1
|
Park JE, Kim DH. Advanced Immunomodulatory Biomaterials for Therapeutic Applications. Adv Healthc Mater 2024:e2304496. [PMID: 38716543 DOI: 10.1002/adhm.202304496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/15/2024] [Indexed: 05/22/2024]
Abstract
The multifaceted biological defense system modulating complex immune responses against pathogens and foreign materials plays a critical role in tissue homeostasis and disease progression. Recently developed biomaterials that can specifically regulate immune responses, nanoparticles, graphene, and functional hydrogels have contributed to the advancement of tissue engineering as well as disease treatment. The interaction between innate and adaptive immunity, collectively determining immune responses, can be regulated by mechanobiological recognition and adaptation of immune cells to the extracellular microenvironment. Therefore, applying immunomodulation to tissue regeneration and cancer therapy involves manipulating the properties of biomaterials by tailoring their composition in the context of the immune system. This review provides a comprehensive overview of how the physicochemical attributes of biomaterials determine immune responses, focusing on the physical properties that influence innate and adaptive immunity. This review also underscores the critical aspect of biomaterial-based immune engineering for the development of novel therapeutics and emphasizes the importance of understanding the biomaterials-mediated immunological mechanisms and their role in modulating the immune system.
Collapse
Affiliation(s)
- Ji-Eun Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
- Department of Integrative Energy Engineering, College of Engineering, Korea University, Seoul, 02841, Republic of Korea
- Biomedical Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| |
Collapse
|
2
|
Jia B, Zhang B, Li J, Qin J, Huang Y, Huang M, Ming Y, Jiang J, Chen R, Xiao Y, Du J. Emerging polymeric materials for treatment of oral diseases: design strategy towards a unique oral environment. Chem Soc Rev 2024; 53:3273-3301. [PMID: 38507263 DOI: 10.1039/d3cs01039b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Oral diseases are prevalent but challenging diseases owing to the highly movable and wet, microbial and inflammatory environment. Polymeric materials are regarded as one of the most promising biomaterials due to their good compatibility, facile preparation, and flexible design to obtain multifunctionality. Therefore, a variety of strategies have been employed to develop materials with improved therapeutic efficacy by overcoming physicobiological barriers in oral diseases. In this review, we summarize the design strategies of polymeric biomaterials for the treatment of oral diseases. First, we present the unique oral environment including highly movable and wet, microbial and inflammatory environment, which hinders the effective treatment of oral diseases. Second, a series of strategies for designing polymeric materials towards such a unique oral environment are highlighted. For example, multifunctional polymeric materials are armed with wet-adhesive, antimicrobial, and anti-inflammatory functions through advanced chemistry and nanotechnology to effectively treat oral diseases. These are achieved by designing wet-adhesive polymers modified with hydroxy, amine, quinone, and aldehyde groups to provide strong wet-adhesion through hydrogen and covalent bonding, and electrostatic and hydrophobic interactions, by developing antimicrobial polymers including cationic polymers, antimicrobial peptides, and antibiotic-conjugated polymers, and by synthesizing anti-inflammatory polymers with phenolic hydroxy and cysteine groups that function as immunomodulators and electron donors to reactive oxygen species to reduce inflammation. Third, various delivery systems with strong wet-adhesion and enhanced mucosa and biofilm penetration capabilities, such as nanoparticles, hydrogels, patches, and microneedles, are constructed for delivery of antibiotics, immunomodulators, and antioxidants to achieve therapeutic efficacy. Finally, we provide insights into challenges and future development of polymeric materials for oral diseases with promise for clinical translation.
Collapse
Affiliation(s)
- Bo Jia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong, China
| | - Beibei Zhang
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianhua Li
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jinlong Qin
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Yisheng Huang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong, China
| | - Mingshu Huang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong, China
| | - Yue Ming
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong, China
| | - Jingjing Jiang
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Ran Chen
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Yufen Xiao
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianzhong Du
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
3
|
Mulder PPG, Hooijmans CR, Vlig M, Middelkoop E, Joosten I, Koenen HJPM, Boekema BKHL. Kinetics of Inflammatory Mediators in the Immune Response to Burn Injury: Systematic Review and Meta-Analysis of Animal Studies. J Invest Dermatol 2024; 144:669-696.e10. [PMID: 37806443 DOI: 10.1016/j.jid.2023.09.269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/31/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023]
Abstract
Burns are often accompanied by a dysfunctional immune response, which can lead to systemic inflammation, shock, and excessive scarring. The objective of this study was to provide insight into inflammatory pathways associated with burn-related complications. Because detailed information on the various inflammatory mediators is scattered over individual studies, we systematically reviewed animal experimental data for all reported inflammatory mediators. Meta-analyses of 352 studies revealed a strong increase in cytokines, chemokines, and growth factors, particularly 19 mediators in blood and 12 in burn tissue. Temporal kinetics showed long-lasting surges of proinflammatory cytokines in blood and burn tissue. Significant time-dependent effects were seen for IL-1β, IL-6, TGF-β1, and CCL2. The response of anti-inflammatory mediators was limited. Burn technique had a profound impact on systemic response levels. Large burn size and scalds further increased systemic, but not local inflammation. Animal characteristics greatly affected inflammation, for example, IL-1β, IL-6, and TNF-α levels were highest in young, male rats. Time-dependent effects and dissimilarities in response demonstrate the importance of appropriate study design. Collectively, this review presents a general overview of the burn-induced immune response exposing inflammatory pathways that could be targeted through immunotherapy for burn patients and provides guidance for experimental set-ups to advance burn research.
Collapse
Affiliation(s)
- Patrick P G Mulder
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Carlijn R Hooijmans
- Meta-Research Team, Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel Vlig
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands
| | - Esther Middelkoop
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Tissue Function and Regeneration, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Irma Joosten
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hans J P M Koenen
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bouke K H L Boekema
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Lewicki S, Zwoliński M, Hovagimyan A, Stelmasiak M, Szarpak Ł, Lewicka A, Pojda Z, Szymański Ł. Chitosan-Based Dressing as a Sustained Delivery System for Bioactive Cytokines. Int J Mol Sci 2023; 25:30. [PMID: 38203201 PMCID: PMC10778940 DOI: 10.3390/ijms25010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
Wounds represent a common occurrence in human life. Consequently, scientific investigations are underway to advance wound healing methodologies, with a notable focus on dressings imbued with biologically active compounds capable of orchestrating the wound microenvironment through meticulously regulated release mechanisms. Among these bioactive agents are cytokines, which, when administered to the wound milieu without appropriate protection, undergo rapid loss of their functional attributes. Within the context of this research, we present a method for fabricating dressings enriched with G-CSF (granulocyte colony-stimulating factor) or GM-CSF (granulocyte-macrophage colony-stimulating factor), showcasing both biological activity and protracted release dynamics. Based on Ligasano, a commercial polyurethane foam dressing, and chitosan crosslinked with TPP (sodium tripolyphosphate), these dressings are noncytotoxic and enable cytokine incorporation. The recovery of cytokines from dressings varied based on the dressing preparation and storage techniques (without modification, drying, freeze-drying followed by storage at 4 °C or freeze-drying followed by storage at 24 °C) and cytokine type. Generally, drying reduced cytokine levels and their bioactivity, especially with G-CSF. The recovery of G-CSF from unmodified dressings was lower compared to GM-CSF (60% vs. 80%). In summary, our freeze-drying approach enables the storage of G-CSF or GM-CSF enriched dressings at 24 °C with minimal cytokine loss, preserving their biological activity and thus enhancing future clinical availability.
Collapse
Affiliation(s)
- Sławomir Lewicki
- Institute of Outcomes Research, Maria Sklodowska-Curie Medical Academy, 03-411 Warsaw, Poland
| | - Michał Zwoliński
- Faculty of Medical Sciences and Health Sciences, Kazimierz Pulaski University of Radom, 26-600 Radom, Poland; (M.Z.); (A.H.); (M.S.)
| | - Adrian Hovagimyan
- Faculty of Medical Sciences and Health Sciences, Kazimierz Pulaski University of Radom, 26-600 Radom, Poland; (M.Z.); (A.H.); (M.S.)
| | - Marta Stelmasiak
- Faculty of Medical Sciences and Health Sciences, Kazimierz Pulaski University of Radom, 26-600 Radom, Poland; (M.Z.); (A.H.); (M.S.)
| | - Łukasz Szarpak
- Henry JN Taub Department of Emergency Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Clinical Research and Development, LUX MED Group, 02-676 Warsaw, Poland
| | - Aneta Lewicka
- Military Centre of Preventive Medicine, 05-100 Nowy Dwór Mazowiecki, Poland;
| | - Zygmunt Pojda
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
| | - Łukasz Szymański
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Magdalenka, Poland
| |
Collapse
|
5
|
Kotla NG, Mohd Isa IL, Larrañaga A, Maddiboyina B, Swamy SK, Sivaraman G, Vemula PK. Hyaluronic Acid-Based Bioconjugate Systems, Scaffolds, and Their Therapeutic Potential. Adv Healthc Mater 2023; 12:e2203104. [PMID: 36972409 DOI: 10.1002/adhm.202203104] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/04/2023] [Indexed: 03/29/2023]
Abstract
In recent years, the development of hyaluronic acid or hyaluronan (HA) based scaffolds, medical devices, bioconjugate systems have expanded into a broad range of research and clinical applications. Research findings over the last two decades suggest that the abundance of HA in most mammalian tissues with distinctive biological roles and chemical simplicity for modifications have made it an attractive material with a rapidly growing global market. Besides its use as native forms, HA has received much interest on so-called "HA-bioconjugates" and "modified-HA systems". In this review, the importance of chemical modifications of HA, underlying rationale approaches, and various advancements of bioconjugate derivatives with their potential physicochemical, and pharmacological advantages are summarized. This review also highlights the current and emerging HA-based conjugates of small molecules, macromolecules, crosslinked systems, and surface coating strategies with their biological implications, including their potentials and key challenges discussed in detail.
Collapse
Affiliation(s)
- Niranjan G Kotla
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, 560065, India
| | - Isma Liza Mohd Isa
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, 56000, Malaysia
| | - Aitor Larrañaga
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Faculty of Engineering, University of the Basque Country (UPV/EHU), Bilbao, 48013, Spain
| | - Balaji Maddiboyina
- Department of Medical Writing, Freyr Solutions, Hyderabad, Telangana, 500081, India
| | - Samantha K Swamy
- Thrombosis Research Center (TREC), Department of Clinical Medicine, UiT-The Arctic University of Norway, Tromsø, 9037, Norway
| | - Gandhi Sivaraman
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram, Tamil Nadu, 624302, India
| | - Praveen K Vemula
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, 560065, India
| |
Collapse
|
6
|
Dixit K, Bora H, Lakshmi Parimi J, Mukherjee G, Dhara S. Biomaterial mediated immunomodulation: An interplay of material environment interaction for ameliorating wound regeneration. J Biomater Appl 2023; 37:1509-1528. [PMID: 37069479 DOI: 10.1177/08853282231156484] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Chronic wounds are the outcome of an imbalanced inflammatory response caused by sustenance of immune microenvironment. In this context, tissue engineered graft played great role in healing wounds but faced difficulty in scar remodelling, immune rejection and poor vascularization. All the limitations faced are somewhere linked with the immune cells involved in healing. In this consideration, immunomodulatory biomaterials bridge a large gap with the delivery of modulating factors for triggering key inflammatory cells responsible towards interplay in the wound micro-environment. Inherent physico-chemical properties of biomaterials substantially determine the nature of cell-materials interaction thereby facilitating differential cytokine gradient involved in activation or suppression of inflammatory signalling pathways, and followed by surface marker expression. This review aims to systematically describe the interplay of immune cells involved in different phases in the wound microenvironment and biomaterials. Additionally, it also focuses on modulating innate immune cell responses in the context of triggering the halted phase of the wound healing, i.e., inflammatory phase. The various strategies are highlighted for modulation of wound microenvironment towards wound regeneration including stem cells, cytokines, growth factors, vitamins, and anti-inflammatory agents to induce interactive ability of biomaterials with immune cells. The last section focuses on prospective approaches and current potential strategies for wound regeneration. This includes the development of different models to bridge the gap between mouse models and human patients. Emerging new tools to study inflammatory response owing to biomaterials and novel strategies for modulation of monocyte and macrophage behaviour in the wound environment are also discussed.
Collapse
Affiliation(s)
- Krishna Dixit
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
- Immunology and Inflammation Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Hema Bora
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Jhansi Lakshmi Parimi
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Gayatri Mukherjee
- Immunology and Inflammation Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Santanu Dhara
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
7
|
Palackic A, Jay JW, Duggan RP, Branski LK, Wolf SE, Ansari N, El Ayadi A. Therapeutic Strategies to Reduce Burn Wound Conversion. Medicina (B Aires) 2022; 58:medicina58070922. [PMID: 35888643 PMCID: PMC9315582 DOI: 10.3390/medicina58070922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/02/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
Burn wound conversion refers to the phenomenon whereby superficial burns that appear to retain the ability to spontaneously heal, convert later into deeper wounds in need of excision. While no current treatment can definitively stop burn wound conversion, attempts to slow tissue damage remain unsatisfactory, justifying the need for new therapeutic interventions. To attenuate burn wound conversion, various studies have targeted at least one of the molecular mechanisms underlying burn wound conversion, including ischemia, inflammation, apoptosis, autophagy, generation of reactive oxygen species, hypothermia, and wound rehydration. However, therapeutic strategies that can target various mechanisms involved in burn wound conversion are still lacking. This review highlights the pathophysiology of burn wound conversion and focuses on recent studies that have turned to the novel use of biologics such as mesenchymal stem cells, biomaterials, and immune regulators to mitigate wound conversion. Future research should investigate mechanistic pathways, side effects, safety, and efficacy of these different treatments before translation into clinical studies.
Collapse
Affiliation(s)
- Alen Palackic
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.P.); (J.W.J.); (R.P.D.); (L.K.B.); (S.E.W.)
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, A-8036 Graz, Austria
| | - Jayson W. Jay
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.P.); (J.W.J.); (R.P.D.); (L.K.B.); (S.E.W.)
| | - Robert P. Duggan
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.P.); (J.W.J.); (R.P.D.); (L.K.B.); (S.E.W.)
| | - Ludwik K. Branski
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.P.); (J.W.J.); (R.P.D.); (L.K.B.); (S.E.W.)
| | - Steven E. Wolf
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.P.); (J.W.J.); (R.P.D.); (L.K.B.); (S.E.W.)
| | - Naseem Ansari
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Amina El Ayadi
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.P.); (J.W.J.); (R.P.D.); (L.K.B.); (S.E.W.)
- Correspondence:
| |
Collapse
|
8
|
Weiss F, Agua K, Weinzierl A, Schuldt A, Egana JT, Schlitter AM, Steiger K, Machens HG, Harder Y, Schmauss D. A modified burn comb model with a new dorsal frame that allows for local treatment in partial-thickness burns in rats. J Burn Care Res 2022; 43:1329-1336. [PMID: 35259276 DOI: 10.1093/jbcr/irac032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Burn wound progression (BWP) leads to vertical and horizontal injury extension. The "burn comb model" is commonly used, in which a full-thickness burn with intercalated unburned interspaces is induced. We aimed to establish an injury progressing to the intermediate dermis, allowing repeated wound evaluation. Furthermore, we present a new dorsal frame that enables topical drug application. 8 burn field and 6 interspaces were induced on each of 17 rats' dorsa with a 10-second burn comb application. A developed 8-panel aluminum frame was sutured onto 12 animals and combined with an Elizabethan collar. Over 14 days, macroscopic & histologic wound assessment and Laser-Speckle-Contrast-Imaging (LSCI) were performed besides evaluation of frame durability. The 10-second group was compared to 9 animals injured with a full-thickness 60-second model. Frame durability was sufficient up to day 4 with 8 of 12 frames (67%) still mounted. The 60-second burn led to an increased extent of interspace necrosis (p=0.002). The extent of necrosis increased between days 1 and 2 (p=0.001), following the 10-second burn (24%±SEM 8% to 40%±SEM 6%) and the 60-second burn (57%±SEM 6% to 76%±SEM 4%). Interspace LSCI perfusion was higher than burn field perfusion. It earlier reached baseline levels in the 10-second group (on day 1: 142%±SEM 9% vs. 60%±SEM 5%; p<0.001). Within day 1, the 10-second burn showed histological progression to the intermediate dermis, both in interspaces and burn fields. This burn comb model with its newly developed fixed dorsal frame allows investigation of topical agents to treat BWP in partial-thickness burns.
Collapse
Affiliation(s)
- Fabian Weiss
- Department of Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Kariem Agua
- Department of Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Andrea Weinzierl
- Department of Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.,Department of Plastic, Reconstructive and Aesthetic Surgery, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
| | - Anna Schuldt
- Department of Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Jose Tomas Egana
- Department of Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.,Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Anna Melissa Schlitter
- Institute of Pathology, School of Medicine, Technische Universität München, Munich, Germany
| | - Katja Steiger
- Institute of Pathology, School of Medicine, Technische Universität München, Munich, Germany
| | - Hans-Günther Machens
- Department of Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Yves Harder
- Department of Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.,Department of Plastic, Reconstructive and Aesthetic Surgery, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland
| | - Daniel Schmauss
- Department of Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.,Department of Plastic, Reconstructive and Aesthetic Surgery, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland
| |
Collapse
|
9
|
Li S, Ma Y, Liu Z, Zhao X, Li L, Wu X. Effect of Thymosin β4 on Deep Second-Degree Scald Wound Healing in Rats via Wnt/ β-Catenin Pathway. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
<sec> <title>Objective:</title> The purpose of this research is to explore the influences of thymosin β4 (Tβ4) in deepsecond-degree scald wound healing of rat skin and its relationship with Wnt/β-catenin pathway. </sec>
<sec> <title>Methods:</title> Deep second-degree scalded model rats were prepared and divided into normal saline (NS) treatment group, Tβ4 treatment group and FH535 inhibitor group. Then, the concentrations of inflammatory factors in the rats were monitored
via adopting the correlated TNF-α and IL-1β ELISA kits. In the meantime, the wound healing rate was analyzed via photography. Subsequently, the qRTPCR procedure was wielded to determine Wnt1 and β-catenin expression in wound tissues, and the degree of wound
tissue injury was examined via hematoxylin and eosin (HE) staining. Finally, Western blotting (WB) was adopted to assess Wnt/β-catenin pathway-associated protein levels. </sec> <sec> <title>Results:</title> Releasing amount of TNF-α
and IL-1β were conspicuously up-regulated after scalding (p <0.01), and Wnt1 and β-catenin expression at molecular transcription level was also significantly raised (p < 0.01). Besides, treatment with 18 μg of Tβ4 significantly
increased the wound healing rate of scalded rats (p < 0.01). In addition, Tβ4 treatment significantly promoted wound healing (p < 0.01) and increased the Wnt1 and β-catenin expression levels (p < 0.01). Moreover, FH535 significantly restrained
the Wnt/β-catenin pathway-correlated protein levels (p < 0.01) and wound healing. </sec> <sec> <title>Conclusion:</title> Tβ4 can promote scald wound healing in rats and may play a role via evoking Wnt/β-catenin
pathway activation. </sec>
Collapse
Affiliation(s)
- Shusong Li
- Department of Burn Plastic Surgery, Affiliated Hospital of Chengde Medical College, Chengde City, Hebei, 067000, China
| | - Ying Ma
- Department of Nephrology Hemodialysis, Affiliated Hospital of Chengde Medical College, Chengde City, Hebei, 067000, China
| | - Zhuoran Liu
- Fengning County Hospital, Chengde City, Hebei, 067000, China
| | - Xiaoyu Zhao
- Department of Burn Plastic Surgery, Affiliated Hospital of Chengde Medical College, Chengde City, Hebei, 067000, China
| | - Li Li
- Department of Burn Plastic Surgery, Affiliated Hospital of Chengde Medical College, Chengde City, Hebei, 067000, China
| | - Xiaoming Wu
- Department of Burn Plastic Surgery, Affiliated Hospital of Chengde Medical College, Chengde City, Hebei, 067000, China
| |
Collapse
|
10
|
Rescuing the negative effects of aging in burn wounds using tacrolimus applied via microcapillary hydrogel dressing. Burns 2022; 48:1885-1892. [DOI: 10.1016/j.burns.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/25/2022] [Accepted: 02/03/2022] [Indexed: 11/19/2022]
|
11
|
Modulation of the Immune System Promotes Tissue Regeneration. Mol Biotechnol 2022; 64:599-610. [PMID: 35022994 DOI: 10.1007/s12033-021-00430-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/22/2021] [Indexed: 10/19/2022]
Abstract
The immune system plays an essential role in the angiogenesis, repair, and regeneration of damaged tissues. Therefore, the design of scaffolds that manipulate immune cells and factors in such a way that could accelerate the repair of damaged tissues, following implantation, is one of the main goals of regenerative medicine. However, before manipulating the immune system, the function of the various components of the immune system during the repair process should be well understood and the fabrication conditions of the manipulated scaffolds should be brought closer to the physiological state of the body. In this article, we first review the studies aimed at the role of distinct immune cell populations in angiogenesis and support of damaged tissue repair. In the second part, we discuss the use of strategies that promote tissue regeneration by modulating the immune system. Given that various studies have shown an increase in tissue repair rate with the addition of stem cells and growth factors to the scaffolds, and regarding the limited resources of stem cells, we suggest the design of scaffolds that are capable to develop repair of damaged tissue by manipulating the immune system and create an alternative for repair strategies that use stem cells or growth factors.
Collapse
|
12
|
Kharaziha M, Baidya A, Annabi N. Rational Design of Immunomodulatory Hydrogels for Chronic Wound Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100176. [PMID: 34251690 PMCID: PMC8489436 DOI: 10.1002/adma.202100176] [Citation(s) in RCA: 283] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/03/2021] [Indexed: 05/03/2023]
Abstract
With all the advances in tissue engineering for construction of fully functional skin tissue, complete regeneration of chronic wounds is still challenging. Since immune reaction to the tissue damage is critical in regulating both the quality and duration of chronic wound healing cascade, strategies to modulate the immune system are of importance. Generally, in response to an injury, macrophages switch from pro-inflammatory to an anti-inflammatory phenotype. Therefore, controlling macrophages' polarization has become an appealing approach in regenerative medicine. Recently, hydrogels-based constructs, incorporated with various cellular and molecular signals, have been developed and utilized to adjust immune cell functions in various stages of wound healing. Here, the current state of knowledge on immune cell functions during skin tissue regeneration is first discussed. Recent advanced technologies used to design immunomodulatory hydrogels for controlling macrophages' polarization are then summarized. Rational design of hydrogels for providing controlled immune stimulation via hydrogel chemistry and surface modification, as well as incorporation of cell and molecules, are also dicussed. In addition, the effects of hydrogels' properties on immunogenic features and the wound healing process are summarized. Finally, future directions and upcoming research strategies to control immune responses during chronic wound healing are highlighted.
Collapse
Affiliation(s)
- Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Avijit Baidya
- Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA, 90095, USA
| | - Nasim Annabi
- Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
13
|
Shanley LC, Mahon OR, Kelly DJ, Dunne A. Harnessing the innate and adaptive immune system for tissue repair and regeneration: Considering more than macrophages. Acta Biomater 2021; 133:208-221. [PMID: 33657453 DOI: 10.1016/j.actbio.2021.02.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/05/2021] [Accepted: 02/15/2021] [Indexed: 02/08/2023]
Abstract
Tissue healing and regeneration is a complex, choreographed, spatiotemporal process involving a plethora of cell types, the activity of which is stringently regulated in order for effective tissue repair to ensue post injury. A number of globally prevalent conditions such as heart disease, organ failure, and severe musculoskeletal disorders require new therapeutic strategies to repair damaged or diseased tissue, particularly given an ageing population in which obesity, diabetes, and consequent tissue defects have reached epidemic proportions. This is further compounded by the lack of intrinsic healing and poor regenerative capacity of certain adult tissues. While vast progress has been made in the last decade regarding tissue regenerative strategies to direct self-healing, for example, through implantation of tissue engineered scaffolds, several challenges have hampered the clinical application of these technologies. Control of the immune response is growing as an attractive approach in regenerative medicine and it is becoming increasingly apparent that an in depth understanding of the interplay between cells of the immune system and tissue specific progenitor cells is of paramount importance. Furthermore, the integration of immunology and bioengineering promises to elevate the efficacy of biomaterial-based tissue repair and regeneration. In this review, we highlight the role played by individual immune cell subsets in tissue repair processes and describe new approaches that are being taken to direct appropriate healing outcomes via biomaterial mediated targeting of immune cell activity. STATEMENT OF SIGNIFICANCE: It is becoming increasingly apparent that controlling the immune response is as an attractive approach in regenerative medicine. Here, we propose that an in-depth understanding of immune system and tissue specific progenitor cell interactions may reveal mechanisms by which tissue healing and regeneration takes place, in addition to identifying novel therapeutic targets that could be used to enhance the tissue repair process. To date, most reviews have focused solely on macrophage subsets. This manuscript details the role of other innate and adaptive immune cells such as innate lymphoid cells (ILCs), natural killer (NK) cells and γδT cells (in addition to macrophages) in tissue healing. We also describe new approaches that are being taken to direct appropriate healing outcomes via biomaterial mediated cytokine and drug delivery.
Collapse
|
14
|
El Ayadi A, Salsbury JR, Enkhbaatar P, Herndon DN, Ansari NH. Metal chelation attenuates oxidative stress, inflammation, and vertical burn progression in a porcine brass comb burn model. Redox Biol 2021; 45:102034. [PMID: 34139550 PMCID: PMC8218731 DOI: 10.1016/j.redox.2021.102034] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/18/2021] [Accepted: 06/03/2021] [Indexed: 12/29/2022] Open
Abstract
Oxidative stress and inflammation may mediate cellular damage and tissue destruction as the burn wound continues to progress after the abatement of the initial insult. Since iron and calcium ions play key roles in oxidative stress, this study tested whether topical application of a metal chelator proprietary lotion (Livionex Formulation (LF) lotion), that contains disodium EDTA as a metal chelator and methyl sulfonyl methane (MSM) as a permeability enhancer, would prevent progression or reduce burn wound severity in a porcine model. We have reported earlier that in a rat burn model, LF lotion reduces thermal injury progression. Here, we used the porcine brass comb burn model that closely mimics the human condition for contact burns and applied LF lotion every 8 h starting 15 min after the injury. We found that LF lotion reduces the depth of cell death as assessed by TUNEL staining and blood vessel blockage in the treated burn sites and interspaces. The protein expression of pro-inflammatory markers IL-6, TNF-a, and TNFα Converting Enzyme (TACE), and lipid aldehyde production (protein-HNE) was reduced with LF treatment. LF lotion reversed the burn-induced decrease in the aldehyde dehydrogenase (ALDH-1) expression in the burn sites and interspaces. These data show that a topically applied EDTA-containing lotion protects both vertical and horizontal burn progression when applied after thermal injury. Curbing burn wound conversion and halting the progression of second partial burn to third-degree full-thickness burn remains challenging when it comes to burn treatment strategies during the acute phase. Burn wound conversion can be reduced with targeted treatments to attenuate the oxidative and inflammatory response in the immediate aftermath of the injury. Our studies suggest that LF lotion could be such a targeted treatment.
Collapse
Affiliation(s)
- Amina El Ayadi
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, 77555-0647, USA.
| | - John R Salsbury
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, 77555-0647, USA
| | - Perenlei Enkhbaatar
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, 77555-0647, USA
| | - David N Herndon
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, 77555-0647, USA
| | - Naseem H Ansari
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555-0647, USA
| |
Collapse
|
15
|
Tejeda G, Ciciriello AJ, Dumont CM. Biomaterial Strategies to Bolster Neural Stem Cell-Mediated Repair of the Central Nervous System. Cells Tissues Organs 2021; 211:655-669. [PMID: 34120118 DOI: 10.1159/000515351] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/12/2021] [Indexed: 01/25/2023] Open
Abstract
Stem cell therapies have the potential to not only repair, but to regenerate tissue of the central nervous system (CNS). Recent studies demonstrate that transplanted stem cells can differentiate into neurons and integrate with the intact circuitry after traumatic injury. Unfortunately, the positive findings described in rodent models have not been replicated in clinical trials, where the burden to maintain the cell viability necessary for tissue repair becomes more challenging. Low transplant survival remains the greatest barrier to stem cell-mediated repair of the CNS, often with fewer than 1-2% of the transplanted cells remaining after 1 week. Strategic transplantation parameters, such as injection location, cell concentration, and transplant timing achieve only modest improvements in stem cell transplant survival and appear inconsistent across studies. Biomaterials provide researchers with a means to significantly improve stem cell transplant survival through two mechanisms: (1) a vehicle to deliver and protect the stem cells and (2) a substrate to control the cytotoxic injury environment. These biomaterial strategies can alleviate cell death associated with delivery to the injury and can be used to limit cell death after transplantation by limiting cell exposure to cytotoxic signals. Moreover, it is likely that control of the injury environment with biomaterials will lead to a more reliable support for transplanted cell populations. This review will highlight the challenges associated with cell delivery in the CNS and the advances in biomaterial development and deployment for stem cell therapies necessary to bolster stem cell-mediated repair.
Collapse
Affiliation(s)
- Giancarlo Tejeda
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, USA.,Biomedical Nanotechnology Institute at the University of Miami (BioNIUM), University of Miami, Miami, Florida, USA
| | - Andrew J Ciciriello
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, USA.,Biomedical Nanotechnology Institute at the University of Miami (BioNIUM), University of Miami, Miami, Florida, USA
| | - Courtney M Dumont
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, USA.,Biomedical Nanotechnology Institute at the University of Miami (BioNIUM), University of Miami, Miami, Florida, USA
| |
Collapse
|
16
|
Biotherapeutic-loaded injectable hydrogels as a synergistic strategy to support myocardial repair after myocardial infarction. J Control Release 2021; 335:216-236. [PMID: 34022323 DOI: 10.1016/j.jconrel.2021.05.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022]
Abstract
Myocardial infarction (MI) has been considered as the leading cause of cardiovascular-related deaths worldwide. Although traditional therapeutic agents including various bioactive species such as growth factors, stem cells, and nucleic acids have demonstrated somewhat usefulness for the restoration of cardiac functions, the therapeutic efficiency remains unsatisfactory most likely due to the off-target-associated side effects and low localized retention of the used therapeutic agents in the infarcted myocardium, which constitutes a substantial barrier for the effective treatment of MI. Injectable hydrogels are regarded as a minimally invasive technology that can overcome the clinical and surgical limitations of traditional stenting by a modulated sol-gel transition and localized transport of a variety of encapsulated cargoes, leading to enhanced therapeutic efficiency and improved patient comfort and compliance. However, the design of injectable hydrogels for myocardial repair and the mechanism of action of bioactive substance-loaded hydrogels for MI repair remain unclear. To elucidate these points, we summarized the recent progresses made on the use of injectable hydrogels for encapsulation of various therapeutic substances for MI treatment with an emphasis on the mechanism of action of hydrogel systems for myocardial repair. Specifically, the pathogenesis of MI and the rational design of injectable hydrogels for myocardial repair were presented. Next, the mechanisms of various biotherapeutic substance-loaded injectable hydrogels for myocardial repair was discussed. Finally, the potential challenges and future prospects for the use of injectable hydrogels for MI treatment were proposed for the purpose of drawing theoretical guidance on the development of novel therapeutic strategies for efficient treatment of MI.
Collapse
|
17
|
Meng Q, Tian R, Long H, Wu X, Lai J, Zharkova O, Wang J, Chen X, Rao L. Capturing Cytokines with Advanced Materials: A Potential Strategy to Tackle COVID-19 Cytokine Storm. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100012. [PMID: 33837596 PMCID: PMC8250356 DOI: 10.1002/adma.202100012] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/21/2021] [Indexed: 05/06/2023]
Abstract
The COVID-19 pandemic, induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused great impact on the global economy and people's daily life. In the clinic, most patients with COVID-19 show none or mild symptoms, while approximately 20% of them develop severe pneumonia, multiple organ failure, or septic shock due to infection-induced cytokine release syndrome (the so-called "cytokine storm"). Neutralizing antibodies targeting inflammatory cytokines may potentially curb immunopathology caused by COVID-19; however, the complexity of cytokine interactions and the multiplicity of cytokine targets make attenuating the cytokine storm challenging. Nonspecific in vivo biodistribution and dose-limiting side effects further limit the broad application of those free antibodies. Recent advances in biomaterials and nanotechnology have offered many promising opportunities for infectious and inflammatory diseases. Here, potential mechanisms of COVID-19 cytokine storm are first discussed, and relevant therapeutic strategies and ongoing clinical trials are then reviewed. Furthermore, recent research involving emerging biomaterials for improving antibody-based and broad-spectrum cytokine neutralization is summarized. It is anticipated that this work will provide insights on the development of novel therapeutics toward efficacious management of COVID-19 cytokine storm and other inflammatory diseases.
Collapse
Affiliation(s)
- Qian‐Fang Meng
- Institute of Biomedical Health Technology and EngineeringShenzhen Bay LaboratoryShenzhen518132China
- School of Physics and TechnologyWuhan UniversityWuhan430072China
| | - Rui Tian
- State Key Laboratory of Molecular Vaccinology and Molecular DiagnosticsCenter for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
| | - Haiyi Long
- Institute of Biomedical Health Technology and EngineeringShenzhen Bay LaboratoryShenzhen518132China
- Department of Medical UltrasoundThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhou510080China
| | - Xianjia Wu
- Institute of Biomedical Health Technology and EngineeringShenzhen Bay LaboratoryShenzhen518132China
- School of Physics and TechnologyWuhan UniversityWuhan430072China
| | - Jialin Lai
- Institute of Biomedical Health Technology and EngineeringShenzhen Bay LaboratoryShenzhen518132China
| | - Olga Zharkova
- Department of Surgery and Cardiovascular Research InstituteYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
| | - Jiong‐Wei Wang
- Department of Surgery and Cardiovascular Research InstituteYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic RadiologyChemical and Biomolecular Engineeringand Biomedical EngineeringYong Loo Lin School of Medicine and Faculty of EngineeringNational University of SingaporeSingapore117597Singapore
| | - Lang Rao
- Institute of Biomedical Health Technology and EngineeringShenzhen Bay LaboratoryShenzhen518132China
| |
Collapse
|
18
|
Mizuno Y, Taguchi T. Anti-Inflammatory and Tissue Adhesion Properties of an α-Linolenic Acid-Modified Gelatin-Based In Situ Hydrogel. ACS APPLIED BIO MATERIALS 2020; 3:6204-6213. [PMID: 35021753 DOI: 10.1021/acsabm.0c00737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Poly unsaturated fatty acids (PUFAs)-natural chemicals derived from fish and nuts-have anti-inflammatory and antioxidative properties that are attributed to the inhibition of inflammatory pathways and the radical scavenging activity of their double bonds. In this study, Alaska pollock-derived gelatin (ApGltn), which has a low sol-gel transition temperature, was modified with α-linolenic acid (ALA) to obtain ALA-ApGltn, which was subsequently cross-linked to give a hydrogel (ALA-gel). Although the elastic modulus of ALA-gel and nonmodified ApGltn gel (Org-gel) was almost the same, ALA-gel exhibited a higher tan δ as well as a lower swelling ratio and enzymatic degradation rate than Org-gel. Moreover, ALA-gel showed enhanced tissue adhesive strength compared with a commercial fibrin adhesive. The concentration of a tumor necrosis factor (TNF)-α secreted from macrophage-like cells and the intracellular mitochondrial activity indicated that ALA-ApGltn exerted anti-inflammatory effects and maintained cell viability compared with the higher toxicity nonconjugated ALA. In addition, ALA-gel demonstrated suppressed formation of lamellipodia and secretion of TNF-α. ALA-gel therefore has potential as an adhesive biomaterial for wound sealing and treating burn injuries.
Collapse
Affiliation(s)
- Yosuke Mizuno
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan.,Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Tetsushi Taguchi
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan.,Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
19
|
Wardhana A, Basuki A, Aurora L, Marsigit J. Comprehensive perception of burn conversion: a literature review. ANNALS OF BURNS AND FIRE DISASTERS 2020; 33:89-96. [PMID: 32913427 PMCID: PMC7452607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/10/2020] [Indexed: 06/11/2023]
Abstract
Burn conversion is the conversion of stasis zone into both greater burn area and burn depth. It may hamper the patient's condition since morbidity and mortality are expected to be higher with the increase of burn size. To gain a comprehensive perception of burn conversion, this study aims to collect the latest updates regarding therapy, diagnosis, etiology and prognosis. A literature search was carried out on online databases, namely PubMed, SCOPUS and PROQUEST. The keywords "Burns AND (Conversion OR Progression OR Expansion)" were formulated. The inclusion and exclusion criteria were applied. Twenty-six articles were found, which were divided into diagnosis of burn conversion (11%), etiology of burn conversion (8%), prognosis of burn conversion (0%), and therapy of burn conversion (81%). All of the research was performed on animals. One of the best tools to diagnose burn conversion was the forwardlooking infrared (FLIR) imaging, having sensitivity up to 96% and specificity up to 100% to predict scar depth ≥3 mm. The main etiology was ischemia, reactive oxygen species and inflammation. Most of the research regarding therapy showed benefit in preventing burn conversion. However, no side effects were investigated and not all of the research was statistically significant. More research on burn conversion prognosis and treatment side effects should be performed. Further research involving trials in humans should be conducted, since animal and human trials may differ.
Collapse
Affiliation(s)
- A. Wardhana
- Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - A. Basuki
- Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - L. Aurora
- Hermina Sukabumi Hospital, Sukabumi, West Java, Indonesia
| | - J. Marsigit
- Kramat 128 Hospital, Central Jakarta, Jakarta, Indonesia
| |
Collapse
|
20
|
Iacovelli NA, Torrente Y, Ciuffreda A, Guardamagna VA, Gentili M, Giacomelli L, Sacerdote P. Topical treatment of radiation-induced dermatitis: current issues and potential solutions. Drugs Context 2020; 9:dic-2020-4-7. [PMID: 32587626 PMCID: PMC7295106 DOI: 10.7573/dic.2020-4-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 02/08/2023] Open
Abstract
Approximately 95% of patients receiving radiotherapy (RT) will ultimately develop radiation-induced dermatitis (RID) during or after the course of treatment, with major consequences on quality of life and treatment outcomes. This paper reviews the pathophysiology of RID and currently used topical products for the prevention and treatment of RID. Although there is no consensus on the appropriate management, recent evidence suggests that the use of topical products supports to protect and promote tissue repair in patients with RID. Basic recommendations include advice to wear loose clothing, using electric razors if necessary, and avoiding cosmetic products, sun exposure or extreme temperatures. Based on mechanisms involved and on the clinical characteristics of oncological patients, the profile of the ideal topical product for addressing RID can be designed; it should have limited risk of adverse events, systemic adsorption and drug–drug interactions, should be characterized by multiple clinical activities, with a special focus on localized pain, and should have a careful formulation as some vehicles can block the RT beam.
Collapse
Affiliation(s)
| | - Yvan Torrente
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Universitá degli Studi di Milano, Milan, Italy.,Unit of Neurology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Milan, Italy
| | - Adriana Ciuffreda
- Medico Chirurgo, Specialista in Dermatologia e Venereologia, Dermatologia Pediatrica, Milan, Italy
| | - Vittorio A Guardamagna
- Division of Palliative Care and Pain Therapy, IRCCS Istituto Europeo di Oncologia IEO, Milan, Italy.,Director of ESMO, Designated Center of Integrated Oncology and Palliative Care, Milan, Italy
| | | | - Luca Giacomelli
- Polistudium SRL, Milan, Italy.,Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Paola Sacerdote
- Department of Pharmacological and Biomolecular Science, University of Milano, Milan, Italy
| |
Collapse
|
21
|
Castegna A, Gissi R, Menga A, Montopoli M, Favia M, Viola A, Canton M. Pharmacological targets of metabolism in disease: Opportunities from macrophages. Pharmacol Ther 2020; 210:107521. [PMID: 32151665 DOI: 10.1016/j.pharmthera.2020.107521] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/28/2020] [Indexed: 12/12/2022]
Abstract
From advances in the knowledge of the immune system, it is emerging that the specialized functions displayed by macrophages during the course of an immune response are supported by specific and dynamically-connected metabolic programs. The study of immunometabolism is demonstrating that metabolic adaptations play a critical role in modulating inflammation and, conversely, inflammation deeply influences the acquisition of specific metabolic settings.This strict connection has been proven to be crucial for the execution of defined immune functional programs and it is now under investigation with respect to several human disorders, such as diabetes, sepsis, cancer, and autoimmunity. The abnormal remodelling of the metabolic pathways in macrophages is now emerging as both marker of disease and potential target of therapeutic intervention. By focusing on key pathological conditions, namely obesity and diabetes, rheumatoid arthritis, atherosclerosis and cancer, we will review the metabolic targets suitable for therapeutic intervention in macrophages. In addition, we will discuss the major obstacles and challenges related to the development of therapeutic strategies for a pharmacological targeting of macrophage's metabolism.
Collapse
Affiliation(s)
- Alessandra Castegna
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy; IBIOM-CNR, Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy; Fondazione Città della Speranza, Istituto di Ricerca Pediatrica, Padua, Italy.
| | - Rosanna Gissi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Alessio Menga
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy; Department of Molecular Biotechnologies and Health Sciences, University of Turin, Turin, Italy
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy; Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Maria Favia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Antonella Viola
- Department of Biomedical Sciences, University of Padua, Italy; Fondazione Città della Speranza, Istituto di Ricerca Pediatrica, Padua, Italy
| | - Marcella Canton
- Department of Biomedical Sciences, University of Padua, Italy; Fondazione Città della Speranza, Istituto di Ricerca Pediatrica, Padua, Italy.
| |
Collapse
|
22
|
Smith R, Russo J, Fiegel J, Brogden N. Antibiotic Delivery Strategies to Treat Skin Infections When Innate Antimicrobial Defense Fails. Antibiotics (Basel) 2020; 9:E56. [PMID: 32024064 PMCID: PMC7168299 DOI: 10.3390/antibiotics9020056] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/26/2020] [Accepted: 01/28/2020] [Indexed: 12/14/2022] Open
Abstract
The epidermal skin barrier protects the body from a host of daily challenges, providing protection against mechanical insults and the absorption of chemicals and xenobiotics. In addition to the physical barrier, the epidermis also presents an innate defense against microbial overgrowth. This is achieved through the presence of a diverse collection of microorganisms on the skin (the "microbiota") that maintain a delicate balance with the host and play a significant role in overall human health. When the skin is wounded, the local tissue with a compromised barrier can become colonized and ultimately infected if bacterial growth overcomes the host response. Wound infections present an immense burden in healthcare costs and decreased quality of life for patients, and treatment becomes increasingly important because of the negative impact that infection has on slowing the rate of wound healing. In this review, we discuss specific challenges of treating wound infections and the advances in drug delivery platforms and formulations that are under development to improve topical delivery of antimicrobial treatments.
Collapse
Affiliation(s)
- R. Smith
- Department of Chemical and Biochemical Engineering, The University of Iowa, Iowa City, IA 52242, USA; (R.S.); (J.F.)
| | - J. Russo
- Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa, Iowa City, IA 52242, USA;
| | - J. Fiegel
- Department of Chemical and Biochemical Engineering, The University of Iowa, Iowa City, IA 52242, USA; (R.S.); (J.F.)
- Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa, Iowa City, IA 52242, USA;
| | - N. Brogden
- Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa, Iowa City, IA 52242, USA;
- Department of Dermatology, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
23
|
Rezaie F, Momeni-Moghaddam M, Naderi-Meshkin H. Regeneration and Repair of Skin Wounds: Various Strategies for Treatment. INT J LOW EXTR WOUND 2019; 18:247-261. [PMID: 31257948 DOI: 10.1177/1534734619859214] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Skin as a mechanical barrier between the inner and outer environment of our body protects us against infection and electrolyte loss. This organ consists of 3 layers: the epidermis, dermis, and hypodermis. Any disruption in the integrity of skin leads to the formation of wounds, which are divided into 2 main categories: acute wounds and chronic wounds. Generally, acute wounds heal relatively faster. In contrast to acute wounds, closure of chronic wounds is delayed by 3 months after the initial insult. Treatment of chronic wounds has been one of the most challenging issues in the field of regenerative medicine, promoting scientists to develop various therapeutic strategies for a fast, qualified, and most cost-effective treatment modality. Here, we reviewed more recent approaches, including the development of stem cell therapy, tissue-engineered skin substitutes, and skin equivalents, for the healing of complex wounds.
Collapse
Affiliation(s)
- Fahimeh Rezaie
- Hakim Sabzevari University, Sabzevar, Iran.,Iranian Academic Center for Education, Culture Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | | | - Hojjat Naderi-Meshkin
- Iranian Academic Center for Education, Culture Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| |
Collapse
|
24
|
Kim H, Shin M, Han S, Kwon W, Hahn SK. Hyaluronic Acid Derivatives for Translational Medicines. Biomacromolecules 2019; 20:2889-2903. [DOI: 10.1021/acs.biomac.9b00564] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hyemin Kim
- PHI Biomed Co., 175 Yeoksam-ro, Gangnam-gu, Seoul 06247, South Korea
| | - Myeonghwan Shin
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Seulgi Han
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Woosung Kwon
- Department of Chemical and Biological Engineering, Sookmyung Women’s University, 100 Cheongpa-ro-47-gil, Seoul 04310, South Korea
| | - Sei Kwang Hahn
- PHI Biomed Co., 175 Yeoksam-ro, Gangnam-gu, Seoul 06247, South Korea
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| |
Collapse
|
25
|
Olguner SK, Boyar B, Alabaz D, Erman T, Oktay K, Arslan A, Bilgin E, Okten AI. Tumor necrosis factor alpha and interleukin-1 beta levels in cerebrospinal fluid examination for the diagnosis of ventriculoperitoneal shunt-related ventriculitis. Childs Nerv Syst 2019; 35:629-636. [PMID: 30687902 DOI: 10.1007/s00381-019-04070-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 01/20/2019] [Indexed: 01/01/2023]
Abstract
PURPOSE Ventriculitis is known to develop after chronic inflammation and bacterial invasion of the ventricular surface with a recurrence of shunt infections. The aim of this study is to evaluate the diagnostic value of elevation in cerebrospinal fluid (CSF) interleukin-1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α) together with CSF culture and laboratory test results in the diagnosis of ventriculoperitoneal (VP) shunt-related ventriculitis, which is known to be more problematic than conventional shunt infection. METHODS The study included a total of 34 patients with a VP shunt due to hydrocephalus, who presented with a headache, fever, and shunt infection at the Emergency Department and had a pre-diagnosis of ventriculitis. Nineteen patients were diagnosed with shunt-related infection or ventriculitis using the CSF obtained from the shunt pump. The IL-1β and TNF-α levels from the CSF samples of all patients were measured using the Micro ELISA immunoassay method. RESULTS CSF direct microscopic observation revealed that the mean cell count, IL-1β level, CRP level, and blood leukocyte level were higher in patients with ventriculitis compared to those diagnosed with shunt infection (p = 0.02, p = 0.009, p = 0.004, and p = 0.009, respectively). The probability of predicting positive culture outcome was 92.7% with 90.9% sensitivity and 82.6% specificity when IL-1β values exceeded 4.0 pg/ml. TNF-α values did not show a significant, reliable pattern compared to IL-1β. CONCLUSIONS IL-1β is a reliable parameter which shall be used in the diagnosis of ventriculitis by predicting positive culture outcome with high sensitivity and specificity.
Collapse
Affiliation(s)
- Semih K Olguner
- Department of Neurosurgery, Adana City Training Research Hospital, Adana, Turkey.
| | - Bulent Boyar
- Department of Neurosurgery, Cukurova University of Medical School, Adana, Turkey
| | - Derya Alabaz
- Pediatric Infectious Disease Department, Cukurova University of Medical School, Adana, Turkey
| | - Tahsin Erman
- Department of Neurosurgery, Cukurova University of Medical School, Adana, Turkey
| | - Kadir Oktay
- Department of Neurosurgery, Medical Park Hospital, Gaziantep, Turkey
| | - Ali Arslan
- Department of Neurosurgery, Adana City Training Research Hospital, Adana, Turkey
| | - Emre Bilgin
- Department of Neurosurgery, Adana City Training Research Hospital, Adana, Turkey
| | - Ali Ihsan Okten
- Department of Neurosurgery, Adana City Training Research Hospital, Adana, Turkey
| |
Collapse
|
26
|
Ferrini A, Stevens MM, Sattler S, Rosenthal N. Toward Regeneration of the Heart: Bioengineering Strategies for Immunomodulation. Front Cardiovasc Med 2019; 6:26. [PMID: 30949485 PMCID: PMC6437044 DOI: 10.3389/fcvm.2019.00026] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/26/2019] [Indexed: 01/10/2023] Open
Abstract
Myocardial Infarction (MI) is the most common cardiovascular disease. An average-sized MI causes the loss of up to 1 billion cardiomyocytes and the adult heart lacks the capacity to replace them. Although post-MI treatment has dramatically improved survival rates over the last few decades, more than 20% of patients affected by MI will subsequently develop heart failure (HF), an incurable condition where the contracting myocardium is transformed into an akinetic, fibrotic scar, unable to meet the body's need for blood supply. Excessive inflammation and persistent immune auto-reactivity have been suggested to contribute to post-MI tissue damage and exacerbate HF development. Two newly emerging fields of biomedical research, immunomodulatory therapies and cardiac bioengineering, provide potential options to target the causative mechanisms underlying HF development. Combining these two fields to develop biomaterials for delivery of immunomodulatory bioactive molecules holds great promise for HF therapy. Specifically, minimally invasive delivery of injectable hydrogels, loaded with bioactive factors with angiogenic, proliferative, anti-apoptotic and immunomodulatory functions, is a promising route for influencing the cascade of immune events post-MI, preventing adverse left ventricular remodeling, and offering protection from early inflammation to fibrosis. Here we provide an updated overview on the main injectable hydrogel systems and bioactive factors that have been tested in animal models with promising results and discuss the challenges to be addressed for accelerating the development of these novel therapeutic strategies.
Collapse
Affiliation(s)
- Arianna Ferrini
- Department of Materials, Imperial College London, London, United Kingdom,National Heart and Lung Institute and BHF Centre for Research Excellence, Imperial College London, London, United Kingdom
| | - Molly M. Stevens
- Department of Materials, Imperial College London, London, United Kingdom,Department of Bioengineering, Imperial College London, London, United Kingdom,Institute of Biomedical Engineering, Imperial College London, London, United Kingdom
| | - Susanne Sattler
- National Heart and Lung Institute and BHF Centre for Research Excellence, Imperial College London, London, United Kingdom
| | - Nadia Rosenthal
- National Heart and Lung Institute and BHF Centre for Research Excellence, Imperial College London, London, United Kingdom,The Jackson Laboratory, Bar Harbor, ME, United States,*Correspondence: Nadia Rosenthal
| |
Collapse
|
27
|
Biomaterials: Foreign Bodies or Tuners for the Immune Response? Int J Mol Sci 2019; 20:ijms20030636. [PMID: 30717232 PMCID: PMC6386828 DOI: 10.3390/ijms20030636] [Citation(s) in RCA: 333] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 12/11/2022] Open
Abstract
The perspectives of regenerative medicine are still severely hampered by the host response to biomaterial implantation, despite the robustness of technologies that hold the promise to recover the functionality of damaged organs and tissues. In this scenario, the cellular and molecular events that decide on implant success and tissue regeneration are played at the interface between the foreign body and the host inflammation, determined by innate and adaptive immune responses. To avoid adverse events, rather than the use of inert scaffolds, current state of the art points to the use of immunomodulatory biomaterials and their knowledge-based use to reduce neutrophil activation, and optimize M1 to M2 macrophage polarization, Th1 to Th2 lymphocyte switch, and Treg induction. Despite the fact that the field is still evolving and much remains to be accomplished, recent research breakthroughs have provided a broader insight on the correct choice of biomaterial physicochemical modifications to tune the reaction of the host immune system to implanted biomaterial and to favor integration and healing.
Collapse
|
28
|
Maso K, Grigoletto A, Vicent MJ, Pasut G. Molecular platforms for targeted drug delivery. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 346:1-50. [DOI: 10.1016/bs.ircmb.2019.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Correlation of the expression of inflammatory factors with expression of apoptosis-related genes Bax and Bcl-2, in burned rats. Exp Ther Med 2018; 17:1790-1796. [PMID: 30783451 PMCID: PMC6364214 DOI: 10.3892/etm.2018.7118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 12/03/2018] [Indexed: 12/25/2022] Open
Abstract
Correlation of the expression of inflammatory factors with expression of apoptosis-related genes, B-cell lymphoma 2 (Bcl-2) and Bcl-2 associated X protein (Bax), in burned rats was investigated. Forty healthy Sprague-Dawley rats were selected and randomly divided into SHAM group (n=10), I° burn group (n=10), II° burn group (n=10) and III° burn group (n=10). Changes in tumor necrosis factor-α (TNF-α), Bax messenger ribonucleic acid (mRNA), Bcl-2 mRNA, Bax protein and Bcl-2 protein expression levels were detected. The correlation of TNF-α, Bax and Bcl-2 with the degree of burn in rats was observed, and the correlation of TNF-α with Bax and Bcl-2 was also analyzed. Moreover, Bax mRNA and Bcl-2 mRNA were detected via reverse transcription-quantitative polymerase chain reaction, and TNF-α, Bax protein and Bcl-2 protein were detected via enzyme-linked immunosorbent assay. In burn groups, TNF-α, Bax mRNA and Bax protein levels were significantly increased at each time point compared with those at the previous time point (P<0.05), but Bcl-2 mRNA and protein levels were significantly decreased compared with those at the previous time point (P<0.05). At the same time point, TNF-α, Bax mRNA, Bcl-2 mRNA, Bax protein and Bcl-2 protein expression levels had statistically significant differences between any given two groups (P<0.05). The TNF-α expression level was positively correlated with Bax expression levels and negatively correlated with Bcl-2 expression levels. Additionally, TNF-α, Bax mRNA and Bax protein had positive correlations with the degree of burn and time after burn, while Bcl-2 mRNA and Bcl-2 protein had negative correlations with the degree of burn and time after burn. Continuous monitoring of changes in the TNF-α level can be used as a means to evaluate the degree of burn and apoptosis, and to prevent the deepening of burn wounds, thus facilitating the early clinical evaluation of prognosis.
Collapse
|
30
|
Alapure BV, Lu Y, He M, Chu CC, Peng H, Muhale F, Brewerton YL, Bunnell B, Hong S. Accelerate Healing of Severe Burn Wounds by Mouse Bone Marrow Mesenchymal Stem Cell-Seeded Biodegradable Hydrogel Scaffold Synthesized from Arginine-Based Poly(ester amide) and Chitosan. Stem Cells Dev 2018; 27:1605-1620. [PMID: 30215325 PMCID: PMC6276600 DOI: 10.1089/scd.2018.0106] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/12/2018] [Indexed: 12/20/2022] Open
Abstract
Severe burns are some of the most challenging problems in clinics and still lack ideal modalities. Mesenchymal stem cells (MSCs) incorporated with biomaterial coverage of burn wounds may offer a viable solution. In this report, we seeded MSCs to a biodegradable hybrid hydrogel, namely ACgel, that was synthesized from unsaturated arginine-based poly(ester amide) (UArg-PEA) and chitosan derivative. MSC adhered to ACgels. ACgels maintained a high viability of MSCs in culture for 6 days. MSC seeded to ACgels presented well in third-degree burn wounds of mice at 8 days postburn (dpb) after the necrotic full-thickness skin of burn wounds was debrided and filled and covered by MSC-carrying ACgels. MSC-seeded ACgels promoted the closure, reepithelialization, granulation tissue formation, and vascularization of the burn wounds. ACgels alone can also promote vascularization but less effectively compared with MSC-seeded ACgels. The actions of MSC-seeded ACgels or ACgels alone involve the induction of reparative, anti-inflammatory interleukin-10, and M2-like macrophages, as well as the reduction of inflammatory cytokine TNFα and M1-like macrophages at the late inflammatory phase of burn wound healing, which provided the mechanistic insights associated with inflammation and macrophages in burn wounds. For the studied regimens of these treatments, no toxicity was identified to MSCs or mice. Our results indicate that MSC-seeded ACgels have potential use as a novel adjuvant therapy for severe burns to complement commonly used skin grafting and, thus, minimize the downsides of grafting.
Collapse
Affiliation(s)
- Bhagwat V. Alapure
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Yan Lu
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Mingyu He
- Department of Fiber Science and Apparel Design, Cornell University, Ithaca, New York
| | - Chih-Chang Chu
- Department of Fiber Science and Apparel Design, Cornell University, Ithaca, New York
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Hongying Peng
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Filipe Muhale
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | | | - Bruce Bunnell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Song Hong
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
31
|
Friedrich EE, Niknam-Bienia S, Xie P, Jia SX, Hong SJ, Mustoe TA, Galiano RD. Thermal injury model in the rabbit ear with quantifiable burn progression and hypertrophic scar. Wound Repair Regen 2017; 25:327-337. [PMID: 28370931 DOI: 10.1111/wrr.12518] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 02/01/2017] [Indexed: 01/17/2023]
Abstract
Hypertrophic scar is a major clinical outcome of deep-partial thickness to full thickness thermal burn injury. Appropriate animal models are a limitation to burn research due to the lack of, or access to, animal models which address the endpoint of hypertrophic scar. Lower species, such as rodents, heal mainly by contracture, which limits the duration of study. Higher species, such as pigs, heal more similarly to humans, but are associated with high cost, long duration for scar development, challenges in quantifying scar hypertrophy, and poor manageability. Here, we present a quantifiable deep-partial thickness burn model in the rabbit ear. Burns were created using a dry-heated brass rod for 10 and 20 seconds at 90 °C. At the time of eschar excision on day 3, excisional wounds were made on the contralateral ear for comparison. Burn wound progression, in which the wound size expands over time is a major distinction between excisional and thermal injuries, was quantified at 1 hour and 3 days after the injuries using calibrated photographs and histology and the size of the wounds was found to be unchanged from the initial wound size at 1 hour, but 10% in the 20 seconds burn wounds at 3 days. A quantifiable hypertrophic scar, measured by histology as the scar elevation index, was present in both 20 seconds burn wounds and excisional wounds at day 35. ImageJ measurements revealed that the 20 seconds burn wound scars were 22% larger than the excisional wound scars and the 20 seconds burn scar area measurements from histology were 26% greater than in the excisional wound scar. The ability to measure both burn progression and scar hypertrophy over a 35-day time frame suits this model to screening early intervention burn wound therapeutics or scar treatments in a burn-specific scar model.
Collapse
Affiliation(s)
- Emily E Friedrich
- Division of Plastic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Solmaz Niknam-Bienia
- Division of Plastic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ping Xie
- Division of Plastic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Sheng-Xian Jia
- Division of Plastic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Seok J Hong
- Division of Plastic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Thomas A Mustoe
- Division of Plastic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Robert D Galiano
- Division of Plastic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
32
|
Julier Z, Park AJ, Briquez PS, Martino MM. Promoting tissue regeneration by modulating the immune system. Acta Biomater 2017; 53:13-28. [PMID: 28119112 DOI: 10.1016/j.actbio.2017.01.056] [Citation(s) in RCA: 466] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/03/2017] [Accepted: 01/20/2017] [Indexed: 02/07/2023]
Abstract
The immune system plays a central role in tissue repair and regeneration. Indeed, the immune response to tissue injury is crucial in determining the speed and the outcome of the healing process, including the extent of scarring and the restoration of organ function. Therefore, controlling immune components via biomaterials and drug delivery systems is becoming an attractive approach in regenerative medicine, since therapies based on stem cells and growth factors have not yet proven to be broadly effective in the clinic. To integrate the immune system into regenerative strategies, one of the first challenges is to understand the precise functions of the different immune components during the tissue healing process. While remarkable progress has been made, the immune mechanisms involved are still elusive, and there is indication for both negative and positive roles depending on the tissue type or organ and life stage. It is well recognized that the innate immune response comprising danger signals, neutrophils and macrophages modulates tissue healing. In addition, it is becoming evident that the adaptive immune response, in particular T cell subset activities, plays a critical role. In this review, we first present an overview of the basic immune mechanisms involved in tissue repair and regeneration. Then, we highlight various approaches based on biomaterials and drug delivery systems that aim at modulating these mechanisms to limit fibrosis and promote regeneration. We propose that the next generation of regenerative therapies may evolve from typical biomaterial-, stem cell-, or growth factor-centric approaches to an immune-centric approach. STATEMENT OF SIGNIFICANCE Most regenerative strategies have not yet proven to be safe or reasonably efficient in the clinic. In addition to stem cells and growth factors, the immune system plays a crucial role in the tissue healing process. Here, we propose that controlling the immune-mediated mechanisms of tissue repair and regeneration may support existing regenerative strategies or could be an alternative to using stem cells and growth factors. The first part of this review we highlight key immune mechanisms involved in the tissue healing process and marks them as potential target for designing regenerative strategies. In the second part, we discuss various approaches using biomaterials and drug delivery systems that aim at modulating the components of the immune system to promote tissue regeneration.
Collapse
Affiliation(s)
- Ziad Julier
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Victoria 3800, Australia
| | - Anthony J Park
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Victoria 3800, Australia
| | - Priscilla S Briquez
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Mikaël M Martino
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Victoria 3800, Australia.
| |
Collapse
|
33
|
Shendi D, Albrecht DR, Jain A. Anti-Fas conjugated hyaluronic acid microsphere gels for neural stem cell delivery. J Biomed Mater Res A 2016; 105:608-618. [PMID: 27737520 DOI: 10.1002/jbm.a.35930] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 09/21/2016] [Accepted: 10/11/2016] [Indexed: 01/15/2023]
Abstract
Central nervous system (CNS) injuries and diseases result in neuronal damage and loss of function. Transplantation of neural stem cells (NSCs) has been shown to improve locomotor function after transplantation. However, due to the immune and inflammatory response at the injury site, the survival rate of the engrafted cells is low. Engrafted cell viability has been shown to increase when transplanted within a hydrogel. Hyaluronic acid (HA) hydrogels have natural anti-inflammatory properties and the backbone can be modified to introduce bioactive agents, such as anti-Fas, which we have previously shown to promote NSC survival while suppressing immune cell activity in bulk hydrogels in vitro. Although bulk HA hydrogels have shown to promote stem cell survival, microsphere gels for NSC encapsulation and delivery may have additional advantages. In this study, a flow-focusing microfluidic device was used to fabricate either vinyl sulfone-modified HA (VS-HA) or anti-Fas-conjugated HA (anti-Fas HA) microsphere gels encapsulated with NSCs. The majority of encapsulated NSCs remained viable for at least 24 h in the VS-HA and anti-Fas HA microsphere gels. Moreover, T-cells cultured in suspension with the anti-Fas HA microsphere gels had reduced viability after contact with the microsphere gels compared to the media control and soluble anti-Fas conditions. This approach can be adapted to encapsulate various cell types for therapeutic strategies in other physiological systems in order to increase survival by reducing the immune response. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 608-618, 2017.
Collapse
Affiliation(s)
- Dalia Shendi
- Nano-Neural Therapeutics Laboratory, Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Dirk R Albrecht
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Anjana Jain
- Nano-Neural Therapeutics Laboratory, Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts
| |
Collapse
|
34
|
Friedrich EE, Washburn NR. Transport patterns of anti-TNF-α in burn wounds: Therapeutic implications of hyaluronic acid conjugation. Biomaterials 2016; 114:10-22. [PMID: 27837681 DOI: 10.1016/j.biomaterials.2016.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 12/16/2022]
Abstract
A central complication in burn injuries is progression of the zone of necrosis, which is associated with intense inflammatory responses. Conjugation of monoclonal antibodies against tumor necrosis factor-α (TNF-α), a central mediator of inflammation, to high molecular weight hyaluronic acid (HA) has been shown to be an effective treatment in reducing secondary necrosis in rodent models of deep partial-thickness burns. Here the transport of conjugated and non-conjugated antibodies in burn injuries was investigated to explore the effects of antibody tethering on the spatiotemporal distribution of anti-TNF-α. Diffusion constants were measured in solution and in type I collagen gels in vitro using fluorescence correlation spectroscopy to provide quantitative comparisons of the effects of conjugation. It is shown that the HA significantly increased the antibody residence time in the superficial region at 24 h in burn injuries, which strongly correlated with the pattern of inflammatory cell infiltrate in the tissue. A transport model was used to fit the results of antibody distribution in the tissue based on fluorescence correlation spectroscopy measurements, resulting in estimates for effective diffusion constants that demonstrate the effects of HA conjugation on the biodistribution of therapeutic proteins. These results demonstrate that tuning residence time of therapeutic proteins can be an effective strategy in regulating the inflammatory response associated with acute injuries.
Collapse
Affiliation(s)
- Emily E Friedrich
- Carnegie Mellon University, Department of Biomedical Engineering, USA.
| | - Newell R Washburn
- Carnegie Mellon University, Department of Biomedical Engineering, USA; Carnegie Mellon University, Department of Chemistry, USA.
| |
Collapse
|
35
|
Griffith M, Islam MM, Edin J, Papapavlou G, Buznyk O, Patra HK. The Quest for Anti-inflammatory and Anti-infective Biomaterials in Clinical Translation. Front Bioeng Biotechnol 2016; 4:71. [PMID: 27668213 PMCID: PMC5016531 DOI: 10.3389/fbioe.2016.00071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/26/2016] [Indexed: 12/13/2022] Open
Abstract
Biomaterials are now being used or evaluated clinically as implants to supplement the severe shortage of available human donor organs. To date, however, such implants have mainly been developed as scaffolds to promote the regeneration of failing organs due to old age or congenital malformations. In the real world, however, infection or immunological issues often compromise patients. For example, bacterial and viral infections can result in uncontrolled immunopathological damage and lead to organ failure. Hence, there is a need for biomaterials and implants that not only promote regeneration but also address issues that are specific to compromised patients, such as infection and inflammation. Different strategies are needed to address the regeneration of organs that have been damaged by infection or inflammation for successful clinical translation. Therefore, the real quest is for multifunctional biomaterials with combined properties that can combat infections, modulate inflammation, and promote regeneration at the same time. These strategies will necessitate the inclusion of methodologies for management of the cellular and signaling components elicited within the local microenvironment. In the development of such biomaterials, strategies range from the inclusion of materials that have intrinsic anti-inflammatory properties, such as the synthetic lipid polymer, 2-methacryloyloxyethyl phosphorylcholine (MPC), to silver nanoparticles that have antibacterial properties, to inclusion of nano- and micro-particles in biomaterials composites that deliver active drugs. In this present review, we present examples of both kinds of materials in each group along with their pros and cons. Thus, as a promising next generation strategy to aid or replace tissue/organ transplantation, an integrated smart programmable platform is needed for regenerative medicine applications to create and/or restore normal function at the cell and tissue levels. Therefore, now it is of utmost importance to develop integrative biomaterials based on multifunctional biopolymers and nanosystem for their practical and successful clinical translation.
Collapse
Affiliation(s)
- May Griffith
- Department of Clinical and Experimental Medicine (IKE), Linköping University, Linköping, Sweden
- Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Stockholm, Sweden
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, QC, Canada
| | - Mohammad M. Islam
- Department of Clinical and Experimental Medicine (IKE), Linköping University, Linköping, Sweden
- Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Stockholm, Sweden
| | - Joel Edin
- Department of Clinical and Experimental Medicine (IKE), Linköping University, Linköping, Sweden
- Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Stockholm, Sweden
| | - Georgia Papapavlou
- Department of Clinical and Experimental Medicine (IKE), Linköping University, Linköping, Sweden
| | - Oleksiy Buznyk
- Department of Eye Burns, Ophthalmic Reconstructive Surgery, Keratoplasty and Keratoprosthesis, Filatov Institute of Eye diseases and Tissue Therapy of the NAMS of Ukraine, Odessa, Ukraine
| | - Hirak K. Patra
- Department of Clinical and Experimental Medicine (IKE), Linköping University, Linköping, Sweden
| |
Collapse
|
36
|
Korkmaz E, Friedrich EE, Ramadan MH, Erdos G, Mathers AR, Ozdoganlar OB, Washburn NR, Falo LD. Tip-Loaded Dissolvable Microneedle Arrays Effectively Deliver Polymer-Conjugated Antibody Inhibitors of Tumor-Necrosis-Factor-Alpha Into Human Skin. J Pharm Sci 2016; 105:3453-3457. [PMID: 27544434 DOI: 10.1016/j.xphs.2016.07.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/17/2016] [Accepted: 07/05/2016] [Indexed: 11/18/2022]
Abstract
Autoinflammatory skin diseases are characterized by a disequilibrium of cytokines in the local skin microenvironment, suggesting that local delivery of therapeutics, including anticytokine antibodies, may provide benefit without the unwanted off-target effects of systemically delivered therapies. Rapid diffusion of therapeutics away from the target site has been a challenge to the development of local therapies. Conjugation of high molecular weight hydrophilic polymers to cytokine neutralizing mAbs has been shown to be an effective strategy for local control of inflammation in healing burn wounds. However, the burn application is unique because the skin barrier is already breached. For the treatment of autoinflammatory skin diseases, the major challenge for local delivery lies in penetrating the stratum corneum. Here, we investigate a new therapeutic approach combining the use of tip-loaded dissolvable microneedle arrays (TL-dMNAs) for local application of polymer-conjugated antibody inhibitors of tumor-necrosis-factor-alpha (TNF-α). Specifically, intradermal delivery and pharmacokinetics of (anti-TNF-α-Ab)-(high molecular weight hyaluronic acid [HA]) conjugates from tip-loaded, obelisk-shaped dissolvable microneedle arrays were investigated in living human skin. The results indicate (1) TL-dMNAs can be successfully fabricated to integrate (anti-TNF-α-Ab)-HA at the tip portion of the microneedles while preserving the biological activity necessary for antibody ligand binding; (2) (anti-TNF-α-Ab)-HA can be effectively delivered into human skin using obelisk-shaped TL-dMNAs; and (3) polymer conjugation effectively inhibits antibody diffusion from the delivery site. Taken together, these results support the evaluation of microneedle array-based delivery of varying polymer-antibody conjugates for the treatment of inflammatory skin diseases.
Collapse
Affiliation(s)
- Emrullah Korkmaz
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Emily E Friedrich
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Mohamed H Ramadan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Geza Erdos
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Alicia R Mathers
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - O Burak Ozdoganlar
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213; Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213; Department of Material Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Newell R Washburn
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213; Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213; The McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Louis D Falo
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213; Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213; Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213; The University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213; The McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213.
| |
Collapse
|
37
|
Ghrelin accelerates wound healing through GHS-R1a-mediated MAPK-NF-κB/GR signaling pathways in combined radiation and burn injury in rats. Sci Rep 2016; 6:27499. [PMID: 27271793 PMCID: PMC4895129 DOI: 10.1038/srep27499] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/19/2016] [Indexed: 11/08/2022] Open
Abstract
The therapeutic effect of ghrelin on wound healing was assessed using a rat model of combined radiation and burn injury (CRBI). Rat ghrelin, anti-rat tumor necrosis factor (TNF) α polyclonal antibody (PcAb), or selective antagonists of p38 mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK), and growth hormone secretagogue receptor (GHS-R) 1a (SB203580, SP600125, and [D-Lys3]-GHRP-6, respectively), were administered for seven consecutive days. Levels of various signaling molecules were assessed in isolated rat peritoneal macrophages. The results showed that serum ghrelin levels and levels of macrophage glucocorticoid receptor (GR) decreased, while phosphorylation of p38MAPK, JNK, and p65 nuclear factor (NF) κB increased. Ghrelin inhibited the serum induction of proinflammatory mediators, especially TNF-α, and promoted wound healing in a dose-dependent manner. Ghrelin treatment decreased phosphorylation of p38MAPK, JNK, and p65NF-κB, and increased GR levels in the presence of GHS-R1a. SB203580 or co-administration of SB203580 and SP600125 decreased TNF-α level, which may have contributed to the inactivation of p65NF-κB and increase in GR expression, as confirmed by western blotting. In conclusion, ghrelin enhances wound recovery in CRBI rats, possibly by decreasing the induction of TNF-α or other proinflammatory mediators that are involved in the regulation of GHS-R1a-mediated MAPK-NF-κB/GR signaling pathways.
Collapse
|
38
|
Salibian AA, Rosario ATD, Severo LDAM, Nguyen L, Banyard DA, Toranto JD, Evans GRD, Widgerow AD. Current concepts on burn wound conversion-A review of recent advances in understanding the secondary progressions of burns. Burns 2016; 42:1025-1035. [PMID: 26787127 DOI: 10.1016/j.burns.2015.11.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/16/2015] [Accepted: 11/24/2015] [Indexed: 01/27/2023]
Abstract
Burn wound conversion describes the process by which superficial partial thickness burns convert into deeper burns necessitating surgical intervention. Fully understanding and thus controlling this phenomenon continues to defy burn surgeons. However, potentially guiding burn wound progression so as to obviate the need for surgery while still bringing about healing with limited scarring is the major unmet challenge. Comprehending the pathophysiologic background contributing to deeper progression of these burns is an essential prerequisite to planning any intervention. In this study, a review of articles examining burn wound progression over the last five years was conducted to analyze trends in recent burn progression research, determine changes in understanding of the pathogenesis of burn conversion, and subsequently examine the direction for future research in developing therapies. The majority of recent research focuses on applying therapies from other disease processes to common underlying pathogenic mechanisms in burn conversion. While ischemia, inflammation, and free oxygen radicals continue to demonstrate a critical role in secondary necrosis, novel mechanisms such as autophagy have also been shown to contribute affect significantly burn progression significantly. Further research will have to determine whether multiple mechanisms should be targeted when developing clinical therapies.
Collapse
Affiliation(s)
- Ara A Salibian
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine, 200 S. Manchester Avenue, Orange, CA, 92868-3298, United States
| | - Angelica Tan Del Rosario
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine, 200 S. Manchester Avenue, Orange, CA, 92868-3298, United States
| | - Lucio De Almeida Moura Severo
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine, 200 S. Manchester Avenue, Orange, CA, 92868-3298, United States
| | - Long Nguyen
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine, 200 S. Manchester Avenue, Orange, CA, 92868-3298, United States
| | - Derek A Banyard
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine, 200 S. Manchester Avenue, Orange, CA, 92868-3298, United States
| | - Jason D Toranto
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine, 200 S. Manchester Avenue, Orange, CA, 92868-3298, United States
| | - Gregory R D Evans
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine, 200 S. Manchester Avenue, Orange, CA, 92868-3298, United States
| | - Alan D Widgerow
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine, 200 S. Manchester Avenue, Orange, CA, 92868-3298, United States.
| |
Collapse
|
39
|
Alvarez MM, Liu JC, Trujillo-de Santiago G, Cha BH, Vishwakarma A, Ghaemmaghami AM, Khademhosseini A. Delivery strategies to control inflammatory response: Modulating M1-M2 polarization in tissue engineering applications. J Control Release 2016; 240:349-363. [PMID: 26778695 DOI: 10.1016/j.jconrel.2016.01.026] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 01/09/2016] [Accepted: 01/12/2016] [Indexed: 12/21/2022]
Abstract
Macrophages are key players in many physiological scenarios including tissue homeostasis. In response to injury, typically the balance between macrophage sub-populations shifts from an M1 phenotype (pro-inflammatory) to an M2 phenotype (anti-inflammatory). In tissue engineering scenarios, after implantation of any device, it is desirable to exercise control on this M1-M2 progression and to ensure a timely and smooth transition from the inflammatory to the healing stage. In this review, we briefly introduce the current state of knowledge regarding macrophage function and nomenclature. Next, we discuss the use of controlled release strategies to tune the balance between the M1 and M2 phenotypes in the context of tissue engineering applications. We discuss recent literature related to the release of anti-inflammatory molecules (including nucleic acids) and the sequential release of cytokines to promote a timely M1-M2 shift. In addition, we describe the use of macrophages as controlled release agents upon stimulation by physical and/or mechanical cues provided by scaffolds. Moreover, we discuss current and future applications of "smart" implantable scaffolds capable of controlling the cascade of biochemical events related to healing and vascularization. Finally, we provide our opinion on the current challenges and the future research directions to improve our understanding of the M1-M2 macrophage balance and properly exploit it in tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Mario Moisés Alvarez
- Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA; Microsystems Technologies Laboratories, Massachusetts Institute of Technology, Cambridge, MA, USA; Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León, México
| | - Julie C Liu
- Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA; School of Chemical Engineering and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Grissel Trujillo-de Santiago
- Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA; Microsystems Technologies Laboratories, Massachusetts Institute of Technology, Cambridge, MA, USA; Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León, México
| | - Byung-Hyun Cha
- Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Ajaykumar Vishwakarma
- Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Amir M Ghaemmaghami
- Division of Immunology, School of Life Sciences, Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA; Microsystems Technologies Laboratories, Massachusetts Institute of Technology, Cambridge, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA; Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul, Republic of Korea; Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
40
|
Jung S, Kwon I. Expansion of bioorthogonal chemistries towards site-specific polymer–protein conjugation. Polym Chem 2016. [DOI: 10.1039/c6py00856a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bioorthogonal chemistries have been used to achieve polymer-protein conjugation with the retained critical properties.
Collapse
Affiliation(s)
- Secheon Jung
- School of Materials Science and Engineering
- Gwangju Institute of Science and Technology (GIST)
- Gwangju 61005
- Republic of Korea
| | - Inchan Kwon
- School of Materials Science and Engineering
- Gwangju Institute of Science and Technology (GIST)
- Gwangju 61005
- Republic of Korea
- Department of Chemical Engineering
| |
Collapse
|
41
|
Local delivery of antitumor necrosis factor-α through conjugation to hyaluronic acid: dosing strategies and early healing effects in a rat burn model. J Burn Care Res 2015; 36:e90-e101. [PMID: 25526179 DOI: 10.1097/bcr.0000000000000140] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The objective of this study was to measure dose-response effects of topical delivery of inhibitors of tumor necrosis factor-α (TNF-α) through conjugation to hyaluronic acid in a rat burn model to determine effects on inflammatory responses, burn progression, and early stages of healing. Monoclonal antibodies against TNF-α were conjugated to hyaluronic acid and applied topically in a rat partial-thickness burn model. Metrics of inflammatory responses and tissue necrosis were measured as well as the quantitative analysis of collagen composition and organization. The minimum effective conjugated antibody dose was found to be 100 μg with three applications 48 hours apart. Nonviable tissue thicknesses decreased with increasing dose and dose frequency. Free antibody retarded macrophage infiltration in the periphery but not at the surface, while the conjugated antibody was able to hinder macrophage infiltration at both the periphery and the surface. Quantification of collagen I and III staining ratios at days 4, 7, and 14 and quantitative image analysis of collagen organization at day 14 demonstrated differences between saline and conjugate treatment. This correlated with increases in re-epithelialization observed in conjugate-treated sites. Reductions in inflammatory markers and secondary tissue necrosis under treatment with the conjugates were understood in terms of differences in antibody transport compared to nonconjugated antibody. Differences in collagen composition and organization at Day 14 suggested that the reductions in inflammatory responses altered early healing responses. These results indicate anti-TNF-α conjugated to hyaluronic acid can be an effective treatment for reducing secondary necrosis and improving healing outcomes in burns.
Collapse
|
42
|
Browne S, Pandit A. Biomaterial-mediated modification of the local inflammatory environment. Front Bioeng Biotechnol 2015; 3:67. [PMID: 26029692 PMCID: PMC4432793 DOI: 10.3389/fbioe.2015.00067] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 04/30/2015] [Indexed: 12/14/2022] Open
Abstract
Inflammation plays a major role in the rejection of biomaterial implants. In addition, despite playing an important role in the early stages of wound healing, dysregulated inflammation has a negative impact on the wound healing processes. Thus, strategies to modulate excessive inflammation are needed. Through the use of biomaterials to control the release of anti-inflammatory therapeutics, increased control over inflammation is possible in a range of pathological conditions. However, the choice of biomaterial (natural or synthetic), and the form it takes (solid, hydrogel, or micro/nanoparticle) is dependent on both the cause and tissue location of inflammation. These considerations also influence the nature of the anti-inflammatory therapeutic that is incorporated into the biomaterial to be delivered. In this report, the range of biomaterials and anti-inflammatory therapeutics that have been combined will be discussed, as well as the functional benefit observed. Furthermore, we point toward future strategies in the field that will bring more efficacious anti-inflammatory therapeutics closer to realization.
Collapse
Affiliation(s)
- Shane Browne
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway, Ireland
| | - Abhay Pandit
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway, Ireland
| |
Collapse
|
43
|
Washburn NR, Prata JE, Friedrich EE, Ramadan MH, Elder AN, Sun LT. Polymer-conjugated inhibitors of tumor necrosis factor-α for local control of inflammation. BIOMATTER 2013; 3:e25597. [PMID: 23903893 PMCID: PMC3749284 DOI: 10.4161/biom.25597] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 06/27/2013] [Accepted: 06/29/2013] [Indexed: 12/24/2022]
Abstract
Burns, chronic wounds, osteoarthritis, and uveitis are examples of conditions characterized by local, intense inflammatory responses that can impede healing or even further tissue degradation. The most powerful anti-inflammatory drugs available are often administered systemically, but these carry significant side effects and are not compatible for patients that have underlying complications associated with their condition. Conjugation of monoclonal antibodies that neutralize pro-inflammatory cytokines to high molecular weight hydrophilic polymers has been shown to be an effective strategy for local control of inflammation. Lead formulations are based on antibody inhibitors of tumor necrosis factor-α conjugated to hyaluronic acid having molecular weight greater than 1 MDa. This review will discuss fundamental aspects of medical conditions that could be treated with these conjugates and design principles for preparing these cytokine-neutralizing polymer conjugates. Results demonstrating that infliximab, an approved inhibitor of tumor necrosis factor-α, can be incorporated into the conjugates using a broad range of water-soluble polymers are also presented, along with a prospectus for clinical translation.
Collapse
Affiliation(s)
- Newell R. Washburn
- Department of Biomedical Engineering; Carnegie Mellon University; Pittsburgh, PA USA
- Department of Chemistry; Carnegie Mellon University; Pittsburgh, PA USA
| | - Joseph E. Prata
- Department of Chemistry; Carnegie Mellon University; Pittsburgh, PA USA
| | - Emily E. Friedrich
- Department of Biomedical Engineering; Carnegie Mellon University; Pittsburgh, PA USA
| | | | - Allison N. Elder
- Department of Chemistry; Carnegie Mellon University; Pittsburgh, PA USA
| | - Liang Tso Sun
- Department of Biomedical Engineering; Carnegie Mellon University; Pittsburgh, PA USA
| |
Collapse
|