1
|
Smit TH. On growth and scoliosis. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:2439-2450. [PMID: 38705903 DOI: 10.1007/s00586-024-08276-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/15/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024]
Abstract
PURPOSE To describe the physiology of spinal growth in patients with adolescent idiopathic scoliosis (AIS). METHODS Narrative review of the literature with a focus on mechanisms of growth. RESULTS In his landmark publication On Growth and Form, D'Arcy Thompson wrote that the anatomy of an organism reflects the forces it is subjected to. This means that mechanical forces underlie the shape of tissues, organs and organisms, whether healthy or diseased. AIS is called idiopathic because the underlying cause of the deformation is unknown, although many factors are associated. Eventually, however, any deformity is due to mechanical forces. It has long been shown that the typical curvature and rotation of the scoliotic spine could result from vertebrae and intervertebral discs growing faster than the ligaments attached to them. This raises the question why in AIS the ligaments do not keep up with the speed of spinal growth. The spine of an AIS patient deviates from healthy spines in various ways. Growth is later but faster, resulting in higher vertebrae and intervertebral discs. Vertebral bone density is lower, which suggests less spinal compression. This also preserves the notochordal cells and the swelling pressure in the nucleus pulposus. Less spinal compression is due to limited muscular activity, and low muscle mass indeed underlies the lower body mass index (BMI) in AIS patients. Thus, AIS spines grow faster because there is less spinal compression that counteracts the force of growth (Hueter-Volkmann Law). Ligaments consist of collagen fibres that grow by tension, fibrillar sliding and the remodelling of cross-links. Growth and remodelling are enhanced by dynamic loading and by hormones like estrogen. However, they are opposed by static loading. CONCLUSION Increased spinal elongation and reduced ligamental growth result in differential strain and a vicious circle of scoliotic deformation. Recognising the physical and biological cues that contribute to differential growth allows earlier diagnosis of AIS and prevention in children at risk.
Collapse
Affiliation(s)
- Theodoor H Smit
- Department of Orthopaedic Surgery and Sports Medicine, Amsterdam University Medical Centres, Amsterdam Movement Sciences, Amsterdam, The Netherlands.
- Department of Medical Biology, Amsterdam University Medical Centres, Meibergdreef 9, Room K2-140, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Hui WH, Chen YL, Chang SW. Effects of aging and diabetes on the deformation mechanisms and molecular structural characteristics of collagen fibrils under daily activity. Int J Biol Macromol 2024; 254:127603. [PMID: 37871726 DOI: 10.1016/j.ijbiomac.2023.127603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/06/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
Crosslinking plays an important role in collagen-based tissues since it affects mechanical behavior and tissue metabolism. Aging and diabetes affect the type and density of crosslinking, effectively altering tissue properties. However, most studies focus on these effects under large stress rather than daily activities. We focus on the deformation mechanisms and structural change at the binding sites for integrins, proteoglycans, and collagenase in collagen fibrils using a fully atomistic model. We show that high-connectivity enzymatic crosslinking (our "HC" model, representing normal tissues) and advanced-glycation end-products (our "Glucosepane" model, which increase in diabetes) result in uniform deformation under daily activity, but low-connectivity enzymatic crosslinking (our "LC" model, representing aging tissues) does not. In particular, the HC model displays more sliding, which may explain the ability of healthy tissues to absorb more strain energy. In contrast, AGEs induce instability in the structures near the binding sites, which would affect the tissue metabolism of the collagen molecule. Our results provide important insights into the molecular mechanisms of collagen and a possible explanation for the role of crosslinking in tissues undergoing daily activity.
Collapse
Affiliation(s)
- Wei-Han Hui
- Department of Civil Engineering, National Taiwan University, Taipei City, Taiwan
| | - Yen-Lin Chen
- Department of Civil Engineering, National Taiwan University, Taipei City, Taiwan
| | - Shu-Wei Chang
- Department of Civil Engineering, National Taiwan University, Taipei City, Taiwan; Department of Biomedical Engineering, National Taiwan University, Taipei City, Taiwan.
| |
Collapse
|
3
|
Sesa M, Holthusen H, Lamm L, Böhm C, Brepols T, Jockenhövel S, Reese S. Mechanical modeling of the maturation process for tissue-engineered implants: Application to biohybrid heart valves. Comput Biol Med 2023; 167:107623. [PMID: 37922603 DOI: 10.1016/j.compbiomed.2023.107623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/18/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
The development of tissue-engineered cardiovascular implants can improve the lives of large segments of our society who suffer from cardiovascular diseases. Regenerative tissues are fabricated using a process called tissue maturation. Furthermore, it is highly challenging to produce cardiovascular regenerative implants with sufficient mechanical strength to withstand the loading conditions within the human body. Therefore, biohybrid implants for which the regenerative tissue is reinforced by standard reinforcement material (e.g. textile or 3d printed scaffold) can be an interesting solution. In silico models can significantly contribute to characterizing, designing, and optimizing biohybrid implants. The first step towards this goal is to develop a computational model for the maturation process of tissue-engineered implants. This paper focuses on the mechanical modeling of textile-reinforced tissue-engineered cardiovascular implants. First, an energy-based approach is proposed to compute the collagen evolution during the maturation process. Then, the concept of structural tensors is applied to model the anisotropic behavior of the extracellular matrix and the textile scaffold. Next, the newly developed material model is embedded into a special solid-shell finite element formulation with reduced integration. Finally, our framework is used to compute two structural problems: a pressurized shell construct and a tubular-shaped heart valve. The results show the ability of the model to predict collagen growth in response to the boundary conditions applied during the maturation process. Consequently, the model can predict the implant's mechanical response, such as the deformation and stresses of the implant.
Collapse
Affiliation(s)
- Mahmoud Sesa
- Institute of Applied Mechanics, RWTH Aachen University, Mies-van-der-Rohe-Str. 1, 52074 Aachen, Germany.
| | - Hagen Holthusen
- Institute of Applied Mechanics, RWTH Aachen University, Mies-van-der-Rohe-Str. 1, 52074 Aachen, Germany
| | - Lukas Lamm
- Institute of Applied Mechanics, RWTH Aachen University, Mies-van-der-Rohe-Str. 1, 52074 Aachen, Germany
| | - Christian Böhm
- Biohybrid & Medical Textiles, Institute of Applied Medical Engineering, RWTH Aachen University, Forckenbeckstr. 55, 52074 Aachen, Germany
| | - Tim Brepols
- Institute of Applied Mechanics, RWTH Aachen University, Mies-van-der-Rohe-Str. 1, 52074 Aachen, Germany
| | - Stefan Jockenhövel
- Biohybrid & Medical Textiles, Institute of Applied Medical Engineering, RWTH Aachen University, Forckenbeckstr. 55, 52074 Aachen, Germany
| | - Stefanie Reese
- Institute of Applied Mechanics, RWTH Aachen University, Mies-van-der-Rohe-Str. 1, 52074 Aachen, Germany
| |
Collapse
|
4
|
Saini K, Cho S, Tewari M, Jalil AR, Wang M, Kasznel AJ, Yamamoto K, Chenoweth DM, Discher DE. Pan-tissue scaling of stiffness versus fibrillar collagen reflects contractility-driven strain that inhibits fibril degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559759. [PMID: 37808742 PMCID: PMC10557712 DOI: 10.1101/2023.09.27.559759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Polymer network properties such as stiffness often exhibit characteristic power laws in polymer density and other parameters. However, it remains unclear whether diverse animal tissues, composed of many distinct polymers, exhibit such scaling. Here, we examined many diverse tissues from adult mouse and embryonic chick to determine if stiffness ( E tissue ) follows a power law in relation to the most abundant animal protein, Collagen-I, even with molecular perturbations. We quantified fibrillar collagen in intact tissue by second harmonic generation (SHG) imaging and from tissue extracts by mass spectrometry (MS), and collagenase-mediated decreases were also tracked. Pan-tissue power laws for tissue stiffness versus Collagen-I levels measured by SHG or MS exhibit sub-linear scaling that aligns with results from cellularized gels of Collagen-I but not acellular gels. Inhibition of cellular myosin-II based contraction fits the scaling, and combination with inhibitors of matrix metalloproteinases (MMPs) show collagenase activity is strain - not stress- suppressed in tissues, consistent with past studies of gels and fibrils. Beating embryonic hearts and tendons, which differ in both collagen levels and stiffness by >1000-fold, similarly suppressed collagenases at physiological strains of ∼5%, with fiber-orientation regulating degradation. Scaling of E tissue based on 'use-it-or-lose-it' kinetics provides insight into scaling of organ size, microgravity effects, and regeneration processes while suggesting contractility-driven therapeutics.
Collapse
|
5
|
Yeganegi A, Whitehead K, de Castro Brás LE, Richardson WJ. Mechanical strain modulates extracellular matrix degradation and byproducts in an isoform-specific manner. Biochim Biophys Acta Gen Subj 2023; 1867:130286. [PMID: 36464138 PMCID: PMC9852084 DOI: 10.1016/j.bbagen.2022.130286] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/09/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022]
Abstract
Many studies have shown that mechanical forces can alter collagen degradation by proteases, and this mechanochemical effect may potentially serve an important role in determining extracellular matrix content and organization in load-bearing tissues. However, it is not yet known whether mechano-sensitive degradation depends on particular protease isoforms, nor is it yet known whether particular degradation byproducts can be altered by mechanical loading. In this study, we tested the hypothesis that different types of proteases exhibit different sensitivities to mechanical loading both in degradation rates and byproducts. Decellularized porcine pericardium samples were treated with human recombinant matrix metalloproteinases-1, -8, -9, cathepsin K, or a protease-free control while subjected to different levels of strain in a planar, biaxial mechanical tester. Tissue degradation was monitored by tracking the decay in mechanical stresses during displacement control tests, and byproducts were assessed by mass spectrometry analysis of the sample supernatant after degradation. Our key finding shows that cathepsin K-mediated degradation of collagenous tissue was enhanced with increasing strain, while MMP1-, MMP8-, and MMP9-mediated degradation were first decreased and then increased by strain. Degradation induced changes in tissue mechanical properties, and proteomic analysis revealed strain-sensitive degradome signatures with different ECM byproducts released at low vs. high strains. This evidence suggests a potentially new type of mechanobiology wherein mechanical forces alter the degradation products that can provide important signaling feedback functions during tissue remodeling.
Collapse
Affiliation(s)
- Amirreza Yeganegi
- Department of Bioengineering, Clemson University, Clemson, SC, United States of America
| | - Kaitlin Whitehead
- Department of Physiology, East Carolina University, Greenville, NC, United States of America
| | | | - William J Richardson
- Department of Chemical Engineering, University of Arkansas, Fayetteville, AR, United States of America.
| |
Collapse
|
6
|
Mechanochemistry of collagen. Acta Biomater 2023; 163:50-62. [PMID: 36669548 DOI: 10.1016/j.actbio.2023.01.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 01/02/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
The collagen molecular family is the result of nearly one billion years of evolution. It is a unique family of proteins, the majority of which provide general mechanical support to biological tissues. Fibril forming collagens are the most abundant collagens in vertebrate animals and are generally found in positions that resist tensile loading. In animals, cells produce fibril-forming collagen molecules that self-assemble into larger structures known as collagen fibrils. Collagen fibrils are the fundamental, continuous, load-bearing elements in connective tissues, but are often further aggregated into larger load-bearing structures, fascicles in tendon, lamellae in cornea and in intervertebral disk. We know that failure to form fibrillar collagen is embryonic lethal, and excessive collagen formation/growth (fibrosis) or uncontrolled enzymatic remodeling (type II collagen: osteoarthritis) is pathological. Collagen is thus critical to vertebrate viability and instrumental in maintaining efficient mechanical structures. However, despite decades of research, our understanding of collagen matrix formation is not complete, and we know still less about the detailed mechanisms that drive collagen remodeling, growth, and pathology. In this perspective, we examine the known role of mechanical force on the formation and development of collagenous structure. We then discuss a mechanochemical mechanism that has the potential to unify our understanding of collagenous tissue assembly dynamics, which preferentially deposits and grows collagen fibrils directly in the path of mechanical force, where the energetics should be dissuasive and where collagen fibrils are most required. We term this mechanism: Mechanochemical force-structure causality. STATEMENT OF SIGNIFICANCE: Our mechanochemical-force structure causality postulate suggests that collagen molecules are components of mechanochemically-sensitive and dynamically-responsive fibrils. Collagen molecules assemble preferentially in the path of applied strain, can be grown in place by mechanical extension, and are retained in the path of force through strain-stabilization. The mechanisms that drive this behavior operate at the level of the molecules themselves and are encoded into the structure of the biomaterial. The concept might change our understanding of structure formation, enhance our ability to treat injuries, and accelerate the development of therapeutics to prevent pathologies such as fibrosis. We suggest that collagen is a mechanochemically responsive dynamic element designed to provide a substantial "material assist" in the construction of adaptive carriers of mechanical signals.
Collapse
|
7
|
Dooling LJ, Saini K, Anlaş AA, Discher DE. Tissue mechanics coevolves with fibrillar matrisomes in healthy and fibrotic tissues. Matrix Biol 2022; 111:153-188. [PMID: 35764212 PMCID: PMC9990088 DOI: 10.1016/j.matbio.2022.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/16/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022]
Abstract
Fibrillar proteins are principal components of extracellular matrix (ECM) that confer mechanical properties to tissues. Fibrosis can result from wound repair in nearly every tissue in adults, and it associates with increased ECM density and crosslinking as well as increased tissue stiffness. Such fibrotic tissues are a major biomedical challenge, and an emerging view posits that the altered mechanical environment supports both synthetic and contractile myofibroblasts in a state of persistent activation. Here, we review the matrisome in several fibrotic diseases, as well as normal tissues, with a focus on physicochemical properties. Stiffness generally increases with the abundance of fibrillar collagens, the major constituent of ECM, with similar mathematical trends for fibrosis as well as adult tissues from soft brain to stiff bone and heart development. Changes in expression of other core matrisome and matrisome-associated proteins or proteoglycans contribute to tissue stiffening in fibrosis by organizing collagen, crosslinking ECM, and facilitating adhesion of myofibroblasts. Understanding how ECM composition and mechanics coevolve during fibrosis can lead to better models and help with antifibrotic therapies.
Collapse
Affiliation(s)
- Lawrence J Dooling
- Molecular and Cellular Biophysics Lab, University of Pennsylvania,Philadelphia, PA 19104, USA
| | - Karanvir Saini
- Molecular and Cellular Biophysics Lab, University of Pennsylvania,Philadelphia, PA 19104, USA
| | - Alişya A Anlaş
- Molecular and Cellular Biophysics Lab, University of Pennsylvania,Philadelphia, PA 19104, USA
| | - Dennis E Discher
- Molecular and Cellular Biophysics Lab, University of Pennsylvania,Philadelphia, PA 19104, USA.
| |
Collapse
|
8
|
Richardson WJ, Rogers JD, Spinale FG. Does the Heart Want What It Wants? A Case for Self-Adapting, Mechano-Sensitive Therapies After Infarction. Front Cardiovasc Med 2021; 8:705100. [PMID: 34568449 PMCID: PMC8460777 DOI: 10.3389/fcvm.2021.705100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/16/2021] [Indexed: 12/14/2022] Open
Abstract
There is a critical need for interventions to control the development and remodeling of scar tissue after myocardial infarction. A significant hurdle to fibrosis-related therapy is presented by the complex spatial needs of the infarcted ventricle, namely that collagenous buildup is beneficial in the ischemic zone but detrimental in the border and remote zones. As a new, alternative approach, we present a case to develop self-adapting, mechano-sensitive drug targets in order to leverage local, microenvironmental mechanics to modulate a therapy's pharmacologic effect. Such approaches could provide self-tuning control to either promote fibrosis or reduce fibrosis only when and where it is beneficial to do so.
Collapse
Affiliation(s)
| | - Jesse D Rogers
- Department of Bioengineering, Clemson University, Clemson, SC, United States
| | - Francis G Spinale
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and Columbia Veterans Affairs Health Care System, Columbia, SC, United States
| |
Collapse
|
9
|
Ma R, Schaer M, Chen T, Nguyen J, Voigt C, Deng XH, Rodeo SA. The Effects of Tensioning of the Anterior Cruciate Ligament Graft on Healing after Soft Tissue Reconstruction. J Knee Surg 2021; 34:561-569. [PMID: 31683352 DOI: 10.1055/s-0039-1700842] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The purpose of this study is to determine the effect of the magnitude of static mechanical tension on the anterior cruciate ligament (ACL) graft at the time of surgery on healing within the graft tunnels. Ninety male rats underwent unilateral ACL resection followed by reconstruction with a soft tissue tendon autograft. The ACL graft mechanical environment was modulated by different ACL graft pretension levels at the time of surgery (no pretension: 0N; moderate tension: 5N; over tension: 10N). External fixators were used to eliminate graft and joint motion during cage activity. Graft-tunnel healing was assessed at 3- and 6-week postoperatively, and articular joint surfaces were assessed at 9 weeks. Our results demonstrate that the ACL graft-tunnel healing was sensitive to different static graft pretension levels as demonstrated by different load-to-failure and stiffness properties among the different pretension levels. Pretensioning the graft to 5N (7-8% of the rat ACL ultimate load to failure) resulted in the best graft-tunnel healing as shown by higher graft-tunnel failure load and stiffness. Higher bone volume fraction was also seen in the 5N group relative to other pretension levels. Histological analysis of the graft-tunnel interface revealed differences in cellularity of the ACL graft between the 5N group and the other two groups. Furthermore, the highest graft pretension level (10N) resulted in loss of proteoglycan content among articular joint surfaces. In conclusion, we found that ACL graft-tunnel healing is sensitive to the magnitude of graft pretension at the time of surgery in a preclinical model of ACL reconstruction with joint immobilization. The combination of high-graft tension and immobilization is also deleterious for the articular surface. Further study is necessary to understand the interaction between the magnitude of graft tensioning and joint motion.
Collapse
Affiliation(s)
- Richard Ma
- Missouri Orthopaedic Institute, Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri
| | - Michael Schaer
- Department of Orthopaedic Surgery and Traumatology, Shoulder, Elbow and Orthopaedic Sports Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Tina Chen
- Missouri Orthopaedic Institute, Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri
| | - Joseph Nguyen
- Sports Medicine and Shoulder Service, Hospital for Special Surgery, New York
| | - Clifford Voigt
- Department of Orthopaedic Surgery, Lennox Hill Hospital, New York
| | - Xiang-Hua Deng
- Sports Medicine and Shoulder Service, Hospital for Special Surgery, New York.,Tissue Engineering, Repair, and Regeneration Program, Hospital for Special Surgery, New York
| | - Scott A Rodeo
- Sports Medicine and Shoulder Service, Hospital for Special Surgery, New York.,Tissue Engineering, Repair, and Regeneration Program, Hospital for Special Surgery, New York
| |
Collapse
|
10
|
Steered molecular dynamic simulations reveal Marfan syndrome mutations disrupt fibrillin-1 cbEGF domain mechanosensitive calcium binding. Sci Rep 2020; 10:16844. [PMID: 33033378 PMCID: PMC7545174 DOI: 10.1038/s41598-020-73969-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022] Open
Abstract
Marfan syndrome (MFS) is a highly variable genetic connective tissue disorder caused by mutations in the calcium binding extracellular matrix glycoprotein fibrillin-1. Patients with the most severe form of MFS (neonatal MFS; nMFS) tend to have mutations that cluster in an internal region of fibrillin-1 called the neonatal region. This region is predominantly composed of eight calcium-binding epidermal growth factor-like (cbEGF) domains, each of which binds one calcium ion and is stabilized by three highly conserved disulfide bonds. Crucially, calcium plays a fundamental role in stabilizing cbEGF domains. Perturbed calcium binding caused by cbEGF domain mutations is thus thought to be a central driver of MFS pathophysiology. Using steered molecular dynamics (SMD) simulations, we demonstrate that cbEGF domain calcium binding decreases under mechanical stress (i.e. cbEGF domains are mechanosensitive). We further demonstrate the disulfide bonds in cbEGF domains uniquely orchestrate protein unfolding by showing that MFS disulfide bond mutations markedly disrupt normal mechanosensitive calcium binding dynamics. These results point to a potential mechanosensitive mechanism for fibrillin-1 in regulating extracellular transforming growth factor beta (TGFB) bioavailability and microfibril integrity. Such mechanosensitive “smart” features may represent novel mechanisms for mechanical hemostasis regulation in extracellular matrix that are pathologically activated in MFS.
Collapse
|
11
|
Gaul RT, Nolan DR, Ristori T, Bouten CV, Loerakker S, Lally C. Pressure-induced collagen degradation in arterial tissue as a potential mechanism for degenerative arterial disease progression. J Mech Behav Biomed Mater 2020; 109:103771. [DOI: 10.1016/j.jmbbm.2020.103771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/26/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022]
|
12
|
Loerakker S, Ristori T. Computational modeling for cardiovascular tissue engineering: the importance of including cell behavior in growth and remodeling algorithms. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020; 15:1-9. [PMID: 33997580 PMCID: PMC8105589 DOI: 10.1016/j.cobme.2019.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Understanding cardiovascular growth and remodeling (G&R) is fundamental for designing robust cardiovascular tissue engineering strategies, which enable synthetic or biological scaffolds to transform into healthy living tissues after implantation. Computational modeling, particularly when integrated with experimental research, is key for advancing our understanding, predicting the in vivo evolution of engineered tissues, and efficiently optimizing scaffold designs. As cells are ultimately the drivers of G&R and known to change their behavior in response to mechanical cues, increasing efforts are currently undertaken to capture (mechano-mediated) cell behavior in computational models. In this selective review, we highlight some recent examples that are relevant in the context of cardiovascular tissue engineering and discuss the current and future biological and computational challenges for modeling cell-mediated G&R.
Collapse
Affiliation(s)
- Sandra Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, Groene Loper Building 15, 5612 AP, Eindhoven, the Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Groene Loper Building 7, 5612 AJ, Eindhoven, the Netherlands
| | - Tommaso Ristori
- Department of Biomedical Engineering, Eindhoven University of Technology, Groene Loper Building 15, 5612 AP, Eindhoven, the Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Groene Loper Building 7, 5612 AJ, Eindhoven, the Netherlands
| |
Collapse
|
13
|
DeBruler DM, Baumann ME, Zbinden JC, Blackstone BN, Bailey JK, Supp DM, Powell HM. Improved Scar Outcomes with Increased Daily Duration of Pressure Garment Therapy. Adv Wound Care (New Rochelle) 2020; 9:453-461. [PMID: 32320361 DOI: 10.1089/wound.2020.1161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Objective: Despite the development of a number of treatment modalities, scarring remains common postburn injury. To reduce burn scarring, pressure garment therapy has been widely utilized but is complicated by low patient adherence. To improve adherence, reduced hours of daily garment wear has been proposed. Approach: To examine the efficacy of pressure garment therapy at reduced durations of daily wear, a porcine burn-excise-autograft model was utilized. Grafted burns were treated with pressure garments (20 mmHg) for 8, 16, or 24 h of daily wear with untreated burns serving as controls. Scar area, thickness, biomechanical properties, and tissue structure were assessed over time. Results: All treatment groups reduced scar thickness and contraction versus controls and improved scar pliability and elasticity. Pressure garments worn 24 h per day significantly reduced contraction versus the 8- and 16-h groups and prevented alignment of collagen within the dermis. Innovation: Though pressure garment therapy is prescribed for use 23 h per day, the need for almost continuous use has not been previously examined. Adjustable, low-fatigue pressure garments were developed for this porcine study to examine the role of daily duration of wear without confounding factors such as garment fatigue and patient adherence. Conclusion: For maximum efficacy, pressure garments should be worn 23 to 24 h per day; however, garments worn as little as 8 h per day significantly improve scar outcomes versus no treatment.
Collapse
Affiliation(s)
- Danielle M. DeBruler
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Molly E. Baumann
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Jacob C. Zbinden
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Britani N. Blackstone
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio, USA
| | - John Kevin Bailey
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Dorothy M. Supp
- Research Department, Shriners Hospitals for Children—Cincinnati, Cincinnati, Ohio, USA
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Heather M. Powell
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
- Research Department, Shriners Hospitals for Children—Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
14
|
Atluri K, Chinnathambi S, Mendenhall A, Martin JA, Sander EA, Salem AK. Targeting Cell Contractile Forces: A Novel Minimally Invasive Treatment Strategy for Fibrosis. Ann Biomed Eng 2020; 48:1850-1862. [PMID: 32236751 PMCID: PMC7286797 DOI: 10.1007/s10439-020-02497-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/23/2020] [Indexed: 10/24/2022]
Abstract
Fibrosis is a complication of tendon injury where excessive scar tissue accumulates in and around the injured tissue, leading to painful and restricted joint motion. Unfortunately, fibrosis tends to recur after surgery, creating a need for alternative approaches to disrupt scar tissue. We posited a strategy founded on mechanobiological principles that collagen under tension generated by fibroblasts is resistant to degradation by collagenases. In this study, we tested the hypothesis that blebbistatin, a drug that inhibits cellular contractile forces, would increase the susceptibility of scar tissue to collagenase degradation. Decellularized tendon scaffolds (DTS) were treated with bacterial collagenase with or without external or cell-mediated internal tension. External tension producing strains of 2-4% significantly reduced collagen degradation compared with non-tensioned controls. Internal tension exerted by human fibroblasts seeded on DTS significantly reduced the area of the scaffolds compared to acellular controls and inhibited collagen degradation compared to free-floating DTS. Treatment of cell-seeded DTS with 50 mM blebbistatin restored susceptibility to collagenase degradation, which was significantly greater than in untreated controls (p < 0.01). These findings suggest that therapies combining collagenases with drugs that reduce cell force generation should be considered in cases of tendon fibrosis that do not respond to physiotherapy.
Collapse
|
15
|
A micromechanical model for the growth of collagenous tissues under mechanics-mediated collagen deposition and degradation. J Mech Behav Biomed Mater 2019; 98:96-107. [DOI: 10.1016/j.jmbbm.2019.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/30/2019] [Accepted: 06/05/2019] [Indexed: 12/30/2022]
|
16
|
Tension in fibrils suppresses their enzymatic degradation - A molecular mechanism for 'use it or lose it'. Matrix Biol 2019; 85-86:34-46. [PMID: 31201857 DOI: 10.1016/j.matbio.2019.06.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/31/2019] [Accepted: 06/07/2019] [Indexed: 12/27/2022]
Abstract
Tissue homeostasis depends on a balance of synthesis and degradation of constituent proteins, with turnover of a given protein potentially regulated by its use. Extracellular matrix (ECM) is predominantly composed of fibrillar collagens that exhibit tension-sensitive degradation, which we review here at different levels of hierarchy. Past experiments and recent proteomics measurements together suggest that mechanical strain stabilizes collagen against enzymatic degradation at the scale of tissues and fibrils whereas isolated collagen molecules exhibit a biphasic behavior that depends on load magnitude. Within a Michaelis-Menten framework, collagenases at constant concentration effectively exhibit a low activity on substrate fibrils when the fibrils are strained by tension. Mechanisms of such mechanosensitive regulation are surveyed together with relevant interactions of collagen fibrils with cells.
Collapse
|
17
|
Lee JJ, Talman L, Peirce SM, Holmes JW. Spatial scaling in multiscale models: methods for coupling agent-based and finite-element models of wound healing. Biomech Model Mechanobiol 2019; 18:1297-1309. [PMID: 30968216 DOI: 10.1007/s10237-019-01145-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/26/2019] [Indexed: 11/27/2022]
Abstract
Multiscale models that couple agent-based modeling (ABM) and finite-element modeling (FEM) allow the dynamic simulation of tissue remodeling and wound healing, with mechanical environment influencing cellular behaviors even as tissue remodeling modifies mechanics. One of the challenges in coupling ABM to FEM is that these two domains typically employ grid or element sizes that differ by several orders of magnitude. Here, we develop and demonstrate an interpolation-based method for mapping between ABM and FEM domains of different resolutions that is suitable for linear and nonlinear FEM meshes and balances accuracy with computational demands. We then explore the effects of refining the FEM mesh and the ABM grid in the setting of a fully coupled model. ABM grid refinement studies showed unexpected effects of grid size whenever cells were present at a high enough density for crowding to affect proliferation and migration. In contrast to an FE-only model, refining the FE mesh in the coupled model increased strain differences between adjacent finite elements. Allowing strain-dependent feedback on collagen turnover magnified the effects of regional heterogeneity, producing highly nonlinear spatial and temporal responses. Our results suggest that the choice of both ABM grid and FEM mesh density in coupled models must be guided by experimental data and accompanied by careful grid and mesh refinement studies in the individual domains as well as the fully coupled model.
Collapse
Affiliation(s)
- Jia-Jye Lee
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Lee Talman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Shayn M Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Jeffrey W Holmes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA.
- Department of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
18
|
Chen K, Hu X, Blemker SS, Holmes JW. Multiscale computational model of Achilles tendon wound healing: Untangling the effects of repair and loading. PLoS Comput Biol 2018; 14:e1006652. [PMID: 30550566 PMCID: PMC6310293 DOI: 10.1371/journal.pcbi.1006652] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/28/2018] [Accepted: 11/15/2018] [Indexed: 12/11/2022] Open
Abstract
Mechanical stimulation of the healing tendon is thought to regulate scar anisotropy and strength and is relatively easy to modulate through physical therapy. However, in vivo studies of various loading protocols in animal models have produced mixed results. To integrate and better understand the available data, we developed a multiscale model of rat Achilles tendon healing that incorporates the effect of changes in the mechanical environment on fibroblast behavior, collagen deposition, and scar formation. We modified an OpenSim model of the rat right hindlimb to estimate physiologic strains in the lateral/medial gastrocnemius and soleus musculo-tendon units during loading and unloading conditions. We used the tendon strains as inputs to a thermodynamic model of stress fiber dynamics that predicts fibroblast alignment, and to determine local collagen synthesis rates according to a response curve derived from in vitro studies. We then used an agent-based model (ABM) of scar formation to integrate these cell-level responses and predict tissue-level collagen alignment and content. We compared our model predictions to experimental data from ten different studies. We found that a single set of cellular response curves can explain features of observed tendon healing across a wide array of reported experiments in rats–including the paradoxical finding that repairing transected tendon reverses the effect of loading on alignment–without fitting model parameters to any data from those experiments. The key to these successful predictions was simulating the specific loading and surgical protocols to predict tissue-level strains, which then guided cellular behaviors according to response curves based on in vitro experiments. Our model results provide a potential explanation for the highly variable responses to mechanical loading reported in the tendon healing literature and may be useful in guiding the design of future experiments and interventions. Tendons and ligaments transmit force between muscles and bones throughout the body and are comprised of highly aligned collagen fibers that help bear high loads. The Achilles tendon is exposed to exceptionally high loads and is prone to rupture. When damaged Achilles tendons heal, they typically have reduced strength and stiffness, and while most believe that appropriate physical therapy can help improve these mechanical properties, both clinical and animal studies of mechanical loading following injury have produced highly variable and somewhat disappointing results. To help better understand the effects of mechanical loading on tendon healing and potentially guide future therapies, we developed a computational model of rat Achilles tendon healing and showed that we could predict the main effects of different mechanical loading and surgical repair conditions reported across a wide range of published studies. Our model offers potential explanations for some surprising findings of prior studies and for the high variability observed in those studies and may prove useful in designing future therapies or experiments to test new therapies.
Collapse
Affiliation(s)
- Kellen Chen
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States of America
| | - Xiao Hu
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States of America
| | - Silvia S. Blemker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States of America
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, United States of America
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA, United States of America
| | - Jeffrey W. Holmes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States of America
- Department of Medicine, University of Virginia, Charlottesville, VA, United States of America
- * E-mail:
| |
Collapse
|
19
|
Gaul RT, Nolan DR, Lally C. The use of small angle light scattering in assessing strain induced collagen degradation in arterial tissue ex vivo. J Biomech 2018; 81:155-160. [PMID: 30392528 DOI: 10.1016/j.jbiomech.2018.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 01/13/2023]
Abstract
Collagen is the predominant load bearing component in many soft tissues including arterial tissue and is therefore critical in determining the mechanical integrity of such tissues. Degradation of collagen fibres is hypothesized to be a strain dependent process whereby the rate of degradation is affected by the magnitude of strain applied to the collagen fibres. The aim of this study is to investigate the ability of small angle light scattering (SALS) imaging to identify strain dependent degradation of collagen fibres in arterial tissue ex vivo, and determine whether a strain induced protection mechanism exists in arterial tissue as observed in pure collagen and other collagenous tissues. SALS was used in combination with histological and second harmonic generation (SHG) analysis to determine the collagen fibre architecture in arterial tissue subjected to strain directed degradation. SALS alignment analysis identified statistically significant differences in fibre alignment depending on the strain magnitude applied to the tissue. These results were also observed using histology and SHG. Our findings suggest a strain protection mechanism may exist for arterial collagen at intermediate strain magnitudes between 0% and 25%. These findings may have implications for the onset and progression of arterial disease where changes in the mechanical environment of arterial tissue may lead to changes in the collagen degradation rate.
Collapse
Affiliation(s)
- R T Gaul
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - D R Nolan
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - C Lally
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
20
|
Ristori T, Bouten CVC, Baaijens FPT, Loerakker S. Predicting and understanding collagen remodeling in human native heart valves during early development. Acta Biomater 2018; 80:203-216. [PMID: 30223090 DOI: 10.1016/j.actbio.2018.08.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 08/17/2018] [Accepted: 08/30/2018] [Indexed: 01/17/2023]
Abstract
The hemodynamic functionality of heart valves strongly depends on the distribution of collagen fibers, which are their main load-bearing constituents. It is known that collagen networks remodel in response to mechanical stimuli. Yet, the complex interplay between external load and collagen remodeling is poorly understood. In this study, we adopted a computational approach to simulate collagen remodeling occurring in native fetal and pediatric heart valves. The computational model accounted for several biological phenomena: cellular (re)orientation in response to both mechanical stimuli and topographical cues provided by collagen fibers; collagen deposition and traction forces along the main cellular direction; collagen degradation decreasing with stretch; and cell-mediated collagen prestretch. Importantly, the computational results were well in agreement with previous experimental data for all simulated heart valves. Simulations performed by varying some of the computational parameters suggest that cellular forces and (re)orientation in response to mechanical stimuli may be fundamental mechanisms for the emergence of the circumferential collagen alignment usually observed in native heart valves. On the other hand, the tendency of cells to coalign with collagen fibers is essential to maintain and reinforce that circumferential alignment during development. STATEMENT OF SIGNIFICANCE: The hemodynamic functionality of heart valves is strongly influenced by the alignment of load-bearing collagen fibers. Currently, the mechanisms that are responsible for the development of the circumferential collagen alignment in native heart valves are not fully understood. In the present study, cell-mediated remodeling of native human heart valves during early development was computationally simulated to understand the impact of individual mechanisms on collagen alignment. Our simulations successfully predicted the degree of collagen alignment observed in native fetal and pediatric semilunar valves. The computational results suggest that the circumferential collagen alignment arises from cell traction and cellular (re)orientation in response to mechanical stimuli, and with increasing age is reinforced by the tendency of cells to co-align with pre-existing collagen fibers.
Collapse
Affiliation(s)
- T Ristori
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - C V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - F P T Baaijens
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - S Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands.
| |
Collapse
|
21
|
Gaul R, Nolan D, Ristori T, Bouten C, Loerakker S, Lally C. Strain mediated enzymatic degradation of arterial tissue: Insights into the role of the non-collagenous tissue matrix and collagen crimp. Acta Biomater 2018; 77:301-310. [PMID: 30126592 DOI: 10.1016/j.actbio.2018.06.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/04/2018] [Accepted: 06/29/2018] [Indexed: 02/07/2023]
Abstract
Collagen fibre remodelling is a strain dependent process which is stimulated by the degradation of existing collagen. To date, literature has focussed on strain dependent degradation of pure collagen or structurally simple collagenous tissues, often overlooking degradation within more complex, heterogenous soft tissues. The aim of this study is to identify, for the first time, the strain dependent degradation behaviour and mechanical factors influencing collagen degradation in arterial tissue using a combined experimental and numerical approach. To achieve this, structural analysis was carried out using small angle light scattering to determine the fibre level response due to strain induced degradation. Next, strain dependent degradation rates were determined from stress relaxation experiments in the presence of crude and purified collagenase to determine the tissue level degradation response. Finally, a 1D theoretical model was developed, incorporating matrix stiffness and a gradient of collagen fibre crimp to decouple the mechanism behind strain dependent arterial degradation. SALS structural analysis identified a strain mediated degradation response in arterial tissue at the fibre level not dissimilar to that found in literature for pure collagen. Interestingly, two distinctly different strain mediated degradation responses were identified experimentally at the tissue level, not seen in other collagenous tissues. Our model was able to accurately predict these experimental findings, but only once the load bearing matrix, its degradation response and the gradient of collagen fibre crimp across the arterial wall were incorporated. These findings highlight the critical role that the various tissue constituents play in the degradation response of arterial tissue. STATEMENT OF SIGNIFICANCE Collagen fibre architecture is the dominant load bearing component of arterial tissue. Remodelling of this architecture is a strain dependent process stimulated by the degradation of existing collagen. Despite this, degradation of arterial tissue and in particular, arterial collagen, is not fully understood or studied. In the current study, we identified for the first time, the strain dependent degradation response of arterial tissue, which has not been observed in other collagenous tissues in literature. We hypothesised that this unique degradation response was due to the complex structure observed in arterial tissue. Based on this hypothesis, we developed a novel numerical model capable of explaining this unique degradation response which may provide critical insights into disease development and aid in the design of interventional medical devices.
Collapse
|
22
|
Caggiano LR, Lee JJ, Holmes JW. Surgical reinforcement alters collagen alignment and turnover in healing myocardial infarcts. Am J Physiol Heart Circ Physiol 2018; 315:H1041-H1050. [PMID: 30028201 DOI: 10.1152/ajpheart.00088.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have suggested that the composition and global mechanical properties of the scar tissue that forms after a myocardial infarction (MI) are key determinants of long-term survival, and emerging therapies such as biomaterial injection are designed in part to alter those mechanical properties. However, recent evidence suggests that local mechanics regulate scar formation post-MI, so that perturbing infarct mechanics could have unexpected consequences. We therefore tested the effect of changes in local mechanical environment on scar collagen turnover, accumulation, and alignment in 77 Sprague-Dawley rats at 1, 2, 3 and 6 wk post-MI by sewing a Dacron patch to the epicardium to eliminate circumferential strain while permitting continued longitudinal stretching with each heart beat. We found that collagen in healing infarcts aligned parallel to regional strain and perpendicular to the preinfarction muscle and collagen fiber direction, strongly supporting our hypothesis that mechanical environment is the primary determinant of scar collagen alignment. Mechanical reinforcement reduced levels of carboxy-terminal propeptide of type I procollagen (PICP; a biomarker for collagen synthesis) in samples collected by microdialysis significantly, particularly in the first 2 wk. Reinforcement also reduced carboxy-terminal telopeptide of type I collagen (ICTP; a biomarker for collagen degradation), particularly at later time points. These alterations in collagen turnover produced no change in collagen area fraction as measured by histology but significantly reduced wall thickness in the reinforced scars compared with untreated controls. Our findings confirm the importance of regional mechanics in regulating scar formation after infarction and highlight the potential for therapies that reduce stretch to also reduce wall thickness in healing infarcts. NEW & NOTEWORTHY This study shows that therapies such as surgical reinforcement, which reduce stretch in healing infarcts, can also reduce collagen synthesis and wall thickness and modify collagen alignment in postinfarction scars.
Collapse
Affiliation(s)
- Laura R Caggiano
- Department of Biomedical Engineering, University of Virginia , Charlottesville, Virginia
| | - Jia-Jye Lee
- Department of Biomedical Engineering, University of Virginia , Charlottesville, Virginia
| | - Jeffrey W Holmes
- Department of Biomedical Engineering, University of Virginia , Charlottesville, Virginia.,Department of Medicine, University of Virginia , Charlottesville, Virginia
| |
Collapse
|
23
|
Richardson WJ, Kegerreis B, Thomopoulos S, Holmes JW. Potential strain-dependent mechanisms defining matrix alignment in healing tendons. Biomech Model Mechanobiol 2018; 17:1569-1580. [PMID: 30003433 DOI: 10.1007/s10237-018-1044-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/18/2018] [Indexed: 12/13/2022]
Abstract
Tendon mechanical function after injury and healing is largely determined by its underlying collagen structure, which in turn is dependent on the degree of mechanical loading experienced during healing. Experimental studies have shown seemingly conflicting outcomes: although collagen content steadily increases with increasing loads, collagen alignment peaks at an intermediate load. Herein, we explored potential collagen remodeling mechanisms that could give rise to this structural divergence in response to strain. We adapted an established agent-based model of collagen remodeling in order to simulate various strain-dependent cell and collagen interactions that govern long-term collagen content and fiber alignment. Our simulation results show two collagen remodeling mechanisms that give rise to divergent collagen content and alignment in healing tendons: (1) strain-induced collagen fiber damage in concert with increased rates of deposition at higher strains, or (2) strain-dependent rates of enzymatic degradation. These model predictions identify critical future experiments needed to isolate each mechanism's specific contribution to the structure of healing tendons.
Collapse
Affiliation(s)
- William J Richardson
- Department of Bioengineering, Clemson University, Clemson, SC, USA
- Institute for Biological Interfaces of Engineering, Clemson University, Clemson, SC, USA
| | - Brian Kegerreis
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA, 22908, USA
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Columbia University, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jeffrey W Holmes
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA, 22908, USA.
- Department of Medicine, University of Virginia, Charlottesville, VA, USA.
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
24
|
DeBruler DM, Zbinden JC, Baumann ME, Blackstone BN, Malara MM, Bailey JK, Supp DM, Powell HM. Early cessation of pressure garment therapy results in scar contraction and thickening. PLoS One 2018; 13:e0197558. [PMID: 29897933 PMCID: PMC5999072 DOI: 10.1371/journal.pone.0197558] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/05/2018] [Indexed: 12/15/2022] Open
Abstract
Pressure garment therapy is often prescribed to improve scar properties following full-thickness burn injuries. Pressure garment therapy is generally recommended for long periods of time following injury (1-2 years), though it is plagued by extremely low patient compliance. The goal of this study was to examine the effects of early cessation of pressure garment therapy on scar properties. Full-thickness burn injuries were created along the dorsum of red Duroc pigs. The burn eschar was excised and wound sites autografted with split-thickness skin. Scars were treated with pressure garments within 1 week of injury and pressure was maintained for either 29 weeks (continuous pressure) or for 17 weeks followed by cessation of pressure for an additional 12 weeks (pressure released); scars receiving no treatment served as controls. Scars that underwent pressure garment therapy were significantly smoother and less contracted with decreased scar height compared to control scars at 17 weeks. These benefits were maintained in the continuous pressure group until week 29. In the pressure released group, grafts significantly contracted and became more raised, harder and rougher after the therapy was discontinued. Pressure cessation also resulted in large changes in collagen fiber orientation and increases in collagen fiber thickness. The results suggest that pressure garment therapy effectively improves scar properties following severe burn injury; however, early cessation of the therapy results in substantial loss of these improvements.
Collapse
Affiliation(s)
- Danielle M. DeBruler
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Jacob C. Zbinden
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Molly E. Baumann
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Britani N. Blackstone
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Megan M. Malara
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, United States of America
| | - J. Kevin Bailey
- Department of Surgery and Division of Critical Care, Trauma and Burns, The Ohio State University, Columbus, OH, United States of America
- Research Department, Shriners Hospitals for Children, Cincinnati, OH, United States of America
| | - Dorothy M. Supp
- Research Department, Shriners Hospitals for Children, Cincinnati, OH, United States of America
- Department of Surgery, University of Cincinnati, Cincinnati, OH, United States of America
| | - Heather M. Powell
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, United States of America
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States of America
- Research Department, Shriners Hospitals for Children, Cincinnati, OH, United States of America
| |
Collapse
|
25
|
Chen ML, Ruberti JW, Nguyen TD. Increased stiffness of collagen fibrils following cyclic tensile loading. J Mech Behav Biomed Mater 2018; 82:345-354. [DOI: 10.1016/j.jmbbm.2018.03.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/13/2018] [Accepted: 03/23/2018] [Indexed: 11/29/2022]
|
26
|
Ma R, Schär M, Chen T, Sisto M, Nguyen J, Voigt C, Deng XH, Rodeo SA. Effect of Dynamic Changes in Anterior Cruciate Ligament In Situ Graft Force on the Biological Healing Response of the Graft-Tunnel Interface. Am J Sports Med 2018; 46:915-923. [PMID: 29298079 DOI: 10.1177/0363546517745624] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Anterior cruciate ligament (ACL) grafts that are placed for reconstruction are subject to complex forces. Current "anatomic" ACL reconstruction techniques may result in greater in situ graft forces. The biological effect of changing magnitudes of ACL graft force on graft-tunnel osseointegration is not well understood. PURPOSE The research objective is to determine how mechanical force on the ACL graft during knee motion affects tendon healing in the tunnel. STUDY DESIGN Controlled laboratory study. METHODS Male rats (N = 120) underwent unilateral ACL reconstruction with a soft tissue flexor tendon autograft. ACL graft force was modulated by different femoral tunnel positions at the time of surgery to create different graft force patterns with knee motion. External fixators were used to eliminate graft load during cage activity. A custom knee flexion device was used to deliver graft load through controlled daily knee motion. Graft-tunnel healing was then assessed via biomechanical, micro-computed tomography, and histological analyses. RESULTS ACL graft-tunnel healing was sensitive to dynamic changes in graft forces with postoperative knee motion. High ACL graft force with joint motion resulted in early inferior ACL graft load to failure as compared with knees that had low-force ACL grafts and joint motion and knees that were immobilized (mean ± SD: 5.50 ± 2.30 N vs 9.91 ± 3.54 N [ P = .013] and 10.90 ± 2.8 N [ P = .001], respectively). Greater femoral bone volume fraction was seen in immobilized knees and knees with low-force ACL grafts when compared with high-force ACL grafts at 3 and 6 weeks. CONCLUSION The authors were able to demonstrate that ACL graft-tunnel incorporation is sensitive to dynamic changes in ACL graft force with joint motion. Early high forces on the ACL graft appear to impair graft-tunnel osseointegration. CLINICAL RELEVANCE Current "anatomic" techniques of ACL reconstruction may result in greater graft excursion and force with knee motion. Our results suggest that the postoperative rehabilitation regimen may need to be modified during the early phase of healing to protect the reconstruction.
Collapse
Affiliation(s)
- Richard Ma
- Missouri Orthopaedic Institute, Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri, USA
| | - Michael Schär
- Sports Medicine and Shoulder Service, Tissue Engineering, Regeneration, and Repair Program, Hospital for Special Surgery, New York, New York, USA
| | - Tina Chen
- Missouri Orthopaedic Institute, Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri, USA
| | - Marco Sisto
- Sports Medicine and Shoulder Service, Tissue Engineering, Regeneration, and Repair Program, Hospital for Special Surgery, New York, New York, USA
| | - Joseph Nguyen
- Sports Medicine and Shoulder Service, Tissue Engineering, Regeneration, and Repair Program, Hospital for Special Surgery, New York, New York, USA
| | - Clifford Voigt
- Sports Medicine and Shoulder Service, Tissue Engineering, Regeneration, and Repair Program, Hospital for Special Surgery, New York, New York, USA
| | - Xiang-Hua Deng
- Sports Medicine and Shoulder Service, Tissue Engineering, Regeneration, and Repair Program, Hospital for Special Surgery, New York, New York, USA
| | - Scott A Rodeo
- Sports Medicine and Shoulder Service, Tissue Engineering, Regeneration, and Repair Program, Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
27
|
Arnoczky SP, Bishai SK, Schofield B, Sigman S, Bushnell BD, Hommen JP, Van Kampen C. Histologic Evaluation of Biopsy Specimens Obtained After Rotator Cuff Repair Augmented With a Highly Porous Collagen Implant. Arthroscopy 2017; 33:278-283. [PMID: 27650821 DOI: 10.1016/j.arthro.2016.06.047] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 06/26/2016] [Accepted: 06/29/2016] [Indexed: 02/02/2023]
Abstract
PURPOSE To histologically evaluate biopsy specimens from patients who previously underwent rotator cuff repair augmented with a highly porous collagen implant. METHODS Biopsies of collagen implant/host-tissue constructs were obtained from 7 patients undergoing a second arthroscopic procedure at various time periods (5 weeks to 6 months) after arthroscopic rotator cuff repair augmented with a collagen implant overlay. The biopsy specimens were examined histologically for host-tissue ingrowth, host-tissue maturation, and host-implant biocompatibility. RESULTS At the earliest time period (5 weeks), the biopsy revealed the presence of host cells (fibroblasts) within the interstices of the porous collagen implant. Cells were aligned along the linear orientation of the collagen implant structure, and there was evidence of early collagen formation. The 3-month biopsies showed increased collagen formation, maturation, and organization over the surface of the implant and evidence of the collagen implant. At 6 months, the newly generated tissue had the histologic appearance of a tendon, suggesting functional loading of the new generated host tissue. There was no evidence of any remnants of the collagen implant in the 6-month biopsy. There was no evidence of any inflammatory or foreign body reaction within any of the tissue samples. CONCLUSIONS Biopsies of collagen implants retrieved from human rotator cuff repair subjects revealed cellular incorporation, tissue formation and maturation, implant resorption, and biocompatibility. CLINICAL RELEVANCE The histologic observations from these clinical biopsies support the biocompatibility of this implant and its ability to promote new connective tissue with the histological appearance of tendon over the surface of the native cuff tendon.
Collapse
Affiliation(s)
- Steven P Arnoczky
- Laboratory for Comparative Orthopaedic Research, Michigan State University, East Lansing, Michigan, U.S.A..
| | - Shariff K Bishai
- College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, U.S.A
| | - Brian Schofield
- Schofield, Hand, Bright Orthopaedics, Sarasota, Florida, U.S.A
| | - Scott Sigman
- Lowell General Hospital, North Chelmsford, Massachusetts, U.S.A
| | - Brad D Bushnell
- Harbin Clinic Orthopaedics and Sports Medicine, Rome, Georgia, U.S.A
| | | | | |
Collapse
|
28
|
Huang S, Huang HYS. Biaxial stress relaxation of semilunar heart valve leaflets during simulated collagen catabolism: Effects of collagenase concentration and equibiaxial strain state. Proc Inst Mech Eng H 2016; 229:721-31. [PMID: 26405097 DOI: 10.1177/0954411915604336] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Heart valve leaflet collagen turnover and remodeling are innate to physiological homeostasis; valvular interstitial cells routinely catabolize damaged collagen and affect repair. Moreover, evidence indicates that leaflets can adapt to altered physiological (e.g. pregnancy) and pathological (e.g. hypertension) mechanical load states, tuning collagen structure and composition to changes in pressure and flow. However, while valvular interstitial cell-secreted matrix metalloproteinases are considered the primary effectors of collagen catabolism, the mechanisms by which damaged collagen fibers are selectively degraded remain unclear. Growing evidence suggests that the collagen fiber strain state plays a key role, with the strain-dependent configuration of the collagen molecules either masking or presenting proteolytic sites, thereby protecting or accelerating collagen proteolysis. In this study, the effects of equibiaxial strain state on collagen catabolism were investigated in porcine aortic valve and pulmonary valve tissues. Bacterial collagenase (0.2 and 0.5 mg/mL) was utilized to simulate endogenous matrix metalloproteinases, and biaxial stress relaxation and biochemical collagen concentration served as functional and compositional measures of collagen catabolism, respectively. At a collagenase concentration of 0.5 mg/mL, increasing the equibiaxial strain imposed during stress relaxation (0%, 37.5%, and 50%) yielded significantly lower median collagen concentrations in the aortic valve (p = 0.0231) and pulmonary valve (p = 0.0183), suggesting that relatively large strain magnitudes may enhance collagen catabolism. Collagen concentration decreases were paralleled by trends of accelerated normalized stress relaxation rate with equibiaxial strain in aortic valve tissues. Collectively, these in vitro results indicate that biaxial strain state is capable of affecting the susceptibility of valvular collagens to catabolism, providing a basis for further investigation of how such phenomena may manifest at different strain magnitudes or in vivo.
Collapse
Affiliation(s)
- Siyao Huang
- Department of Mechanical & Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| | - Hsiao-Ying Shadow Huang
- Department of Mechanical & Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
29
|
Tonge TK, Ruberti JW, Nguyen TD. Micromechanical Modeling Study of Mechanical Inhibition of Enzymatic Degradation of Collagen Tissues. Biophys J 2016; 109:2689-2700. [PMID: 26682825 DOI: 10.1016/j.bpj.2015.10.051] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/22/2015] [Accepted: 10/27/2015] [Indexed: 02/07/2023] Open
Abstract
This study investigates how the collagen fiber structure influences the enzymatic degradation of collagen tissues. We developed a micromechanical model of a fibrous collagen tissue undergoing enzymatic degradation based on two central hypotheses. The collagen fibers are crimped in the undeformed configuration. Enzymatic degradation is an energy activated process and the activation energy is increased by the axial strain energy density of the fiber. We determined the intrinsic degradation rate and characteristic energy for mechanical inhibition from fibril-level degradation experiments and applied the parameters to predict the effect of the crimped fiber structure and fiber properties on the degradation of bovine cornea and pericardium tissues under controlled tension. We then applied the model to examine the effect of the tissue stress state on the rate of tissue degradation and the anisotropic fiber structures that developed from enzymatic degradation.
Collapse
Affiliation(s)
- Theresa K Tonge
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland
| | - Jeffrey W Ruberti
- Department of Bioengineering, Northeastern University, Boston, Massachusetts
| | - Thao D Nguyen
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
30
|
Ghazanfari S, Khademhosseini A, Smit TH. Mechanisms of lamellar collagen formation in connective tissues. Biomaterials 2016; 97:74-84. [DOI: 10.1016/j.biomaterials.2016.04.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/29/2016] [Accepted: 04/20/2016] [Indexed: 12/16/2022]
|
31
|
Shalaby WS, Chen M, Park K. A Mechanistic Assessment of Enzyme-Induced Degradation of Albumin-Crosslinked Hydrogels. J BIOACT COMPAT POL 2016. [DOI: 10.1177/088391159200700303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pepsin-induced degradation of albumin-crosslinked hydrogels was studied as a function of the degree of albumin incorporation in the network and the concentration of pepsin. The degree of albumin incorporation, which represents the sum of chemical crosslinks and physical entanglements in the network, was controlled by changing the concentration of initiator in the monomer solution and the degree of vinylic functionality on albumin. Swelling characterization studies showed that the degree of hydrogel swelling decreased as the concentration of chemical initiator for the polymerization increased or as the degree of vinylic functionality on albumin increased. This indicated that the degree of albumin incorporation in the network increased by raising either the concentration of chemical initiator or the degree of albumin functionality. The rate and mechanism of gel degradation was also dependent on the degree of albumin incorporation in the network. A low degree of albumin incorpora tion resulted in a predominance of surface degradation while a high degree of albumin incorporation resulted in a predominance of bulk degradation. The transition from surface degradation to bulk degradation occurred at lower con centrations of chemical initiator when the degree of vinylic functionality on albumin was high. However, when the degree of vinylic functionality on albumin was low, the transition from surface degradation to bulk degradation was observed at higher concentrations of chemical initiator. The rate of gel degradation became slower as the concentration of pepsin was reduced. The results suggest that the rate and mechanism of hydrogel degradation was de pendent on the steric constraints imposed by polymer chains of the network and on the conformational constraints of the albumin crosslinker.
Collapse
Affiliation(s)
| | - Malisa Chen
- Purdue University School of Pharmacy West Lafayette, Indiana 47907
| | - Kinam Park
- Purdue University School of Pharmacy West Lafayette, Indiana 47907
| |
Collapse
|
32
|
Yi E, Sato S, Takahashi A, Parameswaran H, Blute TA, Bartolák-Suki E, Suki B. Mechanical Forces Accelerate Collagen Digestion by Bacterial Collagenase in Lung Tissue Strips. Front Physiol 2016; 7:287. [PMID: 27462275 PMCID: PMC4940411 DOI: 10.3389/fphys.2016.00287] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/24/2016] [Indexed: 11/13/2022] Open
Abstract
Most tissues in the body are under mechanical tension, and while enzymes mediate many cellular and extracellular processes, the effects of mechanical forces on enzyme reactions in the native extracellular matrix (ECM) are not fully understood. We hypothesized that physiological levels of mechanical forces are capable of modifying the activity of collagenase, a key remodeling enzyme of the ECM. To test this, lung tissue Young's modulus and a nonlinearity index characterizing the shape of the stress-strain curve were measured in the presence of bacterial collagenase under static uniaxial strain of 0, 20, 40, and 80%, as well as during cyclic mechanical loading with strain amplitudes of ±10 or ±20% superimposed on 40% static strain, and frequencies of 0.1 or 1 Hz. Confocal and electron microscopy was used to determine and quantify changes in ECM structure. Generally, mechanical loading increased the effects of enzyme activity characterized by an irreversible decline in stiffness and tissue deterioration seen on both confocal and electron microscopic images. However, a static strain of 20% provided protection against digestion compared to both higher and lower strains. The decline in stiffness during digestion positively correlated with the increase in equivalent alveolar diameters and negatively correlated with the nonlinearity index. These results suggest that the decline in stiffness results from rupture of collagen followed by load transfer and subsequent rupture of alveolar walls. This study may provide new understanding of the role of collagen degradation in general tissue remodeling and disease progression.
Collapse
Affiliation(s)
- Eunice Yi
- Cell and Tissue Mechanics, Department of Biomedical Engineering, Boston University Boston, MA, USA
| | - Susumu Sato
- Cell and Tissue Mechanics, Department of Biomedical Engineering, Boston University Boston, MA, USA
| | - Ayuko Takahashi
- Cell and Tissue Mechanics, Department of Biomedical Engineering, Boston University Boston, MA, USA
| | | | - Todd A Blute
- Cell and Tissue Mechanics, Department of Biomedical Engineering, Boston University Boston, MA, USA
| | - Erzsébet Bartolák-Suki
- Cell and Tissue Mechanics, Department of Biomedical Engineering, Boston University Boston, MA, USA
| | - Béla Suki
- Cell and Tissue Mechanics, Department of Biomedical Engineering, Boston University Boston, MA, USA
| |
Collapse
|
33
|
Internal strain drives spontaneous periodic buckling in collagen and regulates remodeling. Proc Natl Acad Sci U S A 2016; 113:8436-41. [PMID: 27402741 DOI: 10.1073/pnas.1523228113] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Fibrillar collagen, an essential structural component of the extracellular matrix, is remarkably resistant to proteolysis, requiring specialized matrix metalloproteinases (MMPs) to initiate its remodeling. In the context of native fibrils, remodeling is poorly understood; MMPs have limited access to cleavage sites and are inhibited by tension on the fibril. Here, single-molecule recordings of fluorescently labeled MMPs reveal cleavage-vulnerable binding regions arrayed periodically at ∼1-µm intervals along collagen fibrils. Binding regions remain periodic even as they migrate on the fibril, indicating a collective process of thermally activated and self-healing defect formation. An internal strain relief model involving reversible structural rearrangements quantitatively reproduces the observed spatial patterning and fluctuations of defects and provides a mechanism for tension-dependent stabilization of fibrillar collagen. This work identifies internal-strain-driven defects that may have general and widespread regulatory functions in self-assembled biological filaments.
Collapse
|
34
|
Ghazanfari S, Driessen-Mol A, Bouten CVC, Baaijens FPT. Modulation of collagen fiber orientation by strain-controlled enzymatic degradation. Acta Biomater 2016; 35:118-26. [PMID: 26923531 DOI: 10.1016/j.actbio.2016.02.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 12/17/2015] [Accepted: 02/22/2016] [Indexed: 12/13/2022]
Abstract
Collagen fiber anisotropy has a significant influence on the function and mechanical properties of cardiovascular tissues. We investigated if strain-dependent collagen degradation can explain collagen orientation in response to uniaxial and biaxial mechanical loads. First, decellularized pericardial samples were stretched to a fixed uniaxial strain and after adding a collagen degrading enzyme (collagenase), force relaxation was measured to calculate the degradation rate. This data was used to identify the strain-dependent degradation rate. A minimum was observed in the degradation rate curve. It was then demonstrated, for the first time, that biaxial strain in combination with collagenase alters the collagen fiber alignment from an initially isotropic distribution to an anisotropic distribution with a mean alignment corresponding with the strain at the minimum degradation rate, which may be in between the principal strain directions. When both strains were smaller than the minimum degradation point, fibers tended to align in the direction of the larger strain and when both strains were larger than the minimum degradation, fibers mainly aligned in the direction of the smaller strain. However, when one strain was larger and one was smaller than the minimum degradation point, the observed fiber alignment was in between the principal strain directions. In the absence of collagenase, uniaxial and biaxial strains only had a slight effect on the collagen (re)orientation of the decellularized samples. STATEMENT OF SIGNIFICANCE Collagen fiber orientation is a significant determinant of the mechanical properties of native tissues. To mimic the native-like collagen alignment in vitro, we need to understand the underlying mechanisms that direct this alignment. In the current study, we aimed to control collagen fiber orientation by applying biaxial strains in the presence of collagenase. We hypothesized that strain-dependent collagen degradation can describe specific collagen orientation when biaxial mechanical strains are applied. Based on this hypothesis, collagen fibers align in the direction where the degradation is minimal. Pericardial tissues, as isotropic collagen matrices, were decellularized and subjected to a fixed uniaxial strain. Then, collagenase was added to initiate the collagen degradation and the relaxation of force was measured to indicate the degradation rate. The V-shaped relationship between degradation rate and strain was obtained to identify the minimum degradation rate point. It was then demonstrated, for the first time, that biaxial strain in combination with collagenase alters the collagen fiber alignment from almost isotropic to a direction corresponding with the strain at the minimum degradation rate.
Collapse
Affiliation(s)
- S Ghazanfari
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - A Driessen-Mol
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - C V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - F P T Baaijens
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
35
|
Joyce EM, Diaz P, Tamarkin S, Moore R, Strohl A, Stetzer B, Kumar D, Sacks MS, Moore JJ. In-vivo stretch of term human fetal membranes. Placenta 2016; 38:57-66. [PMID: 26907383 PMCID: PMC4768058 DOI: 10.1016/j.placenta.2015.12.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 12/14/2015] [Accepted: 12/17/2015] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Fetal membranes (FM) usually fail prior to delivery during term labor, but occasionally fail at preterm gestation, precipitating preterm birth. To understand the FM biomechanical properties underlying these events, study of the baseline in-vivo stretch experienced by the FM is required. This study's objective was to utilize high resolution MRI imaging to determine in-vivo FM stretch. METHODS Eight pregnant women (38.4 ± 0.4wks) underwent abdominal-pelvic MRI prior to (2.88 ± 0.83d) caesarean delivery. Software was utilized to determine the total FM in-vivo surface area (SA) and that of its components: placental disc and reflected FM. At delivery, the SA of the disc and FM in the relaxed state were measured. In-vivo (stretched) to delivered SA ratios were calculated. FM fragments were then biaxially stretched to determine the force required to re-stretch the FM back to in-vivo SA. RESULTS Total FM SA, in-vivo vs delivered, was 2135.51 ± 108.47 cm(2) vs 842.59 ± 35.86 cm(2); reflected FM was 1778.42 ± 107.39 cm(2) vs 545.41 ± 22.90 cm(2), and disc was 357.10 ± 28.08 cm(2) vs 297.18 ± 22.14 cm(2). The ratio (in-vivo to in-vitro SA) of reflected FM was 3.26 ± 0.11 and disc was 1.22 ± 0.10. Reflected FM re-stretched to in-vivo SA generated a tension of 72.26 N/m, corresponding to approximate pressure of 15.4 mmHg. FM rupture occurred at 295.08 ± 31.73 N/m corresponding to approximate pressure of 34 mmHg. Physiological SA was 70% of that at rupture. DISCUSSION FM are significantly distended in-vivo. FM collagen fibers were rapidly recruited once loaded and functioned near the failure state during in-vitro testing, suggesting that, in-vivo, minimal additional (beyond physiological) stretch may facilitate rapid, catastrophic failure.
Collapse
Affiliation(s)
- E M Joyce
- Department of Bioengineering, Swanson School of Engineering, School of Medicine, University of Pittsburgh, Pittsburgh PA, USA
| | - P Diaz
- Department of Radiology, MetroHealth Medical Center and Case Western Reserve University, USA; Department of Biomedical Engineering, Case Western Reserve University, USA
| | - S Tamarkin
- Department of Radiology, MetroHealth Medical Center and Case Western Reserve University, USA
| | - R Moore
- Department of Pediatrics, MetroHealth Medical Center and Case Western Reserve University, USA
| | - A Strohl
- Department of Pediatrics, MetroHealth Medical Center and Case Western Reserve University, USA
| | - B Stetzer
- Department of Reproductive Biology, MetroHealth Medical Center and Case Western Reserve University, Cleveland, OH, USA
| | - D Kumar
- Department of Pediatrics, MetroHealth Medical Center and Case Western Reserve University, USA
| | - M S Sacks
- Department of Biomedical Engineering and the Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712-0027, USA
| | - J J Moore
- Department of Pediatrics, MetroHealth Medical Center and Case Western Reserve University, USA; Department of Reproductive Biology, MetroHealth Medical Center and Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
36
|
Oomen P, Loerakker S, van Geemen D, Neggers J, Goumans MJ, van den Bogaerdt A, Bogers A, Bouten C, Baaijens F. Age-dependent changes of stress and strain in the human heart valve and their relation with collagen remodeling. Acta Biomater 2016; 29:161-169. [PMID: 26537200 DOI: 10.1016/j.actbio.2015.10.044] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/18/2015] [Accepted: 10/28/2015] [Indexed: 10/22/2022]
Abstract
In order to create tissue-engineered heart valves with long-term functionality, it is essential to fully understand collagen remodeling during neo-tissue formation. Collagen remodeling is thought to maintain mechanical tissue homeostasis. Yet, the driving factor of collagen remodeling remains unidentified. In this study, we determined the collagen architecture and the geometric and mechanical properties of human native semilunar heart valves of fetal to adult age using confocal microscopy, micro-indentation and inverse finite element analysis. The outcomes were used to predict age-dependent changes in stress and stretch in the heart valves via finite element modeling. The results indicated that the circumferential stresses are different between the aortic and pulmonary valve, and, moreover, that the stress increases considerably over time in the aortic valve. Strikingly, relatively small differences were found in stretch with time and between the aortic and pulmonary valve, particularly in the circumferential direction, which is the main determinant of the collagen fiber stretch. Therefore, we suggest that collagen remodeling in the human heart valve maintains a stretch-driven homeostasis. Next to these novel insights, the unique human data set created in this study provides valuable input for the development of numerical models of collagen remodeling and optimization of tissue engineering. STATEMENT OF SIGNIFICANCE Annually, over 280,000 heart valve replacements are performed worldwide. Tissue engineering has the potential to provide valvular disease patients with living valve substitutes that can last a lifetime. Valve functionality is mainly determined by the collagen architecture. Hence, understanding collagen remodeling is crucial for creating tissue-engineered valves with long-term functionality. In this study, we determined the structural and material properties of human native heart valves of fetal to adult age to gain insight into the mechanical stimuli responsible for collagen remodeling. The age-dependent evolutionary changes in mechanical state of the native valve suggest that collagen remodeling in heart valves is a stretch-driven process.
Collapse
|
37
|
Rao RT, Browe DP, Lowe CJ, Freeman JW. An overview of recent patents on musculoskeletal interface tissue engineering. Connect Tissue Res 2016; 57:53-67. [PMID: 26577344 PMCID: PMC5867895 DOI: 10.3109/03008207.2015.1089866] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Interface tissue engineering involves the development of engineered grafts that promote integration between multiple tissue types. Musculoskeletal tissue interfaces are critical to the safe and efficient transmission of mechanical forces between multiple musculoskeletal tissues, e.g., between ligament and bone tissue. However, these interfaces often do not physiologically regenerate upon injury, resulting in impaired tissue function. Therefore, interface tissue engineering approaches are considered to be particularly relevant for the structural restoration of musculoskeletal tissues interfaces. In this article, we provide an overview of the various strategies used for engineering musculoskeletal tissue interfaces with a specific focus on the recent important patents that have been issued for inventions that were specifically designed for engineering musculoskeletal interfaces as well as those that show promise to be adapted for this purpose.
Collapse
Affiliation(s)
- Rohit T. Rao
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Daniel P. Browe
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Christopher J. Lowe
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Joseph W. Freeman
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854,Corresponding Author
| |
Collapse
|
38
|
Yannas IV, Tzeranis D, So PT. Surface biology of collagen scaffold explains blocking of wound contraction and regeneration of skin and peripheral nerves. Biomed Mater 2015; 11:014106. [PMID: 26694657 PMCID: PMC5775477 DOI: 10.1088/1748-6041/11/1/014106] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We review the details of preparation and of the recently elucidated mechanism of biological (regenerative) activity of a collagen scaffold (dermis regeneration template, DRT) that has induced regeneration of skin and peripheral nerves (PN) in a variety of animal models and in the clinic. DRT is a 3D protein network with optimized pore size in the range 20-125 µm, degradation half-life 14 ± 7 d and ligand densities that exceed 200 µM α1β1 or α2β1 ligands. The pore has been optimized to allow migration of contractile cells (myofibroblasts, MFB) into the scaffold and to provide sufficient specific surface for cell-scaffold interaction; the degradation half-life provides the required time window for satisfactory binding interaction of MFB with the scaffold surface; and the ligand density supplies the appropriate ligands for specific binding of MFB on the scaffold surface. A dramatic change in MFB phenotype takes place following MFB-scaffold binding which has been shown to result in blocking of wound contraction. In both skin wounds and PN wounds the evidence has shown clearly that contraction blocking by DRT is followed by induction of regeneration of nearly perfect organs. The biologically active structure of DRT is required for contraction blocking; well-matched collagen scaffold controls of DRT, with structures that varied from that of DRT, have failed to induce regeneration. Careful processing of collagen scaffolds is required for adequate biological activity of the scaffold surface. The newly understood mechanism provides a relatively complete paradigm of regenerative medicine that can be used to prepare scaffolds that may induce regeneration of other organs in future studies.
Collapse
Affiliation(s)
- I V Yannas
- Departments of Mechanical and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
39
|
Alsop AT, Pence JC, Weisgerber DW, Harley BA, Bailey RC. Photopatterning of vascular endothelial growth factor within collagen-glycosaminoglycan scaffolds can induce a spatially confined response in human umbilical vein endothelial cells. Acta Biomater 2014; 10:4715-4722. [PMID: 25016280 DOI: 10.1016/j.actbio.2014.07.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/26/2014] [Accepted: 07/01/2014] [Indexed: 11/26/2022]
Abstract
Biomolecular signals within the native extracellular matrix are complex, with bioactive factors found in both soluble and sequestered states. In the design of biomaterials for tissue engineering applications it is increasingly clear that new approaches are required to locally tailor the biomolecular environment surrounding cells within the matrix. One area of particular focus is strategies to improve the speed or quality of vascular ingrowth and remodeling. While the addition of soluble vascular endothelial growth factor (VEGF) has been shown to improve vascular response, strategies to immobilize such signals within a biomaterial offer the opportunity to optimize efficiency and to explore spatially defined patterning of such signals. Here we describe the use of benzophenone (BP) photolithography to decorate three-dimensional collagen-glycosaminoglycan (CG) scaffolds with VEGF in a spatially defined manner. In this effort we demonstrate functional patterning of a known agonist of vascular remodeling and directly observe phenotypic effects induced by this immobilized cue. VEGF was successfully patterned in both stripes and square motifs across the scaffold with high specificity (on:off pattern signal). The depth of patterning was determined to extend up to 500 μm into the scaffold microstructure. Notably, photopatterned VEGF retained native functionality as it was shown to induce morphological changes in human umbilical vein cells indicative of early vasculogenesis. Immobilized VEGF led to greater cell infiltration into the scaffold and the formation of immature vascular network structures. Ultimately, these results suggest that BP-mediated photolithography is a facile method to spatially control the presentation of instructive biological cues to cells within CG scaffolds.
Collapse
|
40
|
Modeling the impact of scaffold architecture and mechanical loading on collagen turnover in engineered cardiovascular tissues. Biomech Model Mechanobiol 2014; 14:603-13. [DOI: 10.1007/s10237-014-0625-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 10/03/2014] [Indexed: 02/04/2023]
|
41
|
Abstract
Degradation of fibrillar collagen is critical for tissue maintenance. Yet, understanding collagen catabolism has been challenging partly due to a lack of atomistic picture for its load-dependent conformational dynamics, as both mechanical load and local unfolding of collagen affect its cleavage by matrix metalloproteinase (MMP). We use molecular dynamics simulation to find the most cleavage-prone arrangement of α chains in a collagen triple helix and find amino acids that modulate stability of the MMP cleavage domain depending on the chain registry within the molecule. The native-like state is mechanically inhomogeneous, where the cleavage site interfaces a stiff region and a locally unfolded and flexible region along the molecule. In contrast, a triple helix made of the stable glycine-proline-hydroxyproline motif is uniformly flexible and is dynamically stabilized by short-lived, low-occupancy hydrogen bonds. These results provide an atomistic basis for the mechanics, conformation, and stability of collagen that affect catabolism.
Collapse
Affiliation(s)
- Xiaojing Teng
- Department of Biomedical Engineering and ‡Department of Materials Science and Engineering, Texas A&M University , College Station, Texas 77843, United States
| | | |
Collapse
|
42
|
Lanir Y. Mechanistic micro-structural theory of soft tissues growth and remodeling: tissues with unidirectional fibers. Biomech Model Mechanobiol 2014; 14:245-66. [DOI: 10.1007/s10237-014-0600-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 05/23/2014] [Indexed: 10/25/2022]
|
43
|
Khoshgoftar M, Wilson W, Ito K, van Donkelaar CC. Influence of the Temporal Deposition of Extracellular Matrix on the Mechanical Properties of Tissue-Engineered Cartilage. Tissue Eng Part A 2014; 20:1476-85. [DOI: 10.1089/ten.tea.2013.0345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mehdi Khoshgoftar
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Wouter Wilson
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Corrinus C. van Donkelaar
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
44
|
A physically motivated constitutive model for cell-mediated compaction and collagen remodeling in soft tissues. Biomech Model Mechanobiol 2013; 13:985-1001. [DOI: 10.1007/s10237-013-0549-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 12/15/2013] [Indexed: 11/26/2022]
|
45
|
Bourne JW, Lippell JM, Torzilli PA. Glycation cross-linking induced mechanical-enzymatic cleavage of microscale tendon fibers. Matrix Biol 2013; 34:179-84. [PMID: 24316373 DOI: 10.1016/j.matbio.2013.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 11/27/2013] [Accepted: 11/28/2013] [Indexed: 01/26/2023]
Abstract
Recent molecular modeling data using collagen peptides predicted that mechanical force transmitted through intermolecular cross-links resulted in collagen triple helix unwinding. These simulations further predicted that this unwinding, referred to as triple helical microunfolding, occurred at forces well below canonical collagen damage mechanisms. Based in large part on these data, we hypothesized that mechanical loading of glycation cross-linked tendon microfibers would result in accelerated collagenolytic enzyme damage. This hypothesis is in stark contrast to reports in literature that indicated that individually mechanical loading or cross-linking each retards enzymatic degradation of collagen substrates. Using our Collagen Enzyme Mechano-Kinetic Automated Testing (CEMKAT) System we mechanically loaded collagen-rich tendon microfibers that had been chemically cross-linked with sugar and tested for degrading enzyme susceptibility. Our results indicated that cross-linked fibers were >5 times more resistant to enzymatic degradation while unloaded but became highly susceptible to enzyme cleavage when they were stretched by an applied mechanical deformation.
Collapse
Affiliation(s)
- Jonathan W Bourne
- Laboratory for Soft Tissue Research, Tissue Engineering, Regeneration and Repair Program, Hospital for Special Surgery, 535 East 70th Street, New York, New York 10021, United States; Physiology, Biophysics & Systems Biology Program, Weill Graduate School of Medical Sciences, Cornell University, 1300 York Avenue, New York, New York 10065, United States.
| | - Jared M Lippell
- Laboratory for Soft Tissue Research, Tissue Engineering, Regeneration and Repair Program, Hospital for Special Surgery, 535 East 70th Street, New York, New York 10021, United States
| | - Peter A Torzilli
- Laboratory for Soft Tissue Research, Tissue Engineering, Regeneration and Repair Program, Hospital for Special Surgery, 535 East 70th Street, New York, New York 10021, United States; Physiology, Biophysics & Systems Biology Program, Weill Graduate School of Medical Sciences, Cornell University, 1300 York Avenue, New York, New York 10065, United States
| |
Collapse
|
46
|
Nagel T, Kelly DJ. The Composition of Engineered Cartilage at the Time of Implantation Determines the Likelihood of Regenerating Tissue with a Normal Collagen Architecture. Tissue Eng Part A 2013; 19:824-33. [DOI: 10.1089/ten.tea.2012.0363] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Thomas Nagel
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Department of Environmental Informatics, Helmholtz Centre for Environmental Research UFZ, Leipzig, Germany
| | - Daniel J. Kelly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
47
|
Torzilli PA, Bourne JW, Cigler T, Vincent CT. A new paradigm for mechanobiological mechanisms in tumor metastasis. Semin Cancer Biol 2012; 22:385-95. [PMID: 22613484 PMCID: PMC3445741 DOI: 10.1016/j.semcancer.2012.05.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 05/13/2012] [Indexed: 12/24/2022]
Abstract
Tumor metastases and epithelial to mesenchymal transition (EMT) involve tumor cell invasion and migration through the dense collagen-rich extracellular matrix surrounding the tumor. Little is neither known about the mechanobiological mechanisms involved in this process, nor the role of the mechanical forces generated by the cells in their effort to invade and migrate through the stroma. In this paper we propose a new fundamental mechanobiological mechanism involved in cancer growth and metastasis, which can be both protective or destructive depending on the magnitude of the forces generated by the cells. This new mechanobiological mechanism directly challenges current paradigms that are focused mainly on biological and biochemical mechanisms associated with tumor metastasis. Our new mechanobiological mechanism describes how tumor expansion generates mechanical forces within the stroma to not only resist tumor expansion but also inhibit or enhance tumor invasion by, respectively, inhibiting or enhancing matrix metalloproteinase (MMP) degradation of the tensed interstitial collagen. While this mechanobiological mechanism has not been previously applied to the study of tumor metastasis and EMT, it may have the potential to broaden our understanding of the tumor invasive process and assist in developing new strategies for preventing or treating cancer metastasis.
Collapse
Affiliation(s)
- Peter A Torzilli
- Tissue Engineering, Regeneration and Repair Program, Hospital for Special Surgery, New York, NY 10021, United States.
| | | | | | | |
Collapse
|
48
|
Elias PZ, Spector M. Viscoelastic characterization of rat cerebral cortex and type I collagen scaffolds for central nervous system tissue engineering. J Mech Behav Biomed Mater 2012; 12:63-73. [DOI: 10.1016/j.jmbbm.2012.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 03/15/2012] [Accepted: 03/16/2012] [Indexed: 10/28/2022]
|
49
|
Highly sensitive single-fibril erosion assay demonstrates mechanochemical switch in native collagen fibrils. Biomech Model Mechanobiol 2012; 12:291-300. [PMID: 22584606 DOI: 10.1007/s10237-012-0399-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 04/23/2012] [Indexed: 12/25/2022]
Abstract
It has been established that the enzyme susceptibility of collagen, the predominant load-bearing protein in vertebrates, is altered by applied tension. However, whether tensile force increases or decreases the susceptibility to enzyme is a matter of contention. It is critical to establish a definitive understanding of the direction and magnitude of the force versus catalysis rate (k C ) relationship if we are to properly interpret connective tissue development, growth, remodeling, repair, and degeneration. In this investigation, we examine collagen/enzyme mechanochemistry at the smallest scale structurally relevant to connective tissue: the native collagen fibril. A single-fibril mechanochemical erosion assay with nN force resolution was developed which permits detection of the loss of a few layers of monomer from the fibril surface. Native type I fibrils (bovine) held at three levels of tension were exposed to Clostridium histolyticum collagenase A. Fibrils held at zero-load failed rapidly and consistently (20 min) while fibrils at 1.8 pN/monomer failed more slowly (35-55 min). Strikingly, fibrils at 23.9 pN/monomer did not exhibit detectable degradation. The extracted force versus k C data were combined with previous single-molecule results to produce a "master curve" which suggests that collagen degradation is governed by an extremely sensitive mechanochemical switch.
Collapse
|
50
|
Khoshgoftar M, Wilson W, Ito K, van Donkelaar CC. The effect of tissue-engineered cartilage biomechanical and biochemical properties on its post-implantation mechanical behavior. Biomech Model Mechanobiol 2012; 12:43-54. [DOI: 10.1007/s10237-012-0380-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 02/14/2012] [Indexed: 10/28/2022]
|