1
|
Duquesne J, Parmentier L, Vermeersch E, Lemaire F, Seo JW, Dmitriev RI, Vlierberghe SV. Volumetric bioprinting of the osteoid niche. Biofabrication 2025; 17:025002. [PMID: 39819878 DOI: 10.1088/1758-5090/adab25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 01/16/2025] [Indexed: 01/19/2025]
Abstract
Volumetric bioprinting has revolutionized the field of biofabrication by enabling the creation of cubic centimeter-scale living constructs at faster printing times (in the order of seconds). However, a key challenge remains: developing a wider variety of available osteogenic bioinks that allow osteogenic maturation of the encapsulated cells within the construct. Herein, the bioink exploiting a step-growth mechanism (norbornene-norbornene functionalized gelatin in combination with thiolated gelatin-GelNBNBSH) outperformed the bioink exploiting a chain-growth mechanism (gelatin methacryloyl-GelMA), as the necessary photo-initiator concentration was three times lower combined with a more than 50% reduction in required light exposure dose resulting in an improved positive and negative resolution. To mimic the substrate elasticity of the osteoid, two concentrations of the photo-initiator Li-TPO-L (1 and 10 mg ml-1) were compared for post-curing whereby the lowest concentration was selected since it resulted in attaining the osteogenic substrate elasticity combined with excellent biocompatibility with HT1080 cells (>95%). Further physico-chemical testing revealed that the volumetric printing (VP) process affected the degradation time of the constructs with volumetric constructs degrading slower than the control sheets which could be due to the introduced fibrillar structure inherent to the VP process. Moreover, GelNBNBSH volumetric constructs significantly outperformed the GelMA volumetric constructs in terms of a 2-fold increase in photo-crosslinkable moiety conversion and a 3-fold increase in bulk stiffness of the construct. Finally, a 21-day osteogenic cell study was performed with highly viable dental pulp-derived stem cells (>95%) encapsulated within the volumetric printed constructs. Osteogenesis was greatly favored for the GelNBNBSH constructs through enhanced early (alkaline phosphatase activity) and late maturation (calcium production) osteogenic markers. After 21 d, a secretome analysis revealed a more mature osteogenic phenotype within GelNBNBSH constructs as compared to their chain-growth counterpart in terms of osteogenic, immunological and angiogenic signaling.
Collapse
Affiliation(s)
- Jessie Duquesne
- Polymer Chemistry and Biomaterials (PBM) Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281, Building S4, 9000 Ghent, Belgium
| | - Laurens Parmentier
- Polymer Chemistry and Biomaterials (PBM) Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281, Building S4, 9000 Ghent, Belgium
| | - Edward Vermeersch
- Polymer Chemistry and Biomaterials (PBM) Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281, Building S4, 9000 Ghent, Belgium
| | - Flora Lemaire
- Biomatériaux et Inflammation en Site Osseux (BIOS), Université de Reims Champagne Ardenne, Avenue du Maréchal Juin 1, 51100 Reims, France
| | - Jung Won Seo
- Nano-biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent university, Proeftuinstraat 86, 9000 Ghent, Belgium
| | - Ruslan I Dmitriev
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medical and Health Sciences, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials (PBM) Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281, Building S4, 9000 Ghent, Belgium
| |
Collapse
|
2
|
Yu H, Luo X, Li Y, Shao L, Yang F, Pang Q, Zhu Y, Hou R. Advanced Hybrid Strategies of GelMA Composite Hydrogels in Bone Defect Repair. Polymers (Basel) 2024; 16:3039. [PMID: 39518248 PMCID: PMC11548276 DOI: 10.3390/polym16213039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
To date, severe bone defects remain a significant challenge to the quality of life. All clinically used bone grafts have their limitations. Bone tissue engineering offers the promise of novel bone graft substitutes. Various biomaterial scaffolds are fabricated by mimicking the natural bone structure, mechanical properties, and biological properties. Among them, gelatin methacryloyl (GelMA), as a modified natural biomaterial, possesses a controllable chemical network, high cellular stability and viability, good biocompatibility and degradability, and holds the prospect of a wide range of applications. However, because they are hindered by their mechanical properties, degradation rate, and lack of osteogenic activity, GelMA hydrogels need to be combined with other materials to improve the properties of the composites and endow them with the ability for osteogenesis, vascularization, and neurogenesis. In this paper, we systematically review and summarize the research progress of GelMA composite hydrogel scaffolds in the field of bone defect repair, and discuss ways to improve the properties, which will provide ideas for the design and application of bionic bone substitutes.
Collapse
Affiliation(s)
- Han Yu
- Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo 315211, China; (H.Y.); (X.L.); (Y.L.); (F.Y.); (Y.Z.)
| | - Xi Luo
- Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo 315211, China; (H.Y.); (X.L.); (Y.L.); (F.Y.); (Y.Z.)
| | - Yanling Li
- Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo 315211, China; (H.Y.); (X.L.); (Y.L.); (F.Y.); (Y.Z.)
| | - Lei Shao
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo 315211, China;
| | - Fang Yang
- Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo 315211, China; (H.Y.); (X.L.); (Y.L.); (F.Y.); (Y.Z.)
| | - Qian Pang
- Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo 315211, China; (H.Y.); (X.L.); (Y.L.); (F.Y.); (Y.Z.)
| | - Yabin Zhu
- Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo 315211, China; (H.Y.); (X.L.); (Y.L.); (F.Y.); (Y.Z.)
| | - Ruixia Hou
- Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo 315211, China; (H.Y.); (X.L.); (Y.L.); (F.Y.); (Y.Z.)
| |
Collapse
|
3
|
Cleveland DS, Gasvoda KL, Ding A, Alsberg E. Cell Contractile Forces Drive Spatiotemporal Morphing in 4D Bioprinted Living Constructs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.22.613990. [PMID: 39386675 PMCID: PMC11463471 DOI: 10.1101/2024.09.22.613990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Current 4D materials typically rely on external stimuli such as heat or light to accomplish changes in shape, limiting the biocompatibility of these materials. Here, a composite bioink consisting of oxidized and methacrylated alginate (OMA), methacrylated gelatin (GelMA), and gelatin microspheres is developed to accomplish free-standing 4D bioprinting of cell-laden structures driven by an internal stimulus: cell-contractile forces (CCF). 4D changes in shape are directed by forming bilayer constructs consisting of one cell-free and one cell-laden layer. Human mesenchymal stem cells (hMSCs) are encapsulated to demonstrate the ability to simultaneously induce changes in shape and chondrogenic differentiation. Finally, the capability to pattern each layer of the printed constructs is exhibited to obtain complex geometric changes, including bending around two separate, non-parallel axes. Bioprinting of such 4D constructs mediated by CCF empowers the formation of more complex constructs, contributing to a greater degree of in vitro biomimicry of biological 4D phenomena.
Collapse
|
4
|
Zhu Y, Yu X, Liu H, Li J, Gholipourmalekabadi M, Lin K, Yuan C, Wang P. Strategies of functionalized GelMA-based bioinks for bone regeneration: Recent advances and future perspectives. Bioact Mater 2024; 38:346-373. [PMID: 38764449 PMCID: PMC11101688 DOI: 10.1016/j.bioactmat.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/07/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024] Open
Abstract
Gelatin methacryloyl (GelMA) hydrogels is a widely used bioink because of its good biological properties and tunable physicochemical properties, which has been widely used in a variety of tissue engineering and tissue regeneration. However, pure GelMA is limited by the weak mechanical strength and the lack of continuous osteogenic induction environment, which is difficult to meet the needs of bone repair. Moreover, GelMA hydrogels are unable to respond to complex stimuli and therefore are unable to adapt to physiological and pathological microenvironments. This review focused on the functionalization strategies of GelMA hydrogel based bioinks for bone regeneration. The synthesis process of GelMA hydrogel was described in details, and various functional methods to meet the requirements of bone regeneration, including mechanical strength, porosity, vascularization, osteogenic differentiation, and immunoregulation for patient specific repair, etc. In addition, the response strategies of smart GelMA-based bioinks to external physical stimulation and internal pathological microenvironment stimulation, as well as the functionalization strategies of GelMA hydrogel to achieve both disease treatment and bone regeneration in the presence of various common diseases (such as inflammation, infection, tumor) are also briefly reviewed. Finally, we emphasized the current challenges and possible exploration directions of GelMA-based bioinks for bone regeneration.
Collapse
Affiliation(s)
- Yaru Zhu
- School of Stomatology, Xuzhou Medical University, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
- Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Xingge Yu
- Department of Oral and Cranio-maxillofacial Science, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Hao Liu
- School of Stomatology, Xuzhou Medical University, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| | - Junjun Li
- School of Stomatology, Xuzhou Medical University, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Department of Medical Biotechnology, Faculty of Allied Medicine, Tehran, Iran
| | - Kaili Lin
- Department of Oral and Cranio-maxillofacial Science, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Changyong Yuan
- School of Stomatology, Xuzhou Medical University, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| | - Penglai Wang
- School of Stomatology, Xuzhou Medical University, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
5
|
Cedillo-Servin G, Louro AF, Gamelas B, Meliciano A, Zijl A, Alves PM, Malda J, Serra M, Castilho M. Microfiber-reinforced hydrogels prolong the release of human induced pluripotent stem cell-derived extracellular vesicles to promote endothelial migration. BIOMATERIALS ADVANCES 2023; 155:213692. [PMID: 37952463 DOI: 10.1016/j.bioadv.2023.213692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023]
Abstract
Extracellular vesicle (EV)-based approaches for promoting angiogenesis have shown promising results. Yet, further development is needed in vehicles that prolong EV exposure to target organs. Here, we hypothesized that microfiber-reinforced gelatin methacryloyl (GelMA) hydrogels could serve as sustained delivery platforms for human induced pluripotent stem cell (hiPSC)-derived EV. EV with 50-200 nm size and typical morphology were isolated from hiPSC-conditioned culture media and tested negative for common co-isolated contaminants. hiPSC-EV were then incorporated into GelMA hydrogels with or without a melt electrowritten reinforcing mesh. EV release was found to increase with GelMA concentration, as 12 % (w/v) GelMA hydrogels provided higher release rate and total release over 14 days in vitro, compared to lower hydrogel concentrations. Release profile modelling identified diffusion as a predominant release mechanism based on a Peppas-Sahlin model. To study the effect of reinforcement-dependent hydrogel mechanics on EV release, stress relaxation was assessed. Reinforcement with highly porous microfiber meshes delayed EV release by prolonging hydrogel stress relaxation and reducing the swelling ratio, thus decreasing the initial burst and overall extent of release. After release from photocrosslinked reinforced hydrogels, EV remained internalizable by human umbilical vein endothelial cells (HUVEC) over 14 days, and increased migration was observed in the first 4 h. EV and RNA cargo stability was investigated at physiological temperature in vitro, showing a sharp decrease in total RNA levels, but a stable level of endothelial migration-associated small noncoding RNAs over 14 days. Our data show that hydrogel formulation and microfiber reinforcement are superimposable approaches to modulate EV release from hydrogels, thus depicting fiber-reinforced GelMA hydrogels as tunable hiPSC-EV vehicles for controlled release systems that promote endothelial cell migration.
Collapse
Affiliation(s)
- Gerardo Cedillo-Servin
- Regenerative Medicine Centre Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ana Filipa Louro
- Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Beatriz Gamelas
- Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana Meliciano
- Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Anne Zijl
- Regenerative Medicine Centre Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands; Faculty of Medicine, Utrecht University, Utrecht, the Netherlands
| | - Paula M Alves
- Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Jos Malda
- Regenerative Medicine Centre Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Margarida Serra
- Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Miguel Castilho
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
6
|
Song W, Zhao L, Gao Y, Han C, Gao S, Guo M, Bai J, Wang L, Yin W, Wu F, Zhang P. Dual growth factor-modified microspheres nesting human-derived umbilical cord mesenchymal stem cells for bone regeneration. J Biol Eng 2023; 17:43. [PMID: 37430290 DOI: 10.1186/s13036-023-00360-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/01/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Modular tissue engineering (MTE) is a novel "bottom-up" approach that aims to mimic complex tissue microstructural features. The constructed micromodules are assembled into engineered biological tissues with repetitive functional microunits and form cellular networks. This is emerging as a promising strategy for reconstruction of biological tissue. RESULTS Herein, we constructed a micromodule for MTE and developed engineered osteon-like microunits by inoculating human-derived umbilical cord mesenchymal stem cells (HUMSCs) onto nHA/PLGA microspheres with surface modification of dual growth factors (BMP2/bFGF). By evaluating the results of proliferation and osteogenic differentiation ability of HUMSCs in vitro, the optimal ratio of the dual growth factor (BMP2/bFGF) combination was derived as 5:5. In vivo assessments showed the great importance of HUMSCs for osteogneic differentiation. Ultimately, direct promotion of early osteo-differentiation manifested as upregulation of Runx-2 gene expression. The vascularization capability was evaluated by tube formation assays, demonstrating the importance of HUMSCs in the microunits for angiogenesis. CONCLUSIONS The modification of growth factors and HUMSCs showed ideal biocompatibility and osteogenesis combined with nHA/PLGA scaffolds. The micromodules constructed in the current study provide an efficient stem cell therapy strategy for bone defect repair.
Collapse
Affiliation(s)
- Wenzhi Song
- Department of Stomatology, China-Japan Union Hospital, Jilin University, Changchun, 130031, PR China
| | - Lanlan Zhao
- Department of Stomatology, China-Japan Union Hospital, Jilin University, Changchun, 130031, PR China
| | - Yuqi Gao
- Department of Stomatology, China-Japan Union Hospital, Jilin University, Changchun, 130031, PR China
| | - Chunyu Han
- Department of Stomatology, China-Japan Union Hospital, Jilin University, Changchun, 130031, PR China
| | - Shengrui Gao
- Department of Otorhinolaryngology, First Clinical Hospital of Jilin University, Changchun, 130021, PR China
| | - Min Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, PR China
| | - Jianfei Bai
- Department of Stomatology, China-Japan Union Hospital, Jilin University, Changchun, 130031, PR China
| | - Liqiang Wang
- Department of Ophthalmology, Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Wanzhong Yin
- Department of Otorhinolaryngology, First Clinical Hospital of Jilin University, Changchun, 130021, PR China.
| | - Feng Wu
- Foshan Hospital of Traditional Chinese Medicine/Foshan Hospital of TCM, Foshan, China.
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, PR China
| |
Collapse
|
7
|
Romano IR, D'Angeli F, Vicario N, Russo C, Genovese C, Lo Furno D, Mannino G, Tamburino S, Parenti R, Giuffrida R. Adipose-Derived Mesenchymal Stromal Cells: A Tool for Bone and Cartilage Repair. Biomedicines 2023; 11:1781. [PMID: 37509421 PMCID: PMC10376676 DOI: 10.3390/biomedicines11071781] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
The osteogenic and chondrogenic differentiation ability of adipose-derived mesenchymal stromal cells (ASCs) and their potential therapeutic applications in bone and cartilage defects are reported in this review. This becomes particularly important when these disorders can only be poorly treated by conventional therapeutic approaches, and tissue engineering may represent a valuable alternative. Being of mesodermal origin, ASCs can be easily induced to differentiate into chondrocyte-like and osteocyte-like elements and used to repair damaged tissues. Moreover, they can be easily harvested and used for autologous implantation. A plethora of ASC-based strategies are being developed worldwide: they include the transplantation of freshly harvested cells, in vitro expanded cells or predifferentiated cells. Moreover, improving their positive effects, ASCs can be implanted in combination with several types of scaffolds that ensure the correct cell positioning; support cell viability, proliferation and migration; and may contribute to their osteogenic or chondrogenic differentiation. Examples of these strategies are described here, showing the enormous therapeutic potential of ASCs in this field. For safety and regulatory issues, most investigations are still at the experimental stage and carried out in vitro and in animal models. Clinical applications have, however, been reported with promising results and no serious adverse effects.
Collapse
Affiliation(s)
- Ivana Roberta Romano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Floriana D'Angeli
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Cristina Russo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Carlo Genovese
- Faculty of Medicine and Surgery, "Kore" University of Enna, 94100 Enna, Italy
| | - Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Giuliana Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy
| | - Serena Tamburino
- Chi.Pla Chirurgia Plastica, Via Suor Maria Mazzarello, 54, 95128 Catania, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Rosario Giuffrida
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| |
Collapse
|
8
|
Ege D, Hasirci V. Is 3D Printing Promising for Osteochondral Tissue Regeneration? ACS APPLIED BIO MATERIALS 2023; 6:1431-1444. [PMID: 36943415 PMCID: PMC10114088 DOI: 10.1021/acsabm.3c00093] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/14/2023] [Indexed: 03/23/2023]
Abstract
Osteochondral tissue regeneration is quite difficult to achieve due to the complexity of its organization. In the design of these complex multilayer structures, a fabrication method, 3D printing, started to be employed, especially by using extrusion, stereolithography and inkjet printing approaches. In this paper, the designs are discussed including biphasic, triphasic, and gradient structures which aim to mimic the cartilage and the calcified cartilage and the whole osteochondral tissue closely. In the first section of the review paper, 3D printing of hydrogels including gelatin methacryloyl (GelMa), alginate, and polyethylene glycol diacrylate (PEGDA) are discussed. However, their physical and biological properties need to be augmented, and this generally is achieved by blending the hydrogel with other, more durable, less hydrophilic, polymers. These scaffolds are very suitable to carry growth factors, such as TGF-β1, to further stimulate chondrogenesis. The bone layer is mimicked by printing calcium phosphates (CaPs) or bioactive glasses together with the hydrogels or as a component of another polymer layer. The current research findings indicate that polyester (i.e. polycaprolactone (PCL), polylactic acid (PLA) and poly(lactide-co-glycolide) (PLGA)) reinforced hydrogels may more successfully mimic the complex structure of osteochondral tissue. Moreover, more recent printing methods such as melt electrowriting (MEW), are being used to integrate polyester fibers to enhance the mechanical properties of hydrogels. Additionally, polyester scaffolds that are 3D printed without hydrogels are discussed after the hydrogel-based scaffolds. In this review paper, the relevant studies are analyzed and discussed, and future work is recommended with support of tables of designed scaffolds. The outcome of the survey of the field is that 3D printing has significant potential to contribute to osteochondral tissue repair.
Collapse
Affiliation(s)
- Duygu Ege
- Institute
of Biomedical Engineering, Boğaziçi
University, Rasathane Cd, Kandilli Campus, Kandilli Mah., 34684 Istanbul, Turkey
| | - Vasif Hasirci
- Biomaterials A & R Ctr, and Department of
Biomedical Engineering, Acibadem Mehmet
Ali Aydinlar University, Kayisdagi Ave., Atasehir, 34684 Istanbul, Turkey
- Center
of Excellence in Biomaterials and Tissue Engineering, METU Research
Group, BIOMATEN, Cankaya, 06800 Ankara, Turkey
| |
Collapse
|
9
|
Yao H, Guo J, Zhu W, Su Y, Tong W, Zheng L, Chang L, Wang X, Lai Y, Qin L, Xu J. Controlled Release of Bone Morphogenetic Protein-2 Augments the Coupling of Angiogenesis and Osteogenesis for Accelerating Mandibular Defect Repair. Pharmaceutics 2022; 14:2397. [PMID: 36365215 PMCID: PMC9699026 DOI: 10.3390/pharmaceutics14112397] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 08/30/2023] Open
Abstract
Reconstruction of a mandibular defect is challenging, with high expectations for both functional and esthetic results. Bone morphogenetic protein-2 (BMP-2) is an essential growth factor in osteogenesis, but the efficacy of the BMP-2-based strategy on the bone regeneration of mandibular defects has not been well-investigated. In addition, the underlying mechanisms of BMP-2 that drives the bone formation in mandibular defects remain to be clarified. Here, we utilized BMP-2-loaded hydrogel to augment bone formation in a critical-size mandibular defect model in rats. We found that implantation of BMP-2-loaded hydrogel significantly promoted intramembranous ossification within the defect. The region with new bone triggered by BMP-2 harbored abundant CD31+ endomucin+ type H vessels and associated osterix (Osx)+ osteoprogenitor cells. Intriguingly, the new bone comprised large numbers of skeletal stem cells (SSCs) (CD51+ CD200+) and their multi-potent descendants (CD51+ CD105+), which were mainly distributed adjacent to the invaded blood vessels, after implantation of the BMP-2-loaded hydrogel. Meanwhile, BMP-2 further elevated the fraction of CD51+ CD105+ SSC descendants. Overall, the evidence indicates that BMP-2 may recapitulate a close interaction between functional vessels and SSCs. We conclude that BMP-2 augmented coupling of angiogenesis and osteogenesis in a novel and indispensable way to improve bone regeneration in mandibular defects, and warrants clinical investigation and application.
Collapse
Affiliation(s)
- Hao Yao
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jiaxin Guo
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wangyong Zhu
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Yuxiong Su
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Wenxue Tong
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lizhen Zheng
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Liang Chang
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xinluan Wang
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518057, China
| | - Yuxiao Lai
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518057, China
| | - Ling Qin
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518057, China
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
10
|
Patrick MD, Keys JF, Suresh Kumar H, Annamalai RT. Injectable nanoporous microgels generate vascularized constructs and support bone regeneration in critical-sized defects. Sci Rep 2022; 12:15811. [PMID: 36138042 PMCID: PMC9499928 DOI: 10.1038/s41598-022-19968-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/07/2022] [Indexed: 11/09/2022] Open
Abstract
Large and aberrant bone fractures require ossification and concomitant vascularization for proper healing. Evidence indicates that osteogenesis and vessel growth are coupled in bone fractures. Although the synergistic role of endothelial cells has been recognized, vascularizing large bone grafts remains a challenge and has apprehended the clinical translation of engineered bone constructs. Here, we describe a facile method to fabricate vascularized constructs using chitosan and gelatin-based microgels that promote osteogenesis of human mesenchymal stromal cells (MSC) while supporting endothelial sprouting and network formation. The microgels are enzymatically degradable and had a high hydration rate with a volume swelling ratio of ~ 493% and a polymer density of ~ 431 mg/cm3, which is comparable to that of native skeletal tissues. AFM indentation of the surface showed an average Young's modulus of 189 kPa, falling in a range that is conducive to both osteogenesis and vasculogenesis. The osteogenic microgel containing chitosan, gelatin, and hydroxyapatite, mimicking the bone matrix, supported robust attachment, proliferation, and differentiation of MSC. On the other hand, the vasculogenic microgels containing only gelatin, enriched endothelial phenotype and enabled vascular networks formation when embedded in 3D matrices. Combining the two types of microgels created a hybrid construct that sustained the functions of both osteogenic and vasculogenic microgels and enhanced one another. Using a murine model, we also show that the osteogenic microgels regenerate bone in a critical-sized defect with > 95% defect closure by week 12. These multifunctional microgels can be administered minimally invasively and can conformally fill large bone defects. This work lays the foundation to establish principles of designing multiphasic scaffolds with tissue-specific biophysical and biochemical properties for regenerating vascularized and interfacial tissues.
Collapse
Affiliation(s)
- Matthew D Patrick
- Department of Biomedical Engineering, University of Kentucky, 760 Press Avenue, 138 Healthy Kentucky Research Building, Lexington, KY, 40536, USA
| | - Jeremy F Keys
- Department of Biomedical Engineering, University of Kentucky, 760 Press Avenue, 138 Healthy Kentucky Research Building, Lexington, KY, 40536, USA
| | - Harshini Suresh Kumar
- Department of Biomedical Engineering, University of Kentucky, 760 Press Avenue, 138 Healthy Kentucky Research Building, Lexington, KY, 40536, USA
| | - Ramkumar T Annamalai
- Department of Biomedical Engineering, University of Kentucky, 760 Press Avenue, 138 Healthy Kentucky Research Building, Lexington, KY, 40536, USA.
| |
Collapse
|
11
|
Gultian KA, Gandhi R, DeCesari K, Romiyo V, Kleinbart EP, Martin K, Gentile PM, Kim TWB, Vega SL. Injectable hydrogel with immobilized BMP-2 mimetic peptide for local bone regeneration. FRONTIERS IN BIOMATERIALS SCIENCE 2022; 1. [PMID: 37090104 PMCID: PMC10120851 DOI: 10.3389/fbiom.2022.948493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Osteoporosis is a disease characterized by a decrease in bone mineral density, thereby increasing the risk of sustaining a fragility fracture. Most medical therapies are systemic and do not restore bone in areas of need, leading to undesirable side effects. Injectable hydrogels can locally deliver therapeutics with spatial precision, and this study reports the development of an injectable hydrogel containing a peptide mimic of bone morphogenetic protein-2 (BMP-2). To create injectable hydrogels, hyaluronic acid was modified with norbornene (HANor) or tetrazine (HATet) which upon mixing click into covalently crosslinked Nor-Tet hydrogels. By modifying HANor macromers with methacrylates (Me), thiolated BMP-2 mimetic peptides were immobilized to HANor via a Michael addition reaction, and coupling was confirmed with 1H NMR spectroscopy. BMP-2 peptides presented in soluble and immobilized form increased alkaline phosphatase (ALP) expression in MSCs cultured on 2D and encapsulated in 3D Nor-Tet hydrogels. Injection of bioactive Nor-Tet hydrogels into hollow intramedullary canals of Lewis rat femurs showed a local increase in trabecular bone density as determined by micro-CT imaging. The presented work shows that injectable hydrogels with immobilized BMP-2 peptides are a promising biomaterial for the local regeneration of bone tissue and for the potential local treatment of osteoporosis.
Collapse
Affiliation(s)
- Kirstene A. Gultian
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, United States
| | - Roshni Gandhi
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, United States
| | - Kayla DeCesari
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, United States
| | - Vineeth Romiyo
- Department of Orthopaedic Surgery, Cooper University Health Care, Camden, NJ, United States
| | - Emily P. Kleinbart
- Department of Orthopaedic Surgery, Cooper University Health Care, Camden, NJ, United States
| | - Kelsey Martin
- Department of Orthopaedic Surgery, Cooper University Health Care, Camden, NJ, United States
| | - Pietro M. Gentile
- Department of Orthopaedic Surgery, Cooper University Health Care, Camden, NJ, United States
| | - Tae Won B. Kim
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, United States
- Department of Orthopaedic Surgery, Cooper University Health Care, Camden, NJ, United States
| | - Sebastián L. Vega
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, United States
- CORRESPONDENCE Sebastián L. Vega,
| |
Collapse
|
12
|
Kim YH, Dawson JI, Oreffo ROC, Tabata Y, Kumar D, Aparicio C, Mutreja I. Gelatin Methacryloyl Hydrogels for Musculoskeletal Tissue Regeneration. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9070332. [PMID: 35877383 PMCID: PMC9311920 DOI: 10.3390/bioengineering9070332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 12/30/2022]
Abstract
Musculoskeletal disorders are a significant burden on the global economy and public health. Hydrogels have significant potential for enhancing the repair of damaged and injured musculoskeletal tissues as cell or drug delivery systems. Hydrogels have unique physicochemical properties which make them promising platforms for controlling cell functions. Gelatin methacryloyl (GelMA) hydrogel in particular has been extensively investigated as a promising biomaterial due to its tuneable and beneficial properties and has been widely used in different biomedical applications. In this review, a detailed overview of GelMA synthesis, hydrogel design and applications in regenerative medicine is provided. After summarising recent progress in hydrogels more broadly, we highlight recent advances of GelMA hydrogels in the emerging fields of musculoskeletal drug delivery, involving therapeutic drugs (e.g., growth factors, antimicrobial molecules, immunomodulatory drugs and cells), delivery approaches (e.g., single-, dual-release system), and material design (e.g., addition of organic or inorganic materials, 3D printing). The review concludes with future perspectives and associated challenges for developing local drug delivery for musculoskeletal applications.
Collapse
Affiliation(s)
- Yang-Hee Kim
- Bone and Joint Research Group, Centre for Human Development, Stem Cells & Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton SO16 6YD, UK; (J.I.D.); (R.O.C.O.)
- Correspondence: (Y.-H.K.); (I.M.); Tel.: +44-2381-203293 (Y.-H.K.); +1-(612)7605790 (I.M.)
| | - Jonathan I. Dawson
- Bone and Joint Research Group, Centre for Human Development, Stem Cells & Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton SO16 6YD, UK; (J.I.D.); (R.O.C.O.)
| | - Richard O. C. Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells & Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton SO16 6YD, UK; (J.I.D.); (R.O.C.O.)
| | - Yasuhiko Tabata
- Department of Biomaterials, Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8501, Japan;
| | - Dhiraj Kumar
- Division of Pediatric Dentistry, School of Dentistry, University of Minnesota, Minneapolis, MN 55812, USA;
| | - Conrado Aparicio
- Minnesota Dental Research Center for Biomaterials and Biomechanics, Department of Restorative Science, University of Minnesota, Minneapolis, MN 55455, USA;
- Division of Basic Research, Faculty of Odontology UIC Barcelona—Universitat Internacional de Catalunya, 08017 Barcelona, Spain
- BIST—Barcelona Institute for Science and Technology, 08195 Barcelona, Spain
| | - Isha Mutreja
- Minnesota Dental Research Center for Biomaterials and Biomechanics, Department of Restorative Science, University of Minnesota, Minneapolis, MN 55455, USA;
- Correspondence: (Y.-H.K.); (I.M.); Tel.: +44-2381-203293 (Y.-H.K.); +1-(612)7605790 (I.M.)
| |
Collapse
|
13
|
Born LJ, McLoughlin ST, Dutta D, Mahadik B, Jia X, Fisher JP, Jay SM. Sustained released of bioactive mesenchymal stromal cell-derived extracellular vesicles from 3D-printed gelatin methacrylate hydrogels. J Biomed Mater Res A 2022; 110:1190-1198. [PMID: 35080115 PMCID: PMC11570911 DOI: 10.1002/jbm.a.37362] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022]
Abstract
Extracellular vesicles (EVs) represent an emerging class of therapeutics with significant potential and broad applicability. However, a general limitation is their rapid clearance after administration. Thus, methods to enable sustained EV release are of great potential value. Here, we demonstrate that EVs from mesenchymal stem/stromal cells (MSCs) can be incorporated into 3D-printed gelatin methacrylate (GelMA) hydrogel bioink, and that the initial burst release of EVs can be reduced by increasing the concentration of crosslinker during gelation. Further, the data show that MSC EV bioactivity in an endothelial gap closure assay is retained after the 3D printing and photocrosslinking processes. Our group previously showed that MSC EV bioactivity in this assay correlates with pro-angiogenic bioactivity in vivo, thus these results indicate the therapeutic potential of MSC EV-laden GelMA bioinks.
Collapse
Affiliation(s)
- Louis J. Born
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - Shannon T. McLoughlin
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - Dipankar Dutta
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - Bhushan Mahadik
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - John P. Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - Steven M. Jay
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
14
|
Chai S, Huang J, Mahmut A, Wang B, Yao Y, Zhang X, Zhuang Z, Xie C, Xu Z, Jiang Q. Injectable Photo-Crosslinked Bioactive BMSCs-BMP2-GelMA Scaffolds for Bone Defect Repair. Front Bioeng Biotechnol 2022; 10:875363. [PMID: 35402421 PMCID: PMC8989181 DOI: 10.3389/fbioe.2022.875363] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/07/2022] [Indexed: 01/04/2023] Open
Abstract
Injectable hydrogels offer a new therapy option for irregular bone deformities. Based on gelatin methacryloyl (GelMA), bone marrow mesenchymal stem cells (BMSCs), and bone morphogenetic protein 2 (BMP2), we created a photo-crosslinked composite bioactive scaffold. The composite scaffolds had appropriate mechanical properties for stem cells adhesion and proliferation, as well as good biocompatibility and the ability to stimulate BMSCs osteogenic differentiation in vitro. The synergistic effect of BMSCs and BMP2 enabled the composite bioactive scaffold to exhibit higher osteogenic potential in vivo than scaffolds loaded alone with BMSCs or BMP2, according to imaging and histology studies. In conclusion, by promoting the osteogenic differentiation of BMSCs, the composite bioactive scaffold based on BMSCs-BMP2-GelMA has demonstrated remarkable application potential in bone regeneration and bone defects repair.
Collapse
Affiliation(s)
- Senlin Chai
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jianhao Huang
- Department of Orthopedics, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Abdurahman Mahmut
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Bin Wang
- The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yao Yao
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaofeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zaikai Zhuang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Chunmei Xie
- Hangzhou Lancet Robotics Company Ltd, Hangzhou, China
| | - Zhihong Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.,Jiangsu Engineering Research Center for 3D Bioprinting, Nanjing, China
| |
Collapse
|
15
|
Kurian AG, Singh RK, Patel KD, Lee JH, Kim HW. Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics. Bioact Mater 2022; 8:267-295. [PMID: 34541401 PMCID: PMC8424393 DOI: 10.1016/j.bioactmat.2021.06.027] [Citation(s) in RCA: 173] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Polymeric hydrogels are fascinating platforms as 3D scaffolds for tissue repair and delivery systems of therapeutic molecules and cells. Among others, methacrylated gelatin (GelMA) has become a representative hydrogel formulation, finding various biomedical applications. Recent efforts on GelMA-based hydrogels have been devoted to combining them with bioactive and functional nanomaterials, aiming to provide enhanced physicochemical and biological properties to GelMA. The benefits of this approach are multiple: i) reinforcing mechanical properties, ii) modulating viscoelastic property to allow 3D printability of bio-inks, iii) rendering electrical/magnetic property to produce electro-/magneto-active hydrogels for the repair of specific tissues (e.g., muscle, nerve), iv) providing stimuli-responsiveness to actively deliver therapeutic molecules, and v) endowing therapeutic capacity in tissue repair process (e.g., antioxidant effects). The nanomaterial-combined GelMA systems have shown significantly enhanced and extraordinary behaviors in various tissues (bone, skin, cardiac, and nerve) that are rarely observable with GelMA. Here we systematically review these recent efforts in nanomaterials-combined GelMA hydrogels that are considered as next-generation multifunctional platforms for tissue therapeutics. The approaches used in GelMA can also apply to other existing polymeric hydrogel systems.
Collapse
Affiliation(s)
- Amal George Kurian
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Rajendra K. Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Kapil D. Patel
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, WC1X8LD, UK
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| |
Collapse
|
16
|
Gonzalez-Fernandez P, Rodríguez-Nogales C, Jordan O, Allémann E. Combination of mesenchymal stem cells and bioactive molecules in hydrogels for osteoarthritis treatment. Eur J Pharm Biopharm 2022; 172:41-52. [PMID: 35114357 DOI: 10.1016/j.ejpb.2022.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/13/2021] [Accepted: 01/17/2022] [Indexed: 12/15/2022]
Abstract
Osteoarthritis (OA) is a chronic and inflammatory disease with no effective regenerative treatments to date. The therapeutic potential of mesenchymal stem cells (MSCs) remains to be fully explored. Intra-articular injection of these cells promotes cartilage protection and regeneration by paracrine signaling and differentiation into chondrocytes. However, joints display a harsh avascular environment for these cells upon injection. This phenomenon prompted researchers to develop suitable injectable materials or systems for MSCs to enhance their function and survival. Among them, hydrogels can absorb a large amount of water and maintain their 3D structure but also allow incorporation of bioactive agents or small molecules in their matrix that maximize the action of MSCs. These materials possess advantageous cartilage-like features such as collagen or hyaluronic acid moieties that interact with MSC receptors, thereby promoting cell adhesion. This review provides an up-to-date overview of the progress and opportunities of MSCs entrapped into hydrogels, combined with bioactive/small molecules to improve the therapeutic effects in OA treatment.
Collapse
Affiliation(s)
- P Gonzalez-Fernandez
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - C Rodríguez-Nogales
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - O Jordan
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - E Allémann
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland.
| |
Collapse
|
17
|
Zou T, Jiang S, Zhang Y, Liu J, Yi B, Qi Y, Dissanayaka WL, Zhang C. In Situ Oxygen Generation Enhances the SCAP Survival in Hydrogel Constructs. J Dent Res 2021; 100:1127-1135. [PMID: 34328028 DOI: 10.1177/00220345211027155] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Prolonged and severe hypoxia is the main cause of death of transplanted cells prior to the establishment of functional circulation. In situ generation of oxygen by oxygen-producing scaffolds-a unique solution that could produce and deliver oxygen to the adjacent cells independently of blood perfusion-has attracted considerable attention to enhance the survivability of the transplanted cells. However, the application of oxygen-generating scaffolds for facilitating cell survival in pulp-like tissue regeneration is yet to be explored. In this study, gelatin methacryloyl (GelMA)-a biocompatible scaffolding material that closely mimics the native extracellular matrix and is conducive to cell proliferation and differentiation-was used to fabricate oxygen-generating scaffolds by loading various concentrations of CaO2. The CaO2 distribution, topography, swelling, and pore size of CaO2-GelMA hydrogels were characterized in detail. The release of O2 by the scaffold and the viability, spreading, and proliferation of stem cells from apical papilla (SCAPs) encapsulated in the GelMA hydrogels with various concentrations of CaO2 under hypoxia were evaluated. In addition, cellular constructs were engineered into root canals, and cell viability within the apical, middle, and coronal portions was assessed. Our findings showed that 0.5% CaO2-GelMA was sufficient to supply in situ oxygen for maintaining the embedded SCAP viability for 1 wk. Furthermore, the 0.5% CaO2-GelMA hydrogels improved the survivability of SCAPs within the coronal portion of the engineered cellular constructs within the root canals. This work demonstrated that 0.5% CaO2-GelMA hydrogels offer a potential promising scaffold that enhances survival of the embedded SCAPs in endodontic regeneration.
Collapse
Affiliation(s)
- T Zou
- Restorative Dental Science, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - S Jiang
- School of Stomatology, Shenzhen University Health Science Center, Shenzhen, China
| | - Y Zhang
- Restorative Dental Science, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - J Liu
- Restorative Dental Science, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - B Yi
- Restorative Dental Science, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Y Qi
- Restorative Dental Science, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - W L Dissanayaka
- Restorative Dental Science, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - C Zhang
- Restorative Dental Science, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
18
|
Lee YB, Jeon O, Lee SJ, Ding A, Wells D, Alsberg E. Induction of 4D spatiotemporal geometric transformations in high cell density tissues via shape changing hydrogels. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2010104. [PMID: 34335134 PMCID: PMC8323845 DOI: 10.1002/adfm.202010104] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Indexed: 05/26/2023]
Abstract
Developing and healing tissues begin as a cellular condensation. Spatiotemporal changes in tissue geometry, transformations in the spatial distribution of the cells and extracellular matrix, are essential for its evolution into a functional tissue. 4D materials, 3D materials capable of geometric changes, may have the potential to recreate the aforementioned biological phenomenon. However, most reported 4D materials are non-degradable and/or not biocompatible, which limits their application in regenerative medicine, and to date there are no systems controlling the geometry of high density cellular condensations and differentiation. Here, we describe 4D high cell density tissues based on shape-changing hydrogels. By sequential photocrosslinking of oxidized and methacrylated alginate (OMA) and methacrylated gelatin (GelMA), bi-layered hydrogels presenting controllable geometric changes without any external stimuli were fabricated. Fibroblasts and human adipose-derived stem cells (ASCs) were incorporated at concentrations up to 1.0 × 108 cells/mL to the 4D constructs, and controllable shape changes were achieved in concert with ASCs differentiated down chondrogenic and osteogenic lineages. Bioprinting of the high density cell-laden OMA and GelMA permitted the formation of more complex constructs with defined 4D geometric changes, which may further expand the promise of this approach in regenerative medicine applications.
Collapse
Affiliation(s)
- Yu Bin Lee
- Department of Biomedical Engineering, University of Illinois at Chicago, IL 60612, USA
| | - Oju Jeon
- Department of Biomedical Engineering, University of Illinois at Chicago, IL 60612, USA
| | - Sang Jin Lee
- Department of Biomedical Engineering, University of Illinois at Chicago, IL 60612, USA
| | - Aixiang Ding
- Department of Biomedical Engineering, University of Illinois at Chicago, IL 60612, USA
| | - Derrick Wells
- Department of Biomedical Engineering, University of Illinois at Chicago, IL 60612, USA
| | - Eben Alsberg
- Department of Biomedical Engineering, University of Illinois at Chicago, IL 60612, USA
| |
Collapse
|
19
|
Xiang L, Cui W. Biomedical application of photo-crosslinked gelatin hydrogels. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2021. [DOI: 10.1186/s42825-020-00043-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
During the past decades, photo-crosslinked gelatin hydrogel (methacrylated gelatin, GelMA) has gained a lot of attention due to its remarkable application in the biomedical field. It has been widely used in cell transplantation, cell culture and drug delivery, based on its crosslinking to form hydrogels with tunable mechanical properties and excellent bio-compatibility when exposed to light irradiation to mimic the micro-environment of native extracellular matrix (ECM). Because of its unique biofunctionality and mechanical tenability, it has also been widely applied in the repair and regeneration of bone, heart, cornea, epidermal tissue, cartilage, vascular, peripheral nerve, oral mucosa, and skeletal muscle et al. The purpose of this review is to summarize the recent application of GelMA in drug delivery and tissue engineering field. Moreover, this review article will briefly introduce both the development of GelMA and the characterization of GelMA. Finally, we discuss the challenges and future development prospects of GelMA as a tissue engineering material and drug or gene delivery carrier, hoping to contribute to accelerating the development of GelMA in the biomedical field.
Graphical abstract
Collapse
|
20
|
Xu H, Sun M, Wang C, Xia K, Xiao S, Wang Y, Ying L, Yu C, Yang Q, He Y, Liu A, Chen L. Growth differentiation factor-5-gelatin methacryloyl injectable microspheres laden with adipose-derived stem cells for repair of disc degeneration. Biofabrication 2020; 13:015010. [PMID: 33361566 DOI: 10.1088/1758-5090/abc4d3] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nucleus pulposus (NP) degeneration is the major cause of degenerative disc disease (DDD). This condition cannot be treated or attenuated by traditional open or minimally invasive surgical options. However, a combination of stem cells, growth factors (GFs) and biomaterials present a viable option for regeneration. Injectable biomaterials act as carriers for controlled release of GFs and deliver stem cells to target tissues through a minimally invasive approach. In this study, injectable gelatin methacryloyl microspheres (GMs) with controllable, uniform particle sizes were rapidly biosynthesized through a low-cost electrospraying method. The GMs were used as delivery vehicles for cells and GFs, and they exhibited good mechanical properties and biocompatibility and enhanced the in vitro differentiation of laden cells into NP-like phenotypes. Furthermore, this integrated system attenuated the in vivo degeneration of rat intervertebral discs, maintained NP tissue integrity and accelerated the synthesis of extracellular matrix. Therefore, this novel therapeutic system is a promising option for the treatment of DDD.
Collapse
Affiliation(s)
- Haibin Xu
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China. Department of Orthopedic Research, Institute of Zhejiang University, Hangzhou 310009, Zhejiang, People's Republic of China. These two authors contributed equally to this work
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kim S, Lee M. Rational design of hydrogels to enhance osteogenic potential. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2020; 32:9508-9530. [PMID: 33551566 PMCID: PMC7857485 DOI: 10.1021/acs.chemmater.0c03018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Bone tissue engineering (BTE) encompasses the field of biomaterials, cells, and bioactive molecules to successfully guide the growth and repair of bone tissue. Current BTE strategies rely on delivering osteogenic molecules or cells via scaffolding materials. However, growth factor- and stem cell-based treatments have several limitations, such as source restriction, low stability, difficulties in predicting long-term efficacy, and high costs, among others. These issues have promoted the development of material-based therapy with properties of accessibility, high stability, tunable efficacy, and low-cost production. Hydrogels are widely used in BTE applications because of their unique hydrophilic nature and tunable physicochemical properties to mimic the native bone environment. However, current hydrogel materials are not ideal candidates due to minimal osteogenic capability on their own. Therefore, recent studies of BTE hydrogels attempt to counterbalance these issues by modifying their biophysical properties. In this article, we review recent progress in the design of hydrogels to instruct osteogenic potential, and present strategies developed to precisely control its bone healing properties.
Collapse
Affiliation(s)
- Soyon Kim
- Division of Advanced Prosthodontics, University of California, Los Angeles, USA
| | - Min Lee
- Division of Advanced Prosthodontics, University of California, Los Angeles, USA
- Department of Bioengineering, University of California, Los Angeles, USA
| |
Collapse
|
22
|
Locally Controlled Diffusive Release of Bone Morphogenetic Protein-2 Using Micropatterned Gelatin Methacrylate Hydrogel Carriers. BIOCHIP JOURNAL 2020; 14:405-420. [PMID: 33250969 PMCID: PMC7680086 DOI: 10.1007/s13206-020-4411-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022]
Abstract
In this work, a novel and simple bone morphogenetic protein (BMP)-2 carrier is developed, which enables localized and controlled release of BMP-2 and facilitates bone regeneration. BMP-2 is localized in the gelatin methacrylate (GelMA) micropatterns on hydrophilic semi-permeable membrane (SNM), and its controlled release is regulated by the concentration of GelMA hydrogel and BMP-2. The controlled release of BMP-2 is verified using computational analysis and quantified using fluorescein isothiocyanate-bovine serum albumin (FITC-BSA) diffusion model. The osteogenic differentiation of osteosarcoma MG-63 cells is manipulated by localized and controlled BMP-2 release. The calcium deposits are significantly higher and the actin skeletal networks are denser in MG-63 cells cultured in the BMP-2-immobilized GelMA micropattern than in the absence of BMP-2. The proposed BMP-2 carrier is expected to not only act as a barrier membrane that can prevent invasion of connective tissue during bone regeneration, but also as a carrier capable of localizing and controlling the release of BMP-2 due to GelMA micropatterning on SNM. This approach can be extensively applied to tissue engineering, including the localization and encapsulation of cells or drugs.
Collapse
|
23
|
Gong L, Li J, Zhang J, Pan Z, Liu Y, Zhou F, Hong Y, Hu Y, Gu Y, Ouyang H, Zou X, Zhang S. An interleukin-4-loaded bi-layer 3D printed scaffold promotes osteochondral regeneration. Acta Biomater 2020; 117:246-260. [PMID: 33007484 DOI: 10.1016/j.actbio.2020.09.039] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/12/2020] [Accepted: 09/23/2020] [Indexed: 02/09/2023]
Abstract
Multilayer scaffolds fabricated by 3D printing or other techniques have been used to repair osteochondral defects. However, it remains a challenge to regenerate the articular cartilage and subchondral bone simultaneously with higher performance. In the present study, we enhanced the repair efficiency of osteochondral defects by developing a bi-layer scaffold: an interleukin-4 (IL-4)-loaded radially oriented gelatin methacrylate (GelMA) scaffold printed with digital light processing (DLP) in the upper layer and a porous polycaprolactone and hydroxyapatite (PCL-HA) scaffold printed with fused deposition modeling (FDM) in the lower layer. An in vitro test showed that both layers supported cell adhesion and proliferation, as the lower layer promoted osteogenic differentiation and the upper layer with IL-4 relieved the negative effects of inflammation on murine chondrocytes, which were induced by interleukin-1β (IL-1β) and M1 macrophages. In a rabbit osteochondral defect repair model, the IL-4-loaded bi-layer scaffold group obtained the highest histological score (24 ± 2) compared to the nontreated (11 ± 1) and pure bi-layer scaffold (16 ± 1) groups after 16 weeks of implantation, which showed that the IL-4-loaded bi-layer scaffold promoted regeneration of both cartilage and subchondral bone with increased formation of neocartilage and neobone tissues. Thus, the IL-4-loaded bi-layer scaffold is an attractive candidate for repair and regeneration of osteochondral defects.
Collapse
|
24
|
Luo L, He Y, Jin L, Zhang Y, Guastaldi FP, Albashari AA, Hu F, Wang X, Wang L, Xiao J, Li L, Wang J, Higuchi A, Ye Q. Application of bioactive hydrogels combined with dental pulp stem cells for the repair of large gap peripheral nerve injuries. Bioact Mater 2020; 6:638-654. [PMID: 33005828 PMCID: PMC7509005 DOI: 10.1016/j.bioactmat.2020.08.028] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 02/09/2023] Open
Abstract
Due to the limitations in autogenous nerve grafting or Schwann cell transplantation, large gap peripheral nerve injuries require a bridging strategy supported by nerve conduit. Cell based therapies provide a novel treatment for peripheral nerve injuries. In this study, we first experimented an optimal scaffold material synthesis protocol, from where we selected the 10% GFD formula (10% GelMA hydrogel, recombinant human basic fibroblast growth factor and dental pulp stem cells (DPSCs)) to fill a cellulose/soy protein isolate composite membrane (CSM) tube to construct a third generation of nerve regeneration conduit, CSM-GFD. Then this CSM-GFD conduit was applied to repair a 15-mm long defect of sciatic nerve in a rat model. After 12 week post implant surgery, at histologic level, we found CSM-GFD conduit could regenerate nerve tissue like neuron and Schwann like nerve cells and myelinated nerve fibers. At physical level, CSM-GFD achieved functional recovery assessed by a sciatic functional index study. In both levels, CSM-GFD performed like what gold standard, the nerve autograft, could do. Further, we unveiled that almost all newly formed nerve tissue at defect site was originated from the direct differentiation of exogeneous DPSCs in CSM-GFD. In conclusion, we claimed that this third-generation nerve regeneration conduit, CSM-GFD, could be a promising tissue engineering approach to replace the conventional nerve autograft to treat the large gap defect in peripheral nerve injuries. A novel 3rd generation nerve conduit was successfully constructed and applied for repairing peripheral nerve injuries (PNI). Dental pulp stem cells (DPSCs) was optimized as an ideal seeding cells for nerve regeneration. A bioactive system combining GelMA with human bFGF and DPSCs could reconstruct the long gap PNI within 12 weeks in vivo. Our system could achieve the same outcome in nerve repair as that of autografting, a routine treatment for PNI. The proposed bioactive system may trigger an evolutional change into the current clinical practice in managing PNI. The majority of the regenerated nerve tissue was originated from the donor’s dental pulp stem cells.
Collapse
Affiliation(s)
- Lihua Luo
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan He
- Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, 430064, China.,Skeletal Biology Research Center, Massachusetts General Hospital and Harvard School of Dental Medicine, Boston, MA, 02114, USA
| | - Ling Jin
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanni Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fernando P Guastaldi
- Skeletal Biology Research Center, Massachusetts General Hospital and Harvard School of Dental Medicine, Boston, MA, 02114, USA
| | | | - Fengting Hu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoyan Wang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lei Wang
- Wenzhou Institute of Biomaterials and Engineering, Wenzhou, Zhejiang Province, 325000, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, China
| | - Lingli Li
- Wenzhou Institute of Biomaterials and Engineering, Wenzhou, Zhejiang Province, 325000, China.,School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jianming Wang
- Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, 430064, China.,Department of Biliary and Pancreatic Surgery/Cancer Research Center, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Akon Higuchi
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Qingsong Ye
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Skeletal Biology Research Center, Massachusetts General Hospital and Harvard School of Dental Medicine, Boston, MA, 02114, USA.,Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| |
Collapse
|
25
|
Sukul M, Cama G, Dubruel P, Reseland JE, Haugen HJ. Methacrylation increase growth and differentiation of primary human osteoblasts for gelatin hydrogels. EMERGENT MATERIALS 2020; 3:559-566. [DOI: 10.1007/s42247-020-00101-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/15/2020] [Indexed: 01/06/2025]
Abstract
AbstractThe role of gelatin methacrylate hydrogels with varying degrees of methacrylation (69% and 84%) was accessed with FTIR, NMR, microCT, and subsequent exposure to human osteoblasts. The cells responded positively to the degree of methacrylation and showed attachment, growth, and proliferated on both hydrogels. The cell reacted differently to the degree of methacrylation with higher proliferation on higher substitution; however, cell differentiation behavior was improved for less substitution. The secretion of late osteogenic markers (osteoprotegerin (OPG), osteopontin (OPN), and osteocalcin (OCN)) and angiogenic factor vascular endothelial growth factor (VEGF) was increased for gelatin methacrylate hydrogels with 69% degree of methacrylation and thus would be the better candidate for future bone regenerative applications amongst the three tested hydrogels.
Collapse
|
26
|
Kuterbekov M, Jonas AM, Glinel K, Picart C. Osteogenic Differentiation of Adipose-Derived Stromal Cells: From Bench to Clinics. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:461-474. [PMID: 32098603 DOI: 10.1089/ten.teb.2019.0225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In addition to mesenchymal stem cells, adipose-derived stem/stromal cells (ASCs) are an attractive source for a large variety of cell-based therapies. One of their most important potential applications is related to the regeneration of bone tissue thanks to their capacity to differentiate in bone cells. However, this requires a proper control of their osteogenic differentiation, which depends not only on the initial characteristics of harvested cells but also on the conditions used for their culture. In this review, we first briefly describe the preclinical and clinical trials using ASCs for bone regeneration and present the quantitative parameters used to characterize the osteogenic differentiation of ASCs. We then focus on the soluble factors influencing the osteogenic differentiation of ACS, including the steroid hormones and various growth factors, notably the most osteoinductive ones, the bone morphogenetic proteins (BMPs). Impact statement Adipose-derived stromal/stem cells are reviewed for their use in bone regeneration.
Collapse
Affiliation(s)
- Mirasbek Kuterbekov
- Institute of Condensed Matter & Nanosciences (Bio & Soft Matter), Université Catholique de Louvain, Louvain-la-Neuve, Belgium.,Grenoble Institute of Technology, University Grenoble Alpes, LMGP, Grenoble, France
| | - Alain M Jonas
- Institute of Condensed Matter & Nanosciences (Bio & Soft Matter), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Karine Glinel
- Institute of Condensed Matter & Nanosciences (Bio & Soft Matter), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Catherine Picart
- Grenoble Institute of Technology, University Grenoble Alpes, LMGP, Grenoble, France.,Biomimetism and Regenerative Medicine Lab, CEA, Institute of Interdisciplinary Research of Grenoble (IRIG), Université Grenoble-Alpes/CEA/CNRS, Grenoble, France
| |
Collapse
|
27
|
Effect of gradient biomineral concentrations on osteogenic and chondrogenic differentiation of adipose derived stem cells. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.06.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
Shao Y, You D, Lou Y, Li J, Ying B, Cheng K, Weng W, Wang H, Yu M, Dong L. Controlled Release of Naringin in GelMA-Incorporated Rutile Nanorod Films to Regulate Osteogenic Differentiation of Mesenchymal Stem Cells. ACS OMEGA 2019; 4:19350-19357. [PMID: 31763559 PMCID: PMC6868884 DOI: 10.1021/acsomega.9b02751] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
Naringin, a Chinese herbal medicine, has been demonstrated to concentration-dependently promote osteogenic differentiation of mesenchymal stem cells (MSCs). However, it remains a challenge to load naringin on coatings for osteogenesis and further control the release kinetics. Here, we demonstrated that the release behavior of naringin on rutile nanorod films could be controlled by either mixing naringin with gelatin methacryloyl (GelMA) before spinning onto the films or soaking the obtained GelMA-incorporated films with the naringin solution to achieve the distinct degradation-type release and diffusion-type release, respectively. We further revealed that the naringin-loaded coatings facilitated adhesion, proliferation and late differentiation, and mineralization of MSCs. Our findings provided a novel strategy to engineer the coatings with controlled release of naringin and emphasized the bioactivity of naringin for the osteogenic differentiation of MSCs.
Collapse
Affiliation(s)
- Yangjie Shao
- The
Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Dongqi You
- The
Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Yiting Lou
- The
Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
- Department
of Stomatology, The Affiliated Ningbo First Hospital, Zhejiang University, Ningbo 315010, Zhejiang Province, China
| | - Jianhua Li
- Hangzhou
Dental Hospital, Hangzhou 310006, Zhejiang Province, China
| | - Binbin Ying
- Department
of Stomatology, The Affiliated Ningbo First Hospital, Zhejiang University, Ningbo 315010, Zhejiang Province, China
| | - Kui Cheng
- School
of Materials Science and Engineering, State Key Laboratory of Silicon
Materials, Zhejiang University, Hangzhou 310027, Zhejiang Province, China
| | - Wenjian Weng
- School
of Materials Science and Engineering, State Key Laboratory of Silicon
Materials, Zhejiang University, Hangzhou 310027, Zhejiang Province, China
| | - Huiming Wang
- The
Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Mengfei Yu
- The
Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
- Department
of Stomatology, The Affiliated Ningbo First Hospital, Zhejiang University, Ningbo 315010, Zhejiang Province, China
- Hangzhou
Dental Hospital, Hangzhou 310006, Zhejiang Province, China
- School
of Materials Science and Engineering, State Key Laboratory of Silicon
Materials, Zhejiang University, Hangzhou 310027, Zhejiang Province, China
| | - Lingqing Dong
- The
Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
- School
of Materials Science and Engineering, State Key Laboratory of Silicon
Materials, Zhejiang University, Hangzhou 310027, Zhejiang Province, China
| |
Collapse
|
29
|
Dong Z, Yuan Q, Huang K, Xu W, Liu G, Gu Z. Gelatin methacryloyl (GelMA)-based biomaterials for bone regeneration. RSC Adv 2019; 9:17737-17744. [PMID: 35520570 PMCID: PMC9064644 DOI: 10.1039/c9ra02695a] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/14/2019] [Indexed: 12/11/2022] Open
Abstract
Gelatin methacryloyl (GelMA)-based biomaterials have been widely used in various biomedical applications due to their suitable biological properties and tuneable physical characteristics. In particular, GelMA can be used as a versatile matrix for bone tissue engineering scaffolds via various strategies to overcome major obstacles such as insufficient mechanical property and uncontrollable degradation. This review presents the research status of GelMA, its structure and function, GelMA-based biomaterials and the development of methods along with their existing challenges.
Collapse
Affiliation(s)
- Zhenqiang Dong
- Department of Chemistry and Material Engineering, Quzhou University Quzhou 324000 P. R. China
| | - Qijuan Yuan
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Keqing Huang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Wanli Xu
- Department of Chemistry and Material Engineering, Quzhou University Quzhou 324000 P. R. China
| | - Guiting Liu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Zhipeng Gu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University Guangzhou 510006 P. R. China
- Research Institute of Sun Yat-sen University in Shenzhen Shenzhen 518057 PR China
| |
Collapse
|
30
|
Cross LM, Carrow JK, Ding X, Singh KA, Gaharwar AK. Sustained and Prolonged Delivery of Protein Therapeutics from Two-Dimensional Nanosilicates. ACS APPLIED MATERIALS & INTERFACES 2019; 11:6741-6750. [PMID: 30676016 PMCID: PMC6472961 DOI: 10.1021/acsami.8b17733] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We present a nanoengineered system for sustained and prolonged delivery of protein therapeutics, which has the potential to impact current orthopedic regeneration strategies. Specifically, we introduce two-dimensional nanosilicates with a high surface area and charged characteristics for delivery of active proteins for more than 30 days. The nanosilicates show high binding efficacy without altering the protein conformation and bioactivity. The released proteins are able to maintain high activity as demonstrated by enhanced differentiation of human mesenchymal stem cells at 10-fold lower concentration compared to the exogenous control. Utilizing the nanosilicates as a delivery vehicle could minimize the negative side effects observed because of the use of supraphysiological dosages of protein therapeutics for orthopedic regeneration strategies.
Collapse
Affiliation(s)
- Lauren M. Cross
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - James K. Carrow
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Xicheng Ding
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Kanwar Abhay Singh
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Akhilesh K. Gaharwar
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department of Material Sciences, Texas A&M University, College Station, Texas 77843, United States
- Center for Remote Health and Technologies and Systems, Texas A&M University, College Station, Texas 77843, United States
- Corresponding Author. Phone: 979-458-5540. Fax: 979-845-4450
| |
Collapse
|
31
|
Claaßen C, Southan A, Grübel J, Tovar GEM, Borchers K. Interactions of methacryloylated gelatin and heparin modulate physico-chemical properties of hydrogels and release of vascular endothelial growth factor. Biomed Mater 2018; 13:055008. [DOI: 10.1088/1748-605x/aacdb2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
PARK JUEUN, KWON SONG, HWANG NATHANIELS, KANG BYUNGJAE. Clinical Application of Bone Morphogenetic Protein-2 Microcarriers Fabricated by the Cryopolymerization of Gelatin Methacrylate for the Treatment of Radial Fracture in Two Dogs. In Vivo 2018; 32. [PMID: 29695563 PMCID: PMC6000800 DOI: 10.21873/invivo.112278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Bone morphogenetic protein-2 (BMP-2) effectively induces bone healing. However, the efficacy of BMP-2 relies heavily on its delivery vehicle because of its short half-life. We utilized a microcarrier fabricated by the cryopolymerization of gelatin methacrylate (cryoGelMA) infused with bone morphogenetic protein-2 (cryoGelMA-BMP-2) for the sustained and localized release of growth factors. Two dogs with radius and ulnar fractures were treated with implanted cryoGelMA-BMP-2 to accelerate bone healing. The cases were followed up for 6 months and 2 months after surgery, respectively. Distinctive healing processes were observed. The operated limb regained its premorbid function, the fracture line disappeared, and the gait was functionally stable. Implantation of cryoGelMA-BMP-2 resulted in the successful healing of bone fractures.
Collapse
Affiliation(s)
- JUEUN PARK
- Department of Veterinary Surgery, College of Veterinary Medicine and Institute of Veterinary Science,Kangwon National University, Chuncheon, Republic of Korea
| | - SONG KWON
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - NATHANIEL S. HWANG
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - BYUNG-JAE KANG
- Department of Veterinary Surgery, College of Veterinary Medicine and Institute of Veterinary Science,Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
33
|
Park J, Kwon S, Hwang NS, Kang BJ. Clinical Application of Bone Morphogenetic Protein-2 Microcarriers Fabricated by the Cryopolymerization of Gelatin Methacrylate for the Treatment of Radial Fracture in Two Dogs. In Vivo 2018; 32:575-581. [PMID: 29695563 PMCID: PMC6000800 DOI: 10.21873/invivo.11278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 11/10/2022]
Abstract
Bone morphogenetic protein-2 (BMP-2) effectively induces bone healing. However, the efficacy of BMP-2 relies heavily on its delivery vehicle because of its short half-life. We utilized a microcarrier fabricated by the cryopolymerization of gelatin methacrylate (cryoGelMA) infused with bone morphogenetic protein-2 (cryoGelMA-BMP-2) for the sustained and localized release of growth factors. Two dogs with radius and ulnar fractures were treated with implanted cryoGelMA-BMP-2 to accelerate bone healing. The cases were followed up for 6 months and 2 months after surgery, respectively. Distinctive healing processes were observed. The operated limb regained its premorbid function, the fracture line disappeared, and the gait was functionally stable. Implantation of cryoGelMA-BMP-2 resulted in the successful healing of bone fractures.
Collapse
Affiliation(s)
- Jueun Park
- Department of Veterinary Surgery, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Song Kwon
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Byung-Jae Kang
- Department of Veterinary Surgery, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
34
|
Growth Factor Delivery Systems for Tissue Engineering and Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1078:245-269. [PMID: 30357627 DOI: 10.1007/978-981-13-0950-2_13] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Growth factors (GFs) are often a key component in tissue engineering and regenerative medicine approaches. In order to fully exploit the therapeutic potential of GFs, GF delivery vehicles have to meet a number of key design criteria such as providing localized delivery and mimicking the dynamic native GF expression levels and patterns. The use of biomaterials as delivery systems is the most successful strategy for controlled delivery and has been translated into different commercially available systems. However, the risk of side effects remains an issue, which is mainly attributed to insufficient control over the release profile. This book chapter reviews the current strategies, chemistries, materials and delivery vehicles employed to overcome the current limitations associated with GF therapies.
Collapse
|
35
|
Park SH, Kwon JS, Lee BS, Park JH, Lee BK, Yun JH, Lee BY, Kim JH, Min BH, Yoo TH, Kim MS. BMP2-modified injectable hydrogel for osteogenic differentiation of human periodontal ligament stem cells. Sci Rep 2017; 7:6603. [PMID: 28747761 PMCID: PMC5529463 DOI: 10.1038/s41598-017-06911-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/19/2017] [Indexed: 12/22/2022] Open
Abstract
This is the first report on the development of a covalently bone morphogenetic protein-2 (BMP2)-immobilized hydrogel that is suitable for osteogenic differentiation of human periodontal ligament stem cells (hPLSCs). O-propargyl-tyrosine (OpgY) was site-specifically incorporated into BMP2 to prepare BMP2-OpgY with an alkyne group. The engineered BMP2-OpgY exhibited osteogenic characteristics after in vitro osteogenic differentiation of hPLSCs, indicating the osteogenic ability of BMP2-OpgY. A methoxy polyethylene glycol-(polycaprolactone-(N3)) block copolymer (MC-N3) was prepared as an injectable in situ-forming hydrogel. BMP2 covalently immobilized on an MC hydrogel (MC-BMP2) was prepared quantitatively by a simple biorthogonal reaction between alkyne groups on BMP2-OpgY and azide groups on MC-N3 via a Cu(I)-catalyzed click reaction. The hPLSCs-loaded MC-BMP2 formed a hydrogel almost immediately upon injection into animals. In vivo osteogenic differentiation of hPLSCs in the MC-BMP2 formulation was confirmed by histological staining and gene expression analyses. Histological staining of hPLSC-loaded MC-BMP2 implants showed evidence of mineralized calcium deposits, whereas hPLSC-loaded MC-Cl or BMP2-OpgY mixed with MC-Cl, implants showed no mineral deposits. Additionally, MC-BMP2 induced higher levels of osteogenic gene expression in hPLSCs than in other groups. In conclusion, BMP2-OpgY covalently immobilized on MC-BMP2 induced osteogenic differentiation of hPLSCs as a noninvasive method for bone tissue engineering.
Collapse
Affiliation(s)
- Seung Hun Park
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Jin Seon Kwon
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Byeong Sung Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Ji Hoon Park
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Bo Keun Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Jeong-Ho Yun
- Department of Periodontology, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju, 561-712, Korea
| | - Bun Yeoul Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Jae Ho Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Byoung Hyun Min
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea.
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea.
| |
Collapse
|
36
|
Synergistic Effects of Vascular Endothelial Growth Factor on Bone Morphogenetic Proteins Induced Bone Formation In Vivo: Influencing Factors and Future Research Directions. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2869572. [PMID: 28070506 PMCID: PMC5187461 DOI: 10.1155/2016/2869572] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 10/16/2016] [Accepted: 10/24/2016] [Indexed: 02/08/2023]
Abstract
Vascular endothelial growth factor (VEGF) and bone morphogenetic proteins (BMPs), as key mediators in angiogenesis and osteogenesis, are used in a combined delivery manner as a novel strategy in bone tissue engineering. VEGF has the potential to enhance BMPs induced bone formation. Both gene delivery and material-based delivery systems were incorporated in previous studies to investigate the synergistic effects of VEGF and BMPs. However, their results were controversial due to variation of methods incorporated in different studies. Factors influencing the synergistic effects of VEGF on BMPs induced bone formation were identified and analyzed in this review to reduce confusion on this issue. The potential mechanisms and directions of future studies were also proposed here. Further investigating mechanisms of the synergistic effects and optimizing these influencing factors will help to generate more effective bone regeneration.
Collapse
|
37
|
Bhattacharya I, Ghayor C, Weber FE. The Use of Adipose Tissue-Derived Progenitors in Bone Tissue Engineering - a Review. Transfus Med Hemother 2016; 43:336-343. [PMID: 27781021 DOI: 10.1159/000447494] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/08/2016] [Indexed: 12/12/2022] Open
Abstract
2500 years ago, Hippocrates realized that bone can heal without scaring. The natural healing potential of bone is, however, restricted to small defects. Extended bone defects caused by trauma or during tumor resections still pose a huge problem in orthopedics and cranio-maxillofacial surgery. Bone tissue engineering strategies using stem cells, growth factors, and scaffolds could overcome the problems with the treatment of extended bone defects. In this review, we give a short overview on bone tissue engineering with emphasis on the use of adipose tissue-derived stem cells and small molecules.
Collapse
Affiliation(s)
- Indranil Bhattacharya
- Oral Biotechnology & Bioengineering, Cranio-Maxillofacial and Oral Surgery, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Chafik Ghayor
- Oral Biotechnology & Bioengineering, Cranio-Maxillofacial and Oral Surgery, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Franz E Weber
- Oral Biotechnology & Bioengineering, Cranio-Maxillofacial and Oral Surgery, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|