1
|
Richterová V, Pekař M. Effect of Silk Fibroin on the Mechanical and Transport Properties of Agarose Hydrogels. Gels 2024; 10:611. [PMID: 39451265 PMCID: PMC11508024 DOI: 10.3390/gels10100611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/11/2024] [Accepted: 09/22/2024] [Indexed: 10/26/2024] Open
Abstract
In this work, the effect of incorporating silk fibroin, a fibrous biocompatible protein, into physically cross-linked agarose hydrogels was investigated as a simple model study to examine how supramolecular fibrous structures influence the properties of the hydrogels. The rheological and transport properties were studied. Fibroin did not change the general viscoelastic properties of the investigated hydrogels but changed the viscoelastic moduli values and also the mesh size, as calculated from rheometry data. Fibroin influenced the mechanical properties depending on its concentration: at lower concentrations, it increased the mesh size, while at higher concentrations, it acted as a filler, decreasing the mesh size. Similarly, the storage and loss moduli were affected, either increasing or decreasing based on the fibroin concentration. The fibroin effect on the diffusion of two dyes differing in their charge was the result of a combination of structural effects, responsible also for changes in the rheological properties, and a result of electrostatic interactions between the charged groups. For positively charged methylene blue, low fibroin concentrations accelerated diffusion, while higher concentrations slowed it by filling network vacancies. In contrast, for negatively charged eosin-B, fibroin strongly impeded diffusion at all concentrations due to electrostatic repulsion, leading to its accumulation at the hydrogel interface. The findings of this work may contribute to an understanding of the behavior of the extracellular matrix or soft tissues as well as to the development of the tailored design of hydrogel materials.
Collapse
Affiliation(s)
- Veronika Richterová
- Institute of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of Technology, Purkynova 464/118, 612 00 Brno, Czech Republic;
| | | |
Collapse
|
2
|
Tian Z, Zhao W, Wang Y, Gao P, Wen H, Dan W, Li J. Zirconium ion mediated collagen nanofibrous hydrogels with high mechanical strength. J Colloid Interface Sci 2024; 674:1004-1018. [PMID: 38964000 DOI: 10.1016/j.jcis.2024.06.184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/09/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
Low mechanical strength is still the key question for collagen hydrogel consisting of nanofibrils as hard tissue repair scaffolds with no loss of biological function. In this work, novel collagen nanofibrous hydrogels with high mechanical strength were fabricated based on the pre-protection of trisodium citrate masked Zr(SO4)2 solution for collagen self-assembling nanofibrils and then further coordination with Zr(SO4)2 solution. The mature collagen nanofibrils with d-period were observed in Zr(IV) mediated collagen hydrogels by AFM when the Zr(IV) concentration was ≥ 10 mmol/L, and the distribution of zirconium element was uniform. Due to the coordination of Zr(IV) with ─COOH, ─NH2 and ─OH within collagen and the tighter entanglement of collagen nanofibrils, the elastic modulus and compressive strength of Zr(IV) mediated collagen nanofibrous hydrogel were 208.3 and 1103.0 kPa, which were approximate 77 and 12 times larger than those of pure collagen hydrogel, respectively. Moreover, the environmental stability such as thermostability, swelling ability and biodegradability got outstanding improvements and could be regulated by Zr(IV) concentration. Most importantly, the resultant hydrogel showed excellent biocompatibility and even accelerated cell proliferation.
Collapse
Affiliation(s)
- Zhenhua Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China; National Experimental Teaching Demonstration Center of Light Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China; Xingye Leather Technology Co., Ltd., Quanzhou 362000, PR China.
| | - Wenjie Zhao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Ying Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Panpan Gao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Huitao Wen
- Xingye Leather Technology Co., Ltd., Quanzhou 362000, PR China
| | - Weihua Dan
- Xingye Leather Technology Co., Ltd., Quanzhou 362000, PR China
| | - Jiao Li
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China
| |
Collapse
|
3
|
Nashchekina Y, Guryanov E, Lihachev A, Vaganov G, Popova E, Mikhailova N, Nashchekin A. Effect of Phytic Acid Addition on the Structure of Collagen-Hyaluronic Acid Composite Gel. Gels 2023; 9:963. [PMID: 38131949 PMCID: PMC10743047 DOI: 10.3390/gels9120963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Composite collagen gels with hyaluronic acid are developed tissue-engineered structures for filling and regeneration of defects in various organs and tissues. For the first time, phytic acid was used to increase the stability and improve the mechanical properties of collagen gels with hyaluronic acid. Phytic acid is a promising cross-linker for collagen hydrogels and is a plant-derived antioxidant found in rich sources of beans, grains, and oilseeds. Phytic acid has several benefits due to its antioxidant, anticancer, and antitumor properties. In this work, studies were carried out on the kinetics of the self-assembly of collagen molecules in the presence of phytic and hyaluronic acids. It was shown that both of these acids do not lead to collagen self-assembly. Scanning electron microscopy showed that in the presence of phytic and hyaluronic acids, the collagen fibrils had a native structure, and the FTIR method confirmed the chemical cross-links between the collagen fibrils. DSC and rheological studies demonstrated that adding the phytic acid improved the stability and modulus of elasticity of the collagen gel. The presence of hyaluronic acid in the collagen gel slightly reduced the effect of phytic acid. The presence of phytic acid in the collagen gel improved the stability of the scaffold, but, after 1 week of cultivation, slightly reduced the viability of mesenchymal stromal cells cultured in the gel. The collagen type I gel with hyaluronic and phytic acids can be used to replace tissue defects, especially after the removal of cancerous tumors.
Collapse
Affiliation(s)
- Yuliya Nashchekina
- Center of Cell Technologies, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Pr. 4, 194064 St. Petersburg, Russia; (E.G.); (N.M.)
| | - Evgeny Guryanov
- Center of Cell Technologies, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Pr. 4, 194064 St. Petersburg, Russia; (E.G.); (N.M.)
| | - Alexey Lihachev
- Laboratory «Characterization of Materials and Structures of Solid State Electronics», Ioffe Institute, Polytekhnicheskaya St. 26, 194021 St. Petersburg, Russia; (A.L.); (A.N.)
| | - Gleb Vaganov
- Institute of Macromolecular Compounds of Russian Academy of Sciences, V.O., Bol’shoy Pr. 31, 199004 St. Petersburg, Russia; (G.V.); (E.P.)
| | - Elena Popova
- Institute of Macromolecular Compounds of Russian Academy of Sciences, V.O., Bol’shoy Pr. 31, 199004 St. Petersburg, Russia; (G.V.); (E.P.)
| | - Natalya Mikhailova
- Center of Cell Technologies, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Pr. 4, 194064 St. Petersburg, Russia; (E.G.); (N.M.)
| | - Alexey Nashchekin
- Laboratory «Characterization of Materials and Structures of Solid State Electronics», Ioffe Institute, Polytekhnicheskaya St. 26, 194021 St. Petersburg, Russia; (A.L.); (A.N.)
| |
Collapse
|
4
|
Schneider KH, Goldberg BJ, Hasturk O, Mu X, Dötzlhofer M, Eder G, Theodossiou S, Pichelkastner L, Riess P, Rohringer S, Kiss H, Teuschl-Woller AH, Fitzpatrick V, Enayati M, Podesser BK, Bergmeister H, Kaplan DL. Silk fibroin, gelatin, and human placenta extracellular matrix-based composite hydrogels for 3D bioprinting and soft tissue engineering. Biomater Res 2023; 27:117. [PMID: 37978399 PMCID: PMC10656895 DOI: 10.1186/s40824-023-00431-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/18/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND There is a great clinical need and it remains a challenge to develop artificial soft tissue constructs that can mimic the biomechanical properties and bioactivity of natural tissue. This is partly due to the lack of suitable biomaterials. Hydrogels made from human placenta offer high bioactivity and represent a potential solution to create animal-free 3D bioprinting systems that are both sustainable and acceptable, as placenta is widely considered medical waste. A combination with silk and gelatin polymers can bridge the biomechanical limitations of human placenta chorion extracellular matrix hydrogels (hpcECM) while maintaining their excellent bioactivity. METHOD In this study, silk fibroin (SF) and tyramine-substituted gelatin (G-TA) were enzymatically crosslinked with human placental extracellular matrix (hpcECM) to produce silk-gelatin-ECM composite hydrogels (SGE) with tunable mechanical properties, preserved elasticity, and bioactive functions. The SGE composite hydrogels were characterized in terms of gelation kinetics, protein folding, and bioactivity. The cyto- and biocompatibility of the SGE composite was determined by in vitro cell culture and subcutaneous implantation in a rat model, respectively. The most cell-supportive SGE formulation was then used for 3-dimensional (3D) bioprinting that induced chemical crosslinking during extrusion. CONCLUSION Addition of G-TA improved the mechanical properties of the SGE composite hydrogels and inhibited crystallization and subsequent stiffening of SF for up to one month. SGE hydrogels exhibit improved and tunable biomechanical properties and high bioactivity for encapsulated cells. In addition, its use as a bioink for 3D bioprinting with free reversible embedding of suspended hydrogels (FRESH) has been validated, opening the possibility to fabricate highly complex scaffolds for artificial soft tissue constructs with natural biomechanics in future.
Collapse
Affiliation(s)
- Karl Heinrich Schneider
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, 1090, Austria
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Benjamin J Goldberg
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Onur Hasturk
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Xuan Mu
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
- Roy J Carver Department of Biomedical Engineering, College of Engineering, the University of Iowa, Iowa City, IA, 52242, USA
| | - Marvin Dötzlhofer
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Gabriela Eder
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Sophia Theodossiou
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
- Department of Mechanical and Biomedical Engineering, Boise State University, Boise, ID, 83725, USA
| | - Luis Pichelkastner
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Peter Riess
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Sabrina Rohringer
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Herbert Kiss
- Department of Obstetrics and Gynecology, Division of Obstetrics and Feto-Maternal Medicine, Medical University of Vienna, 1090, Vienna, Austria
| | - Andreas H Teuschl-Woller
- Department Life Science Technologies, University of Applied Sciences Technikum Wien, 1200, Vienna, Austria
| | - Vincent Fitzpatrick
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
- UMR CNRS 7338 Biomechanics & Bioengineering, Université de Technologie de Compiègne, Sorbonne Universités, 60203, Compiegne, France
| | - Marjan Enayati
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, 1090, Austria
| | - Bruno K Podesser
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, 1090, Austria
| | - Helga Bergmeister
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, 1090, Austria
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
5
|
Sarker P, Jani PK, Hsiao LC, Rojas OJ, Khan SA. Interacting collagen and tannic acid Particles: Uncovering pH-dependent rheological and thermodynamic behaviors. J Colloid Interface Sci 2023; 650:541-552. [PMID: 37423181 DOI: 10.1016/j.jcis.2023.06.209] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/04/2023] [Accepted: 06/30/2023] [Indexed: 07/11/2023]
Abstract
HYPOTHESIS Biomaterials such as collagen and tannic acid (TA) particles are of interest in the development of advanced hybrid biobased systems due to their beneficial therapeutic functionalities and distinctive structural properties. The presence of numerous functional groups makes both TA and collagen pH responsive, enabling them to interact via non-covalent interactions and offer tunable macroscopic properties. EXPERIMENT The effect of pH on the interactions between collagen and TA particles is explored by adding TA particles at physiological pH to collagen at both acidic and neutral pH. Rheology, isothermal titration calorimetry (ITC), turbidimetric analysis and quartz crystal microbalance with dissipation monitoring (QCM-D) are used to study the effects. FINDINGS Rheology results show significant increase in elastic modulus with an increase in collagen concentration. However, TA particles at physiological pH provide stronger mechanical reinforcement to collagen at pH 4 than collagen at pH 7 due to the formation of a higher extent of electrostatic interaction and hydrogen bonding. ITC results confirm this hypothesis, with larger changes in enthalpy, |ΔH|, observed when collagen is at acidic pH and |ΔH| > |TΔS| indicating enthalpy-driven collagen-TA interactions. Turbidimetric analysis and QCM-D help to identify structural differences of the collagen-TA complexes and their formation at both pH conditions.
Collapse
Affiliation(s)
- Prottasha Sarker
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Pallav K Jani
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Lilian C Hsiao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Orlando J Rojas
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States; Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry and Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| | - Saad A Khan
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States.
| |
Collapse
|
6
|
Madappura AP, Madduri S. A comprehensive review of silk-fibroin hydrogels for cell and drug delivery applications in tissue engineering and regenerative medicine. Comput Struct Biotechnol J 2023; 21:4868-4886. [PMID: 37860231 PMCID: PMC10583100 DOI: 10.1016/j.csbj.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/21/2023] Open
Abstract
Hydrogel scaffolds hold great promise for developing novel treatment strategies in the field of regenerative medicine. Within this context, silk fibroin (SF) has proven to be a versatile material for a wide range of tissue engineering applications owing to its structural and functional properties. In the present review, we report on the design and fabrication of different forms of SF-based scaffolds for tissue regeneration applications, particularly for skin, bone, and neural tissues. In particular, SF hydrogels have emerged as delivery systems for a wide range of bio-actives. Given the growing interest in the field, this review has a primary focus on the fabrication, characterization, and properties of SF hydrogels. We also discuss their potential for the delivery of drugs, stem cells, genes, peptides, and growth factors, including future directions in the field of SF hydrogel scaffolds.
Collapse
Affiliation(s)
- Alakananda Parassini Madappura
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044 Hsinchu, Taiwan, Republic of China
| | - Srinivas Madduri
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
- Department of Surgery, University of Geneva, Geneva, Switzerland
| |
Collapse
|
7
|
Bashiri Z, Moghaddaszadeh A, Falak R, Khadivi F, Afzali A, Abbasi M, Sharifi AM, Asgari HR, Ghanbari F, Koruji M. Generation of Haploid Spermatids on Silk Fibroin-Alginate-Laminin-Based Porous 3D Scaffolds. Macromol Biosci 2023; 23:e2200574. [PMID: 37116215 DOI: 10.1002/mabi.202200574] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/03/2023] [Indexed: 04/30/2023]
Abstract
In vitro production of sperm is a desirable idea for fertility preservation in azoospermic men and prepubertal boys suffering from cancer. In this study, a biocompatible porous scaffold based on a triad mixture of silk fibroin (SF), alginate (Alg), and laminin (LM) is developed to facilitate the differentiation of mouse spermatogonia stem cells (SSCs). Following SF extraction, the content is analyzed by SDS-PAGE and stable porous 3D scaffolds are successfully prepared by merely Alg, SF, and a combination of Alg-SF, or Alg-SF-LM through freeze-drying. Then, the biomimetic scaffolds are characterized regarding the structural and biological properties, water absorption capacity, biocompatibility, biodegradability, and mechanical behavior. Neonatal mice testicular cells are seeded on three-dimensional scaffolds and their differentiation efficiency is evaluated using real-time PCR, flow cytometry, immunohistochemistry. Blend matrices showed uniform porous microstructures with interconnected networks, which maintained long-term stability and mechanical properties better than homogenous structures. Molecular analysis of the cells after 21 days of culture showed that the expression of differentiation-related proteins in cells that are developed in composite scaffolds is significantly higher than in other groups. The application of a composite system can lead to the differentiation of SSCs, paving the way for a novel infertility treatment landscape in the future.
Collapse
Affiliation(s)
- Zahra Bashiri
- Stem cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Omid Fertility & Infertility Clinic, Hamedan, 6516796198, Iran
| | - Ali Moghaddaszadeh
- Departement of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, 1477893855, Iran
| | - Reza Falak
- Immunology Research Center (IRC), Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Farnaz Khadivi
- Department of Anatomy, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, 8815713471, Iran
| | - Azita Afzali
- Hajar hospital, Shahrekord University of Medical Sciences, Shahrekord, 8816854633, Iran
| | - Mehdi Abbasi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, 1417653761, Iran
| | - Ali Mohammad Sharifi
- Stem cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Tissue Engineering Group (NOCERAL), Department of Orthopedics Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Hamid Reza Asgari
- Stem cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Farid Ghanbari
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Morteza Koruji
- Stem cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| |
Collapse
|
8
|
Elango J, Lijnev A, Zamora-Ledezma C, Alexis F, Wu W, Marín JMG, Sanchez de Val JEM. The Relationship of Rheological Properties and the Performance of Silk Fibroin Hydrogels in Tissue Engineering Application. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Diamantides N, Slyker L, Martin S, Rodriguez MR, Bonassar LJ. Pre-glycation impairs gelation of high concentration collagen solutions. J Biomed Mater Res A 2022; 110:1953-1963. [PMID: 36183358 PMCID: PMC9648490 DOI: 10.1002/jbm.a.37431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/30/2022] [Accepted: 07/21/2022] [Indexed: 09/29/2023]
Abstract
There remains a need for stiffer collagen hydrogels for tissue engineering and disease modeling applications. Pre-glycation, or glycation of collagen in solution prior to gelation, has been shown to increase the mechanics of collagen hydrogels while maintaining high viability of encapsulated cells. The stiffness of glycated collagen gels can be increased by increasing the collagen concentration, sugar concentration, and glycation time. However, previous studies on pre-glycation of collagen have used low collagen concentrations and/or low sugar concentrations and have not investigated the effect of glycation time. Therefore, the objective of this study was to determine the effects of pre-glycation with high sugar concentrations (up to 500 mM) and extended glycation times (up to 21 days) on high concentration collagen (8 mg/ml). The addition of sugar to the collagen and the formation of advanced glycation end products (AGEs) were quantified. The ability to gel successfully and rheological properties were determined and correlated with biochemical characterizations. Successful collagen gelation and rheological properties of pre-glycated collagen were found to be strongly dependent on the ratio of added sugars to added AGEs with high ratios impairing gelation and low ratios resulting in optimal storage moduli. There is likely a competing effect during pre-glycation of the formation of AGEs resulting in crosslinking of collagen and the formation of Amadori intermediates acting to increase collagen solubility. Overall, this study shows that collagen glycation can be optimized by increasing the formation of AGEs while maintaining a low ratio of added sugar to added AGEs.
Collapse
Affiliation(s)
| | - Leigh Slyker
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY
| | - Sara Martin
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY
| | | | - Lawrence J. Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY
| |
Collapse
|
10
|
Demeter M, Călina I, Scărișoreanu A, Micutz M, Kaya MA. Correlations on the Structure and Properties of Collagen Hydrogels Produced by E-Beam Crosslinking. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15217663. [PMID: 36363255 PMCID: PMC9658620 DOI: 10.3390/ma15217663] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/03/2022] [Accepted: 10/29/2022] [Indexed: 05/12/2023]
Abstract
In this study, a collagen hydrogel using collagen exclusively produced in Romania, was obtained by electron beam (e-beam) crosslinking. The purpose of our study is to obtain new experimental data on the crosslinking of collagen and to predict as faithfully as possible, its behavior at high irradiation doses and energies. To pursue this, the correlations between macromolecular structure and properties of collagen hydrogels were determined by rheological analysis, Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and Differential Scanning Calorimetry (DSC), respectively. The gel fraction, swelling degree, and network parameters of the collagen hydrogels were also investigated at different irradiation doses. Through experimental exploration, we concluded that irradiation with e-beam up to 25 kGy induces crosslinking processes in collagen structure without producing advanced degradation processes. E-beam technology is a great method to develop new materials for medical applications without adding other chemical reagents harmful to human health. The future aim is to develop new wound dressings for rapid healing based on collagen, through irradiation technologies.
Collapse
Affiliation(s)
- Maria Demeter
- National Institute for Lasers, Plasma and Radiation Physics (INFLPR), Atomiştilor 409, 077125 Măgurele, Romania
| | - Ion Călina
- National Institute for Lasers, Plasma and Radiation Physics (INFLPR), Atomiştilor 409, 077125 Măgurele, Romania
- Correspondence: (I.C.); (A.S.)
| | - Anca Scărișoreanu
- National Institute for Lasers, Plasma and Radiation Physics (INFLPR), Atomiştilor 409, 077125 Măgurele, Romania
- Correspondence: (I.C.); (A.S.)
| | - Marin Micutz
- Department of Physical Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania
| | - Mădălina Albu Kaya
- Department of Collagen, Division Leather and Footwear Research Institute, National Research and Development Institute for Textiles and Leather (INCDTP), 93 Ion Minulescu Str., 031215 Bucharest, Romania
| |
Collapse
|
11
|
Xing Y, Zhong X, Chen Z, Liu Q. Optimized osteogenesis of biological hydroxyapatite-based bone grafting materials by ion doping and osteoimmunomodulation. Biomed Mater Eng 2022; 34:195-213. [DOI: 10.3233/bme-221437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Biological hydroxyapatite (BHA)-based bone grafting materials have been widely used for bone regeneration in implant surgery. Much effort has been made in the improvement of their osteogenic property as it remains unsatisfactory for clinical use. Osteoimmunomodulation plays a significant role in bone regeneration, which is highly related to active inorganic ions. Therefore, attempts have been made to obtain osteoimmunomodulatory BHA-based bone grafting materials with optimized osteogenic property by ion doping. OBJECTIVE: To summarize and discuss the active inorganic ions doped into BHA and their effects on BHA-based bone grafting materials. METHOD: A literature search was performed in databases including Google Scholar, Web of Science and PubMed, with the elementary keywords of “ion doped” and “biological hydroxyapatite”, as well as several supplementary keywords. All document types were included in this search. The searching period and language were not limited and kept updated to 2022. RESULTS: A total of 32 articles were finally included, of which 32 discussed the physiochemical properties of BHA-based biomaterials, while 12 investigated their biological features in vitro, and only three examined their biological performance in vivo. Various ions were doped into BHA, including fluoride, zinc, magnesium and lithium. Such ions improved the biological performance of BHA-based biomaterials, which was attributed to their osteoimmunomodulatory effect. CONCLUSION: The doping of active inorganic ions is a reliable strategy to endow BHA-based biomaterials with osteoimmunomodulatory property and promote bone regeneration. Further studies are still in need to explore more ions and their effects in the crosstalk between the skeletal and immune systems.
Collapse
Affiliation(s)
| | | | | | - Quan Liu
- , Sun Yat-sen University, , China
| |
Collapse
|
12
|
Chakraborty J, Mu X, Pramanick A, Kaplan DL, Ghosh S. Recent advances in bioprinting using silk protein-based bioinks. Biomaterials 2022; 287:121672. [PMID: 35835001 DOI: 10.1016/j.biomaterials.2022.121672] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023]
Abstract
3D printing has experienced swift growth for biological applications in the field of regenerative medicine and tissue engineering. Essential features of bioprinting include determining the appropriate bioink, printing speed mechanics, and print resolution while also maintaining cytocompatibility. However, the scarcity of bioinks that provide printing and print properties and cell support remains a limitation. Silk Fibroin (SF) displays exceptional features and versatility for inks and shows the potential to print complex structures with tunable mechanical properties, degradation rates, and cytocompatibility. Here we summarize recent advances and needs with the use of SF protein from Bombyx mori silkworm as a bioink, including crosslinking methods for extrusion bioprinting using SF and the maintenance of cell viability during and post bioprinting. Additionally, we discuss how encapsulated cells within these SF-based 3D bioprinted constructs are differentiated into various lineages such as skin, cartilage, and bone to expedite tissue regeneration. We then shift the focus towards SF-based 3D printing applications, including magnetically decorated hydrogels, in situ bioprinting, and a next-generation 4D bioprinting approach. Future perspectives on improvements in printing strategies and the use of multicomponent bioinks to improve print fidelity are also discussed.
Collapse
Affiliation(s)
- Juhi Chakraborty
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Xuan Mu
- Department of Biomedical Engineering, Tufts University, Medford, MA, 2155, USA
| | - Ankita Pramanick
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 2155, USA
| | - Sourabh Ghosh
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India.
| |
Collapse
|
13
|
Long S, Huang D, Ma Z, Shi S, Xiao Y, Zhang X. A sonication-induced silk-collagen hydrogel for functional cartilage regeneration. J Mater Chem B 2022; 10:5045-5057. [PMID: 35726720 DOI: 10.1039/d2tb00564f] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cartilage tissue has limited self-regeneration capacity and current treatment methods often result in fibrocartilage formation. Although collagen has shown the ability to induce chondrogenesis of mesenchymal stem cells (MSCs) and regenerate hyaline cartilage, the application of a pure collagen hydrogel is inherently limited by its fast degradation, poor mechanical properties and excessive cell-mediated shrinkage. To overcome this challenge, we developed a sonication-induced silk-collagen composite hydrogel (COL + SF(S)) and investigated its physicochemical and biological properties compared with a collagen hydrogel (COL) and a non-sonicated silk-collagen composite hydrogel (COL + SF(NS)). The results showed that the sonication treatment of silk fibroin induced antiparallel β-sheet formation and a stronger negative charge on the silk fibroin molecule, which resulted in improved mechanical properties of the COL + SF(S) hydrogel. The COL + SF(S) hydrogel exhibited superior stability during cell culture and promoted the gene expression of SOX9 at the early stage and sulfated glycosaminoglycan (sGAG) deposition without any exogenous growth factor. Moreover, the cartilage regeneration capacity of the COL + SF(S) group was evaluated in rabbit knee defects. The COL + SF(S) group exhibited well-integrated articular hyaline cartilage closely resembling native articular cartilage after 6 months. Overall, the COL + SF(S) hydrogel holds great potential as a scaffold material to regenerate functional hyaline cartilage.
Collapse
Affiliation(s)
- Shihe Long
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Danyang Huang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Zihan Ma
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Shuaiguang Shi
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Yun Xiao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
14
|
Silk-based nano-hydrogels for futuristic biomedical applications. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Mechanical response and yielding transition of silk-fibroin and silk-fibroin/cellulose nanocrystals composite gels. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Sánchez-Cid P, Jiménez-Rosado M, Rubio-Valle JF, Romero A, Ostos FJ, Rafii-El-Idrissi Benhnia M, Perez-Puyana V. Biocompatible and Thermoresistant Hydrogels Based on Collagen and Chitosan. Polymers (Basel) 2022; 14:272. [PMID: 35054678 PMCID: PMC8781623 DOI: 10.3390/polym14020272] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 02/08/2023] Open
Abstract
Hydrogels are considered good biomaterials for soft tissue regeneration. In this sense, collagen is the most used raw material to develop hydrogels, due to its high biocompatibility. However, its low mechanical resistance, thermal stability and pH instability have generated the need to look for alternatives to its use. In this sense, the combination of collagen with another raw material (i.e., polysaccharides) can improve the final properties of hydrogels. For this reason, the main objective of this work was the development of hydrogels based on collagen and chitosan. The mechanical, thermal and microstructural properties of the hydrogels formed with different ratios of collagen/chitosan (100/0, 75/25, 50/50, 25/75 and 0/100) were evaluated after being processed by two variants of a protocol consisting in two stages: a pH change towards pH 7 and a temperature drop towards 4 °C. The main results showed that depending on the protocol, the physicochemical and microstructural properties of the hybrid hydrogels were similar to the unitary system depending on the stage carried out in first place, obtaining FTIR peaks with similar intensity or a more porous structure when chitosan was first gelled, instead of collagen. As a conclusion, the synergy between collagen and chitosan improved the properties of the hydrogels, showing good thermomechanical properties and cell viability to be used as potential biomaterials for Tissue Engineering.
Collapse
Affiliation(s)
- Pablo Sánchez-Cid
- Chemical Engineering Department, Faculty of Chemistry, University of Seville, 41012 Seville, Spain; (P.S.-C.); (A.R.)
| | - Mercedes Jiménez-Rosado
- Chemical Engineering Department, Faculty of Chemistry, University of Seville, 41012 Seville, Spain; (P.S.-C.); (A.R.)
| | - José Fernando Rubio-Valle
- Pro2TecS-Chemical Product and Process Technology Research Centre, Chemical Engineering Department, University of Huelva, 21071 Huelva, Spain;
| | - Alberto Romero
- Chemical Engineering Department, Faculty of Chemistry, University of Seville, 41012 Seville, Spain; (P.S.-C.); (A.R.)
| | - Francisco J. Ostos
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, CSIC, University of Seville, 41013 Seville, Spain; (F.J.O.); (M.R.-E.-I.B.)
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Mohammed Rafii-El-Idrissi Benhnia
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, CSIC, University of Seville, 41013 Seville, Spain; (F.J.O.); (M.R.-E.-I.B.)
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Victor Perez-Puyana
- Chemical Engineering Department, Faculty of Chemistry, University of Seville, 41012 Seville, Spain; (P.S.-C.); (A.R.)
| |
Collapse
|
17
|
Sanz-Fraile H, Amoros S, Mendizabal I, Galvez-Monton C, Prat-Vidal C, Bayes-Genis A, Navajas D, Farre R, Otero J. Silk-Reinforced Collagen Hydrogels with Raised Multiscale Stiffness for Mesenchymal Cells 3D Culture. Tissue Eng Part A 2021; 26:358-370. [PMID: 32085691 DOI: 10.1089/ten.tea.2019.0199] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Type I collagen hydrogels are of high interest in tissue engineering. With the evolution of 3D bioprinting technologies, a high number of collagen-based scaffolds have been reported for the development of 3D cell cultures. A recent proposal was to mix collagen with silk fibroin derived from Bombyx mori silkworm. Nevertheless, due to the difficulties in the preparation and the characteristics of the protein, several problems such as phase separation and collagen denaturation appear during the procedure. Therefore, the common solution is to diminish the concentration of collagen although in that way the most biologically relevant component is reduced. In this study, we present a new, simple, and effective method to develop a collagen-silk hybrid hydrogel with high collagen concentration and with increased stiffness approaching that of natural tissues, which could be of high interest for the development of cardiac patches for myocardial regeneration and for preconditioning of mesenchymal stem cells (MSCs) to improve their therapeutic potential. Sericin in the silk was preserved by using a physical solubilizing procedure that results in a preserved fibrous structure of type I collagen, as shown by ultrastructural imaging. The macro- and micromechanical properties of the hybrid hydrogels measured by tensile stretch and atomic force microscopy, respectively, showed a more than twofold stiffening than the collagen-only hydrogels. Rheological measurements showed improved printability properties for the developed biomaterial. The suitability of the hydrogels for 3D cell culture was assessed by 3D bioprinting bone marrow-derived MSCs cultured within the scaffolds. The result was a biomaterial with improved printability characteristics that better resembled the mechanical properties of natural soft tissues while preserving biocompatibility owing to the high concentration of collagen. Impact statement In this study, we report the development of silk microfiber-reinforced type I collagen hydrogels for 3D bioprinting and cell culture. In contrast with previously reported studies, a novel physical method allowed the preservation of the silk sericin protein. Hydrogels were stable, showed no phase separation between the biomaterials, and they presented improved printability. An increase between two- and threefold of the multiscale stiffness of the scaffolds was achieved with no need of using additional crosslinkers or complex methods, which could be of high relevance for cardiac patches development and for preconditioning mesenchymal stem cells (MSCs) for therapeutic applications. We demonstrate that bone marrow-derived MSCs can be effectively bioprinted and 3D cultured within the stiffened structures.
Collapse
Affiliation(s)
- Hector Sanz-Fraile
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Susana Amoros
- ICREC Research Program, Germans Trias i Pujol Health Science Research Institute, Badalona, Spain
| | - Irene Mendizabal
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Carolina Galvez-Monton
- ICREC Research Program, Germans Trias i Pujol Health Science Research Institute, Badalona, Spain.,Hearth Institute (iCor), Germans Trias i Pujol University Hospital, Badalona, Spain.,CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Prat-Vidal
- ICREC Research Program, Germans Trias i Pujol Health Science Research Institute, Badalona, Spain.,Hearth Institute (iCor), Germans Trias i Pujol University Hospital, Badalona, Spain.,CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain.,Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Antoni Bayes-Genis
- ICREC Research Program, Germans Trias i Pujol Health Science Research Institute, Badalona, Spain.,Hearth Institute (iCor), Germans Trias i Pujol University Hospital, Badalona, Spain.,CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain.,Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Daniel Navajas
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ramon Farre
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Institut d'investigacions Biomèdiques Agustí Pi i Sunyer, Barcelona, Spain
| | - Jorge Otero
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
18
|
Farokhi M, Aleemardani M, Solouk A, Mirzadeh H, Teuschl AH, Redl H. Crosslinking strategies for silk fibroin hydrogels: promising biomedical materials. Biomed Mater 2021; 16:022004. [PMID: 33594992 DOI: 10.1088/1748-605x/abb615] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Due to their strong biomimetic potential, silk fibroin (SF) hydrogels are impressive candidates for tissue engineering, due to their tunable mechanical properties, biocompatibility, low immunotoxicity, controllable biodegradability, and a remarkable capacity for biomaterial modification and the realization of a specific molecular structure. The fundamental chemical and physical structure of SF allows its structure to be altered using various crosslinking strategies. The established crosslinking methods enable the formation of three-dimensional (3D) networks under physiological conditions. There are different chemical and physical crosslinking mechanisms available for the generation of SF hydrogels (SFHs). These methods, either chemical or physical, change the structure of SF and improve its mechanical stability, although each method has its advantages and disadvantages. While chemical crosslinking agents guarantee the mechanical strength of SFH through the generation of covalent bonds, they could cause some toxicity, and their usage is not compatible with a cell-friendly technology. On the other hand, physical crosslinking approaches have been implemented in the absence of chemical solvents by the induction of β-sheet conformation in the SF structure. Unfortunately, it is not easy to control the shape and properties of SFHs when using this method. The current review discusses the different crosslinking mechanisms of SFH in detail, in order to support the development of engineered SFHs for biomedical applications.
Collapse
Affiliation(s)
- Maryam Farokhi
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran. Maryam Farokhi and Mina Aleemardani contributed equally
| | | | | | | | | | | |
Collapse
|
19
|
Manufacturing micropatterned collagen scaffolds with chemical-crosslinking for development of biomimetic tissue-engineered oral mucosa. Sci Rep 2020; 10:22192. [PMID: 33335194 PMCID: PMC7747639 DOI: 10.1038/s41598-020-79114-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/01/2020] [Indexed: 12/19/2022] Open
Abstract
The junction between the epithelium and the underlying connective tissue undulates, constituting of rete ridges, which lack currently available soft tissue constructs. In this study, using a micro electro mechanical systems process and soft lithography, fifteen negative molds, with different dimensions and aspect ratios in grid- and pillar-type configurations, were designed and fabricated to create three-dimensional micropatterns and replicated onto fish-scale type I collagen scaffolds treated with chemical crosslinking. Image analyses showed the micropatterns were well-transferred onto the scaffold surfaces, showing the versatility of our manufacturing system. With the help of rheological test, the collagen scaffold manufactured in this study was confirmed to be an ideal gel and have visco-elastic features. As compared with our previous study, its mechanical and handling properties were improved by chemical cross-linking, which is beneficial for grafting and suturing into the complex structures of oral cavity. Histologic evaluation of a tissue-engineered oral mucosa showed the topographical microstructures of grid-type were well-preserved, rather than pillar-type, a well-stratified epithelial layer was regenerated on all scaffolds and the epithelial rete ridge-like structure was developed. As this three-dimensional microstructure is valuable for maintaining epithelial integrity, our micropatterned collagen scaffolds can be used not only intraorally but extraorally as a graft material for human use.
Collapse
|
20
|
Chitosan/polydopamine layer by layer self-assembled silk fibroin nanofibers for biomedical applications. Carbohydr Polym 2020; 251:117058. [PMID: 33142610 DOI: 10.1016/j.carbpol.2020.117058] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/18/2020] [Accepted: 09/03/2020] [Indexed: 01/05/2023]
Abstract
Silk fibroin (SF) is increasingly needed in tissue engineering for its superior biocompatibility. However, the practical applications of pure SF biomaterials confront bacterial infection problems. In this study, chitosan (CS) and polydopamine (PDA) were introduced into electrospun nanofibrous SF mats through layer-by-layer self-assembly (LBL) to obtain enhanced antibacterial ability and cytocompatibility. The surface morphology and composition analysis confirmed the successful deposition. After depositing 15 bilayers, the tensile modulus of the mats in wet condition increased from 2.16 MPa (pristine SF mats) to 4.89 MPa. A trend towards better hydrophilicity performance was also recorded with more bilayers coating on the mats. Besides, LBL structured mats showed improved antibacterial ability of more than 98 % against E. coli and S. aureus. In addition, advancement in biocompatibility was observed during the proliferation experiment of L929 cells. Overall, the deposition of CS and PDA may further expand the use of SF in biomedical field.
Collapse
|
21
|
Shelah O, Wertheimer S, Haj-Ali R, Lesman A. Coral-Derived Collagen Fibers for Engineering Aligned Tissues. Tissue Eng Part A 2020; 27:187-200. [PMID: 32524890 DOI: 10.1089/ten.tea.2020.0116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
There is a growing need for biomaterial scaffolds that support engineering of soft tissue substitutes featuring structure and mechanical properties similar to those of the native tissue. This work introduces a new biomaterial system that is based on centimeter-long collagen fibers extracted from Sarcophyton soft corals, wrapped around frames to create aligned fiber arrays. The collagen arrays displayed hyperelastic and viscoelastic mechanical properties that resembled those of collagenous-rich tissues. Cytotoxicity tests demonstrated that the collagen arrays were nontoxic to fibroblast cells. In addition, fibroblast cells seeded on the collagen arrays demonstrated spreading and increased growth for up to 40 days, and their orientation followed that of the aligned fibers. The possibility to combine the collagen cellular arrays with poly(ethylene glycol) diacrylate (PEG-DA) hydrogel, to create integrated biocomposites, was also demonstrated. This study showed that coral collagen fibers in combination with a hydrogel can support biological tissue-like growth, with predefined orientation over a long period of time in culture. As such, it is an attractive scaffold for the construction of various engineered tissues to match their native oriented morphology.
Collapse
Affiliation(s)
- Ortal Shelah
- School of Mechanical Engineering, The Fleischman Faculty of Engineering, Tel-Aviv University, Israel
| | - Shir Wertheimer
- School of Mechanical Engineering, The Fleischman Faculty of Engineering, Tel-Aviv University, Israel
| | - Rami Haj-Ali
- School of Mechanical Engineering, The Fleischman Faculty of Engineering, Tel-Aviv University, Israel
| | - Ayelet Lesman
- School of Mechanical Engineering, The Fleischman Faculty of Engineering, Tel-Aviv University, Israel
| |
Collapse
|
22
|
Kim BS, Das S, Jang J, Cho DW. Decellularized Extracellular Matrix-based Bioinks for Engineering Tissue- and Organ-specific Microenvironments. Chem Rev 2020; 120:10608-10661. [PMID: 32786425 DOI: 10.1021/acs.chemrev.9b00808] [Citation(s) in RCA: 226] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biomaterials-based biofabrication methods have gained much attention in recent years. Among them, 3D cell printing is a pioneering technology to facilitate the recapitulation of unique features of complex human tissues and organs with high process flexibility and versatility. Bioinks, combinations of printable hydrogel and cells, can be utilized to create 3D cell-printed constructs. The bioactive cues of bioinks directly trigger cells to induce tissue morphogenesis. Among the various printable hydrogels, the tissue- and organ-specific decellularized extracellular matrix (dECM) can exert synergistic effects in supporting various cells at any component by facilitating specific physiological properties. In this review, we aim to discuss a new paradigm of dECM-based bioinks able to recapitulate the inherent microenvironmental niche in 3D cell-printed constructs. This review can serve as a toolbox for biomedical engineers who want to understand the beneficial characteristics of the dECM-based bioinks and a basic set of fundamental criteria for printing functional human tissues and organs.
Collapse
Affiliation(s)
- Byoung Soo Kim
- Future IT Innovation Laboratory, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu,, Pohang, Kyungbuk 37673, Republic of Korea.,POSTECH-Catholic Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea
| | - Sanskrita Das
- Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea
| | - Jinah Jang
- Future IT Innovation Laboratory, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu,, Pohang, Kyungbuk 37673, Republic of Korea.,Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea.,Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea.,School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea.,POSTECH-Catholic Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea.,Institute of Convergence Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea.,POSTECH-Catholic Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea.,Institute of Convergence Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
23
|
Comprehensive Review of Hybrid Collagen and Silk Fibroin for Cutaneous Wound Healing. MATERIALS 2020; 13:ma13143097. [PMID: 32664418 PMCID: PMC7411886 DOI: 10.3390/ma13143097] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023]
Abstract
The use of hybridisation strategy in biomaterials technology provides a powerful synergistic effect as a functional matrix. Silk fibroin (SF) has been widely used for drug delivery, and collagen (Col) resembles the extracellular matrix (ECM). This systematic review was performed to scrutinise the outcome of hybrid Col and SF for cutaneous wound healing. This paper reviewed the progress of related research based on in vitro and in vivo studies and the influence of the physicochemical properties of the hybrid in wound healing. The results indicated the positive outcome of hybridising Col and SF for cutaneous wound healing. The hybridisation of these biomaterials exhibits an excellent moisturising property, perfectly interconnected structure, excellent water absorption and retention capacity, an acceptable range of biodegradability, and synergistic effects in cell viability. The in vitro and in vivo studies clearly showed a promising outcome in the acceleration of cutaneous wound healing using an SF and Col hybrid scaffold. The review of this study can be used to design an appropriate hybrid scaffold for cutaneous wound healing. Therefore, this systematic review recapitulated that the hybridisation of Col and SF promoted rapid cutaneous healing through immediate wound closure and reepithelisation, with no sign of adverse events. This paper concludes on the need for further investigations of the hybrid SF and Col in the future to ensure that the hybrid biomaterials are well-suited for human skin.
Collapse
|
24
|
Wang Y, Fan S, Li Y, Niu C, Li X, Guo Y, Zhang J, Shi J, Wang X. Silk fibroin/sodium alginate composite porous materials with controllable degradation. Int J Biol Macromol 2019; 150:1314-1322. [PMID: 31747567 DOI: 10.1016/j.ijbiomac.2019.10.141] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/15/2019] [Accepted: 10/15/2019] [Indexed: 01/13/2023]
Abstract
In this study, silk fibroin (SF)/sodium alginate (SA) porous materials (PMs) with different blend ratios were generated using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) as crosslinking agent by a simple freeze-dried method. Degradation experiment of SF/SA PMs have been systematically investigated up to 18 days in Collagenase IA solution at 37 °C, Phosphate buffer saline (PBS) solution without enzyme was used as a control. The results showed SF/SA 50/50 PMs exhibited a lowest rate of weight loss, about 68% of the weight retained within 18 d in Collagenase IA solution. SEM images indicated Collagenase IA can degrade fibroin leading to collapse of the pure SF PMs, while SF/SA 50/50 PMs still possessed integrity of pore structure during enzyme degradation with increasing exposure time. The crystalline structure of the SF in the SF/SA PMs changed to silk II after degradation for 18 d. Furthermore, the results of the in vivo degradation by subcutaneous implantation in rats showed that all PMs can be degraded at different levels, and exhibited good subcutaneous histocompatibility to the host animals. The degradability was strongly correlated to the blend ratios in a series of SF/SA composite PMs, and insights gained in this study can serve as a guide to match desired degradation behavior with specific applications for the SF/SA composite PMs.
Collapse
Affiliation(s)
- Yiyu Wang
- Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hubei Engineering University, Xiaogan 432000, People's Republic of China
| | - Sisi Fan
- Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hubei Engineering University, Xiaogan 432000, People's Republic of China
| | - Yuwei Li
- Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hubei Engineering University, Xiaogan 432000, People's Republic of China
| | - Chunqing Niu
- Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hubei Engineering University, Xiaogan 432000, People's Republic of China
| | - Xiang Li
- Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hubei Engineering University, Xiaogan 432000, People's Republic of China
| | - Yajin Guo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, People's Republic of China; Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Junhua Zhang
- Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hubei Engineering University, Xiaogan 432000, People's Republic of China
| | - Jian Shi
- Department of Machine Intelligence and Systems Engineering, Faculty of Systems Science and Technology, Akita Prefectural University, Akita 015-0055, Japan
| | - Xinyu Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, People's Republic of China; Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| |
Collapse
|
25
|
Niu C, Li X, Wang Y, Liu X, Shi J, Wang X. Design and performance of a poly(vinyl alcohol)/silk fibroin enzymatically crosslinked semi-interpenetrating hydrogel for a potential hydrophobic drug delivery. RSC Adv 2019; 9:41074-41082. [PMID: 35540084 PMCID: PMC9076402 DOI: 10.1039/c9ra09344c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 11/21/2019] [Indexed: 01/24/2023] Open
Abstract
In this study, in order to obtain hydrogels with good properties for sustained release of hydrophobic drugs or for tissue engineering, poly(vinyl alcohol) (PVA)/silk fibroin (SF) semi-interpenetrating (semi-IPN) hydrogels with varied ratios of PVA/SF were enzymatically cross-linked using horseradish peroxidase. A vial inversion test determined approximate gelation times of PVA/SF hydrogels ranging from 5 to 10 min. The hydrogels with varied ratios showed differences in pore size and morphology. Mass loss rate of hydrogels increased from 15% to 58% with increasing PVA concentration. Stable hydrogels with PVA/SF at 0.5 : 1 w/w showed the best swelling ratio values in distilled water (7.36). FTIR analysis revealed that silk fibroin in these hydrogels exhibited the coexistence of amorphous and silk I crystalline structures and the SF and PVA molecules interacted with each other well. The mechanical properties of the composite hydrogels were controlled by the SF content. From the cell viability results, it was found that the hydrogels exerted very low cytotoxicity. Paeonol was chosen as the hydrophobic drug model for release studies from the hydrogels. Paeonol can be uniformly loaded into the composite hydrogels using the emulsifying property of PVA and paeonol release from the hydrogels was dependent on the PVA/SF ratio. This study applied a novel type of enzymatically crosslinked semi-IPN hydrogel that may have potential applications in drug delivery. Enzymatically cross-linked PVA/SF semi-IPN hydrogels with tunable pore structure have potential applications in sustained release of hydrophobic drug.![]()
Collapse
Affiliation(s)
- Chunqing Niu
- Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients
- Hubei Engineering University
- Xiaogan 432000
- People's Republic of China
| | - Xiang Li
- Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients
- Hubei Engineering University
- Xiaogan 432000
- People's Republic of China
| | - Yiyu Wang
- Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients
- Hubei Engineering University
- Xiaogan 432000
- People's Republic of China
| | - Xinyu Liu
- Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients
- Hubei Engineering University
- Xiaogan 432000
- People's Republic of China
| | - Jian Shi
- Department of Machine Intelligence and Systems Engineering
- Faculty of Systems Science and Technology
- Akita Prefectural University
- Akita 015-0055
- Japan
| | - Xinyu Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- People's Republic of China
- Biomedical Materials and Engineering Research Center of Hubei Province
| |
Collapse
|
26
|
Irawan V, Sung TC, Higuchi A, Ikoma T. Collagen Scaffolds in Cartilage Tissue Engineering and Relevant Approaches for Future Development. Tissue Eng Regen Med 2018; 15:673-697. [PMID: 30603588 PMCID: PMC6250655 DOI: 10.1007/s13770-018-0135-9] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/30/2018] [Accepted: 06/15/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cartilage tissue engineering (CTE) aims to obtain a structure mimicking native cartilage tissue through the combination of relevant cells, three-dimensional scaffolds, and extraneous signals. Implantation of 'matured' constructs is thus expected to provide solution for treating large injury of articular cartilage. Type I collagen is widely used as scaffolds for CTE products undergoing clinical trial, owing to its ubiquitous biocompatibility and vast clinical approval. However, the long-term performance of pure type I collagen scaffolds would suffer from its limited chondrogenic capacity and inferior mechanical properties. This paper aims to provide insights necessary for advancing type I collagen scaffolds in the CTE applications. METHODS Initially, the interactions of type I/II collagen with CTE-relevant cells [i.e., articular chondrocytes (ACs) and mesenchymal stem cells (MSCs)] are discussed. Next, the physical features and chemical composition of the scaffolds crucial to support chondrogenic activities of AC and MSC are highlighted. Attempts to optimize the collagen scaffolds by blending with natural/synthetic polymers are described. Hybrid strategy in which collagen and structural polymers are combined in non-blending manner is detailed. RESULTS Type I collagen is sufficient to support cellular activities of ACs and MSCs; however it shows limited chondrogenic performance than type II collagen. Nonetheless, type I collagen is the clinically feasible option since type II collagen shows arthritogenic potency. Physical features of scaffolds such as internal structure, pore size, stiffness, etc. are shown to be crucial in influencing the differentiation fate and secreting extracellular matrixes from ACs and MSCs. Collagen can be blended with native or synthetic polymer to improve the mechanical and bioactivities of final composites. However, the versatility of blending strategy is limited due to denaturation of type I collagen at harsh processing condition. Hybrid strategy is successful in maximizing bioactivity of collagen scaffolds and mechanical robustness of structural polymer. CONCLUSION Considering the previous improvements of physical and compositional properties of collagen scaffolds and recent manufacturing developments of structural polymer, it is concluded that hybrid strategy is a promising approach to advance further collagen-based scaffolds in CTE.
Collapse
Affiliation(s)
- Vincent Irawan
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2 Chome-12-1, Meguro-ku, Tokyo, 152-8550 Japan
| | - Tzu-Cheng Sung
- Department of Chemical and Materials Engineering, National Central University, No. 300 Jung Da Rd., Chung-Li, Taoyuan, 320 Taiwan
| | - Akon Higuchi
- Department of Chemical and Materials Engineering, National Central University, No. 300 Jung Da Rd., Chung-Li, Taoyuan, 320 Taiwan
| | - Toshiyuki Ikoma
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2 Chome-12-1, Meguro-ku, Tokyo, 152-8550 Japan
| |
Collapse
|
27
|
Selvaraj S, Duraipandy N, Kiran MS, Fathima NN. Anti-oxidant enriched hybrid nanofibers: Effect on mechanical stability and biocompatibility. Int J Biol Macromol 2018; 117:209-217. [DOI: 10.1016/j.ijbiomac.2018.05.152] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 12/18/2022]
|
28
|
Yan S, Wang Q, Tariq Z, You R, Li X, Li M, Zhang Q. Facile preparation of bioactive silk fibroin/hyaluronic acid hydrogels. Int J Biol Macromol 2018; 118:775-782. [PMID: 29959009 DOI: 10.1016/j.ijbiomac.2018.06.138] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/18/2018] [Accepted: 06/26/2018] [Indexed: 10/28/2022]
Abstract
Proteins and polysaccharides are primary components in mammal soft tissue. In this study, we established a rapid hydrogel to imitate the nature extracellular matrix via silk fibroin (SF) and hyaluronic acid (HA) blend hydrogel. SF/HA hydrogel was prepared effectively, and its formation time was shorted. With the increase of HA content, the water absorption, porosity and breaking strengths of the hydrogel increased, while hydrophilic of the hydrogel was enhanced extremely determined by contact angle decreasing. Especially, the SF/HA hydrogel with a ratio of 5:5 presented the highest water absorption and mechanical properties. The molecule conformation of the composite hydrogel was mainly amorphous structure and contained the small number of β-sheets which gradually decreases with the increase of HA content. In drug release test, accumulative release ratio of the composite gel was about 80% at day 40. And the mass loss of the hydrogel reached approximately 78% in vitro degradation. In vivo, the SF/HA hydrogels presented good histocompatibility and promoted vascular-like tissue regeneration when were implanted subcutaneously of Sprague Dawley rats. This study provides a new approach to fabricate silk-based biomaterials for soft tissue regeneration.
Collapse
Affiliation(s)
- Shuqin Yan
- Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China; School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Qiusheng Wang
- School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Zeeshan Tariq
- School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Renchuan You
- School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Xiufang Li
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Mingzhong Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Qiang Zhang
- Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China; School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
29
|
Fang Y, Xu L, Wang M. High-Throughput Preparation of Silk Fibroin Nanofibers by Modified Bubble-Electrospinning. NANOMATERIALS 2018; 8:nano8070471. [PMID: 29954106 PMCID: PMC6070844 DOI: 10.3390/nano8070471] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/21/2018] [Accepted: 06/25/2018] [Indexed: 11/23/2022]
Abstract
As a kind of natural macromolecular protein molecule extracted from silk, silk fibroin (SF) has been widely used as biological materials in recent years due to its good physical and chemical properties. In this paper, a modified bubble-electrospinning (MBE) using a cone-shaped gas nozzle combined with a copper solution reservoir was applied to obtain high-throughput fabrication of SF nanofibers. In the MBE process, sodium dodecyl benzene sulfonates (SDBS) were used as the surfactant to improve the spinnability of SF solution. The rheological properties and conductivity of the electrospun SF solutions were investigated. And the effects of gas flow volume, SF solution concentration and additive amounts of SDBS on the morphology, property and production of SF nanofibers were studied. The results showed the decrease of gas flow volume could decrease the nanofiber diameter, enhance the diameter distribution, and increase the production of nanofibers. And the maximum yield could reach 3.10 g/h at the SF concentration of 10 wt % and the SDBS concentration of 0.1 wt %.
Collapse
Affiliation(s)
- Yue Fang
- National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123, China.
| | - Lan Xu
- National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123, China.
| | - Mingdi Wang
- School of Mechanical and Electric Engineering, Soochow University, 178 Ganjiang Road, Suzhou 215021, China.
| |
Collapse
|
30
|
Rameshbabu AP, Bankoti K, Datta S, Subramani E, Apoorva A, Ghosh P, Maity PP, Manchikanti P, Chaudhury K, Dhara S. Silk Sponges Ornamented with a Placenta-Derived Extracellular Matrix Augment Full-Thickness Cutaneous Wound Healing by Stimulating Neovascularization and Cellular Migration. ACS APPLIED MATERIALS & INTERFACES 2018; 10:16977-16991. [PMID: 29718653 DOI: 10.1021/acsami.7b19007] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Regeneration of full-thickness wounds without scar formation is a multifaceted process, which depends on in situ dynamic interactions between the tissue-engineered skin substitutes and a newly formed reparative tissue. However, the majority of the tissue-engineered skin substitutes used so far in full-thickness wound healing cannot mimic the natural extracellular matrix (ECM) complexity and thus are incapable of providing a suitable niche for endogenous tissue repair. Herein, we demonstrated a simple approach to fabricate porous hybrid ECM sponges (HEMS) using a placental ECM and silk fibroin for full-thickness wound healing. HEMS with retained cytokines/growth factors provided a noncytotoxic environment in vitro for human foreskin fibroblasts (HFFs), human epidermal keratinocytes (HEKs), and human amniotic membrane-derived stem cells to adhere, infiltrate, and proliferate. Interestingly, HEMS-conditioned media accelerated the migration of HFFs and HEKs owing to the presence of cytokines/growth factors. Also, the ex vivo chick chorioallantoic membrane assay of HEMS demonstrated its excellent vascularization potential by inducing and supporting blood vessels. Additionally, HEMS when subcutaneously implanted demonstrated no severe immune response to the host. Furthermore, HEMS implanted in full-thickness wounds in a rat model showed augmented healing progression with well-organized epidermal-dermal junctions via pronounced angiogenesis, accelerated migration of HFFs/HEKs, enhanced granulation tissue formation, and early re-epithelialization. Taken together, these findings show that porous HEMS ornamented with cytokines/growth factors having superior physicomechanical properties may be an appropriate skin substitute for full-thickness cutaneous wounds.
Collapse
|
31
|
Ribeiro M, Fernandes MH, Beppu MM, Monteiro FJ, Ferraz MP. Silk fibroin/nanohydroxyapatite hydrogels for promoted bioactivity and osteoblastic proliferation and differentiation of human bone marrow stromal cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 89:336-345. [PMID: 29752106 DOI: 10.1016/j.msec.2018.04.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 02/20/2018] [Accepted: 04/15/2018] [Indexed: 02/07/2023]
Abstract
Silk fibroin (SF) is a natural, biocompatible, and biodegradable polymer having a great potential for the successful regeneration of damaged bone tissue. In the present work, nanohydroxyapatite (nanoHA) was incorporated into SF polymer to form a bioactive composite hydrogel for applications as bone implants. The degradation and bioactive properties of SF/nanoHA composite hydrogels were evaluated. Additionally, biological investigations of human bone marrow stromal cells (hBMSCs) viability, proliferation and differentiation to the osteoblastic phenotype were conducted. The incorporation of nanoHA in SF polymer matrices improved the bioactivity of the hydrogels. The biological results highlighted that the SF/nanoHA composite hydrogels are suitable for hBMSCs attachment and proliferation, while a test for alkaline phosphatase (ALP) and bone morphogenetic protein 2 (BMP-2) expression suggested osteoblast differentiation. Additionally, a cell staining method for ALP allowed to observe cell infiltration with active production of ALP by the infiltrated cells, paving the way to use the proposed composite hydrogel for bone tissue regeneration.
Collapse
Affiliation(s)
- Marta Ribeiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto 4150-180, Portugal; FEUP - Faculdade de Engenharia da Universidade do Porto, Departamento de Engenharia Metalúrgica e Materiais, Porto 4200-465, Portugal.
| | - Maria H Fernandes
- Laboratory for Bone Metabolism and Regeneration, Faculdade de Medicina Dentária, Universidade do Porto, Porto 4200-393, Portugal; REQUIMTE/LAQV - U. Porto, Porto, Portugal
| | - Marisa M Beppu
- School of Chemical Engineering, University of Campinas, Campinas, SP 13083-852, Brazil
| | - Fernando J Monteiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto 4150-180, Portugal; FEUP - Faculdade de Engenharia da Universidade do Porto, Departamento de Engenharia Metalúrgica e Materiais, Porto 4200-465, Portugal
| | - Maria P Ferraz
- FP-ENAS/CEBIMED - University Fernando Pessoa Energy, Environment and Health Research Unit/Biomedical Research Center, Porto 4249-004, Portugal
| |
Collapse
|
32
|
Phase Behaviour and Miscibility Studies of Collagen/Silk Fibroin Macromolecular System in Dilute Solutions and Solid State. Molecules 2017; 22:molecules22081368. [PMID: 28820488 PMCID: PMC6152308 DOI: 10.3390/molecules22081368] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 08/16/2017] [Indexed: 12/29/2022] Open
Abstract
Miscibility is an important issue in biopolymer blends for analysis of the behavior of polymer pairs through the detection of phase separation and improvement of the mechanical and physical properties of the blend. This study presents the formulation of a stable and one-phase mixture of collagen and regenerated silk fibroin (RSF), with the highest miscibility ratio between these two macromolecules, through inducing electrostatic interactions, using salt ions. For this aim, a ternary phase diagram was experimentally built for the mixtures, based on observations of phase behavior of blend solutions with various ratios. The miscibility behavior of the blend solutions in the miscible zones of the phase diagram was confirmed quantitatively by viscosimetric measurements. Assessing the effects of biopolymer mixing ratio and salt ions, before and after dialysis of blend solutions, revealed the importance of ion-specific interactions in the formation of coacervate-based materials containing collagen and RSF blends that can be used in pharmaceutical, drug delivery, and biomedical applications. Moreover, the conformational change of silk fibroin from random coil to beta sheet, in solution and in the final solid films, was detected by circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR), respectively. Scanning electron microscopy (SEM) exhibited alterations of surface morphology for the biocomposite films with different ratios. Surface contact angle measurement illustrated different hydrophobic properties for the blended film surfaces. Differential scanning calorimetry (DSC) showed that the formation of the beta sheet structure of silk fibroin enhances the thermal stability of the final blend films. Therefore, the novel method presented in this study resulted in the formation of biocomposite films whose physico-chemical properties can be tuned by silk fibroin conformational changes by applying different component mixing ratios.
Collapse
|
33
|
Claudio-Rizo JA, Rangel-Argote M, Castellano LE, Delgado J, Mata-Mata JL, Mendoza-Novelo B. Influence of residual composition on the structure and properties of extracellular matrix derived hydrogels. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [PMID: 28629082 DOI: 10.1016/j.msec.2017.05.118] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In this work, hydrolysates of extracellular matrix (hECM) were obtained from rat tail tendon (TR), bovine Achilles tendon (TAB), porcine small intestinal submucosa (SIS) and bovine pericardium (PB), and they were polymerized to generate ECM hydrogels. The composition of hECM was evaluated by quantifying the content of sulphated glycosaminoglycans (sGAG), fibronectin and laminin. The polymerization process, structure, physicochemical properties, in vitro degradation and biocompatibility were studied and related to their composition. The results indicated that the hECM derived from SIS and PB were significantly richer in sGAG, fibronectin and laminin, than those derived from TAB and TR. These differences in hECM composition influenced the polymerization and the structural characteristics of the fibrillar gel network. Consequently, the swelling, mechanics and degradation of the hydrogels showed a direct relationship with the remaining composition. Moreover, the cytocompatibility and the secretion of transforming growth factor beta-1 (TGF-β1) by macrophages were enhanced in hydrogels with the highest residual content of ECM biomolecules. The results of this work evidenced the role of the ECM molecules remaining after both decellularization and hydrolysis steps to produce tissue derived hydrogels with structure and properties tailored to enhance their performance in tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Jesús A Claudio-Rizo
- Departamento de Ingenierías Química, Electrónica y Biomédica, DCI, Universidad de Guanajuato, Loma del Bosque 103, 37150 León, Gto., Mexico; Departamento de Química, DCNE, Universidad de Guanajuato, Noria alta s/n, 36050 Guanajuato, Gto., Mexico; Ingeniería en Biotecnología, Universidad Politécnica de Pénjamo, Carretera Irapuato-La Piedad Km 44, 36921, Pénjamo, Gto., Mexico
| | - Magdalena Rangel-Argote
- Departamento de Ingenierías Química, Electrónica y Biomédica, DCI, Universidad de Guanajuato, Loma del Bosque 103, 37150 León, Gto., Mexico; Departamento de Química, DCNE, Universidad de Guanajuato, Noria alta s/n, 36050 Guanajuato, Gto., Mexico
| | - Laura E Castellano
- Departamento de Ingenierías Química, Electrónica y Biomédica, DCI, Universidad de Guanajuato, Loma del Bosque 103, 37150 León, Gto., Mexico
| | - Jorge Delgado
- Departamento de Ingenierías Química, Electrónica y Biomédica, DCI, Universidad de Guanajuato, Loma del Bosque 103, 37150 León, Gto., Mexico
| | - José L Mata-Mata
- Departamento de Química, DCNE, Universidad de Guanajuato, Noria alta s/n, 36050 Guanajuato, Gto., Mexico.
| | - Birzabith Mendoza-Novelo
- Departamento de Ingenierías Química, Electrónica y Biomédica, DCI, Universidad de Guanajuato, Loma del Bosque 103, 37150 León, Gto., Mexico.
| |
Collapse
|
34
|
Sayin E, Rashid RH, Rodríguez-Cabello JC, Elsheikh A, Baran ET, Hasirci V. Human adipose derived stem cells are superior to human osteoblasts (HOB) in bone tissue engineering on a collagen-fibroin-ELR blend. Bioact Mater 2017; 2:71-81. [PMID: 29744414 PMCID: PMC5935045 DOI: 10.1016/j.bioactmat.2017.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 12/11/2022] Open
Abstract
The ultrastructure of the bone provides a unique mechanical strength against compressive, torsional and tensional stresses. An elastin-like recombinamer (ELR) with a nucleation sequence for hydroxyapatite was incorporated into films prepared from a collagen - silk fibroin blend carrying microchannel patterns to stimulate anisotropic osteogenesis. SEM and fluorescence microscopy showed the alignment of adipose-derived stem cells (ADSCs) and the human osteoblasts (HOBs) on the ridges and in the grooves of microchannel patterned collagen-fibroin-ELR blend films. The Young's modulus and the ultimate tensile strength (UTS) of untreated films were 0.58 ± 0.13 MPa and 0.18 ± 0.05 MPa, respectively. After 28 days of cell culture, ADSC seeded film had a Young's modulus of 1.21 ± 0.42 MPa and UTS of 0.32 ± 0.15 MPa which were about 3 fold higher than HOB seeded films. The difference in Young's modulus was statistically significant (p: 0.02). ADSCs attached, proliferated and mineralized better than the HOBs. In the light of these results, ADSCs served as a better cell source than HOBs for bone tissue engineering of collagen-fibroin-ELR based constructs used in this study. We have thus shown the enhancement in the tensile mechanical properties of the bone tissue engineered scaffolds by using ADSCs.
Collapse
Affiliation(s)
- Esen Sayin
- METU, Department of Biotechnology, Ankara, Turkey.,BIOMATEN, METU Center of Excellence in Biomaterials and Tissue Engineering, Dumlupinar Blvd No: 1, 06800 Ankara, Turkey
| | - Rosti Hama Rashid
- University of Liverpool, School of Engineering, L69 3GH Liverpool, UK
| | - José Carlos Rodríguez-Cabello
- BIOFORGE, CIBER-BBN, Campus "Miguel Delibes" Edificio LUCIA, Universidad de Valladolid, Paseo Belén 19, 47011 Valladolid, Spain
| | - Ahmed Elsheikh
- University of Liverpool, School of Engineering, L69 3GH Liverpool, UK
| | - Erkan Türker Baran
- BIOMATEN, METU Center of Excellence in Biomaterials and Tissue Engineering, Dumlupinar Blvd No: 1, 06800 Ankara, Turkey
| | - Vasif Hasirci
- METU, Department of Biotechnology, Ankara, Turkey.,BIOMATEN, METU Center of Excellence in Biomaterials and Tissue Engineering, Dumlupinar Blvd No: 1, 06800 Ankara, Turkey.,METU, Department of Biological Sciences, Ankara, 06800, Turkey
| |
Collapse
|
35
|
Silk-fibronectin protein alloy fibres support cell adhesion and viability as a high strength, matrix fibre analogue. Sci Rep 2017; 7:45653. [PMID: 28378749 PMCID: PMC5381220 DOI: 10.1038/srep45653] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/01/2017] [Indexed: 11/08/2022] Open
Abstract
Silk is a natural polymer with broad utility in biomedical applications because it exhibits general biocompatibility and high tensile material properties. While mechanical integrity is important for most biomaterial applications, proper function and integration also requires biomaterial incorporation into complex surrounding tissues for many physiologically relevant processes such as wound healing. In this study, we spin silk fibroin into a protein alloy fibre with whole fibronectin using wet spinning approaches in order to synergize their respective strength and cell interaction capabilities. Results demonstrate that silk fibroin alone is a poor adhesive surface for fibroblasts, endothelial cells, and vascular smooth muscle cells in the absence of serum. However, significantly improved cell attachment is observed to silk-fibronectin alloy fibres without serum present while not compromising the fibres' mechanical integrity. Additionally, cell viability is improved up to six fold on alloy fibres when serum is present while migration and spreading generally increase as well. These findings demonstrate the utility of composite protein alloys as inexpensive and effective means to create durable, biologically active biomaterials.
Collapse
|
36
|
Ngo HT, Bechtold T. Surface modification of textile material through deposition of regenerated silk fibroin. J Appl Polym Sci 2017. [DOI: 10.1002/app.45098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Ha-Thanh Ngo
- Research Institute of Textile Chemistry and Textile Physics (Member of EPNOE-European Polysaccharide Network of Excellence); Leopold Franzens-University of Innsbruck; Hoechsterstraße 73 A-6850 Dornbirn
| | - Thomas Bechtold
- Research Institute of Textile Chemistry and Textile Physics (Member of EPNOE-European Polysaccharide Network of Excellence); Leopold Franzens-University of Innsbruck; Hoechsterstraße 73 A-6850 Dornbirn
| |
Collapse
|
37
|
Wang Y, Wang X, Shi J, Zhu R, Zhang J, Zhang Z, Ma D, Hou Y, Lin F, Yang J, Mizuno M. A Biomimetic Silk Fibroin/Sodium Alginate Composite Scaffold for Soft Tissue Engineering. Sci Rep 2016; 6:39477. [PMID: 27996001 PMCID: PMC5172375 DOI: 10.1038/srep39477] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 11/23/2016] [Indexed: 12/11/2022] Open
Abstract
A cytocompatible porous scaffold mimicking the properties of extracellular matrices (ECMs) has great potential in promoting cellular attachment and proliferation for tissue regeneration. A biomimetic scaffold was prepared using silk fibroin (SF)/sodium alginate (SA) in which regular and uniform pore morphology can be formed through a facile freeze-dried method. The scanning electron microscopy (SEM) studies showed the presence of interconnected pores, mostly spread over the entire scaffold with pore diameter around 54~532 μm and porosity 66~94%. With significantly better water stability and high swelling ratios, the blend scaffolds crosslinked by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) provided sufficient time for the formation of neo-tissue and ECMs during tissue regeneration. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) results confirmed random coil structure and silk I conformation were maintained in the blend scaffolds. What's more, FI-TR spectra demonstrated crosslinking reactions occurred actually among EDC, SF and SA macromolecules, which kept integrity of the scaffolds under physiological environment. The suitable pore structure and improved equilibrium swelling capacity of this scaffold could imitate biochemical cues of natural skin ECMs for guiding spatial organization and proliferation of cells in vitro, indicating its potential candidate material for soft tissue engineering.
Collapse
Affiliation(s)
- Yiyu Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, People’s Republic of China
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, People’s Republic of China
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan 432000, People’s Republic of China
| | - Xinyu Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, People’s Republic of China
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, People’s Republic of China
| | - Jian Shi
- Department of Machine Intelligence and Systems Engineering, Faculty of Systems Science and Technology, Akita Prefectural University, Akita 015-0055, Japan
| | - Rong Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, People’s Republic of China
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, People’s Republic of China
| | - Junhua Zhang
- Life Science Technology School, Hubei Engineering University, Xiaogan 432000, People’s Republic of China
| | - Zongrui Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, People’s Republic of China
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, People’s Republic of China
| | - Daiwei Ma
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, People’s Republic of China
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, People’s Republic of China
| | - Yuanjing Hou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, People’s Republic of China
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, People’s Republic of China
| | - Fei Lin
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, People’s Republic of China
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, People’s Republic of China
| | - Jing Yang
- School of Foreign Languages, Wuhan University of Technology, Wuhan 430070, People’s Republic of China
| | - Mamoru Mizuno
- Department of Machine Intelligence and Systems Engineering, Faculty of Systems Science and Technology, Akita Prefectural University, Akita 015-0055, Japan
| |
Collapse
|
38
|
Floren M, Migliaresi C, Motta A. Processing Techniques and Applications of Silk Hydrogels in Bioengineering. J Funct Biomater 2016; 7:jfb7030026. [PMID: 27649251 PMCID: PMC5040999 DOI: 10.3390/jfb7030026] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 12/14/2022] Open
Abstract
Hydrogels are an attractive class of tunable material platforms that, combined with their structural and functional likeness to biological environments, have a diversity of applications in bioengineering. Several polymers, natural and synthetic, can be used, the material selection being based on the required functional characteristics of the prepared hydrogels. Silk fibroin (SF) is an attractive natural polymer for its excellent processability, biocompatibility, controlled degradation, mechanical properties and tunable formats and a good candidate for the fabrication of hydrogels. Tremendous effort has been made to control the structural and functional characteristic of silk hydrogels, integrating novel biological features with advanced processing techniques, to develop the next generation of functional SF hydrogels. Here, we review the several processing methods developed to prepare advanced SF hydrogel formats, emphasizing a bottom-up approach beginning with critical structural characteristics of silk proteins and their behavior under specific gelation environments. Additionally, the preparation of SF hydrogel blends and other advanced formats will also be discussed. We conclude with a brief description of the attractive utility of SF hydrogels in relevant bioengineering applications.
Collapse
Affiliation(s)
- Michael Floren
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Claudio Migliaresi
- Department of Industrial Engineering and Biotech Research Center, University of Trento, via Sommarive 9, Trento 38123, Italy.
| | - Antonella Motta
- Department of Industrial Engineering and Biotech Research Center, University of Trento, via Sommarive 9, Trento 38123, Italy.
| |
Collapse
|
39
|
Ngo HT, Bechtold T. Sorption behavior of reactive dyed labelled fibroin on fibrous substrates. J Appl Polym Sci 2016. [DOI: 10.1002/app.43880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ha-Thanh Ngo
- Research Institute of Textile Chemistry and Textile Physics; Faculty of Chemistry and Pharmacy; Leopold Franzens-Univeristy of Innsbruck; Hoechsterstraße 73 Dornbirn A-6850 Austria
| | - Thomas Bechtold
- Research Institute of Textile Chemistry and Textile Physics; Faculty of Chemistry and Pharmacy; Leopold Franzens-Univeristy of Innsbruck; Hoechsterstraße 73 Dornbirn A-6850 Austria
| |
Collapse
|
40
|
Kapoor S, Kundu SC. Silk protein-based hydrogels: Promising advanced materials for biomedical applications. Acta Biomater 2016; 31:17-32. [PMID: 26602821 DOI: 10.1016/j.actbio.2015.11.034] [Citation(s) in RCA: 278] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 11/08/2015] [Accepted: 11/17/2015] [Indexed: 01/20/2023]
Abstract
Hydrogels are a class of advanced material forms that closely mimic properties of the soft biological tissues. Several polymers have been explored for preparing hydrogels with structural and functional features resembling that of the extracellular matrix. Favourable material properties, biocompatibility and easy processing of silk protein fibers into several forms make it a suitable material for biomedical applications. Hydrogels made from silk proteins have shown a potential in overcoming limitations of hydrogels prepared from conventional polymers. A great deal of effort has been made to control the properties and to integrate novel topographical and functional characteristics in the hydrogel composed from silk proteins. This review provides overview of the advances in silk protein-based hydrogels with a primary emphasis on hydrogels of fibroin. It describes the approaches used to fabricate fibroin hydrogels. Attempts to improve the existing properties or to incorporate new features in the hydrogels by making composites and by improving fibroin properties by genetic engineering approaches are also described. Applications of the fibroin hydrogels in the realms of tissue engineering and controlled release are reviewed and their future potentials are discussed. STATEMENT OF SIGNIFICANCE This review describes the potentiality of silk fibroin hydrogel. Silk Fibroin has been widely recognized as an interesting biomaterial. Due to its properties including high mechanical strength and excellent biocompatibility, it has gained wide attention. Several groups are exploring silk-based materials including films, hydrogels, nanofibers and nanoparticles for different biomedical applications. Although there is a good amount of literature available on general properties and applications of silk based biomaterials, there is an inadequacy of extensive review articles that specifically focus on silk based hydrogels. Silk-based hydrogels have a strong potential to be utilized in biomedical applications. Our work is an effort to highlight the research that has been done in the area of silk-based hydrogels. It aims to provide an overview of the advances that have been made and the future course available. It will provide an overview of the silk-based hydrogels as well as may direct the readers to the specific areas of application.
Collapse
|
41
|
Costantini M, Colosi C, Jaroszewicz J, Tosato A, Święszkowski W, Dentini M, Garstecki P, Barbetta A. Microfluidic Foaming: A Powerful Tool for Tailoring the Morphological and Permeability Properties of Sponge-like Biopolymeric Scaffolds. ACS APPLIED MATERIALS & INTERFACES 2015; 7:23660-23671. [PMID: 26436204 DOI: 10.1021/acsami.5b08221] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Ordered porous polymeric materials can be engineered to present highly ordered pore arrays and uniform and tunable pore size. These features prompted a number of applications in tissue engineering, generation of meta materials, and separation and purification of biomolecules and cells. Designing new and efficient vistas for the generation of ordered porous materials is an active area of research. Here we investigate the potential of microfluidic foaming within a flow-focusing (FF) geometry in producing 3D regular sponge-like polymeric matrices with tailored morphological and permeability properties. The challenge in using microfluidic systems for the generation of polymeric foams is in the high viscosity of the continuous phase. We demonstrate that as the viscosity of the aqueous solution increases, the accessible range of foam bubble fraction (Φb) and bubble diameter (Db) inside the microfluidic chip tend to narrow progressively. This effect limits the accessible range of geometric properties of the resulting materials. We further show that this problem can be rationally tackled by appropriate choice of the concentration of the polymer. We demonstrate that via such optimization, the microfluidic assisted synthesis of porous materials becomes a facile and versatile tool for generation of porous materials with a wide range of pore size and pore volume. Moreover, we demonstrate that the size of interconnects among pores-for a given value of the gas fraction-can be tailored through the variation of surfactant concentration. This, in turn, affects the permeability of the materials, a factor of key importance in flow-through applications and in tissue engineering.
Collapse
Affiliation(s)
- Marco Costantini
- Department of Chemistry, Sapienza University of Rome , 00185 Rome, Italy
| | - Cristina Colosi
- Department of Chemistry, Sapienza University of Rome , 00185 Rome, Italy
| | - Jakub Jaroszewicz
- Faculty of Materials Science and Engineering, Warsaw University of Technology , 02507 Warsaw, Poland
| | - Alessia Tosato
- Department of Chemistry, Sapienza University of Rome , 00185 Rome, Italy
| | - Wojciech Święszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology , 02507 Warsaw, Poland
| | - Mariella Dentini
- Department of Chemistry, Sapienza University of Rome , 00185 Rome, Italy
| | - Piotr Garstecki
- Institute of Physical Chemistry, Polish Academy of Sciences , 01224 Warsaw, Poland
| | - Andrea Barbetta
- Department of Chemistry, Sapienza University of Rome , 00185 Rome, Italy
| |
Collapse
|
42
|
Baldino L, Concilio S, Cardea S, De Marco I, Reverchon E. Complete glutaraldehyde elimination during chitosan hydrogel drying by SC-CO2 processing. J Supercrit Fluids 2015. [DOI: 10.1016/j.supflu.2015.04.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Koh LD, Cheng Y, Teng CP, Khin YW, Loh XJ, Tee SY, Low M, Ye E, Yu HD, Zhang YW, Han MY. Structures, mechanical properties and applications of silk fibroin materials. Prog Polym Sci 2015. [DOI: 10.1016/j.progpolymsci.2015.02.001] [Citation(s) in RCA: 608] [Impact Index Per Article: 67.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
44
|
Nistor MT, Vasile C, Chiriac AP. Hybrid collagen-based hydrogels with embedded montmorillonite nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 53:212-21. [PMID: 26042709 DOI: 10.1016/j.msec.2015.04.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/26/2015] [Accepted: 04/21/2015] [Indexed: 10/23/2022]
Abstract
Montmorillonite nanoparticles have been physically incorporated within a crosslinked collagen/poly(N-isopropyl acrylamide) network in order to adjust the properties of the stimuli-responsive hybrid systems. The research underlines both the influence of hydrogel composition and nanoparticle type on hybrid hydrogel properties. The dispersion of the montmorillonite nanoparticles in polymeric matrix have been visualized by SEM, TEM and AFM techniques and quantitatively and qualitatively estimated using near infrared chemical imaging. The electrical charge of the nanoparticles influenced the polymeric chain arrangement and the pore size. The morphologies of the nanoparticulated layers are partially exfoliated or intercalated and uniformly dispersed through the polymeric semi-interpenetrated network based on collagen and poly(N-isopropyl acrylamide). The hybrid hydrogels exhibit pseudoplastic behavior and the addition of nanoparticles has resulted in the increase of the complex viscosity. The adhesion capacity was affected mainly by the presence of organically modified montmorillonites.
Collapse
Affiliation(s)
- Manuela Tatiana Nistor
- Romanian Academy, "P. Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Cornelia Vasile
- Romanian Academy, "P. Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania.
| | - Aurica P Chiriac
- Romanian Academy, "P. Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
45
|
Hajizadeh-Saffar E, Tahamtani Y, Aghdami N, Azadmanesh K, Habibi-Anbouhi M, Heremans Y, De Leu N, Heimberg H, Ravassard P, Shokrgozar MA, Baharvand H. Inducible VEGF expression by human embryonic stem cell-derived mesenchymal stromal cells reduces the minimal islet mass required to reverse diabetes. Sci Rep 2015; 5:9322. [PMID: 25818803 PMCID: PMC4377549 DOI: 10.1038/srep09322] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/26/2015] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Islet transplantation has been hampered by loss of function due to poor revascularization. We hypothesize that co-transplantation of islets with human embryonic stem cell-derived mesenchymal stromal cells that conditionally overexpress VEGF (hESC-MSC:VEGF) may augment islet revascularization and reduce the minimal islet mass required to reverse diabetes in mice. HESC-MSCs were transduced by recombinant lentiviruses that allowed conditional (Dox-regulated) overexpression of VEGF. HESC-MSC VEGF were characterized by tube formation assay. After co-transplantation of hESC-MSC:VEGF with murine islets in collagen-fibrin hydrogel in the omental pouch of diabetic nude mice, we measured blood glucose, body weight, glucose tolerance and serum C-peptide. As control, islets were transplanted alone or with non-transduced hESC-MSCs. Next, we compared functional parameters of 400 islets alone versus 200 islets co-transplanted with hESC-MSC:VEGF. As control, 200 islets were transplanted alone. Metabolic function of islets transplanted with hESC-MSC:VEGF significantly improved, accompanied by superior graft revascularization, compared with control groups. Transplantation of 200 islets with hESC-MSC:VEGF showed superior function over 400 islets alone. We conclude that co-transplantation of islets with VEGF-expressing hESC-MSCs allowed for at least a 50% reduction in minimal islet mass required to reverse diabetes in mice. This approach may contribute to alleviate the need for multiple donor organs per patient.
Collapse
Affiliation(s)
- E Hajizadeh-Saffar
- 1] National Cell Bank, Pasteur Institute of Iran, Tehran, Iran [2] Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Y Tahamtani
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - N Aghdami
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - K Azadmanesh
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Y Heremans
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - N De Leu
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - H Heimberg
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - P Ravassard
- Biotechnology and Biotherapy Laboratory, University Pierre et Marie Curie, Paris, France
| | - M A Shokrgozar
- National Cell Bank, Pasteur Institute of Iran, Tehran, Iran
| | - H Baharvand
- 1] Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran [2] Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran
| |
Collapse
|
46
|
Włodarczyk-Biegun MK, Werten MW, de Wolf FA, van den Beucken JJ, Leeuwenburgh SC, Kamperman M, Cohen Stuart MA. Genetically engineered silk-collagen-like copolymer for biomedical applications: production, characterization and evaluation of cellular response. Acta Biomater 2014; 10:3620-9. [PMID: 24814883 DOI: 10.1016/j.actbio.2014.05.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/24/2014] [Accepted: 05/02/2014] [Indexed: 12/25/2022]
Abstract
Genetically engineered protein polymers (GEPP) are a class of multifunctional materials with precisely controlled molecular structure and property profile. Representing a promising alternative for currently used materials in biomedical applications, GEPP offer multiple benefits over natural and chemically synthesized polymers. However, producing them in sufficient quantities for preclinical research remains challenging. Here, we present results from an in vitro cellular response study of a recombinant protein polymer that is soluble at low pH but self-organizes into supramolecular fibers and physical hydrogels at neutral pH. It has a triblock structure denoted as C2S(H)48C2, which consists of hydrophilic collagen-inspired and histidine-rich silk-inspired blocks. The protein was successfully produced by the yeast Pichia pastoris in laboratory-scale bioreactors, and it was purified by selective precipitation. This efficient and inexpensive production method provided material of sufficient quantities, purity and sterility for cell culture study. Rheology and erosion studies showed that it forms hydrogels exhibiting long-term stability, self-healing behavior and tunable mechanical properties. Primary rat bone marrow cells cultured in direct contact with these hydrogels remained fully viable; however, proliferation and mineralization were relatively low compared to collagen hydrogel controls, probably because of the absence of cell-adhesive motifs. As biofunctional factors can be readily incorporated to improve material performance, our approach provides a promising route towards biomedical applications.
Collapse
|
47
|
Gonzalez JS, Alvarez VA. Mechanical properties of polyvinylalcohol/hydroxyapatite cryogel as potential artificial cartilage. J Mech Behav Biomed Mater 2014; 34:47-56. [DOI: 10.1016/j.jmbbm.2014.01.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/22/2014] [Accepted: 01/27/2014] [Indexed: 11/29/2022]
|
48
|
Zhao H, Heusler E, Jones G, Li L, Werner V, Germershaus O, Ritzer J, Luehmann T, Meinel L. Decoration of silk fibroin by click chemistry for biomedical application. J Struct Biol 2014; 186:420-30. [DOI: 10.1016/j.jsb.2014.02.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/13/2014] [Accepted: 02/15/2014] [Indexed: 01/26/2023]
|
49
|
Walters BD, Stegemann JP. Strategies for directing the structure and function of three-dimensional collagen biomaterials across length scales. Acta Biomater 2014; 10:1488-501. [PMID: 24012608 PMCID: PMC3947739 DOI: 10.1016/j.actbio.2013.08.038] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/17/2013] [Accepted: 08/28/2013] [Indexed: 12/16/2022]
Abstract
Collagen type I is a widely used natural biomaterial that has found utility in a variety of biological and medical applications. Its well-characterized structure and role as an extracellular matrix protein make it a highly relevant material for controlling cell function and mimicking tissue properties. Collagen type I is abundant in a number of tissues, and can be isolated as a purified protein. This review focuses on hydrogel biomaterials made by reconstituting collagen type I from a solubilized form, with an emphasis on in vitro studies in which collagen structure can be controlled. The hierarchical structure of collagen from the nanoscale to the macroscale is described, with an emphasis on how structure is related to function across scales. Methods of reconstituting collagen into hydrogel materials are presented, including molding of macroscopic constructs, creation of microscale modules and electrospinning of nanoscale fibers. The modification of collagen biomaterials to achieve the desired structures and functions is also addressed, with particular emphasis on mechanical control of collagen structure, creation of collagen composite materials and crosslinking of collagenous matrices. Biomaterials scientists have made remarkable progress in rationally designing collagen-based biomaterials and in applying them both to the study of biology and for therapeutic benefit. This broad review illustrates recent examples of techniques used to control collagen structure and thereby to direct its biological and mechanical functions.
Collapse
Affiliation(s)
- B D Walters
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, MI 48109, USA
| | - J P Stegemann
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, MI 48109, USA.
| |
Collapse
|
50
|
Lin S, Lu G, Liu S, Bai S, Liu X, Lu Q, Zuo B, Kaplan DL, Zhu H. Nanoscale Control of Silks for Nanofibrous Scaffold Formation with Improved Porous Structure. J Mater Chem B 2014; 2:2622-2633. [PMID: 24949200 DOI: 10.1039/c4tb00019f] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Silk-based porous scaffolds have been used extensively in tissue engineering because of their excellent biocompatibility, tunable biodegradability and robust mechanical properties. Although many silk-based scaffolds have been prepared through freeze-drying, a challenge remains to effectively control porous structures during this process. In the present study silk fibroin with different nanostructures were self-assembled in aqueous solution by repeated drying-dissolving process and then used to improve porous structure formation in lyophilization process. Viscosity, secondary structures and water interactions were also studied to exclude their influence on the formation and control of porous structures. Following nanofiber formation in aqueous solution, silk scaffolds with improved porous structure were directly formed after lyophilization and then stabilized with water or methanol annealing treatments. Compared to silk scaffolds derived from fresh solution, the nanofibrous scaffolds showed significantly better cell compatibility in vitro. Therefore, this nanoscale control of silk offers feasible way to regulate the matrix features including porous structure and nanostructure, which are important in regulating cell and tissue outcomes in tissue engineering and regeneration, and then achieve silk-based scaffolds with improved properties.
Collapse
Affiliation(s)
- Shasha Lin
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Guozhong Lu
- Department of Burns and Plastic Surgery, The Third Affiliated Hospital of Nantong University, Wuxi 214041, People's Republic of China
| | - Shanshan Liu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Shumeng Bai
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Xi Liu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China ; Jiangsu Province Key Laboratory of Stem Cell Research, Medical College, Soochow University, Suzhou 215006, People's Republic of China
| | - Baoqi Zuo
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Hesun Zhu
- Research Center of Materials Science, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| |
Collapse
|