung S, Ryu HH, Jin YH, Kim IY. The effect of hyaluronic Acid on the invasiveness of malignant glioma cells : comparison of invasion potential at hyaluronic Acid hydrogel and matrigel. J Korean Neurosurg Soc 2009; 46:472-8. [PMID: 20041058 DOI: 10.3340/jkns.2009.46.5.472] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 07/16/2009] [Accepted: 10/25/2009] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Hyaluronidase (HAse), a degrading enzyme of hyaluronic acid (HA), is highly expressed in patients with malignant glioma. The purpose of this study was to verify whether HAse is related to the invasion of glioma cells. We also investigated if glioma cells with higher mobility in 2-dimensioal (2-D) method have also higher mobility at 3-dimensional (3-D) environment. METHODS Malignant glioma cell lines (U87MG, U251MG, U343MG-A, and U373MG) were used, and their HAse expressions were evaluated by HA zymography. The migration ability was evaluated by simple scratch technique. The invasiveness of each cell lines was evaluated by Matrigel invasion assay and HA hydrogel invasion assay. In HA hydrogel invasion assay, colonies larger than 150 microm were regarded as positive ones and counted. Statistical analysis of migration ability and invasion properties of each cell lines was performed using t-test. RESULTS In scratch test to examine migration ability of each cell lines, U87MG cells were most motile than others, and U343MG-A least motile. The HAse was expressed in U251MG and U343MG-A cell lines. However, U87MG and U373MG cell lines did not express HAse activity. In Matrigel invasion assay, the cell lines expressing HAse (U251MG and U343MG-A) were more invasive in the presence of HA than HAse deficient cell lines (U87MG and U373MG). In HA hydrogel invasion assay, the HAse-expressing cell lines formed colonies more invasively than HAse-deficient ones. CONCLUSION Malignant Glioma cells expressing HAse were more invasive than HAse-deficient ones in 3-dimensional environment. Therefore, it might be suggested that invasion of malignant gliomas is suppressed by inhibition of HAse expression or HA secretion. Additionally, the ability of 2-D migration and 3-D invasion might not be always coincident to each other in malignant glioma cells.
Collapse
Affiliation(s)
- Shu-Guang Jin
- Department of Neurosurgery, Chonnam National University Research Institute of Medical Sciences, Chonnam National University Hwasun Hospital & Medical School, Gwangju, Korea
| | | | | | | | | | | |
Collapse
|
29
|
David L, Dulong V, Coquerel B, Le Cerf D, Cazin L, Lamacz M, Vannier JP. Collagens, stromal cell-derived factor-1alpha and basic fibroblast growth factor increase cancer cell invasiveness in a hyaluronan hydrogel. Cell Prolif 2008; 41:348-64. [PMID: 18336478 DOI: 10.1111/j.1365-2184.2008.00515.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVE Beyond to control of cell migration, differentiation and proliferation, the extracellular matrix (ECM) also contributes to invasiveness of human cancers. As the roles of hyaluronan (HA) and collagens in this process are still controversial, we have investigated their involvement in cancer pathogenesis. MATERIALS AND METHODS With this aim in view, we developed a three-dimensional matrix, as reticulate HA hydrogel alone or coated with different collagens, in which cells could invade and grow. RESULTS We show that cancer cells, which were non-invasive in a single HA hydrogel, acquired this capacity in the concomitant presence of type I or III collagens. Both types of ECM compound, HA and collagens, possess the capacity to stimulate production of metalloprotease-2, recognized otherwise as a factor for poor cancer prognosis. HA-provoked cellular invasiveness resulted from CD44-mediated increase in cytosolic [Ca2+] and its subsequent hydrolysis due to ADAM (a disintegrin and metalloprotease) proteolytic activity. Interestingly, this mechanism seemed to be absent in non-invasive cancer cell lines. CONCLUSION Furthermore, using basic fibroblast growth factor and stromal cell-derived factor-1alpha, we also show that this three-dimensional reticulate matrix may be considered as a valuable model to study chemokinetic and chemotactic potentials of factors present in tumour stroma.
Collapse
Affiliation(s)
- L David
- Groupe de Recherche sur le Micro-Environnement et le Renouvellement Cellulaire Intégré (M.E.R.C.I., UPRES EA 3829), Faculté de Médecine Pharmacie, Université de ROUEN, Rouen, France.
| | | | | | | | | | | | | |
Collapse
|
30
|
Pitarresi G, Palumbo FS, Calabrese R, Craparo EF, Giammona G. Crosslinked hyaluronan with a protein-like polymer: novel bioresorbable films for biomedical applications. J Biomed Mater Res A 2008; 84:413-24. [PMID: 17618478 DOI: 10.1002/jbm.a.31316] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this work, novel hydrogel films based on hyaluronan (HA) chemically crosslinked with the alpha,beta-poly(N-2-hydroxyethyl) (2-aminoethylcarbamate)-D,L-aspartamide (PHEA-EDA) were produced by solution casting method. The goal was to exploit both the biological key role of HA in tissue repair and regeneration, and the versatility of a synthetic protein-like polymer as the PHEA-EDA, in order to obtain biomaterials with physicochemical and biological properties suitable for a clinical use. By varying the molar ratio between the PHEA-EDA amino groups and HA carboxyl groups, three different films were obtained and characterized. Particularly FTIR, swelling, hydrolysis, and enzymatic degradation studies were performed. In addition, the cytocompatibility of HA/PHEA-EDA hydrogel films was evaluated using human derm fibroblasts, by means of MTT and trypan blue exclusion assays. The high swelling capability, the long-term hydrolysis resistance, and the resistance to hyaluronidase greater than that of only HA, together with the cell compatibility, have suggested the potential application of these novel HA-based hydrogel films in the biomedical field of tissue engineering.
Collapse
Affiliation(s)
- G Pitarresi
- Dipartimento di Chimica e Tecnologie Farmaceutiche, Università di Palermo, via Archirafi 32, 90123, Palermo, Italy.
| | | | | | | | | |
Collapse
|
31
|
Brody S, Pandit A. Approaches to heart valve tissue engineering scaffold design. J Biomed Mater Res B Appl Biomater 2008; 83:16-43. [PMID: 17318822 DOI: 10.1002/jbm.b.30763] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Heart valve disease is a significant cause of mortality worldwide. However, to date, a nonthrombogenic, noncalcific prosthetic, which maintains normal valve mechanical properties and hemodynamic flow, and exhibits sufficient fatigue properties has not been designed. Current prosthetic designs have not been optimized and are unsuitable treatment for congenital heart defects. Research is therefore moving towards the development of a tissue engineered heart valve equivalent. Two approaches may be used in the creation of a tissue engineered heart valve, the traditional approach, which involves seeding a scaffold in vitro, in the presence of specific signals prior to implantation, and the guided tissue regeneration approach, which relies on autologous reseeding in vivo. Regardless of the approach taken, the design of a scaffold capable of supporting the growth of cells and extracellular matrix generation and capable of withstanding the unrelenting cardiovascular environment while forming a tight seal during closure, is critical to the success of the tissue engineered construct. This paper focuses on the quest to design, such a scaffold.
Collapse
Affiliation(s)
- Sarah Brody
- National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
| | | |
Collapse
|
32
|
Weng L, Gouldstone A, Wu Y, Chen W. Mechanically strong double network photocrosslinked hydrogels from N,N-dimethylacrylamide and glycidyl methacrylated hyaluronan. Biomaterials 2008; 29:2153-63. [PMID: 18272215 DOI: 10.1016/j.biomaterials.2008.01.012] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Accepted: 01/17/2008] [Indexed: 10/22/2022]
Abstract
Hyaluronan (HA) is a natural polysaccharide abundant in biological tissues and it can be modified to prepare biomaterials. In this work, HA modified with glycidyl methacrylate was photocrosslinked to form the first network (PHA), and then a series of highly porous PHA/N,N-dimethylacrylamide (DAAm) hydrogels (PHA/DAAm) with high mechanical strength were obtained by incorporating a second network of photocrosslinked DAAm into PHA network. Due to the synergistic effect produced by double network (DN) structure, despite containing 90% of water, the resulting PHA/DAAm hydrogel showed a compressive modulus and a fracture stress over 0.5 MPa and 5.2 MPa, respectively. Compared to the photocrosslinked hyaluronan single network hydrogel, which is generally very brittle and fractures easily, the PHA/DAAm hydrogels are ductile. Mouse dermal fibroblast was used as a model cell line to validate in vitro non-cytotoxicity of the PHA/DAAm hydrogels. Cells deposited extracellular matrix on the surface of these hydrogels and this was confirmed by positive staining of Type I collagen by Sirius Red. The PHA/DAAm hydrogels were also resistant to biodegradation and largely retained their excellent mechanical properties even after 2 months of co-culturing with fibroblasts.
Collapse
Affiliation(s)
- Lihui Weng
- Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794-8181, USA
| | | | | | | |
Collapse
|
33
|
Couet F, Rajan N, Mantovani D. Macromolecular biomaterials for scaffold-based vascular tissue engineering. Macromol Biosci 2007; 7:701-18. [PMID: 17477449 DOI: 10.1002/mabi.200700002] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cardiovascular diseases are increasingly becoming the main cause of death all over the world, which has led to an increase in the economic and social burden of such diseases. Vascular tissue engineering (VTE) is providing a route towards interesting applications, mainly focussing on the in vitro, in vivo, or combined in vitro/in vivo regeneration of small-diameter blood vessels (<6 mm) for coronary or peripheral vascular substitutions. Although different approaches have been investigated in the past two decades to achieve this aim, the most common method uses a macromolecular-based structure to scaffold cells during the regeneration process. Therefore, the aim of this work is to comprehensively review macromolecular biomaterials that were designed, developed, fabricated, and tested for scaffolding VTE. In an effort to provide a comprehensive overview, this review will mainly focus on the mechanical properties of the construct and its biological performance that results from the scaffold colonization during cell growth.
Collapse
Affiliation(s)
- Frédéric Couet
- Laboratory for Biomaterials and Bioengineering, Department Materials Engineering & Research Centre, Quebec University Hospital, Laval University, Quebec City, G1K 7P4, Canada
| | | | | |
Collapse
|
34
|
Mechanical properties and degradation behaviors of hyaluronic acid hydrogels cross-linked at various cross-linking densities. Carbohydr Polym 2007. [DOI: 10.1016/j.carbpol.2007.04.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Girish KS, Kemparaju K. The magic glue hyaluronan and its eraser hyaluronidase: a biological overview. Life Sci 2007; 80:1921-43. [PMID: 17408700 DOI: 10.1016/j.lfs.2007.02.037] [Citation(s) in RCA: 439] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 02/04/2007] [Accepted: 02/19/2007] [Indexed: 01/09/2023]
Abstract
Hyaluronan (HA) is a multifunctional high molecular weight polysaccharide found throughout the animal kingdom, especially in the extracellular matrix (ECM) of soft connective tissues. HA is thought to participate in many biological processes, and its level is markedly elevated during embryogenesis, cell migration, wound healing, malignant transformation, and tissue turnover. The enzymes that degrade HA, hyaluronidases (HAases) are expressed both in prokaryotes and eukaryotes. These enzymes are known to be involved in physiological and pathological processes ranging from fertilization to aging. Hyaluronidase-mediated degradation of HA increases the permeability of connective tissues and decreases the viscosity of body fluids and is also involved in bacterial pathogenesis, the spread of toxins and venoms, acrosomal reaction/ovum fertilization, and cancer progression. Furthermore, these enzymes may promote direct contact between pathogens and the host cell surfaces. Depolymerization of HA also adversely affects the role of ECM and impairs its activity as a reservoir of growth factors, cytokines and various enzymes involved in signal transduction. Inhibition of HA degradation therefore may be crucial in reducing disease progression and spread of venom/toxins and bacterial pathogens. Hyaluronidase inhibitors are potent, ubiquitous regulating agents that are involved in maintaining the balance between the anabolism and catabolism of HA. Hyaluronidase inhibitors could also serve as contraceptives and anti-tumor agents and possibly have antibacterial and anti-venom/toxin activities. Additionally, these molecules can be used as pharmacological tools to study the physiological and pathophysiological role of HA and hyaluronidases.
Collapse
Affiliation(s)
- K S Girish
- Department of Biochemistry, University of Mysore, Manasagangothri, Mysore, Karnataka State, 560007, India.
| | | |
Collapse
|
36
|
Autissier A, Letourneur D, Le Visage C. Pullulan-based hydrogel for smooth muscle cell culture. J Biomed Mater Res A 2007; 82:336-42. [PMID: 17295223 DOI: 10.1002/jbm.a.30998] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A hydrogel was prepared from pullulan and evaluated as a novel biomaterial for vascular engineering. Using a crosslinking process with sodium trimetaphosphate in aqueous solution, homogeneous, transparent, and easy-to-handle pullulan gels were obtained with water-content higher than 90%. A circular punch was used to cut 6-mm diameter and 2-mm thickness discs for cell culture. Environmental scanning electron microscopy analysis of hydrated gels revealed a smooth surface, on which rabbit vascular smooth muscle cells were successfully seeded. The absence of cytotoxicity was evidenced by a live/dead assay. Fluorescence-labeled cells were observed adhering and progressively spreading out on the surface of the material. Cellular proliferation was followed for up to 1 week using an MTT assay. In addition, a complete in vitro degradation of the gels was achieved in 3 h upon incubation in a pullulanase solution (44 U/mL). In conclusion, we have shown the feasibility of preparing a biocompatible pullulan-based hydrogel that could support vascular cell culture. Based on these promising results, future studies will focus on the seeding of vascular cells on tubular-shaped hydrogels and the in vivo implantation of these new biomaterials.
Collapse
Affiliation(s)
- Aude Autissier
- Inserm U698, Bio-ingénierie Cardiovasculaire, CHU X. Bichat, Paris, F-75018, France
| | | | | |
Collapse
|
37
|
Abstract
Tissue-engineered heart valves have been proposed by physicians and scientists alike to be the ultimate solution for treating valvular heart disease. Rather than replacing a diseased or defective native valve with a mechanical or animal tissue-derived artificial valve, a tissue-engineered valve would be a living organ, able to respond to growth and physiological forces in the same way that the native aortic valve does. Two main approaches have been attempted over the past 10 to 15 years: regeneration and repopulation. Regeneration involves the implantation of a resorbable matrix that is expected to remodel in vivo and yield a functional valve composed of the cells and connective tissue proteins of the patient. Repopulation involves implanting a whole porcine aortic valve that has been previously cleaned of all pig cells, leaving an intact, mechanically sound connective tissue matrix. The cells of the patients are expected to repopulate and revitalize the acellular matrix, creating living tissue that already has the complex microstructure necessary for proper function and durability. Regrettably, neither of the 2 approaches has fared well in animal experiments, and the only clinical experience with tissue-engineered valves resulted in a number of early failures and patient death. This article reviews the technological details of the 2 main approaches, their rationale, their strengths and weaknesses, and the likely mechanisms for their failure. Alternative approaches to valvular tissue engineering, as well as the role of industry in shaping this field in the future, are also reviewed.
Collapse
Affiliation(s)
- Ivan Vesely
- The Saban Research Institute of Children's Hospital Los Angeles, Keck School of Medicine, University of Southern CaliforniaLos Angeles, CA 90027, USA.
| |
Collapse
|
38
|
Liu Y, Zheng Shu X, Prestwich GD. Biocompatibility and stability of disulfide-crosslinked hyaluronan films. Biomaterials 2005; 26:4737-46. [PMID: 15763253 DOI: 10.1016/j.biomaterials.2005.01.003] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Accepted: 01/04/2005] [Indexed: 11/26/2022]
Abstract
Hyaluronan (HA) can be chemically modified to engineer robust materials with pre-selected mechanical properties and resorption rates that can be dictated by the intended clinical use. Disulfide-crosslinked HA films were prepared by air oxidation of thiol-modified HA, followed by treatment with 0.3% hydrogen peroxide. The degradation of the disulfide-crosslinked films in vitro was very slow (<10% in 7 days) in buffer alone and shorter (t1/2=3-5 days) in the presence of hyaluronidase (HAse). The cytocompatibility of the disulfide-crosslinked HA films was determined using two separate conditions: (i) in vitro culture of mouse fibroblasts in indirect contract with the films, and (ii) in vitro culture of fibroblasts directly on films coated with poly d-lysine. Excellent cytocompatibility was observed in murine fibroblasts that were cultured in indirect contact with thiolated HA films. Although cells were unable to attach and spread on thiolated HA films, pre-coating the thiolated HA films with poly D-lysine resulted in attachment and spreading equivalent to that observed on polystyrene. Rates of resorption in vivo were obtained by subcutaneous implantation of disulfide-crosslinked HA films into the backs of Wistar rats. Biocompatibility in vivo was determined in both subcutaneous flank and peritoneal cavity implantation of the films in Wistar rats. The disulfide-crosslinked HA films were less than 30% resorbed after 42 days in vivo, and histochemical and cytochemical analysis indicated that the films were well-tolerated with mild inflammatory response at both sites of implantation.
Collapse
Affiliation(s)
- Yanchun Liu
- Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, UT 84108-1257, USA
| | | | | |
Collapse
|
39
|
Masters KS, Shah DN, Leinwand LA, Anseth KS. Crosslinked hyaluronan scaffolds as a biologically active carrier for valvular interstitial cells. Biomaterials 2005; 26:2517-25. [PMID: 15585254 DOI: 10.1016/j.biomaterials.2004.07.018] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Accepted: 07/07/2004] [Indexed: 11/22/2022]
Abstract
Hyaluronic acid (HA), a major component of the cardiac jelly during heart morphogenesis, is a polysaccharide that upon modification can be photopolymerized into hydrogels. Previous work in our lab has found that photopolymerizable HA hydrogels are suitable scaffolds for the culture and proliferation of valvular interstitial cells (VICs), the most prevalent cell type in native heart valves. The physical properties of HA gels are easily modified through alteration in material crosslink density or by copolymerizing with other reactive macromolecules. Degradation products of HA gels and the starting macromers significantly increased VIC proliferation when added to cell cultures. With low molecular weight HA (<6700 Da) exhibiting greatest stimulation of VIC proliferation. Low molecular weight HA degradation products added to VIC cultures also resulted in a four-fold increase in total matrix production and a two-fold increase in elastin production over untreated controls. VIC internalization of HA, as shown by cellular uptake of fluorescently labeled HA, likely activates signaling cascades resulting in the biological responses seen here. Lastly, VICs encapsulated within HA hydrogels remained viable, and significant elastin production was observed after 6 weeks of culture. This work shows promise for the creation of a tissue-engineered heart valve utilizing the synergistic relationship between hyaluronic acid and VICs.
Collapse
Affiliation(s)
- Kristyn S Masters
- Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309-0424, USA
| | | | | | | |
Collapse
|
40
|
Masters KS, Shah DN, Walker G, Leinwand LA, Anseth KS. Designing scaffolds for valvular interstitial cells: cell adhesion and function on naturally derived materials. J Biomed Mater Res A 2005; 71:172-80. [PMID: 15368267 DOI: 10.1002/jbm.a.30149] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Valvular interstitial cells (VICs) possess many properties that make them attractive for use in the construction of a tissue-engineered valve; however, we have found that the surfaces to which VICs will adhere and spread are limited. For example, VICs adhere and spread on collagen and laminin-coated surfaces, but display altered morphology and do not proliferate. Interestingly, fibronectin (FN) was one adhesion protein that facilitated VIC adhesion and proliferation. Yet VICs did not spread on surfaces modified with RGD, a ubiquitous cell-adhesive peptide, nor with other FN-specific peptide sequences such as EILDV and PHSRN. Hyaluronic acid (HA) is a highly elastic polysaccharide that is involved in natural valve morphogenesis and possesses binding interactions with FN. Hyaluronic acid was modified to form photopolymerizable hydrogels, and VICs were found to spread and proliferate on HA-based gels, forming a confluent monolayer on the gels within 4 days. Modified HA retained its ability to specifically bind FN, allowing for the formation of gels containing both HA and FN. Valvular interstital cells cultured on HA surfaces displayed significantly increased production of extracellular matrix proteins, indicating that HA-based scaffolds may provide useful biological cues to stimulate heart valve tissue formation.
Collapse
|
41
|
David L, Dulong V, Le Cerf D, Chauzy C, Norris V, Delpech B, Lamacz M, Vannier JP. Reticulated hyaluronan hydrogels: a model for examining cancer cell invasion in 3D. Matrix Biol 2005; 23:183-93. [PMID: 15296946 DOI: 10.1016/j.matbio.2004.05.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2003] [Revised: 05/03/2004] [Accepted: 05/04/2004] [Indexed: 11/24/2022]
Abstract
The extracellular polysaccharide hyaluronan (HA) controls cell migration, differentiation and proliferation, and contributes to the invasiveness of human cancers. The roles of HA cell surface receptors and hyaluronidases (HAses) in this process are still controversial. In order to investigate their involvement in cancer pathogenesis, we developed a reticulated HA hydrogel, a three-dimensional matrix in which cells can invade and grow. We have studied thirteen cell lines, from primary tumors or metastases, that migrated into the HA hydrogel and proliferated giving rise to clusters and colonies. The number of colonies, which reflects tumor cell invasiveness, ranged from 7 to 193 after 5 days of culture. Invasion was dependent on the production of HAse as well as other factors. Optimal colonization occurred when cells released HAse, lacked HA-binding sites and did not secrete HA. Moreover, we describe for the first time a HAse activity at physiological pH that may be responding to the confinement of the enzyme in a three-dimensional structure. We show here that this reticulated matrix provides a three-dimensional model for investigating mechanisms involved in malignant invasion.
Collapse
Affiliation(s)
- Laurent David
- Groupe de Recherche sur le Micro-Environnement et le Renouvellement Cellulaire Intégré (M.E.R.C.I., UPRES EA 2122), Faculté de Médecine Pharmacie, Université de ROUEN, 22, boulevard Gambetta, 76183 Rouen, France.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Segura T, Anderson BC, Chung PH, Webber RE, Shull KR, Shea LD. Crosslinked hyaluronic acid hydrogels: a strategy to functionalize and pattern. Biomaterials 2005; 26:359-71. [PMID: 15275810 DOI: 10.1016/j.biomaterials.2004.02.067] [Citation(s) in RCA: 253] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Accepted: 02/20/2004] [Indexed: 11/22/2022]
Abstract
The physiological activity of hyaluronic acid (HA) polymers and oligomers makes it a promising material for a variety of applications. The development of HA-hydrogel scaffolds with improved mechanical stability against degradation and biochemical functionality may enhance their application to tissue engineering. In this report, a crosslinking strategy targeting the alcohol groups via a poly(ethylene glycol) diepoxide crosslinker was investigated for the generation of degradable HA hydrogels. To provide support for cell adhesion in vitro, collagen was incorporated into the HA solution prior to the crosslinking process. The hydrogels have a continuous exterior and a porous interior, with pore diameters ranging from 6 to 9 microm. HA and HA-collagen hydrogels degrade in the presence of hyaluronidase and collagenase enzymes, indicating that the chemical modification does not prevent biodegradation. Complete degradation of the hydrogels occurred within 14 days in hyaluronidase (100 U/ml) and 3 days in collagenase (66 U/ml). Pattern transfer was employed to introduce a surface topography onto the hydrogel, which was able to orient cell growth. Furthermore, the hydrogels could be functionalized with the biomolecule neutravidin by incorporation of biotin along the HA backbone. This biotinylation approach may allow attachment of bioactive molecules that are conjugated to avidin.
Collapse
Affiliation(s)
- Tatiana Segura
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, E156 Evanston, IL 60208-3120, USA
| | | | | | | | | | | |
Collapse
|
43
|
Yu SH, Mi FL, Wu YB, Peng CK, Shyu SS, Huang RN. Antibacterial activity of chitosan–alginate sponges incorporating silver sulfadiazine: Effect of ladder-loop transition of interpolyelectrolyte complex and ionic crosslinking on the antibiotic release. J Appl Polym Sci 2005. [DOI: 10.1002/app.21509] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
44
|
Shu XZ, Ghosh K, Liu Y, Palumbo FS, Luo Y, Clark RA, Prestwich GD. Attachment and spreading of fibroblasts on an RGD peptide-modified injectable hyaluronan hydrogel. J Biomed Mater Res A 2004; 68:365-75. [PMID: 14704979 DOI: 10.1002/jbm.a.20002] [Citation(s) in RCA: 210] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Hyaluronan (HA) hydrogels resist attachment and spreading of fibroblasts and most other mammalian cell types. A thiol-modified HA (3,3'-dithiobis(propanoic dihydrazide) [HA-DTPH]) was modified with peptides containing the Arg-Gly-Asp (RGD) sequence and then crosslinked with polyethylene glycol (PEG) diacrylate (PEGDA) to create a biomaterial that supported cell attachment, spreading, and proliferation. The hydrogels were evaluated in vitro and in vivo in three assay systems. First, the behavior of human and murine fibroblasts on the surface of the hydrogels was evaluated. The concentration and structure of the RGD peptides and the length of the PEG spacer influenced cell attachment and spreading. Second, murine fibroblasts were seeded into HA-DTPH solutions and encapsulated via in situ crosslinking with or without bound RGD peptides. Cells remained viable and proliferated within the hydrogel for 15 days in vitro. Although the RGD peptides significantly enhanced cell proliferation on the hydrogel surface, the cell proliferation inside the hydrogel in vitro was increased only modestly. Third, HA-DTPH/PEGDA/peptide hydrogels were evaluated as injectable tissue engineering materials in vivo. A suspension of murine fibroblasts in HA-DTPH was crosslinked using PEGDA plus PEGDA peptide, and the viscous, gelling mixture was injected subcutaneously into the flanks of nude mice; gels formed in vivo following injection. After 4 weeks, growth of new fibrous tissue had been accelerated by the sense RGD peptides. Thus, attachment, spreading, and proliferation of cells is dramatically enhanced on RGD-modified surfaces but only modestly accelerated in vivo tissue formation.
Collapse
Affiliation(s)
- Xiao Zheng Shu
- Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, Utah 84108-1257, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Rashid ST, Salacinski HJ, Button MJC, Fuller B, Hamilton G, Seifalian AM. Cellular engineering of conduits for coronary and lower limb bypass surgery: role of cell attachment peptides and pre-conditioning in optimising smooth muscle cells (SMC) adherence to compliant poly(carbonate-urea)urethane (MyoLink) scaffolds. Eur J Vasc Endovasc Surg 2004; 27:608-16. [PMID: 15121111 DOI: 10.1016/j.ejvs.2004.01.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2004] [Indexed: 10/26/2022]
Abstract
OBJECTIVE We are developing a hybrid arterial bypass graft of compliant poly(carbonate-urea)urethane (MyoLink), endothelial and smooth muscle cells (SMCs). To enhance adhesion of SMCs we assessed various attachment factors and the effect of pre-conditioning on cell retention. METHODS MyoLink segments were coated with either RGD, superfibronectin, fibronectin, fibronectin-like engineered polymer protein (FEPP), FEPP plus or type 1 collagen overnight. (111)Indium-radiolabelled SMCs were placed onto MyoLink segments for 48 h before being aspirated, then lavaged off. All grafts, aspirates and lavages were counted in a gamma counter. SMC viability on the MyoLink segments was also assessed for viability using the Alamar blue redox assay. Separately, MyoLink grafts lined with radiolabelled SMCs were divided into a pre-conditioned group, exposed to subarterial pulsatile flow whilst another group were held in static culture. After 1-week, grafts were exposed to arterial pulsatile flow whilst radioactivity was assessed using a gamma camera. RESULTS Only FEPP plus significantly enhanced SMC attachment: mean of 32+/-6% cell attachment compared to 21+/-5% for uncoated control. Cell viability was enhanced by all attachment factors except fibronectin. Pre-conditioning was shown to significantly enhance the retention of SMCs onto the MyoLink once exposed to pulsatile arterial flow: the final attachment was 57+/-7% for the static and 76+/-7% for the pre-conditioned group. CONCLUSIONS FEPP plus enhances SMC attachment to MyoLink. We believe this is because of its repeating sequences of RGD and its positive charge. Pre-conditioning enhances the retention of SMCs to MyoLink once exposed to pulsatile arterial flow.
Collapse
Affiliation(s)
- S T Rashid
- Vascular Unit, University Department of Surgery, Royal Free Hospital, Hampstead NHS Trust, London, UK
| | | | | | | | | | | |
Collapse
|
46
|
Liu Y, Shu XZ, Gray SD, Prestwich GD. Disulfide-crosslinked hyaluronan-gelatin sponge: growth of fibrous tissue in vivo. J Biomed Mater Res A 2004; 68:142-9. [PMID: 14661259 DOI: 10.1002/jbm.a.10142] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
The modification of hyaluronan (HA) and gelatin using dithiobis(propanoic dihydrazide) (DTP) has provided two thiolated macromolecular components of the extracellular matrix (ECM), specifically HA-DTPH and gelatin-DTPH. Blends of these thiolated ECM components were crosslinked in air to form hydrogels that were interpenetrating disulfide-crosslinked networks. Lyophilization of the hydrogels afforded sponge-like macroporous scaffolds suitable for cell attachment and proliferation. Increasing percentages of gelatin-DTPH (0, 25, 50, and 75%) were blended with HA-DTPH, and the resulting sponges were evaluated in vitro and in vivo as scaffolds for tissue engineering by seeding with human tracheal scar (HTS) fibroblasts. While cells failed to attach and grow in HA-only sponges, the gelatin-modified HA sponges promoted cell adhesion, proliferation, and spreading in vitro. Optimal attachment and growth was observed with 50% gelatin-HA sponges. Cell attachment to the gelatin-HA sponge could be blocked by preincubation of cells with a soluble fibronectin peptide Gly-Arg-Gly-Asp (GRGD). Finally, HTS fibroblast-seeded gelatin-HA sponges were implanted into the flanks of nude mice and evaluated at 2 and 8 weeks postimplantation. The sponges were fully biocompatible and new fibrous tissue formed, gradually replacing the sponge-like scaffold. The gelatin-HA sponges act as synthetic, macroporous, covalent mimics of the ECM and constitute novel scaffolds for cell growth and tissue augmentation.
Collapse
Affiliation(s)
- Yanchun Liu
- Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, Utah 84108-1257, USA
| | | | | | | |
Collapse
|
47
|
Shu XZ, Liu Y, Palumbo F, Prestwich GD. Disulfide-crosslinked hyaluronan-gelatin hydrogel films: a covalent mimic of the extracellular matrix for in vitro cell growth. Biomaterials 2003; 24:3825-34. [PMID: 12818555 DOI: 10.1016/s0142-9612(03)00267-9] [Citation(s) in RCA: 258] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new disulfide crosslinking method was developed for the preparation of blended hyaluronan (HA)-gelatin hydrogels to form a synthetic, covalently linked mimic of the extracellular matrix (ECM). The HA and gelatin were chemically modified using 3,3'-dithiobis(propionic hydrazide) (DTP). After reduction with dithiothreitol (DTT), the thiol derivatives of HA (HA-DTPH) and gelatin (gelatin-DTPH) were obtained and characterized. To minimize interference with biological function, the degree of substitution of HA-DTPH and gelatin-DTPH was kept below 50%. Solutions of HA-DTPH and gelatin-DTPH in varying blends (20%, 40%, 60%, 80% gelatin) were prepared in 1% w/v NaCl and crosslinked by disulfide bond formation in air. Hydrogel films were dried and further crosslinked with dilute hydrogen peroxide. Disulfide crosslinked HA-DTPH, gelatin-DTPH, and blends thereof, were degradable enzymatically by collagenase and by hyaluronidase (HAse). The rapid digestion of the crosslinked 100% gelatin-DTPH film by collagenase was significantly retarded by the presence of 20% or 40% HA-DTPH. Addition of at least 40% w/v gelatin into the 100% HA-DTPH films significantly improved the attachment and spreading of Balb/c 3T3 murine fibroblasts seeded on the surface of the hydrogel. These results demonstrate that disulfide-crosslinked HA-gelatin hydrogels, a new type of covalent synthetic ECM, constitute biocompatible and biodegradable substrata for cell culture in vitro.
Collapse
Affiliation(s)
- Xiao Zheng Shu
- Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, 84108-1257, Utah, USA
| | | | | | | |
Collapse
|
48
|
Ramamurthi A, Vesely I. Ultraviolet light-induced modification of crosslinked hyaluronan gels. J Biomed Mater Res A 2003; 66:317-29. [PMID: 12889002 DOI: 10.1002/jbm.a.10588] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Hyaluronan (HA) gels (hylans) crosslinked with divinyl sulfone (DVS) are highly biocompatible and can be structurally modified to obtain desired mechanical properties that are attractive for their use as tissue-engineering scaffolds. However, unmodified hylan gels are not good substrates for cell attachment or infiltration, likely as a result of their smooth surface and the highly anionic nature of HA. This study investigated whether the cell-adhering characteristics of hylan gels could be enhanced by irradiation with ultraviolet (UV) light, with or without prior dehydration. The attachment and proliferation of neonatal rat smooth muscle cells atop these gels was compared with that on unmodified (control; C) or dehydrated (D) gels. UV-induced changes to gel structure and chemistry were characterized by confocal and electron microscopy, and fluorphore-assisted carbohydrate electrophoresis (FACE). Cell attachment was sparse on both unmodified (C) and dehydrated (D) gels. Significantly higher levels of cell attachment were observed on the surface of irradiated (UV) and dehydrated-irradiated (DUV) gels, likely because of texturing of the gel surface by UV light. In addition, dehydration of gels before UV irradiation created irregular pore-like structures through which cells appeared to migrate into the interior. FACE assays demonstrated that UV-irradiation alters the chemistry of HA, causing limited breakdown of HA chains and DVS crosslinks within gel and possibly creating new crosslinks that have not yet been identified. Because the hylan gels are altered structurally and chemically, binding of cells to the material is likely to be more permanent than possible by other approaches, such as coating of cell-adhesive matrix factors on the gel surface, described previously. The significance of this work is that we have developed a technique for the modification of DVS-crosslinked HA (hylans) to enhance their performance as a cellular scaffold for tissue-engineering applications.
Collapse
Affiliation(s)
- Anand Ramamurthi
- Department of Biomedical Engineering, ND20, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, Ohio 44120, USA
| | | |
Collapse
|