1
|
Garhyan P, Pratt E, Klein O, Famulla S, Zijlstra E, Lalonde A, Swinney M, Kazda C, Dassau E. Evaluation of Insulin Lispro Pharmacokinetics and Pharmacodynamics Over 10 Days of Continuous Insulin Infusion in People With Type 1 Diabetes. J Diabetes Sci Technol 2023; 17:274-282. [PMID: 36575993 PMCID: PMC10012385 DOI: 10.1177/19322968221145200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND We evaluated the effect of meloxicam on insulin lispro pharmacokinetics and glucose pharmacodynamics over 10 days of continuous subcutaneous insulin infusion (CSII) at one infusion site in people with type 1 diabetes (T1D). METHOD This phase 1, randomized, double-blind, single-center, two-way crossover study enrolled adults with T1D for ≥1 year on stable CSII for ≥3 months. Participants randomly received U100 insulin lispro and LY900027 (U100 insulin lispro + 0.25 mg/mL meloxicam). Primary end points were area under the insulin lispro curve from 0 to 5 hours (AUCIns.0-5h) after bolus administration prior to a mixed-meal tolerance test (MMTT) and maximum observed concentration of insulin lispro (CIns.max) on days 5, 7, and 10, versus day 3 (baseline). RESULTS A total of 20 participants were randomized. Insulin absorption was accelerated for insulin lispro and LY900027 from days 1 to 7. The AUCIns.0-5h was significantly lower on day 10 versus day 3 for LY900027 (-19%) and insulin lispro (-14%); the AUCIns.0-5h did not differ significantly between treatments. The CIns.max increased with LY900027 and insulin lispro (by ~14%-23% and ~16%-51%) on days 5, 7, and 10 versus day 3. The CIns.max of LY900027 was ~14%-23% lower than insulin lispro CIns.max on days 7 and 10 (P ≤ .0805). Accelerated insulin absorption and a modest loss of total insulin exposure led to a loss of MMTT glycemic control at later time points. CONCLUSIONS The pharmacokinetics of insulin changed over catheter wear time even when an anti-inflammatory agent was present. Postprandial glycemic control was adversely affected by the accelerated insulin absorption and decreased insulin exposure.
Collapse
Affiliation(s)
| | - Edward Pratt
- Lilly Centre for Clinical Pharmacology,
Singapore, Singapore
| | | | | | | | - Amy Lalonde
- Eli Lilly and Company, Indianapolis,
IN, USA
| | | | | | - Eyal Dassau
- Eli Lilly and Company, Indianapolis,
IN, USA
- Eli Lilly and Company, Cambridge, MA,
USA
| |
Collapse
|
2
|
Zakeri Siavashani A, Mohammadi J, Maniura-Weber K, Senturk B, Nourmohammadi J, Sadeghi B, Huber L, Rottmar M. Silk based scaffolds with immunomodulatory capacity: anti-inflammatory effects of nicotinic acid. Biomater Sci 2020; 8:148-162. [DOI: 10.1039/c9bm00814d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Here we show that 3D silk scaffolds loaded with nicotinic acid have great potential for tissue engineering due to their excellent cytocompatibility and ability to decrease the expression of proinflammatory markers in a concentration dependent manner.
Collapse
Affiliation(s)
| | - Javad Mohammadi
- Faculty of New Sciences and Technologies
- University of Tehran
- Tehran
- Iran
| | - Katharina Maniura-Weber
- Empa
- Swiss Federal Laboratories for Materials Science and Technology
- Biointerfaces
- St.Gallen
- Switzerland
| | - Berna Senturk
- Empa
- Swiss Federal Laboratories for Materials Science and Technology
- Biointerfaces
- St.Gallen
- Switzerland
| | | | - Behnam Sadeghi
- Translational Cell therapy Research (TCR)
- Department of CLINTEC
- Karolinska Institutet
- Stockholm
- Sweden
| | - Lukas Huber
- Empa
- Swiss Federal Laboratories for Materials Science and Technology
- Laboratory for Building Energy Materials and Components
- Dübendorf
- Switzerland
| | - Markus Rottmar
- Empa
- Swiss Federal Laboratories for Materials Science and Technology
- Biointerfaces
- St.Gallen
- Switzerland
| |
Collapse
|
3
|
Malone-Povolny MJ, Merricks EP, Wimsey LE, Nichols TC, Schoenfisch MH. Long-Term Accurate Continuous Glucose Biosensors via Extended Nitric Oxide Release. ACS Sens 2019; 4:3257-3264. [PMID: 31793767 DOI: 10.1021/acssensors.9b01779] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Analytical performance and tissue interactions of nitric oxide (NO)-releasing continuous glucose sensors were evaluated over a 28 d study in a diabetic swine model. Interstitial glucose was detected using an implanted needle-type amperometric glucose sensor. Two NO-release durations from the sensor surface were achieved by doping the membranes with nonporous (14 d release) or porous (30 d release) S-nitrosothiol-functionalized silica nanoparticles. Numerical and clinical accuracy of the sensors were assessed at time points (1, 7, 14, 21, and 28 d) following implantation. Nitric oxide-releasing sensors demonstrated accurate glucose detection over a time period directly correlated with the active release of NO. Silica particle-doped sensors that released NO for 30 d showed standard-compliant accuracy (i.e., mean absolute relative difference ≤ 15%) for >3 weeks post-implantation. Histological staining for inflammatory biomarkers suggested that the observed performance improvement was the result of decreased inflammatory cell count and a lower density collagen capsule.
Collapse
|
4
|
Boehler C, Kleber C, Martini N, Xie Y, Dryg I, Stieglitz T, Hofmann U, Asplund M. Actively controlled release of Dexamethasone from neural microelectrodes in a chronic in vivo study. Biomaterials 2017; 129:176-187. [DOI: 10.1016/j.biomaterials.2017.03.019] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/08/2017] [Accepted: 03/12/2017] [Indexed: 10/20/2022]
|
5
|
Soto RJ, Hall JR, Brown MD, Taylor JB, Schoenfisch MH. In Vivo Chemical Sensors: Role of Biocompatibility on Performance and Utility. Anal Chem 2017; 89:276-299. [PMID: 28105839 PMCID: PMC6773264 DOI: 10.1021/acs.analchem.6b04251] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Robert J. Soto
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC 27599
| | - Jackson R. Hall
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC 27599
| | - Micah D. Brown
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC 27599
| | - James B. Taylor
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC 27599
| | - Mark H. Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC 27599
| |
Collapse
|
6
|
Vallejo-Heligon SG, Brown NL, Reichert WM, Klitzman B. Porous, Dexamethasone-loaded polyurethane coatings extend performance window of implantable glucose sensors in vivo. Acta Biomater 2016; 30:106-115. [PMID: 26537203 DOI: 10.1016/j.actbio.2015.10.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/07/2015] [Accepted: 10/28/2015] [Indexed: 10/22/2022]
Abstract
Continuous glucose sensors offer the promise of tight glycemic control for insulin dependent diabetics; however, utilization of such systems has been hindered by issues of tissue compatibility. Here we report on the in vivo performance of implanted glucose sensors coated with Dexamethasone-loaded (Dex-loaded) porous coatings employed to mediate the tissue-sensor interface. Two animal studies were conducted to (1) characterize the tissue modifying effects of the porous Dex-loaded coatings deployed on sensor surrogate implants and (2) investigate the effects of the same coatings on the in vivo performance of Medtronic MiniMed SOF-SENSOR™ glucose sensors. The tissue response to implants was evaluated by quantifying macrophage infiltration, blood vessel formation, and collagen density around implants. Sensor function was assessed by measuring changes in sensor sensitivity and time lag, calculating the Mean Absolute Relative Difference (MARD) for each sensor treatment, and performing functional glucose challenge test at relevant time points. Implants treated with porous Dex-loaded coatings diminished inflammation and enhanced vascularization of the tissue surrounding the implants. Functional sensors with Dex-loaded porous coatings showed enhanced sensor sensitivity over a 21-day period when compared to controls. Enhanced sensor sensitivity was accompanied with an increase in sensor signal lag and MARD score. These results indicate that Dex-loaded porous coatings were able to elicit an attenuated tissue response, and that such tissue microenvironment could be conducive towards extending the performance window of glucose sensors in vivo. STATEMENT OF SIGNIFICANCE In the present article, a coating to extend the functionality of implantable glucose sensors in vivo was developed. Our study showed that the delivery of an anti-inflammatory agent with the presentation of micro-sized topographical cues from coatings may lead to improved long-term glucose sensor function in vivo. We believe that improved function of sensors treated with the novel coatings was a result of the observed decreases in inflammatory cell density and increases in vessel density of the tissue adjacent to the devices. Furthermore, extending the in vivo functionality of implantable glucose sensors may lead to greater adoption of these devices by diabetic patients.
Collapse
|
7
|
Kastellorizios M, Tipnis N, Papadimitrakopoulos F, Burgess DJ. Drug Distribution in Microspheres Enhances Their Anti-Inflammatory Properties in the Gottingen Minipig. Mol Pharm 2015; 12:3332-8. [PMID: 26237140 DOI: 10.1021/acs.molpharmaceut.5b00326] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The foreign body reaction (FBR), one of the body's defense mechanisms against foreign materials, results in loss of implant biocompatibility. A popular strategy to prevent FBR is the constant release of dexamethasone in the tissue surrounding the implant. However, FBR prevention has not been sufficiently studied in large animal models, which offer a better representation of the human subcutaneous tissue physiology. Accordingly, a long-term strategy to prevent FBR to subcutaneous implants in a large animal model is necessary to translate the existing research for clinical applications. Here, a poly(lactic-co-glycolic) (PLGA) microsphere/poly(vinyl alcohol) (PVA) hydrogel composite coating for one-month prevention of FBR in Gottingen minipigs was developed. A modified PLGA microsphere formulation process is presented, that utilizes coprecipitation of dexamethasone and PLGA. Traditional methods result in heterogeneous distribution of large drug crystals in the microsphere matrix, which in turn results in low drug loading since the drug crystal size is close to that of the microspheres. The modified microsphere preparation method showed homogeneous distribution of dexamethasone, which in turn gave rise to increased drug loading, low burst release, and minimal lag phase. Elimination of the lag phase was dictated from previous work that compared FBR between rats and minipigs. The ability of the coatings to improve implant biocompatibility was successfully tested in vivo via histological examination of explanted tissue from the area surrounding the implants. The biocompatible coatings presented here are suitable for miniaturized implantable devices, such as biosensors, that require constant communication with the local microenvironment.
Collapse
Affiliation(s)
- Michail Kastellorizios
- Department of Pharmaceutical Sciences and ‡Department of Chemistry and Institute of Materials Science, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Namita Tipnis
- Department of Pharmaceutical Sciences and ‡Department of Chemistry and Institute of Materials Science, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Fotios Papadimitrakopoulos
- Department of Pharmaceutical Sciences and ‡Department of Chemistry and Institute of Materials Science, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Diane J Burgess
- Department of Pharmaceutical Sciences and ‡Department of Chemistry and Institute of Materials Science, University of Connecticut , Storrs, Connecticut 06269, United States
| |
Collapse
|
8
|
Abstract
Clinicians and investigators have been implanting biomedical devices into patients and experimental animals for centuries. There is a characteristic complex inflammatory response to the presence of the biomedical device with diverse cell signaling, followed by migration of fibroblasts to the implant surface and the eventual walling off of the implant in a collagen capsule. If the device is to interact with the surrounding tissues, the collagen envelope will eventually incapacitate the device or myofibroblasts can cause capsular contracture with resulting distortion, migration, or firmness. This review analyzes the various tactics used in the past to modify or control capsule formation with suggestions for future investigative approaches.
Collapse
|
9
|
Keeler GD, Durdik JM, Stenken JA. Localized delivery of dexamethasone-21-phosphate via microdialysis implants in rat induces M(GC) macrophage polarization and alters CCL2 concentrations. Acta Biomater 2015; 12:11-20. [PMID: 25449921 DOI: 10.1016/j.actbio.2014.10.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 09/19/2014] [Accepted: 10/17/2014] [Indexed: 11/27/2022]
Abstract
Microdialysis sampling probes were implanted into the subcutaneous space on the dorsal side of male Sprague Dawley rats to locally deliver dexamethasone-21-phosphate (Dex) with the aim of altering in vivo macrophage polarization. Macrophage polarization is of significant interest in the field of biomaterials since wound-healing macrophages are a possible means to extend implant life as well as improve tissue remodeling to an implant. Quantitative analysis of CCL2 in collected dialysates, gene expression and immunohistochemistry performed on the tissue surrounding the microdialysis implant were used to evaluate if Dex polarized macrophages. Dex infusion down-regulated IL-6 and CCL2 gene expression and decreased CCL2 concentrations in dialysates collected at the implant site. Dex appeared to have no significant effect on the gene regulation of CD163, a commonly used M2c macrophage surface marker; Arg2; and iNOS2. However, Dex infusion was effective at increasing the number of CD163(+) cells surrounding the implanted microdialysis probe. This work demonstrates the use of microdialysis sampling to deliver agents such as Dex to alter macrophage polarization in vivo while allowing the ability to collect cytokines in the surrounding microenvironment.
Collapse
|
10
|
Vallejo-Heligon SG, Klitzman B, Reichert WM. Characterization of porous, dexamethasone-releasing polyurethane coatings for glucose sensors. Acta Biomater 2014; 10:4629-4638. [PMID: 25065548 PMCID: PMC4186909 DOI: 10.1016/j.actbio.2014.07.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 07/15/2014] [Accepted: 07/18/2014] [Indexed: 10/25/2022]
Abstract
Commercially available implantable needle-type glucose sensors for diabetes management are robust analytically but can be unreliable clinically primarily due to tissue-sensor interactions. Here, we present the physical, drug release and bioactivity characterization of tubular, porous dexamethasone (Dex)-releasing polyurethane coatings designed to attenuate local inflammation at the tissue-sensor interface. Porous polyurethane coatings were produced by the salt-leaching/gas-foaming method. Scanning electron microscopy and micro-computed tomography (micro-CT) showed controlled porosity and coating thickness. In vitro drug release from coatings monitored over 2 weeks presented an initial fast release followed by a slower release. Total release from coatings was highly dependent on initial drug loading amount. Functional in vitro testing of glucose sensors deployed with porous coatings against glucose standards demonstrated that highly porous coatings minimally affected signal strength and response rate. Bioactivity of the released drug was determined by monitoring Dex-mediated, dose-dependent apoptosis of human peripheral blood derived monocytes in culture. Acute animal studies were used to determine the appropriate Dex payload for the implanted porous coatings. Pilot short-term animal studies showed that Dex released from porous coatings implanted in rat subcutis attenuated the initial inflammatory response to sensor implantation. These results suggest that deploying sensors with the porous, Dex-releasing coatings is a promising strategy to improve glucose sensor performance.
Collapse
Affiliation(s)
| | - Bruce Klitzman
- Department of Biomedical Engineering, Duke University, Durham, NC 27708-0281, USA; Kenan Plastic Surgery Research Labs, Duke University Medical Center, Durham, NC 27710, USA
| | - William M Reichert
- Department of Biomedical Engineering, Duke University, Durham, NC 27708-0281, USA.
| |
Collapse
|
11
|
Soto R, Privett BJ, Schoenfisch MH. In vivo analytical performance of nitric oxide-releasing glucose biosensors. Anal Chem 2014; 86:7141-9. [PMID: 24984031 PMCID: PMC4116185 DOI: 10.1021/ac5017425] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/20/2014] [Indexed: 01/05/2023]
Abstract
The in vivo analytical performance of percutaneously implanted nitric oxide (NO)-releasing amperometric glucose biosensors was evaluated in swine for 10 d. Needle-type glucose biosensors were functionalized with NO-releasing polyurethane coatings designed to release similar total amounts of NO (3.1 μmol cm(-2)) for rapid (16.0 ± 4.4 h) or slower (>74.6 ± 16.6 h) durations and remain functional as outer glucose sensor membranes. Relative to controls, NO-releasing sensors were characterized with improved numerical accuracy on days 1 and 3. Furthermore, the clinical accuracy and sensitivity of rapid NO-releasing sensors were superior to control and slower NO-releasing sensors at both 1 and 3 d implantation. In contrast, the slower, extended, NO-releasing sensors were characterized by shorter sensor lag times (<4.2 min) in response to intravenous glucose tolerance tests versus burst NO-releasing and control sensors (>5.8 min) at 3, 7, and 10 d. Collectively, these results highlight the potential for NO release to enhance the analytical utility of in vivo glucose biosensors. Initial results also suggest that this analytical performance benefit is dependent on the NO-release duration.
Collapse
Affiliation(s)
- Robert
J. Soto
- Department
of Chemistry, University of North Carolina
at Chapel Hill, CB 3290, Chapel Hill, North Carolina 27599, United States
| | - Benjamin J. Privett
- Novan
Therapeutics, 4222 Emperor
Boulevard, Suite 200, Durham, North Carolina 27703, United States
| | - Mark H. Schoenfisch
- Department
of Chemistry, University of North Carolina
at Chapel Hill, CB 3290, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
12
|
Microdialysis sampling techniques applied to studies of the foreign body reaction. Eur J Pharm Sci 2013; 57:74-86. [PMID: 24269987 DOI: 10.1016/j.ejps.2013.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/05/2013] [Indexed: 02/06/2023]
Abstract
Implanted materials including drug delivery devices and chemical sensors undergo what is termed the foreign body reaction (FBR). Depending on the device and its intended application, the FBR can have differing consequences. An extensive scientific research effort has been devoted to elucidating the cellular and molecular mechanisms that drive the FBR. Important, yet relatively unexplored, research includes the localized tissue biochemistry and the chemical signaling events that occur throughout the FBR. This review provides an overview of the mechanisms of the FBR, describes how the FBR affects different implanted devices, and illustrates the role that microdialysis sampling can play in further elucidating the chemical communication processes that drive FBR outcomes.
Collapse
|
13
|
Xiao L, Tong Z, Chen Y, Pochan DJ, Sabanayagam CR, Jia X. Hyaluronic acid-based hydrogels containing covalently integrated drug depots: implication for controlling inflammation in mechanically stressed tissues. Biomacromolecules 2013; 14:3808-19. [PMID: 24093583 PMCID: PMC3856199 DOI: 10.1021/bm4011276] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Synthetic hydrogels containing covalently integrated soft and deformable drug depots capable of releasing therapeutic molecules in response to mechanical forces are attractive candidates for the treatment of degenerated tissues that are normally load bearing. Herein, radically cross-linkable block copolymer micelles (xBCM) assembled from an amphiphilic block copolymer consisting of hydrophilic poly(acrylic acid) (PAA) partially modified with 2-hydroxyethyl acrylate, and hydrophobic poly(n-butyl acryclate) (PnBA) were employed as the drug depots and the microscopic cross-linkers for the preparation of hyaluronic acid (HA)-based, hydrogels. HA hydrogels containing covalently integrated micelles (HAxBCM) were prepared by radical polymerization of glycidyl methacrylate (GMA)-modified HA (HAGMA) in the presence of xBCMs. When micelles prepared from the parent PAA-b-PnBA without any polymerizable double bonds were used, hydrogels containing physically entrapped micelles (HApBCM) were obtained. The addition of xBCMs to a HAGMA precursor solution accelerated the gelation kinetics and altered the hydrogel mechanical properties. The resultant HAxBCM gels exhibit an elastic modulus of 847 ± 43 Pa and a compressive modulus of 9.2 ± 0.7 kPa. Diffusion analysis of Nile Red (NR)-labeled xBCMs employing fluorescence correlation spectroscopy confirmed the covalent immobilization of xBCMs in HA networks. Covalent integration of dexamethasone (DEX)-loaded xBCMs in HA gels significantly reduced the initial burst release and provided sustained release over a prolonged period. Importantly, DEX release from HAxBCM gels was accelerated by intermittently applied external compression in a strain-dependent manner. Culturing macrophages in the presence of DEX-releasing HAxBCM gels significantly reduced cellular production of inflammatory cytokines. Incorporating mechano-responsive modules in synthetic matrices offers a novel strategy to harvest mechanical stress present in the healing wounds to initiate tissue repair.
Collapse
Affiliation(s)
- Longxi Xiao
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Zhixiang Tong
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Yingchao Chen
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Darrin J. Pochan
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
- Biomedical Engineering Program, University of Delaware, Newark, DE 19716, USA
| | | | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
- Biomedical Engineering Program, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
14
|
Nichols SP, Koh A, Storm WL, Shin JH, Schoenfisch MH. Biocompatible materials for continuous glucose monitoring devices. Chem Rev 2013; 113:2528-49. [PMID: 23387395 PMCID: PMC3624030 DOI: 10.1021/cr300387j] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Scott P. Nichols
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Ahyeon Koh
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Wesley L. Storm
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Jae Ho Shin
- Department of Chemistry, Kwangwoon University, Seoul, Korea
| | - Mark H. Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
15
|
Wang Y, Vaddiraju S, Qiang L, Xu X, Papadimitrakopoulos F, Burgess DJ. Effect of dexamethasone-loaded poly(lactic-co-glycolic acid) microsphere/poly(vinyl alcohol) hydrogel composite coatings on the basic characteristics of implantable glucose sensors. J Diabetes Sci Technol 2012; 6:1445-53. [PMID: 23294792 PMCID: PMC3570887 DOI: 10.1177/193229681200600626] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Hydrogels alone and in combination with microsphere drug delivery systems are being considered as biocompatible coatings for implantable glucose biosensors to prevent/minimize the foreign body response. Previously, our group has demonstrated that continuous release of dexamethasone from poly(lactic-co-glycolic acid) (PLGA) microsphere/poly(vinyl alcohol) (PVA) hydrogel composites can successfully prevent foreign body response at the implantation site. The objective of this study was to investigate the effect of this composite coating on sensor functionality. METHODS The PLGA microsphere/PVA hydrogel coatings were prepared and applied to glucose biosensors. The swelling properties of the composite coatings and their diffusivity to glucose were evaluated as a function of microsphere loading. Sensor linearity, response time, and sensitivity were also evaluated as a function of coating composition. RESULTS The PLGA microsphere/PVA hydrogel composite coating did not compromise sensor linearity (sensors were linear up to 30 mM), which is well beyond the physiological glucose range (2 to 22 mM). The sensor response time did increase in the presence of the coating (from 10 to 19 s); however, this response time was still less than the average reported values. Although the sensitivity of the sensors decreased from 73 to 62 nA/mM glucose when the PLGA microsphere loading in the PVA hydrogel changed from 0 to 100 mg/ml, this reduced sensitivity is acceptable for sensor functionality. The changes in sensor response time and sensitivity were due to changes in glucose permeability as a result of the coatings. The embedded PLGA microspheres reduced the fraction of bulk water present in the hydrogel matrix and consequently reduced glucose diffusion. CONCLUSIONS This study demonstrates that the PLGA microsphere/PVA hydrogel composite coatings allow sufficient glucose diffusion and sensor functionality and therefore may be utilized as a smart coating for implantable glucose biosensors to enhance their in vivo functionality.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| | - Santhisagar Vaddiraju
- Nanomaterials Optoelectronics Laboratory, Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut
- Biorasis Inc., Storrs, Connecticut
| | - Liangliang Qiang
- Nanomaterials Optoelectronics Laboratory, Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut
| | - Xiaoming Xu
- U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Fotios Papadimitrakopoulos
- Nanomaterials Optoelectronics Laboratory, Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut
- Department of Chemistry, University of Connecticut, Storrs, Connecticut
| | - Diane J. Burgess
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
16
|
Kotanen CN, Moussy FG, Carrara S, Guiseppi-Elie A. Implantable enzyme amperometric biosensors. Biosens Bioelectron 2012; 35:14-26. [PMID: 22516142 DOI: 10.1016/j.bios.2012.03.016] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/06/2012] [Accepted: 03/09/2012] [Indexed: 11/26/2022]
Abstract
The implantable enzyme amperometric biosensor continues as the dominant in vivo format for the detection, monitoring and reporting of biochemical analytes related to a wide range of pathologies. Widely used in animal studies, there is increasing emphasis on their use in diabetes care and management, the management of trauma-associated hemorrhage and in critical care monitoring by intensivists in the ICU. These frontier opportunities demand continuous indwelling performance for up to several years, well in excess of the currently approved seven days. This review outlines the many challenges to successful deployment of chronically implantable amperometric enzyme biosensors and emphasizes the emerging technological approaches in their continued development. The foreign body response plays a prominent role in implantable biotransducer failure. Topics considering the approaches to mitigate the inflammatory response, use of biomimetic chemistries, nanostructured topographies, drug eluting constructs, and tissue-to-device interface modulus matching are reviewed. Similarly, factors that influence biotransducer performance such as enzyme stability, substrate interference, mediator selection and calibration are reviewed. For the biosensor system, the opportunities and challenges of integration, guided by footprint requirements, the limitations of mixed signal electronics, and power requirements, has produced three systems approaches. The potential is great. However, integration along the multiple length scales needed to address fundamental issues and integration across the diverse disciplines needed to achieve success of these highly integrated systems, continues to be a challenge in the development and deployment of implantable amperometric enzyme biosensor systems.
Collapse
Affiliation(s)
- Christian N Kotanen
- Center for Bioelectronics, Biosensors and Biochips (C3B), Clemson University Advanced Materials Center, 100 Technology Drive, Anderson, SC 29625, USA; Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC 29634, USA
| | - Francis Gabriel Moussy
- Brunel Institute for Bioengineering, Brunel University, Uxbridge, West London, UB83PH, UK
| | - Sandro Carrara
- Department of Electrical Engineering, École Polytechnique Fédérale de Lausanne (EPFL), C ISIM LSI1 - INF 338 (Bâtiment INF) Station 14 CH-1015 Lausanne, Switzerland
| | - Anthony Guiseppi-Elie
- Center for Bioelectronics, Biosensors and Biochips (C3B), Clemson University Advanced Materials Center, 100 Technology Drive, Anderson, SC 29625, USA; Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC 29634, USA; Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634, USA; ABTECH Scientific, Inc., Biotechnology Research Park, 800 East Leigh Street, Richmond, VA 23219, USA.
| |
Collapse
|
17
|
Guiseppi-Elie A, Dong C, Dinu CZ. Crosslink density of a biomimetic poly(HEMA)-based hydrogel influences growth and proliferation of attachment dependent RMS 13 cells. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm32516k] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Mou X, Lennartz MR, Loegering DJ, Stenken JA. Modulation of the foreign body reaction for implants in the subcutaneous space: microdialysis probes as localized drug delivery/sampling devices. J Diabetes Sci Technol 2011; 5:619-31. [PMID: 21722577 PMCID: PMC3192628 DOI: 10.1177/193229681100500316] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Modulation of the foreign body reaction is considered to be an important step toward creation of implanted sensors with reliable long-term performance. In this work, microdialysis probes were implanted into the subcutaneous space of Sprague-Dawley rats. The probe performance was evaluated by comparing collected endogenous glucose concentrations with internal standard calibration (2-deoxyglucose, antipyrine, and vitamin B12). Probes were tested until failure, which for this work was defined as loss of fluid flow. In order to determine the effect of fibrous capsule formation on probe function, monocyte chemoattractant protein-1/CC chemokine ligand 2 (MCP-1/CCL2) was delivered locally via the probe to increase capsule thickness and dexamethasone 21-phosphate was delivered to reduce capsule thickness. Probes delivering MCP-1 had a capsule that was twice the thickness (500-600 μm) of control probes (200-225 μm) and typically failed 2 days earlier than control probes. Probes delivering dexamethasone 21-phosphate had more fragile capsules and the probes typically failed 2 days later than controls. Unexpectedly, extraction efficiency and collected glucose concentrations exhibited minor differences between groups. This is an interesting result in that the foreign body capsule formation was related to the duration of probe function but did not consistently relate to probe calibration.
Collapse
Affiliation(s)
- Xiaodun Mou
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, USA
| | | | | | | |
Collapse
|
19
|
Helton KL, Ratner BD, Wisniewski NA. Biomechanics of the sensor-tissue interface-effects of motion, pressure, and design on sensor performance and the foreign body response-part I: theoretical framework. J Diabetes Sci Technol 2011; 5:632-46. [PMID: 21722578 PMCID: PMC3192629 DOI: 10.1177/193229681100500317] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The importance of biomechanics in glucose sensor function has been largely overlooked. This article is the first part of a two-part review in which we look beyond commonly recognized chemical biocompatibility to explore the biomechanics of the sensor-tissue interface as an important aspect of continuous glucose sensor biocompatibility. Part I provides a theoretical framework to describe how biomechanical factors such as motion and pressure (typically micromotion and micropressure) give rise to interfacial stresses, which affect tissue physiology around a sensor and, in turn, impact sensor performance. Three main contributors to sensor motion and pressure are explored: applied forces, sensor design, and subject/patient considerations. We describe how acute forces can temporarily impact sensor signal and how chronic forces can alter the foreign body response and inflammation around an implanted sensor, and thus impact sensor performance. The importance of sensor design (e.g., size, shape, modulus, texture) and specific implant location on the tissue response are also explored. In Part II: Examples and Application (a sister publication), examples from the literature are reviewed, and the application of biomechanical concepts to sensor design are described. We believe that adding biomechanical strategies to the arsenal of material compositions, surface modifications, drug elution, and other chemical strategies will lead to improvements in sensor biocompatibility and performance.
Collapse
|