1
|
Sohrabi M, Hesaraki S, Shahrezaee M, Shams-Khorasani A. The release behavior and in vitro osteogenesis of quercetin-loaded bioactive glass/hyaluronic acid/sodium alginate nanocomposite paste. Int J Biol Macromol 2024; 280:136094. [PMID: 39343279 DOI: 10.1016/j.ijbiomac.2024.136094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 09/11/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Injectable pastes based on bioactive compounds and natural polymers are of interest in non-invasive bone surgeries. Several quantities of quercetin (100, 150, and 200 μM) were added to a sol-gel derived mesoporous bioactive glass. Injectable pastes based on quercetin-loaded bioactive glass, sodium alginate, and hyaluronic acid were prepared. Aggregated nanoparticles of bioactive glass and quercetin-loaded bioactive glass with mesoporous morphologies were confirmed by TEM and BET techniques. The quercetin release study was assessed in phosphate-buffered solution medium over 200 h and the obtained data were fitted by different eqs. A sustained release of quercetin was found, in which a better regression coefficient was achieved using Weibull equation. Human-derived mesenchymal stem cells were utilized to determine alkaline phosphatase activity and bone-related protein expression by western blotting and real-time PCR evaluations. Quercetin-loaded pastes increased the levels of alkaline phosphatase activity and the expression of Collagen-1, Osteopontin, Osteocalcin, and Runx2 proteins in a concentration-dependent manner. Due to the mesoporous architecture and high specific surface area of bioactive glass, the paste made of these particles and sodium alginate/hyaluronic acid macromolecules is appropriate matrix for quercetin release, resulting in promoted osteogenesis. The further in vivo studies can support the osteogenesis capacity of the quercetin-loaded paste.
Collapse
Affiliation(s)
- Mehri Sohrabi
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Alborz, Iran.
| | - Saeed Hesaraki
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Alborz, Iran.
| | | | - Alireza Shams-Khorasani
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Alborz, Iran
| |
Collapse
|
2
|
Kim JG, Sharma AR, Lee YH, Chatterjee S, Choi YJ, Rajvansh R, Chakraborty C, Lee SS. Therapeutic Potential of Quercetin as an Antioxidant for Bone-Muscle-Tendon Regeneration and Aging. Aging Dis 2024:AD.2024.0282. [PMID: 39012676 DOI: 10.14336/ad.2024.0282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024] Open
Abstract
Quercetin (QC), a naturally occurring bioflavonoid found in various fruits and vegetables, possesses many potential health benefits, primarily attributed to its robust antioxidant properties. The generation of oxidative stress in bone cells is a key modulator of their physiological behavior. Moreover, oxidative stress status influences the pathophysiology of mineralized tissues. Increasing scientific evidence demonstrates that manipulating the redox balance in bone cells might be an effective technique for developing bone disease therapies. The QC antioxidant abilities in skeletal muscle significantly enhance muscle regeneration and reduce muscle atrophy. In addition, QC has been shown to have protective effects against oxidative stress, inflammation, apoptosis, and matrix degradation in tendons, helping to maintain the structural integrity and functionality of tendons. Thus, the antioxidant properties of QC might be crucial for addressing age-related musculoskeletal disorders like osteoporosis, sarcopenia, and tendon-related inflammatory conditions. Understanding how QC influences redox signaling pathways involved in musculoskeletal disorders, including their effect on bone, muscle, and tendon differentiation, might provide insights into the diverse advantages of QC in promoting tissue regeneration and preventing cellular damage. Therefore, this study reviewed the intricate relationship among oxidative stress, inflammation, and tissue repair, affected by the antioxidative abilities of QC, in age-related musculoskeletal tissues to improve the overall health of bones, muscles, and tendons of the skeletal system. Also, reviewing the ongoing clinical trials of QC for musculoskeletal systems is encouraging. Given the positive effect of QC on musculoskeletal health, further scientific investigations and controlled human intervention studies are necessary to explore the therapeutic potential to its optimum strength.
Collapse
Affiliation(s)
- Jae Gyu Kim
- Institute for Skeletal Aging &;amp Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Korea
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging &;amp Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Korea
| | - Yeon-Hee Lee
- Institute for Skeletal Aging &;amp Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Korea
| | - Srijan Chatterjee
- Institute for Skeletal Aging &;amp Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Korea
| | - Yean Jung Choi
- Department of Food and Nutrition, Sahmyook University, Seoul 01795, Korea
| | - Roshani Rajvansh
- Institute for Skeletal Aging &;amp Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Korea
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Kolkata, West Bengal 700126, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging &;amp Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Korea
| |
Collapse
|
3
|
Sohrabi M, Hesaraki S, Shahrezaee M, Shams-Khorasani A, Roshanfar F, Glasmacher B, Heinemann S, Xu Y, Makvandi P. Antioxidant flavonoid-loaded nano-bioactive glass bone paste: in vitro apatite formation and flow behavior. NANOSCALE ADVANCES 2024; 6:1011-1022. [PMID: 38298585 PMCID: PMC10825906 DOI: 10.1039/d3na00941f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024]
Abstract
Non-cement pastes in the form of injectable materials have gained considerable attention in non-invasive regenerative medicine. Different osteoconductive bioceramics have been used as the solid phase of these bone pastes. Mesoporous bioactive glass can be used as an alternative bioceramic for paste preparation because of its osteogenic qualities. Plant-derived osteogenic agents can also be used in paste formulation to improve osteogenesis; however, their side effects on physical and physicochemical properties should be investigated. In this study, nano-bioactive glass powder was synthesized by a sol-gel method, loaded with different amounts of quercetin (0, 100, 150, and 200 μM), an antioxidant flavonoid with osteogenesis capacity. The loaded powder was then homogenized with a mixture of hyaluronic acid and sodium alginate solution to form a paste. We subsequently evaluated the rheological behavior, injectability, washout resistance, and in vitro bioactivity of the quercetin-loaded pastes. The washout resistance was found to be more than 96% after 14 days of immersion in simulated body fluid (SBF) as well as tris-buffered and citric acid-buffered solutions at 25 °C and 37 °C. All pastes exhibited viscoelastic behavior, in which the elastic modulus exceeded the viscous modulus. The pastes displayed shear-thinning behavior, in which viscosity was more influenced by angular frequency when the quercetin content increased. Results indicated that injectability was much improved using quercetin and the injection force was in the range 20-150 N. Following 14 days of SBF soaking, the formation of a nano-structured apatite phase on the surfaces of quercetin-loaded pastes was confirmed through scanning electron microscopy, X-ray diffractometry, and Fourier-transform infrared spectroscopy. Overall, quercetin, an antioxidant flavonoid osteogenic agent, can be loaded onto the nano-bioactive glass/hyaluronic acid/sodium alginate paste system to enhance injectability, rheological properties, and bioactivity.
Collapse
Affiliation(s)
- Mehri Sohrabi
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center Alborz Iran
| | - Saeed Hesaraki
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center Alborz Iran
| | | | - Alireza Shams-Khorasani
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center Alborz Iran
| | - Fahimeh Roshanfar
- Institute for Multiphase Processes (IMP), Leibniz University Hannover 30823 Garbsen Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE) 30625 Hannover Germany
| | - Brigit Glasmacher
- Institute for Multiphase Processes (IMP), Leibniz University Hannover 30823 Garbsen Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE) 30625 Hannover Germany
| | | | - Yi Xu
- Department of Science & Technology, Department of Urology, NanoBioMed Group, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital Quzhou China
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital 324000 Quzhou Zhejiang China
- Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University Rajpura-140401 Punjab India
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University Chennai 600077 India
| |
Collapse
|
4
|
Cao N, Shou Z, Xiao Y, Liu P. Efficacy and Possible Mechanisms of Astragali Radix and its Ingredients in Animal Models of Osteoporosis: A Preclinical Review and Metaanalysis. Curr Drug Targets 2024; 25:135-148. [PMID: 38213165 DOI: 10.2174/0113894501275292231220062838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Astragali Radix (AR) has a long history as a traditional Chinese medicine for anti-osteoporosis (OP) treatment. The aim of the study was to explore the effect and optimal regimens of AR and its main ingredients (IAR) in OP treatment. METHODS Eligible animal studies were searched in seven databases (PubMed, Web of Science, MEDLINE, SciELO Citation Index, Cochrane Library, China National Knowledge Infrastructure and Wanfang). The primary outcomes were bone metabolic indices. The secondary outcome measure was the anti-OP mechanism of IAR. RESULTS 21 studies were enrolled in the study. The primary findings of the present article illustrated that IAR could significantly increase the bone mineral density (BMD), bone volume over the total volume, trabecular number, trabecular thickness, bone maximum load and serum calcium, while trabecular separation and serum C-terminal telopeptide of type 1 collagen were remarkably decreased (P < 0.05). In subgroup analysis, the BMD in the long treatment group (≥ 10 weeks) showed better effect size than the short treatment group (< 10 weeks) (P < 0.05). Modeling methods and animal sex were factors affecting serum alkaline phosphatase and osteocalcin levels. CONCLUSION The findings suggest the possibility of developing IAR as a drug for the treatment of OP. IAR with longer treatment time may achieve better effects regardless of animal strain and age.
Collapse
Affiliation(s)
- Ning Cao
- Pharmacy Department, The Second Affiliated Hospital, Zhejiang Chinese Medical University, China
| | - Zhangxuan Shou
- Pharmacy Department, The Second Affiliated Hospital, Zhejiang Chinese Medical University, China
| | - Yi Xiao
- HD Biosciences (A WuXi company) Pharma Tech, Shanghai 201201, China
| | - Puqing Liu
- Pharmacy Department, The Second Affiliated Hospital, Zhejiang Chinese Medical University, China
| |
Collapse
|
5
|
Guo Q, Yang S, Ni G, Ji J, Luo M, Du W. The Preparation and Effects of Organic-Inorganic Antioxidative Biomaterials for Bone Repair. Biomedicines 2023; 12:70. [PMID: 38255177 PMCID: PMC10813766 DOI: 10.3390/biomedicines12010070] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Reactive oxygen species (ROS) has great influence in many physiological or pathological processes in organisms. In the site of bone defects, the overproduced ROS significantly affects the dynamic balance process of bone regeneration. Many antioxidative organic and inorganic antioxidants showed good osteogenic ability, which has been widely used for bone repair. It is of great significance to summarize the antioxidative bone repair materials (ABRMs) to provide guidance for the future design and preparation of osteogenic materials with antioxidative function. Here, this review introduced the major research direction of ABRM at present in nanoscale, 2-dimensional coating, and 3-dimensional scaffolds. Moreover, the referring main active substances and antioxidative properties were classified, and the positive roles of antioxidative materials for bone repair have also been clearly summarized in signaling pathways, antioxidant enzymes, cellular responses and animal levels.
Collapse
Affiliation(s)
- Qihao Guo
- Key Laboratory of Textile Fiber and Products, Wuhan Textile University, Ministry of Education, Wuhan 430200, China;
| | - Shuoshuo Yang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, China
| | - Guoqi Ni
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, China; (G.N.); (J.J.); (M.L.)
| | - Jiale Ji
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, China; (G.N.); (J.J.); (M.L.)
| | - Mengwei Luo
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, China; (G.N.); (J.J.); (M.L.)
| | - Wei Du
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
6
|
Xi Y, Shen J, Li X, Bao Y, Zhao T, Li B, Zhang X, Wang J, Bao Y, Gao J, Xie Z, Wang Q, Luo Q, Shi H, Li Z, Qin D. Regulatory Effects of Quercetin on Bone Homeostasis: Research Updates and Future Perspectives. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:2077-2094. [PMID: 37815494 DOI: 10.1142/s0192415x23500891] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The imbalance of bone homeostasis has become a major public medical problem amid the background of an aging population, which is closely related to the occurrence of osteoporosis, osteoarthritis, and fractures. Presently, most drugs used in the clinical treatment of bone homeostasis imbalance are bisphosphonates, calcitonin, estrogen receptor modulators, and biological agents that inhibit bone resorption or parathyroid hormone analogs that promote bone formation. However, there are many adverse reactions. Therefore, it is necessary to explore potential drugs. Quercetin, as a flavonol compound with various biological activities, is widely distributed in plants. Studies have found that quercetin can regulate bone homeostasis through multiple pathways and targets. An in-depth exploration of the pharmacological mechanism of quercetin is of great significance for the development of new drugs. This review discusses the therapeutic mechanisms of quercetin on bone homeostasis, such as regulating the expression of long non-coding RNA, signaling pathways of bone metabolism, various types of programmed cell death, bone nutrients supply pathways, anti-oxidative stress, anti-inflammation, and activation of Sirtuins. We also summarize recent progress in improving quercetin bioavailability and propose some issues worth paying attention to, which may help guide future research efforts.
Collapse
Affiliation(s)
- Yujiang Xi
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine Kunming, Yunnan 650500, P. R. China
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P. R. China
- Open and Shared Public Science and Technology Service Platform, Traditional Chinese Medicine Science and Technology Resources in Yunnan, Kunming, Yunnan 650500, P. R. China
| | - Jiayan Shen
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine Kunming, Yunnan 650500, P. R. China
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P. R. China
- Open and Shared Public Science and Technology Service Platform, Traditional Chinese Medicine Science and Technology Resources in Yunnan, Kunming, Yunnan 650500, P. R. China
| | - Xiahuang Li
- The People's Hospital of Mengzi, The Affiliated Hospital of Yunnan University of Chinese Medicine, Mengzi, Yunnan 661100, P. R. China
| | - Yi Bao
- Department of Rehabilitation Medicine, The Affiliated Hospital of Yunnan University, Kunming, Yunnan 650021, P. R. China
| | - Ting Zhao
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P. R. China
| | - Bo Li
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P. R. China
| | - Xiaoyu Zhang
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P. R. China
| | - Jian Wang
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P. R. China
| | - Yanyuan Bao
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P. R. China
| | - Jiamei Gao
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P. R. China
| | - Zhaohu Xie
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine Kunming, Yunnan 650500, P. R. China
| | - Qi Wang
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P. R. China
| | - Qiu Luo
- Department of Rehabilitation Medicine, The Affiliated Hospital of Yunnan University, Kunming, Yunnan 650021, P. R. China
| | - Hongling Shi
- Department of Rehabilitation Medicine, The Third People's Hospital of Yunnan Province, Kunming, Yunnan 650011, P. R. China
| | - Zhaofu Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine Kunming, Yunnan 650500, P. R. China
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P. R. China
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine Kunming, Yunnan 650500, P. R. China
- Open and Shared Public Science and Technology Service Platform, Traditional Chinese Medicine Science and Technology Resources in Yunnan, Kunming, Yunnan 650500, P. R. China
| |
Collapse
|
7
|
Silingardi F, Pagani S, Gambardella A, Giavaresi G, Bigi A, Boanini E. Anti-Oxidant Multi-Functionalized Materials: Strontium-Substituted Monetite and Brushite as Delivery Systems for Curcumin. Pharmaceutics 2023; 15:pharmaceutics15051344. [PMID: 37242586 DOI: 10.3390/pharmaceutics15051344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Curcumin has numerous biological activities and pharmaceutical applications related to its ability to inhibit reactive oxygen species. Herein, strontium-substituted monetite (SrDCPA) and strontium-substituted brushite (SrDCPD) were synthesized and further functionalized with curcumin with the aim to develop materials that combine the anti-oxidant properties of the polyphenol, the beneficial role of strontium toward bone tissue, and the bioactivity of calcium phosphates. Adsorption from hydroalcoholic solution increases with time and curcumin concentration, up to about 5-6 wt%, without affecting the crystal structure, morphology, and mechanical response of the substrates. The multi-functionalized substrates exhibit a relevant radical scavenging activity and a sustained release in phosphate buffer. Cell viability, morphology, and expression of the most representative genes were tested for osteoclast seeded in direct contact with the materials and for osteoblast/osteoclast co-cultures. The materials at relatively low curcumin content (2-3 wt%) maintain inhibitory effects on osteoclasts and support the colonization and viability of osteoblasts. The expressions of Alkaline Phosphatase (ALPL), collagen type I alpha 1 chain (COL1A1), and osteocalcin (BGLAP) suggest that curcumin reduces the osteoblast differentiation state but yields encouraging osteoprotegerin/receptor activator for the NFkB factor ligand (OPG/RANKL) ratio.
Collapse
Affiliation(s)
- Francesca Silingardi
- Department of Chemistry ''Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Stefania Pagani
- Complex Structure Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Alessandro Gambardella
- Complex Structure Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Gianluca Giavaresi
- Complex Structure Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Adriana Bigi
- Department of Chemistry ''Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Elisa Boanini
- Department of Chemistry ''Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
8
|
Ageing and Osteoarthritis Synergically Affect Human Synoviocyte Cells: An In Vitro Study on Sex Differences. J Clin Med 2022; 11:jcm11237125. [PMID: 36498698 PMCID: PMC9739144 DOI: 10.3390/jcm11237125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Osteoarthritis is a chronic inflammatory disease that affects all of the joints, especially those of the elderly. Aging is a natural and irreversible biological process implicated in the pathophysiology of many chronic diseases, such as osteoarthritis. Inflammation and oxidative stress are the main factors involved in osteoarthritis and aging, respectively, with the production of several pro-inflammatory cytokines such as Interleukin 1β (IL1β) and reactive oxygen species. The aim of the study was to set-up an in vitro model of osteoarthritis and aging, focusing on the sex differences by culturing male and female fibroblast-like synoviocytes (FLSs) with IL1β, hydrogen peroxide (H2O2), IL1β+H2O2 or a growth medium (control). IL1β+H2O2 reduced the cell viability and microwound healing potential, increased Caspase-3 expression and reactive oxygen species and IL6 production; IL1β increased IL6 production more than the other conditions did; H2O2 increased Caspase-3 expression and reactive oxygen species production; Klotho expression showed no differences among the treatments. The FLSs from female donors demonstrated a better response capacity in unfavorable conditions of inflammation and oxidative stress than those from the male donors did. This study developed culture conditions to mimic the aging and osteoarthritis microenvironment to evaluate the behavior of the FLSs which play a fundamental role in joint homeostasis, focusing on the sex-related aspects that are relevant in the osteoarthritis pathophysiology.
Collapse
|
9
|
Shi G, Yang C, Wang Q, Wang S, Wang G, Ao R, Li D. Traditional Chinese Medicine Compound-Loaded Materials in Bone Regeneration. Front Bioeng Biotechnol 2022; 10:851561. [PMID: 35252158 PMCID: PMC8894853 DOI: 10.3389/fbioe.2022.851561] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 01/01/2023] Open
Abstract
Bone is a dynamic organ that has the ability to repair minor injuries via regeneration. However, large bone defects with limited regeneration are debilitating conditions in patients and cause a substantial clinical burden. Bone tissue engineering (BTE) is an alternative method that mainly involves three factors: scaffolds, biologically active factors, and cells with osteogenic potential. However, active factors such as bone morphogenetic protein-2 (BMP-2) are costly and show an unstable release. Previous studies have shown that compounds of traditional Chinese medicines (TCMs) can effectively promote regeneration of bone defects when administered locally and systemically. However, due to the low bioavailability of these compounds, many recent studies have combined TCM compounds with materials to enhance drug bioavailability and bone regeneration. Hence, the article comprehensively reviewed the local application of TCM compounds to the materials in the bone regeneration in vitro and in vivo. The compounds included icariin, naringin, quercetin, curcumin, berberine, resveratrol, ginsenosides, and salvianolic acids. These findings will contribute to the potential use of TCM compound-loaded materials in BTE.
Collapse
Affiliation(s)
- Guiwen Shi
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chaohua Yang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Wang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Qing Wang, ; Rongguang Ao, ; Dejian Li,
| | - Song Wang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Gaoju Wang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Rongguang Ao
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- *Correspondence: Qing Wang, ; Rongguang Ao, ; Dejian Li,
| | - Dejian Li
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- *Correspondence: Qing Wang, ; Rongguang Ao, ; Dejian Li,
| |
Collapse
|
10
|
Huang Y, Liu Q, Liu L, Huo F, Guo S, Tian W. Lipopolysaccharide-Preconditioned Dental Follicle Stem Cells Derived Small Extracellular Vesicles Treating Periodontitis via Reactive Oxygen Species/Mitogen-Activated Protein Kinase Signaling-Mediated Antioxidant Effect. Int J Nanomedicine 2022; 17:799-819. [PMID: 35228798 PMCID: PMC8882029 DOI: 10.2147/ijn.s350869] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/29/2022] [Indexed: 12/23/2022] Open
Abstract
Purpose Lipopolysaccharide (LPS) pretreatment can enhance the therapeutic effect of dental follicle stem cells-derived small extracellular vesicles (DFC-sEV) for periodontitis, and this study aimed to investigate the underlying mechanisms and clinical application Of LPS-preconditioned DFC-sEV in periodontitis. Methods The protein spectrum of DFC-sEV before and after LPS pretreatment was determined by liquid chromatography-tandem mass spectrometry and bioinformatic analysis. Their effects on inflammatory periodontal ligament stem cells (PDLSCs) and macrophages were investigated for cell proliferation, migration, type 2 macrophage (M2) polarization, and intracellular reactive oxygen species (ROS) levels separately. In addition, the regulation of ROS/Jun amino-terminal kinases (JNK) and ROS/extracellular signal-related kinases (ERK) signaling by LPS-preconditioned DFC-sEV was also studied to reveal the antioxidant mechanism. In vivo, two kinds of DFC-sEV loaded with 0.2% hyaluronic acid (HA) gel were applied for canine periodontitis to evaluate the therapeutic potential. Results The proteomic analysis showed that thirty-eight proteins were differentially expressed in LPS-preconditioned DFC-sEV, and interestingly, the highly expressed proteins were mainly involved in antioxidant and enzyme-regulating activities. In addition to promoting PDLSCs and macrophage proliferation, LPS-preconditioned DFC-sEV inhibited intracellular ROS as an antioxidant. It reduced the RANKL/OPG ratio of PDLSCs by inhibiting ROS/JNK signaling under inflammatory conditions and promoted macrophages to polarize toward the M2 phenotype via ROS/ERK signaling. Furthermore, LPS-preconditioned DFC-sEV loaded with the HA injectable system could sustainably release sEV and enhance the therapeutic efficacy for periodontitis in canines. Conclusion LPS-preconditioned DFC-sEV could be effectively used as an auxiliary method for periodontitis treatment via antioxidant effects in a subgingival environment, and loading it with HA is feasible and effective for clinical applications.
Collapse
Affiliation(s)
- Yanli Huang
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Qian Liu
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of Periodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Li Liu
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of Periodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Fangjun Huo
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Shujuan Guo
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of Periodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
- Correspondence: Shujuan Guo; Weidong Tian, Tel/Fax +86 028 8550 3499, Email ;
| | - Weidong Tian
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| |
Collapse
|
11
|
Elmeligy S, Hathout RM, Khalifa SA, El-Seedi HR, Farag MA. Pharmaceutical manipulation of citrus flavonoids towards improvement of its bioavailability and stability. A mini review and a meta-analysis study. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Role of Polyphenols in the Metabolism of the Skeletal System in Humans and Animals – A Review. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2021-0040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
Polyphenols are a group of compounds arousing enormous interest due to their multiple effects on both human and animal health and omnipresence in plants. A number of in vitro and animal model studies have shown that all polyphenols exhibit anti-inflammatory and antioxidant activities, and play a significant role against oxidative stress-related pathologies. They also exert gut promotory effects and prevent chronic degenerative diseases. However, less attention has been paid to the potential influence of polyphenols on bone properties and metabolism. It is well known that proper growth and functioning of the organism depend largely on bone growth and health. Therefore, understanding the action of substances (including polyphenols) that may improve the health and functioning of the skeletal system and bone metabolism is extremely important for the health of the present and future generations of both humans and farm animals. This review provides a comprehensive summary of literature related to causes of bone loss during ageing of the organism (in both humans and animals) and possible effects of dietary polyphenols preventing bone loss and diseases. In particular, the underlying cellular and molecular mechanisms that can modulate skeletal homeostasis and influence the bone modeling and remodeling processes are presented.
Collapse
|
13
|
Yang S, Ji J, Luo M, Li H, Gao Z. Poly(tannic acid) nanocoating based surface modification for construction of multifunctional composite CeO 2NZs to enhance cell proliferation and antioxidative viability of preosteoblasts. NANOSCALE 2021; 13:16349-16361. [PMID: 34581718 DOI: 10.1039/d1nr02799a] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ceria (CeO2) based materials possess many antioxidant enzyme-like activities and unique properties for bone repair, but their free radical scavenging function is still insufficient. In order to deal with the complex oxidative stress environment in bone repair, multifunctional composite CeO2 nanozymes (CeO2NZs), featuring multiple antioxidative properties, were constructed via surface modification on CeO2NZs with nanoscale poly(tannic acid) (PTA) coatings. Moreover, we adjusted pH conditions (ranging from 4 to 9) to effectively control the formation and antioxidative properties of PTA coatings on CeO2NZ surfaces. Here, the physical properties of this novel inorganic and organic composite antioxidant, such as surface morphology, particle size, crystal structure, surface charge and element composition, were thoroughly characterized. The PTA/CeO2NZs showed obvious coating morphology under weak acid conditions (pH = 5-6), and the PTA layer at pH = 5 is about 1 nm in thickness. Compared with untreated CeO2NZs, the PTA/CeO2NZs showed stronger SOD-like activity and obviously higher free radical scavenging rate (for both ABTS+˙ and DPPH˙).Notably, this composite antioxidative nanozyme not only exhibited favorable cell proliferation of preosteoblasts (MC3T3-E1) but also provided strong antioxidative property to maintain cell vitality against H2O2 induced oxidative damage. In particular, this study provides new insights into the designing of surface polyphenolic coatings at the nanoscale, and these multiple antioxidative properties shown by PTA coated CeO2NZs make them suitable for protecting cells under the oxidative stress environment.
Collapse
Affiliation(s)
- Shuoshuo Yang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, P. R. China.
| | - Jiale Ji
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, P. R. China.
| | - Mengwei Luo
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, P. R. China.
| | - Hailing Li
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, P. R. China.
| | - Zhonghong Gao
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, P. R. China.
| |
Collapse
|
14
|
Cheng X, Wei J, Ge Q, Xing D, Zhou X, Qian Y, Jiang G. The optimized drug delivery systems of treating cancer bone metastatic osteolysis with nanomaterials. Drug Deliv 2021; 28:37-53. [PMID: 33336610 PMCID: PMC7751395 DOI: 10.1080/10717544.2020.1856225] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Some cancers such as human breast cancer, prostate cancer, and lung cancer easily metastasize to bone, leading to osteolysis and bone destruction accompanied by a complicated microenvironment. Systemic administration of bisphosphonates (BP) or denosumab is the routine therapy for osteolysis but with non-negligible side effects such as mandibular osteonecrosis and hypocalcemia. Thus, it is imperative to exploit optimized drug delivery systems, and some novel nanotechnology and nanomaterials have opened new horizons for scientists. Targeted and local drug delivery systems can optimize biodistribution depending on nanoparticles (NPs) or microspheres (MS) and implantable biomaterials with the controllable property. Drug delivery kinetics can be optimized by smart and sustained/local drug delivery systems for responsive delivery and sustained delivery. These delicately fabricated drug delivery systems with special matrix, structure, morphology, and modification can minimize unexpected toxicity caused by systemic delivery and achieve desired effects through integrating multiple drugs or multiple functions. This review summarized recent studies about optimized drug delivery systems for the treatment of cancer metastatic osteolysis, aimed at giving some inspiration in designing efficient multifunctional drug delivery systems.
Collapse
Affiliation(s)
- Xi Cheng
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jinrong Wei
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Qi Ge
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Danlei Xing
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Xuefeng Zhou
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, People's Republic of China
| | - Yunzhu Qian
- Center of Stomatology, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Guoqin Jiang
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
15
|
Sobczak-Kupiec A, Drabczyk A, Florkiewicz W, Głąb M, Kudłacik-Kramarczyk S, Słota D, Tomala A, Tyliszczak B. Review of the Applications of Biomedical Compositions Containing Hydroxyapatite and Collagen Modified by Bioactive Components. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2096. [PMID: 33919199 PMCID: PMC8122483 DOI: 10.3390/ma14092096] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/11/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023]
Abstract
Regenerative medicine is becoming a rapidly evolving technique in today's biomedical progress scenario. Scientists around the world suggest the use of naturally synthesized biomaterials to repair and heal damaged cells. Hydroxyapatite (HAp) has the potential to replace drugs in biomedical engineering and regenerative drugs. HAp is easily biodegradable, biocompatible, and correlated with macromolecules, which facilitates their incorporation into inorganic materials. This review article provides extensive knowledge on HAp and collagen-containing compositions modified with drugs, bioactive components, metals, and selected nanoparticles. Such compositions consisting of HAp and collagen modified with various additives are used in a variety of biomedical applications such as bone tissue engineering, vascular transplantation, cartilage, and other implantable biomedical devices.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bożena Tyliszczak
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (A.S.-K.); (A.D.); (W.F.); (M.G.); (S.K.-K.); (D.S.); (A.T.)
| |
Collapse
|
16
|
Negrescu AM, Cimpean A. The State of the Art and Prospects for Osteoimmunomodulatory Biomaterials. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1357. [PMID: 33799681 PMCID: PMC7999637 DOI: 10.3390/ma14061357] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/14/2022]
Abstract
The critical role of the immune system in host defense against foreign bodies and pathogens has been long recognized. With the introduction of a new field of research called osteoimmunology, the crosstalk between the immune and bone-forming cells has been studied more thoroughly, leading to the conclusion that the two systems are intimately connected through various cytokines, signaling molecules, transcription factors and receptors. The host immune reaction triggered by biomaterial implantation determines the in vivo fate of the implant, either in new bone formation or in fibrous tissue encapsulation. The traditional biomaterial design consisted in fabricating inert biomaterials capable of stimulating osteogenesis; however, inconsistencies between the in vitro and in vivo results were reported. This led to a shift in the development of biomaterials towards implants with osteoimmunomodulatory properties. By endowing the orthopedic biomaterials with favorable osteoimmunomodulatory properties, a desired immune response can be triggered in order to obtain a proper bone regeneration process. In this context, various approaches, such as the modification of chemical/structural characteristics or the incorporation of bioactive molecules, have been employed in order to modulate the crosstalk with the immune cells. The current review provides an overview of recent developments in such applied strategies.
Collapse
Affiliation(s)
| | - Anisoara Cimpean
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania;
| |
Collapse
|
17
|
Qin H, Zhao W, Jiao Y, Zheng H, Zhang H, Jin J, Li Q, Chen X, Gao X, Han Y. Aqueous Extract of Salvia miltiorrhiza Bunge- Radix Puerariae Herb Pair Attenuates Osteoporosis in Ovariectomized Rats Through Suppressing Osteoclast Differentiation. Front Pharmacol 2021; 11:581049. [PMID: 33708107 PMCID: PMC7941748 DOI: 10.3389/fphar.2020.581049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/11/2020] [Indexed: 11/21/2022] Open
Abstract
Traditional herb pair Salvia miltiorrhiza Bunge-Radix Puerariae (DG) owns various biological activities including anti-inflammatory and anti-oxidative stress. Oxidative stress is one high-risk factor for osteoporosis, then effect of DG on osteoporosis and underlying mechanisms was explored both in vivo and in vitro. Firstly, the predication from network pharmacology hinted that DG has the potential for ameliorating osteoporosis. Consistent with predication, DG significantly restored bone loss and deficiency of type II collagen, decreased TRAP and Cathepsin K positive areas in femur. Meanwhile it improved important characteristics of microarchitectural deterioration of tissue, reduced the numbers of NFATc1-positive osteoclast in the vertebra as well as decreased the serum osteoclast-specific cytokine RANKL and OPG release in OVX rats exhibiting its protective effect against osteoporosis. In vitro, DG noticeably decreased osteoclastic-special marker protein expressions of RANK, c-Fos and NFATc1. Furthermore, autophagy pathway p62/LC3B, ROS production and NF-κB were all activated by RANKL stimulation and blocked by DG pretreatment. Moreover, autophagy inhibitors, ROS scavenger, Ca2+ chelator and NF-κB inhibitor remarkably suppressed c-Fos and NFATc1 expressions. Taken together, DG may ameliorate osteoporosis by regulating osteoclast differentiation mediated by autophagy and oxidative stress. This study provided a mechanistic basis for DG treating osteoporosis and offered a safe dose for DG in preventing and improving bone diseases.
Collapse
Affiliation(s)
- Huan Qin
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Wenwen Zhao
- School of Basic Medical Sciences, Qingdao University, Qingdao, China.,State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yang Jiao
- Department of Biomedical Engineering City University of Hong Kong, Hong Kong SAR, China
| | - Haoyi Zheng
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Hao Zhang
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Jingyu Jin
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Qiu Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
| | - Xiuping Chen
- School of Basic Medical Sciences, Qingdao University, Qingdao, China.,State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xia Gao
- Qingdao Central Hospital, The Second Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yantao Han
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| |
Collapse
|
18
|
Rubini K, Boanini E, Menichetti A, Bonvicini F, Gentilomi GA, Montalti M, Bigi A. Quercetin loaded gelatin films with modulated release and tailored anti-oxidant, mechanical and swelling properties. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106089] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Quercetin as an Agent for Protecting the Bone: A Review of the Current Evidence. Int J Mol Sci 2020; 21:ijms21176448. [PMID: 32899435 PMCID: PMC7503351 DOI: 10.3390/ijms21176448] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 01/02/2023] Open
Abstract
Quercetin is a flavonoid abundantly found in fruits and vegetables. It possesses a wide spectrum of biological activities, thus suggesting a role in disease prevention and health promotion. The present review aimed to uncover the bone-sparing effects of quercetin and its mechanism of action. Animal studies have found that the action of quercetin on bone is largely protective, with a small number of studies reporting negative outcomes. Quercetin was shown to inhibit RANKL-mediated osteoclastogenesis, osteoblast apoptosis, oxidative stress and inflammatory response while promoting osteogenesis, angiogenesis, antioxidant expression, adipocyte apoptosis and osteoclast apoptosis. The possible underlying mechanisms involved are regulation of Wnt, NF-κB, Nrf2, SMAD-dependent, and intrinsic and extrinsic apoptotic pathways. On the other hand, quercetin was shown to exert complex and competing actions on the MAPK signalling pathway to orchestrate bone metabolism, resulting in both stimulatory and inhibitory effects on bone in parallel. The overall interaction is believed to result in a positive effect on bone. Considering the important contributions of quercetin in regulating bone homeostasis, it may be considered an economical and promising agent for improving bone health. The documented preclinical findings await further validation from human clinical trials.
Collapse
|
20
|
Marrazzo P, O’Leary C. Repositioning Natural Antioxidants for Therapeutic Applications in Tissue Engineering. Bioengineering (Basel) 2020; 7:E104. [PMID: 32887327 PMCID: PMC7552777 DOI: 10.3390/bioengineering7030104] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022] Open
Abstract
Although a large panel of natural antioxidants demonstrate a protective effect in preventing cellular oxidative stress, their low bioavailability limits therapeutic activity at the targeted injury site. The importance to deliver drug or cells into oxidative microenvironments can be realized with the development of biocompatible redox-modulating materials. The incorporation of antioxidant compounds within implanted biomaterials should be able to retain the antioxidant activity, while also allowing graft survival and tissue recovery. This review summarizes the recent literature reporting the combined role of natural antioxidants with biomaterials. Our review highlights how such functionalization is a promising strategy in tissue engineering to improve the engraftment and promote tissue healing or regeneration.
Collapse
Affiliation(s)
- Pasquale Marrazzo
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, Corso d’Augusto 237, 47921 Rimini (RN), Italy
| | - Cian O’Leary
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen’s Green, 2 D02 Dublin, Ireland;
- Science Foundation Ireland Advanced Materials and Bioengineering (AMBER) Centre, RCSI, 2 D02 Dublin, Ireland
| |
Collapse
|
21
|
Wada S, Kanzaki H, Katsumata Y, Yamaguchi Y, Narimiya T, Attucks OC, Nakamura Y, Tomonari H. Bach1 Inhibition Suppresses Osteoclastogenesis via Reduction of the Signaling via Reactive Oxygen Species by Reinforced Antioxidation. Front Cell Dev Biol 2020; 8:740. [PMID: 32850850 PMCID: PMC7417670 DOI: 10.3389/fcell.2020.00740] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022] Open
Abstract
Bone destructive diseases such as periodontitis are common worldwide and are caused by excessive osteoclast formation and activation. Receptor activator of nuclear factor-κB ligand (RANKL) is essential factor for osteoclastogenesis. This triggers reactive oxygen species (ROS), which has a key role in intracellular signaling as well exerting cytotoxicity. Cells have protective mechanisms against ROS, such as nuclear factor E2-related factor 2 (Nrf2), which controls the expression of many antioxidant enzyme genes. Conversely, BTB and CNC homology 1 (Bach1), a competitor for Nrf2, transcriptionally represses the expression of anti-oxidant enzymes. Previously, we demonstrated that RANKL induces Bach1 nuclear import and attenuates the expression of Nrf2-mediated antioxidant enzymes, thereby augmenting intracellular ROS signaling and osteoclastogenesis. However, it remains unknown if Bach1 inhibitors attenuate osteoclastogenesis. In this study, we hypothesized that Bach1 inhibition would exert an anti-osteoclastogenic effects via diminishing of intracellular ROS signaling through augmented antioxidation. We used RAW 264.7 cells as osteoclast progenitor cells. Using flow cytometry, we found that Bach1 inhibitors attenuated RANKL-mediated ROS generation, which resulted in the inhibition of osteoclastogenesis. Local injection of a Bach1 inhibitor into the calvaria of male BALB/c mice blocked bone destruction induced by lipopolysaccharide. In conclusion, we demonstrate that Bach1 inhibitor attenuates RANKL-mediated osteoclastogenesis and bone destruction in mice by inducing the expression of Nrf2-regulated antioxidant enzymes that consequently decrease intracellular ROS levels. Bach1 inhibitors have potential in inhibiting bone destructive diseases such as periodontitis, rheumatoid arthritis and osteoporosis.
Collapse
Affiliation(s)
- Satoshi Wada
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Hiroyuki Kanzaki
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Yuta Katsumata
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Yuuki Yamaguchi
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Tsuyoshi Narimiya
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | | | - Yoshiki Nakamura
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Hiroshi Tomonari
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| |
Collapse
|
22
|
Forte L, Sarda S, Torricelli P, Combes C, Brouillet F, Marsan O, Salamanna F, Fini M, Boanini E, Bigi A. Multifunctionalization Modulates Hydroxyapatite Surface Interaction with Bisphosphonate: Antiosteoporotic and Antioxidative Stress Materials. ACS Biomater Sci Eng 2019; 5:3429-3439. [DOI: 10.1021/acsbiomaterials.9b00795] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lucia Forte
- Department of Chemistry “G. Ciamician”, University of Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Stéphanie Sarda
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, Toulouse INP ENSIACET, 4 allée Emile Monso, 31030 Toulouse cedex 4, France
| | - Paola Torricelli
- Laboratory of Preclinical and Surgical Studies, IRCCS Rizzoli Orthopaedic Institute, via di Barbiano 1/10 40136 Bologna, Italy
| | - Christèle Combes
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, Toulouse INP ENSIACET, 4 allée Emile Monso, 31030 Toulouse cedex 4, France
| | - Fabien Brouillet
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, Faculté des Sciences Pharmaceutique, 35 Chemin des Maraichers, 31062 Toulouse cedex 9, France
| | - Olivier Marsan
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, Toulouse INP ENSIACET, 4 allée Emile Monso, 31030 Toulouse cedex 4, France
| | - Francesca Salamanna
- Laboratory of Preclinical and Surgical Studies, IRCCS Rizzoli Orthopaedic Institute, via di Barbiano 1/10 40136 Bologna, Italy
| | - Milena Fini
- Laboratory of Preclinical and Surgical Studies, IRCCS Rizzoli Orthopaedic Institute, via di Barbiano 1/10 40136 Bologna, Italy
| | - Elisa Boanini
- Department of Chemistry “G. Ciamician”, University of Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Adriana Bigi
- Department of Chemistry “G. Ciamician”, University of Bologna, via Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
23
|
Lee J, Byun H, Madhurakkat Perikamana SK, Lee S, Shin H. Current Advances in Immunomodulatory Biomaterials for Bone Regeneration. Adv Healthc Mater 2019; 8:e1801106. [PMID: 30328293 DOI: 10.1002/adhm.201801106] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/19/2018] [Indexed: 12/14/2022]
Abstract
Biomaterials with suitable surface modification strategies are contributing significantly to the rapid development of the field of bone tissue engineering. Despite these encouraging results, utilization of biomaterials is poorly translated to human clinical trials potentially due to lack of knowledge about the interaction between biomaterials and the body defense mechanism, the "immune system". The highly complex immune system involves the coordinated action of many immune cells that can produce various inflammatory and anti-inflammatory cytokines. Besides, bone fracture healing initiates with acute inflammation and may later transform to a regenerative or degenerative phase mainly due to the cross-talk between immune cells and other cells in the bone regeneration process. Among various immune cells, macrophages possess a significant role in the immune defense, where their polarization state plays a key role in the wound healing process. Growing evidence shows that the macrophage polarization state is highly sensitive to the biomaterial's physiochemical properties, and advances in biomaterial research now allow well controlled surface properties. This review provides an overview of biomaterial-mediated modulation of the immune response for regulating key bone regeneration events, such as osteogenesis, osteoclastogenesis, and inflammation, and it discusses how these strategies can be utilized for future bone tissue engineering applications.
Collapse
Affiliation(s)
- Jinkyu Lee
- Department of Bioengineering; Hanyang University; 222 Wangsimni-ro Seongdong-gu Seoul 04763 Republic of Korea
| | - Hayeon Byun
- Department of Bioengineering; Hanyang University; 222 Wangsimni-ro Seongdong-gu Seoul 04763 Republic of Korea
| | | | - Sangmin Lee
- Department of Bioengineering; Hanyang University; 222 Wangsimni-ro Seongdong-gu Seoul 04763 Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering; Hanyang University; 222 Wangsimni-ro Seongdong-gu Seoul 04763 Republic of Korea
| |
Collapse
|
24
|
Kawasumi K, Murai T, Mizorogi T, Okada Y, Yamamoto I, Suruga K, Kadokura K, Arai T. Changes in Plasma Metabolites Concentrations in Obese Dogs Supplemented With Anti-oxidant Compound. Front Nutr 2018; 5:74. [PMID: 30246011 PMCID: PMC6137203 DOI: 10.3389/fnut.2018.00074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/03/2018] [Indexed: 01/19/2023] Open
Abstract
The aim of this study is to discuss the effect of anti-oxidant supplement (Rv-PEM01-99, Kibun Foods, Inc., Tokyo, Japan) on changes in energy metabolism in obese dogs. 200 mg/kg/day of Rv-PEM01-99 (equivalent to 5 mg kg/day of quercetin derivative) were applied for 6 weeks to the Beagle dogs fed high fat diet (HFD) or control diet (CD). In the present study, body weight (BW) decreasing effect of Rv-PEM 01-99 in obese dogs was not clear. However, plasma alkaline phosphatase (ALP) activities at the end of experiment were significantly decreased compared to those at the start of experiment in obese dogs supplemented with Rv-PEM 01-99 (paired-t test, p < 0.05). In control dogs supplemented with Rv-PEM 01-99, Plasma malondialdehyde (MDA), and triglycerides (TG) levels and lactate dehydrogenase (LDH) activities were significantly decreased compared to those at the start of experiment (paired-t test, p < 0.05). From these findings, Rv-PEM 01-99 seems to be not harmful for dogs. Anti-lipid peroxide effect and liver function improvement are expected in the dogs supplemented with Rv-PEM 01-99.
Collapse
Affiliation(s)
- Koh Kawasumi
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Tae Murai
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Takayuki Mizorogi
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Yuki Okada
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Ichiro Yamamoto
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Kohei Suruga
- Food Function R&D Division, International Operation Department, Kibun Foods Inc., Inagi, Japan
| | - Kazunari Kadokura
- Food Function R&D Division, International Operation Department, Kibun Foods Inc., Inagi, Japan
| | - Toshiro Arai
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Japan
| |
Collapse
|
25
|
Bigi A, Boanini E. Calcium Phosphates as Delivery Systems for Bisphosphonates. J Funct Biomater 2018; 9:E6. [PMID: 29342839 PMCID: PMC5872092 DOI: 10.3390/jfb9010006] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/08/2018] [Accepted: 01/11/2018] [Indexed: 12/16/2022] Open
Abstract
Bisphosphonates (BPs) are the most utilized drugs for the treatment of osteoporosis, and are usefully employed also for other pathologies characterized by abnormally high bone resorption, including bone metastases. Due to the great affinity of these drugs for calcium ions, calcium phosphates are ideal delivery systems for local administration of BPs to bone, which is aimed to avoid/limit the undesirable side effects of their prolonged systemic use. Direct synthesis in aqueous medium and chemisorptions from solution are the two main routes proposed to synthesize BP functionalized calcium phosphates. The present review overviews the information acquired through the studies on the interaction between bisphosphonate molecules and calcium phosphates. Moreover, particular attention is addressed to some important recent achievements on the applications of BP functionalized calcium phosphates as biomaterials for bone substitution/repair.
Collapse
Affiliation(s)
- Adriana Bigi
- Department of Chemistry "G. Ciamician", University of Bologna, 40126 Bologna, Italy.
| | - Elisa Boanini
- Department of Chemistry "G. Ciamician", University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|