1
|
Kedeshian K, Hong M, Hoffman L, Kita A. N-acetylcysteine microparticles reduce cisplatin-induced RSC96 Schwann cell toxicity. Laryngoscope Investig Otolaryngol 2024; 9:e1256. [PMID: 38765675 PMCID: PMC11099882 DOI: 10.1002/lio2.1256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/03/2023] [Accepted: 04/16/2024] [Indexed: 05/22/2024] Open
Abstract
Objectives Cisplatin is known to cause inner ear dysfunction. There is growing evidence that cisplatin-induced demyelination of spiral or Scarpa's ganglion neurons may play an additional role in drug-induced ototoxicity alongside afferent neuron injury. As Schwann cells produce myelin, there may be an opportunity to reduce ototoxic inner ear damage by promoting Schwann cell viability. This work describes a cellular model of cisplatin-induced Schwann cell injury and investigates the ability of the antioxidant N-acetylcysteine to promote Schwann cell viability. A local delivery system of drug-eluting microparticles was then fabricated, characterized, and investigated for bioactivity. Methods RSC96 rat Schwann cells were dosed with varying concentrations of cisplatin to obtain a dose curve and identify the lethal concentration of 50% of the cells (LC50). In subsequent experiments, RSC96 cells were co-treated with cisplatin and both resuspended or eluted N-acetylcysteine. Cell viability was assessed with the CCK8 assay. Results The LC50 dose of cisplatin was determined to be 3.76 μM (p = 2.2 x 10-16). When co-dosed with cisplatin and a therapeutic concentration of resuspended or eluted N-acetylcysteine, Schwann cells had an increased viability compared to cells dosed with cisplatin alone. Conclusion RSC96 Schwann cell injury following cisplatin insult is characterized in this in vitro model. Cisplatin caused injury at physiologic concentrations and N-acetylcysteine improved cell viability and mitigated this injury. N-acetylcysteine was packaged into microparticles and eluted N-acetylcysteine retained its ability to increase cell viability, thus demonstrating promise as a therapeutic to offset cisplatin-induced ototoxicity. Level of Evidence N/A Laryngoscope, 2023.
Collapse
Affiliation(s)
- Katherine Kedeshian
- Department of Head and Neck SurgeryDavid Geffen School of Medicine at University of California Los AngelesLos AngelesCaliforniaUSA
| | - Michelle Hong
- Department of Head and Neck SurgeryDavid Geffen School of Medicine at University of California Los AngelesLos AngelesCaliforniaUSA
| | - Larry Hoffman
- Department of Head and Neck SurgeryDavid Geffen School of Medicine at University of California Los AngelesLos AngelesCaliforniaUSA
- Vestibular Neuroscience Laboratory, Brain Research InstituteDavid Geffen School of Medicine at University of California Los AngelesLos AngelesCaliforniaUSA
| | - Ashley Kita
- Department of Head and Neck SurgeryDavid Geffen School of Medicine at University of California Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
2
|
Su YC, Chang Y, Lee WC, Wang JH, Narita T, Takeno H, Syu JY, Jou IM, Hsieh WC. Study of chondrogenesis of umbilical cord mesenchymal stem cells in curdlan- poly(vinyl alcohol) composite hydrogels and its mechanical properties of freezing-thawing treatments. Int J Biol Macromol 2024; 265:130792. [PMID: 38479670 DOI: 10.1016/j.ijbiomac.2024.130792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/04/2024] [Accepted: 03/09/2024] [Indexed: 03/24/2024]
Abstract
The curdlan gel is a natural material produced by bacteria. It utilizes chemical cross-linking reactions to form a 3D porous composite hydrogel, increasing its porosity and water content, and improving its mechanical properties. It can be used in tissue repair and regenerative medicine. Curdlan-Poly(vinyl alcohol) (PVA) composite hydrogel can rapidly swell within 1 min due to its porous structure. Compression tests confirmed that it still maintains its original mechanical strength, even after five repeated freeze-thaw (FT) processes, making it suitable for long-term cryopreservation. The purpose of this study is to transplant umbilical cord mesenchymal stem cells (UC-MSCs) on Curdlan-PVA composite hydrogel and observe the chondrocytes on the material. The results of using 4',6-diamidino-2-phenylindole (DAPI), hematoxylin and eosin (H&E), calcein-acetoxymethyl ester (calcein AM), and Collagen type II-Fluorescein isothiocyanate (FITC) staining, confirmed that UC-MSCs can attach and differentiate into chondrocytes on 3D Curdlan-PVA composite hydrogel.
Collapse
Affiliation(s)
- Yu-Chieh Su
- Division of Hematology-Oncology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan; School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Yu Chang
- Department of Obstetrics and Gynecology, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan; School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Wei-Chang Lee
- Division of Hematology-Oncology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Jhih-Han Wang
- Department of Medical Science and Biotechnology, I-Shou University, Kaohsiung 824005, Taiwan
| | - Takumi Narita
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Gunma 376-8515, Japan
| | - Hiroyuki Takeno
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Gunma 376-8515, Japan; Gunma University Center for Food Science and Wellness (GUCFW), Gunma 376-8515, Japan
| | - Jie-Yu Syu
- Department of Medical Science and Biotechnology, I-Shou University, Kaohsiung 824005, Taiwan
| | - I-Ming Jou
- Department of Orthopedics, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Wen-Chuan Hsieh
- Department of Medical Science and Biotechnology, I-Shou University, Kaohsiung 824005, Taiwan.
| |
Collapse
|
3
|
Kedeshian K, Hong M, Hoffman L, Kita A. N-acetylcysteine Microparticles Reduce Cisplatin-induced RSC96 Schwann Cell Toxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.564430. [PMID: 37961184 PMCID: PMC10635004 DOI: 10.1101/2023.10.31.564430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Objectives Cisplatin is known to cause inner ear dysfunction. There is growing evidence that cisplatin-induced demyelination of spiral or Scarpa's ganglion neurons may play an additional role in drug-induced ototoxicity alongside afferent neuron injury. As Schwann cells produce myelin, there may be an opportunity to reduce ototoxic inner ear damage by promoting Schwann cell viability. This work describes a cellular model of cisplatin-induced Schwann cell injury and investigates the ability of the antioxidant N-acetylcysteine to promote Schwann cell viability. A local delivery system of drug-eluting microparticles was then fabricated, characterized, and investigated for bioactivity. Methods RSC96 rat Schwann cells were dosed with varying concentrations of cisplatin to obtain a dose curve and identify the lethal concentration of 50% of the cells (LC 50 ). In subsequent experiments, RSC96 cells were co-treated with cisplatin and both resuspended or eluted N-acetylcysteine. Cell viability was assessed with the CCK8 assay. Results The LC 50 dose of cisplatin was determined to be 3.76 μM (p=2.2 × 10 -16 ). When co-dosed with cisplatin and therapeutic concentration of resuspended or eluted N-acetylcysteine, Schwann cells had an increased viability compared to cells dosed with cisplatin alone. Conclusion RSC96 Schwann cell injury following cisplatin insult is characterized in this in vitro model. Cisplatin caused injury at physiologic concentrations and N-acetylcysteine improved cell viability and mitigated this injury. N-acetylcysteine was packaged into microparticles and eluted N-acetylcysteine retained its ability to increase cell viability, thus demonstrating promise as a therapeutic to offset cisplatin-induced ototoxicity. Lay Summary Cisplatin is a chemotherapeutic agent known to cause balance and hearing problems through damage to the inner ear. This project explored cisplatin injury in a Schwann cell culture model and packaged an antioxidant into microparticles suitable for future drug delivery applications.
Collapse
|
4
|
Zaszczyńska A, Niemczyk-Soczynska B, Sajkiewicz P. A Comprehensive Review of Electrospun Fibers, 3D-Printed Scaffolds, and Hydrogels for Cancer Therapies. Polymers (Basel) 2022; 14:5278. [PMID: 36501672 PMCID: PMC9736375 DOI: 10.3390/polym14235278] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/09/2022] Open
Abstract
Anticancer therapies and regenerative medicine are being developed to destroy tumor cells, as well as remodel, replace, and support injured organs and tissues. Nowadays, a suitable three-dimensional structure of the scaffold and the type of cells used are crucial for creating bio-inspired organs and tissues. The materials used in medicine are made of non-degradable and degradable biomaterials and can serve as drug carriers. Developing flexible and properly targeted drug carrier systems is crucial for tissue engineering, regenerative medicine, and novel cancer treatment strategies. This review is focused on presenting innovative biomaterials, i.e., electrospun nanofibers, 3D-printed scaffolds, and hydrogels as a novel approach for anticancer treatments which are still under development and awaiting thorough optimization.
Collapse
Affiliation(s)
| | | | - Paweł Sajkiewicz
- Laboratory of Polymers & Biomaterials, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| |
Collapse
|
5
|
Composite silk fibroin hydrogel scaffolds for cartilage tissue regeneration. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Mukundan LM, Nirmal RS, Nair PD. Growth and Regeneration of Osteochondral Cells in Bioactive Niche: A Promising Approach for Osteochondral Tissue Repair. ACS APPLIED BIO MATERIALS 2022; 5:2676-2688. [PMID: 35658402 DOI: 10.1021/acsabm.2c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Functional repair of osteochondral defects caused due to osteoarthritis still remains the greatest challenge in orthopedic therapy. A prospective clinical strategy would be exploring osteochondral tissue engineering possibilities that promote simultaneous regeneration of the articular cartilage layer as well as the underlying subchondral bone. Incorporating the appropriate cues onto the scaffolds for the regeneration of the two contrasting tissues is therefore a demanding function. In the present study, a polymer-ceramic composite scaffolding material consisting of ternary bioactive glass (67.12 SiO2/28.5 CaO/4.38 P2O5 mol %) incorporated into a semi interpenetrating polymer network of hydrophilic-hydrophobic polymer (poly(vinyl alcohol)-polycaprolactone) matrix is prepared and physicochemically characterized. In vitro bioactivity, bone-bonding ability, and biocompatibility evaluation were performed in comparison with the pristine scaffold. The degree of chondrogenic and osteogenic potential of mesenchymal stem cells in both the scaffolds was evaluated by gene expression studies. Although both the scaffolds favored the differentiation to both cell lineages in their respective medium, a higher expression of bone specific genes found with the composite scaffold suggested that this composite scaffold would serve better for osteal layer and henceforth to promote the integration of the osteochondral construct at the defect site.
Collapse
Affiliation(s)
- Lakshmi M Mukundan
- Division of Tissue Engineering and Regeneration Technologies, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, Kerala 695012, India
| | - Remya S Nirmal
- Division of Tissue Engineering and Regeneration Technologies, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, Kerala 695012, India
| | - Prabha D Nair
- Division of Tissue Engineering and Regeneration Technologies, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, Kerala 695012, India
| |
Collapse
|
7
|
Recent advances in graphene-based polymer composite scaffolds for bone/cartilage tissue engineering. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Dennyson Savariraj A, Salih A, Alam F, Elsherif M, AlQattan B, Khan AA, Yetisen AK, Butt H. Ophthalmic Sensors and Drug Delivery. ACS Sens 2021; 6:2046-2076. [PMID: 34043907 PMCID: PMC8294612 DOI: 10.1021/acssensors.1c00370] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022]
Abstract
Advances in multifunctional materials and technologies have allowed contact lenses to serve as wearable devices for continuous monitoring of physiological parameters and delivering drugs for ocular diseases. Since the tear fluids comprise a library of biomarkers, direct measurement of different parameters such as concentration of glucose, urea, proteins, nitrite, and chloride ions, intraocular pressure (IOP), corneal temperature, and pH can be carried out non-invasively using contact lens sensors. Microfluidic contact lens sensor based colorimetric sensing and liquid control mechanisms enable the wearers to perform self-examinations at home using smartphones. Furthermore, drug-laden contact lenses have emerged as delivery platforms using a low dosage of drugs with extended residence time and increased ocular bioavailability. This review provides an overview of contact lenses for ocular diagnostics and drug delivery applications. The designs, working principles, and sensing mechanisms of sensors and drug delivery systems are reviewed. The potential applications of contact lenses in point-of-care diagnostics and personalized medicine, along with the significance of integrating multiplexed sensing units together with drug delivery systems, have also been discussed.
Collapse
Affiliation(s)
| | - Ahmed Salih
- Department
of Mechanical Engineering, Khalifa University
of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Fahad Alam
- Department
of Mechanical Engineering, Khalifa University
of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Mohamed Elsherif
- Department
of Mechanical Engineering, Khalifa University
of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Bader AlQattan
- Department
of Mechanical Engineering, Khalifa University
of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ammar A. Khan
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, United Kingdom
| | - Ali K. Yetisen
- Department
of Physics, Lahore University of Management
Sciences, Lahore Cantonment 54792, Lahore, Pakistan
| | - Haider Butt
- Department
of Mechanical Engineering, Khalifa University
of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
9
|
Novel Semi-Interpenetrated Polymer Networks of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate)/Poly (Vinyl Alcohol) with Incorporated Conductive Polypyrrole Nanoparticles. Polymers (Basel) 2020; 13:polym13010057. [PMID: 33375726 PMCID: PMC7795713 DOI: 10.3390/polym13010057] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 12/02/2022] Open
Abstract
This paper reports the preparation and characterization of semi-interpenetrating polymer networks (semi-IPN) of poly(3-hydroxybutirate-co-3-hydroxyvalerate), PHBV, and poly (vinyl alcohol), PVA, with conductive polypirrole (PPy) nanoparticles. Stable hybrid semi-IPN (PHBV/PVA 30/70 ratio) hydrogels were produced by solvent casting, dissolving each polymer in chloroform and 1-methyl-2-pyrrolidone respectively, and subsequent glutaraldehyde crosslinking of the PVA chains. The microstructure and physical properties of this novel polymeric system were analysed, including thermal behaviour and degradation, water sorption, wettability and electrical conductivity. The conductivity of these advanced networks rose significantly at higher PPy nanoparticles content. Fourier transform infrared spectroscopy (FTIR) and calorimetry characterization indicated good miscibility and compatibility between all the constituents, with no phase separation and strong interactions between phases. A single glass transition was observed between those of pure PHBV and PVA, although PVA was dominant in its contribution to the glass transition process. Incorporating PPy nanoparticles significantly reduced the hydrogel swelling, even at low concentrations, indicating molecular interactions between the PPy nanoparticles and the hydrogel matrix. The PHBV/PVA semi-IPN showed higher thermal stability than the neat polymers and PHBV/PVA blend, which also remained in the tertiary systems.
Collapse
|
10
|
Janagama D, Hui SK. 3-D Cell Culture Systems in Bone Marrow Tissue and Organoid Engineering, and BM Phantoms as In Vitro Models of Hematological Cancer Therapeutics-A Review. MATERIALS 2020; 13:ma13245609. [PMID: 33316977 PMCID: PMC7763362 DOI: 10.3390/ma13245609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022]
Abstract
We review the state-of-the-art in bone and marrow tissue engineering (BMTE) and hematological cancer tissue engineering (HCTE) in light of the recent interest in bone marrow environment and pathophysiology of hematological cancers. This review focuses on engineered BM tissue and organoids as in vitro models of hematological cancer therapeutics, along with identification of BM components and their integration as synthetically engineered BM mimetic scaffolds. In addition, the review details interaction dynamics of various BM and hematologic cancer (HC) cell types in co-culture systems of engineered BM tissues/phantoms as well as their relation to drug resistance and cytotoxicity. Interaction between hematological cancer cells and their niche, and the difference with respect to the healthy niche microenvironment narrated. Future perspectives of BMTE for in vitro disease models, BM regeneration and large scale ex vivo expansion of hematopoietic and mesenchymal stem cells for transplantation and therapy are explained. We conclude by overviewing the clinical application of biomaterials in BM and HC pathophysiology and its challenges and opportunities.
Collapse
|
11
|
Velutheril Thomas L, Nair PD. An electrospun citric acid modified polyvinyl alcohol scaffold for vascular tissue engineering. J BIOACT COMPAT POL 2019. [DOI: 10.1177/0883911519841390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The main aim of this study is to fabricate an electrospun citric acid modified polyvinyl alcohol polyester that is biodegradable with non-toxic by-products and can be used for the culture of vascular smooth muscle cells. In this study, we have optimized the conditions for the electrospinning process of this polyester. The fibre morphology was studied by scanning electron microscopy which indicated that the fibre diameter was optimum at a range of 200 to 700 µm at 5% concentration and flow rate of 0.3 mL/h. The membranes were characterized for the change in structural aspects at the molecular level. The results showed development of more crystalline domains on electrospinning. The surface characteristics were also explored. Cell culture studies confirmed that the electrospun scaffold supported the attachment and proliferation of smooth muscle cells, which was evident from the cell proliferation assay. Hence, the electrospun polyester scaffolds are non-toxic and biocompatible with vascular smooth muscle cells, and find promising potential as scaffolds for vascular tissue engineering.
Collapse
Affiliation(s)
- Lynda Velutheril Thomas
- Division of Tissue Engineering and Regeneration Technologies, Bio-Medical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Prabha Damodaran Nair
- Division of Tissue Engineering and Regeneration Technologies, Bio-Medical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| |
Collapse
|
12
|
Choi SW, Kim J. Therapeutic Contact Lenses with Polymeric Vehicles for Ocular Drug Delivery: A Review. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1125. [PMID: 29966397 PMCID: PMC6073408 DOI: 10.3390/ma11071125] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 12/22/2022]
Abstract
The eye has many barriers with specific anatomies that make it difficult to deliver drugs to targeted ocular tissues, and topical administration using eye drops or ointments usually needs multiple instillations to maintain the drugs’ therapeutic concentration because of their low bioavailability. A drug-eluting contact lens is one of the more promising platforms for controllable ocular drug delivery, and, among various manufacturing methods for drug-eluting contact lenses, incorporation of novel polymeric vehicles with versatile features makes it possible to deliver the drugs in a sustained and extended manner. Using the diverse physicochemical properties of polymers for nanoparticles or implants that are selected according to the characteristics of drugs, enhancement of encapsulation efficiency and prolonged drug release are possible. Even though therapeutic contact lenses with polymeric vehicles allow us to achieve sustained ocular drug delivery, drug leaching during storage and distribution and the possibility of problems related to surface roughness due to the incorporated vehicles still need to be discussed before application in a real clinic. This review highlights the overall trends in methodology to develop therapeutic contact lenses with polymeric vehicles and discusses the limitations including comparison to cosmetically tinted soft contact lenses.
Collapse
Affiliation(s)
- Seung Woo Choi
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon 16419, Korea.
| | - Jaeyun Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon 16419, Korea.
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea.
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Korea.
| |
Collapse
|
13
|
Lee LW, Hsiao SH, Lin YH, Chen PY, Lee YL, Hung WC. Outcomes of necrotic immature open-apex central incisors treated by MTA apexification using poly(ε-caprolactone) fiber mesh as an apical barrier. J Formos Med Assoc 2018; 118:362-370. [PMID: 29937322 DOI: 10.1016/j.jfma.2018.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/30/2018] [Accepted: 06/05/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND/PURPOSE Although unset mineral trioxide aggregate (MTA) has some cytotoxicity, MTA is still a biocompatible material suitable for doing apexification. This study assessed the outcomes for 8 necrotic immature open-apex permanent maxillary central incisors treated by MTA apexification using poly(ε-caprolactone) fiber mesh (PCL-FM) as an apical barrier (so-called PCL-FM/MTA apexification) to prevent extrusion of MTA materials into the periapical tissues of open-apex teeth. METHODS Eight necrotic immature open-apex permanent maxillary central incisors with the open apices measuring 2.5 mm-3.5 mm in diameter in 8 patients (6 boys and 2 girls; age range, 8-10 years) were first cleaned using ultrasonic activated irrigation with 2.5% sodium hypochlorite solution and then treated by PCL-FM/MTA apexification procedure. RESULTS All the 8 permanent maxillary central incisors showed successful outcomes after PCL-FM/MTA apexification procedure. The mean duration for apical hard tissue barrier formation of the 8 incisors was 6.8 ± 0.5 weeks (range 6-7 weeks). The mean increased root length was 1.8 ± 0.7 mm (range 1-3 mm) at 7 weeks and 3.1 ± 0.6 mm (range 2-4 mm) at 3 months. The mean increased dentinal wall thickness at the most apical portion of the root was 1.3 ± 0.5 mm (range 1-2 mm) at 7 weeks and 2.4 ± 0.6 mm (range 1.5-3 mm) at 3 months. None of the teeth treated by PCL-FM/MTA apexification showed tooth discoloration after a follow-up period of 3 months. CONCLUSION PCL-FM/MTA apexification is an excellent technique for treatment of necrotic immature open-apex permanent maxillary central incisors.
Collapse
Affiliation(s)
- Li-Wan Lee
- Department of Dentistry, Taipei City Hospital, Renai Branch, Taipei, Taiwan
| | - Sheng-Huang Hsiao
- Department of Neurosurgery, Taipei City Hospital, Renai Branch, Taipei, Taiwan; Department of Psychology, National Chengchi University, Taipei, Taiwan
| | - Yun-Ho Lin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan; Division of Oral Pathology, Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Po-Yu Chen
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Ya-Ling Lee
- Department of Dentistry, Taipei City Hospital, Heping Fuyou Branch, Taipei, Taiwan; Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Chiang Hung
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
14
|
Prabha RD, Kraft DCE, Harkness L, Melsen B, Varma H, Nair PD, Kjems J, Kassem M. Bioactive nano‐fibrous scaffold for vascularized craniofacial bone regeneration. J Tissue Eng Regen Med 2017; 12:e1537-e1548. [DOI: 10.1002/term.2579] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 08/05/2017] [Accepted: 09/23/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Rahul Damodaran Prabha
- Department of Endocrinology and MetabolismUniversity Hospital of Odense Odense Denmark
- Interdisciplinary Nanoscience Center (iNANO)Aarhus University Aarhus Denmark
- Section of Orthodontics, Department of DentistryAarhus University Aarhus Denmark
| | | | - Linda Harkness
- Department of Endocrinology and MetabolismUniversity Hospital of Odense Odense Denmark
| | - Birte Melsen
- Section of Orthodontics, Department of DentistryAarhus University Aarhus Denmark
| | - Harikrishna Varma
- Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST) Thiruvananthapuram Kerala India
| | - Prabha D. Nair
- Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST) Thiruvananthapuram Kerala India
| | - Jorgen Kjems
- Interdisciplinary Nanoscience Center (iNANO)Aarhus University Aarhus Denmark
| | - Moustapha Kassem
- Department of Endocrinology and MetabolismUniversity Hospital of Odense Odense Denmark
| |
Collapse
|
15
|
V Thomas L, VG R, D Nair P. Effect of stiffness of chitosan-hyaluronic acid dialdehyde hydrogels on the viability and growth of encapsulated chondrocytes. Int J Biol Macromol 2017; 104:1925-1935. [DOI: 10.1016/j.ijbiomac.2017.05.116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 04/28/2017] [Accepted: 05/18/2017] [Indexed: 12/22/2022]
|
16
|
Lee JM, Sultan MT, Kim SH, Kumar V, Yeon YK, Lee OJ, Park CH. Artificial Auricular Cartilage Using Silk Fibroin and Polyvinyl Alcohol Hydrogel. Int J Mol Sci 2017; 18:E1707. [PMID: 28777314 PMCID: PMC5578097 DOI: 10.3390/ijms18081707] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/29/2017] [Accepted: 08/01/2017] [Indexed: 01/28/2023] Open
Abstract
Several methods for auricular cartilage engineering use tissue engineering techniques. However, an ideal method for engineering auricular cartilage has not been reported. To address this issue, we developed a strategy to engineer auricular cartilage using silk fibroin (SF) and polyvinyl alcohol (PVA) hydrogel. We constructed different hydrogels with various ratios of SF and PVA by using salt leaching, silicone mold casting, and freeze-thawing methods. We characterized each of the hydrogels in terms of the swelling ratio, tensile strength, pore size, thermal properties, morphologies, and chemical properties. Based on the cell viability results, we found a blended hydrogel composed of 50% PVA and 50% SF (P50/S50) to be the best hydrogel among the fabricated hydrogels. An intact 3D ear-shaped auricular cartilage formed six weeks after the subcutaneous implantation of a chondrocyte-seeded 3D ear-shaped P50/S50 hydrogel in rats. We observed mature cartilage with a typical lacunar structure both in vitro and in vivo via histological analysis. This study may have potential applications in auricular tissue engineering with a human ear-shaped hydrogel.
Collapse
Affiliation(s)
- Jung Min Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702, Korea.
| | - Md Tipu Sultan
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702, Korea.
| | - Soon Hee Kim
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702, Korea.
| | - Vijay Kumar
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702, Korea.
| | - Yeung Kyu Yeon
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702, Korea.
| | - Ok Joo Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702, Korea.
| | - Chan Hum Park
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702, Korea.
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 200-704, Korea.
| |
Collapse
|
17
|
Song W, Seta J, Chen L, Bergum C, Zhou Z, Kanneganti P, Kast RE, Auner GW, Shen M, Markel DC, Ren W, Yu X. Doxycycline-loaded coaxial nanofiber coating of titanium implants enhances osseointegration and inhibits Staphylococcus aureus infection. ACTA ACUST UNITED AC 2017; 12:045008. [PMID: 28357996 DOI: 10.1088/1748-605x/aa6a26] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Few studies have been reported that focus on developing implant surface nanofiber (NF) coating to prevent infection and enhance osseointegration by local drug release. In this study, coaxial doxycycline (Doxy)-doped polycaprolactone/polyvinyl alcohol (PCL/PVA) NFs were directly deposited on a titanium (Ti) implant surface during electrospinning. The interaction of loaded Doxy with both PVA and PCL NFs was characterized by Raman spectroscopy. The bonding strength of Doxy-doped NF coating on Ti implants was confirmed by a stand single-pass scratch test. The improved implant osseointegration by PCL/PVA NF coatings in vivo was confirmed by scanning electron microscopy, histomorphometry and micro computed tomography (μCT) at 2, 4 and 8 weeks after implantation. The bone contact surface (%) changes of the NF coating group (80%) is significantly higher than that of the no NF group (<5%, p < 0.05). Finally, we demonstrated that a Doxy-doped NF coating effectively inhibited bacterial infection and enhanced osseointegration in an infected (Staphylococcus aureus) tibia implantation rat model. Doxy released from NF coating inhibited bacterial growth up to 8 weeks in vivo. The maximal push-in force of the Doxy-NF coating (38 N) is much higher than that of the NF coating group (6.5 N) 8 weeks after implantation (p < 0.05), which was further confirmed by quantitative histological analysis and μCT. These findings indicate that coaxial PCL/PVA NF coating doped with Doxy and/or other drugs have great potential in enhancing implant osseointegration and preventing infection.
Collapse
Affiliation(s)
- Wei Song
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, United States of America
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Biocompatible testing and physical properties of curdlan-grafted poly(vinyl alcohol) scaffold for bone tissue engineering. Carbohydr Polym 2017; 157:1341-1348. [DOI: 10.1016/j.carbpol.2016.11.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/18/2016] [Accepted: 11/03/2016] [Indexed: 11/20/2022]
|
19
|
Remya NS, Nair PD. Mechanoresponsiveness of human umbilical cord mesenchymal stem cells in in vitro chondrogenesis-A comparative study with growth factor induction. J Biomed Mater Res A 2016; 104:2554-66. [PMID: 27227673 DOI: 10.1002/jbm.a.35792] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 03/31/2016] [Accepted: 05/24/2016] [Indexed: 12/21/2022]
Abstract
Fetal-derived mesenchymal stem cells especially human umbilical cord matrix mesenchymal stem cells (hUCMSCs), with their ease of availability, pluripotency, and high expansion potential have emerged as an alternative solution for stem cell based cartilage therapies. An attempt to elucidate the effect of dynamic mechanical compression in modulating the chondrogenic differentiation of hUCMSCs is done in this study to add on to the knowledge of optimizing chondrogenic signals necessary for the effective differentiation of these stem cells and subsequent integration to the surrounding tissues. hUCMSCs were seeded in porous poly (vinyl alcohol)-poly (caprolactone) (PVA-PCL) scaffolds and cultured in chondrogenic medium with/without TGF-β3 and were subjected to a dynamic compression of 10% strain, 1 Hz for 1/4 h for 7 days. The results on various analysis shows that the extent of dynamic compression is an important factor affecting cell viability. Mechanical stimulation in the form of dynamic compression stimulates expression of chondrogenic genes even in the absence of chondrogenic growth factors and also augments growth factor induced chondrogenic potential of hUCMSC. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2554-2566, 2016.
Collapse
Affiliation(s)
- N S Remya
- Division of Tissue Engineering and Regeneration Technologies, BMT Wing, Sree Chithra Tirunal Institute for Medical Sciences and Technology, Trivandrum, 695012, India
| | - Prabha D Nair
- Division of Tissue Engineering and Regeneration Technologies, BMT Wing, Sree Chithra Tirunal Institute for Medical Sciences and Technology, Trivandrum, 695012, India
| |
Collapse
|
20
|
Vikingsson L, Antolinos-Turpin C, Gómez-Tejedor J, Gallego Ferrer G, Gómez Ribelles J. Prediction of the “in vivo” mechanical behavior of biointegrable acrylic macroporous scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 61:651-8. [DOI: 10.1016/j.msec.2015.12.068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 10/28/2015] [Accepted: 12/28/2015] [Indexed: 01/31/2023]
|
21
|
Weng L, Teusink MJ, Shuler FD, Parecki V, Xie J. Highly controlled coating of strontium-doped hydroxyapatite on electrospun poly(ɛ-caprolactone) fibers. J Biomed Mater Res B Appl Biomater 2016; 105:753-763. [PMID: 26743543 DOI: 10.1002/jbm.b.33598] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/24/2015] [Accepted: 11/28/2015] [Indexed: 11/11/2022]
Abstract
Electrospun fibers show great potential as scaffolds for bone tissue engineering due to their architectural biomimicry to the extracellular matrix (ECM). Cation substitution of strontium for calcium in hydroxyapatite (HAp) positively influences the mechanism of bone remodeling including enhancing bone regeneration and reducing bone resorption. The objective of this study was to attach strontium-doped HAp (SrHAp) to electrospun poly(ɛ-caprolactone) (PCL) fibers for creation of novel composite scaffolds that can not only mimic the architecture and composition of ECM but also affect bone remodeling favorably. We demonstrated for the first time the highly controlled SrHAp coatings on electrospun PCL fibers. We showed the reproducible manufacturing of composite fiber scaffolds with controllable thickness, composition, and morphology of SrHAp coatings. We further showed that the released strontium and calcium cations from coatings could reach effective concentrations within 1 day and endure more than 28 days. Additionally, the Young's modulus of the SrHAp-coated PCL fibers was up to around six times higher than that of raw fibers dependent on the coating thickness and composition. Together, this novel class of composite fiber scaffolds may hold great promise for bone regeneration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 753-763, 2017.
Collapse
Affiliation(s)
- Lin Weng
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska, 68198
| | - Matthew J Teusink
- Department of Orthopedic Surgery, University of Nebraska Medical Center, Omaha, Nebraska, 68198
| | - Franklin D Shuler
- Department of Orthopedic Surgery, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, 25701
| | - Vivi Parecki
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska, 68198
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska, 68198
| |
Collapse
|
22
|
Gadjanski I, Vunjak-Novakovic G. Challenges in engineering osteochondral tissue grafts with hierarchical structures. Expert Opin Biol Ther 2015; 15:1583-99. [PMID: 26195329 PMCID: PMC4628577 DOI: 10.1517/14712598.2015.1070825] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION A major hurdle in treating osteochondral (OC) defects is the different healing abilities of two types of tissues involved - articular cartilage and subchondral bone. Biomimetic approaches to OC-construct engineering, based on recapitulation of biological principles of tissue development and regeneration, have potential for providing new treatments and advancing fundamental studies of OC tissue repair. AREAS COVERED This review on state of the art in hierarchical OC tissue graft engineering is focused on tissue engineering approaches designed to recapitulate the native milieu of cartilage and bone development. These biomimetic systems are discussed with relevance to bioreactor cultivation of clinically sized, anatomically shaped human cartilage/bone constructs with physiologic stratification and mechanical properties. The utility of engineered OC tissue constructs is evaluated for their use as grafts in regenerative medicine, and as high-fidelity models in biological research. EXPERT OPINION A major challenge in engineering OC tissues is to generate a functionally integrated stratified cartilage-bone structure starting from one single population of mesenchymal cells, while incorporating perfusable vasculature into the bone, and in bone-cartilage interface. To this end, new generations of advanced scaffolds and bioreactors, implementation of mechanical loading regimens and harnessing of inflammatory responses of the host will likely drive the further progress.
Collapse
Affiliation(s)
- Ivana Gadjanski
- Belgrade Metropolitan University, Center for Bioengineering – BioIRC, Prvoslava Stojanovica 6, 34000 Kragujevac, Serbia, Tel: +381 64 083 58 62, Fax: +381 11 203 06 28,
| | - Gordana Vunjak-Novakovic
- Laboratory for Stem Cells and Tissue Engineering, Columbia University, 622 west 168th Street, VC12-234, New York NY 10032, USA, tel: +1-212-305-2304, fax: +1-212-305-4692,
| |
Collapse
|
23
|
Lee LW, Hsiao SH, Hung WC, Lin YH, Chen PY, Chiang CP. Clinical outcomes for teeth treated with electrospun poly(ε-caprolactone) fiber meshes/mineral trioxide aggregate direct pulp capping. J Endod 2015; 41:628-36. [PMID: 25687364 DOI: 10.1016/j.joen.2015.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/15/2014] [Accepted: 01/06/2015] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Mineral trioxide aggregate (MTA) is a biocompatible material for direct pulp capping. This study was designed to compare the clinical outcomes of pulp-exposed teeth treated with either poly(ε-caprolactone) fiber mesh (PCL-FM) as a barrier for MTA (so-called PCL-FM/MTA) or MTA direct pulp capping. METHODS Sixty human vital teeth were evenly divided into 4 groups (n = 15 in each group). Teeth in groups 1 and 3 had pulp exposure <1 mm in diameter, whereas teeth in groups 2 and 4 had pulp exposure of 1-1.5 mm in diameter. Teeth in groups 1 and 2 were treated with PCL-FM/MTA direct pulp capping, and those in groups 3 and 4 were treated with MTA direct pulp capping. RESULTS Teeth treated with PCL-FM/MTA direct pulp capping needed a significantly shorter mean duration for dentin bridge formation than teeth treated with MTA direct pulp capping. Moreover, teeth with pulp exposure <1.0 mm in diameter needed a significantly shorter mean duration for dentin bridge formation than teeth with pulp exposure of 1-1.5 mm in diameter after either PCL-FM/MTA or MTA direct pulp capping treatment. In addition, teeth treated with PCL-FM/MTA direct pulp capping formed an approximately 3-fold thicker dentin bridge than teeth treated with MTA direct pulp capping 8 weeks or 3 months later. Furthermore, none of the teeth treated with PCL-FM/MTA direct pulp capping showed tooth discoloration after treatment for 3 months. CONCLUSIONS PCL-FM/MTA is a better combination material than MTA alone for direct pulp capping of human permanent teeth.
Collapse
Affiliation(s)
- Li-Wan Lee
- Department of Dentistry, Taipei City Hospital, Renai Branch, Taipei, Taiwan
| | - Sheng-Huang Hsiao
- Department of Neurosurgery, Taipei City Hospital, Renai Branch, Taipei, Taiwan; Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Chiang Hung
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan; Division of Endodontics, Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yun-Ho Lin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan; Division of Oral Pathology, Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Po-Yu Chen
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Chun-Pin Chiang
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
24
|
Pourjavadi A, Pourbadiei B, Doroudian M, Azari S. Preparation of PVA nanocomposites using salep-reduced graphene oxide with enhanced mechanical and biological properties. RSC Adv 2015. [DOI: 10.1039/c5ra12190f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hydrogel and film nanocomposites based on PVA with desired mechanical properties are prepared using salep functionalized rGO and proposed as new biomaterials for tissue engineering applications.
Collapse
Affiliation(s)
- Ali Pourjavadi
- Polymer Research Laboratory
- Department of Chemistry
- Sharif University of Technology
- Tehran
- Iran
| | - Behzad Pourbadiei
- Polymer Research Laboratory
- Department of Chemistry
- Sharif University of Technology
- Tehran
- Iran
| | - Mohadeseh Doroudian
- Polymer Research Laboratory
- Department of Chemistry
- Sharif University of Technology
- Tehran
- Iran
| | - Shahram Azari
- National Cell Bank of Iran
- Pasteur Institute of Iran
- Tehran
- Iran
| |
Collapse
|
25
|
Characterization and Cell Culture of a Grafted Chitosan Scaffold for Tissue Engineering. INT J POLYM SCI 2015. [DOI: 10.1155/2015/935305] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Poly(vinyl alcohol) (PVA) was grafted to chitosan to form a porous scaffold. The PVA-g-chitosan 3D scaffold was then observed by Fourier transform infrared spectroscopy (FT-IR). The water absorbency of PVA-g-chitosan was increased 370% by grafting. Scanning electron microscope (SEM) observations of the material revealed that the 3D scaffold is highly porous when formed using a homogenizer at 300 rpm. Compression testing demonstrated that as the amount of chitosan increases, the strength of the 3D scaffold strength reached showed that, by increasing the amount of chitosan, the strength of the 3D scaffold could be increased to 16 × 10−1 MPa. Over 35 days of enzymatic degradation, the 3D scaffold was degraded by various enzymes at rates of up to 10%.In vitrotests showed good cell proliferation and growth in the 3D scaffold.
Collapse
|
26
|
Rethikala PK, Kalliyana KV. Photopolymerized poly(2-hydroxyethyl methacrylate)/poly(ε-caprolactone)/poly(ethylene glycol) system as a potential wound dressing material. J BIOACT COMPAT POL 2014. [DOI: 10.1177/0883911514558543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Polymeric hydrogel systems based on poly(2-hydroxyethyl methacrylate), poly(ε-caprolactone), and poly(ethylene glycol) were prepared by photopolymerization using 2,4,6-trimethyl benzoyl diphenyl phosphine oxide as the photoinitiator. The structural details, morphology, and crystallinity were evaluated by Fourier transform infrared, scanning electron microscope, and X-ray diffraction analysis. The fluid uptake of the hydrogels was measured using swelling analysis. Based on a hemolysis assay, the prepared hydrogels were non-hemolytic. No attachment of fibroblasts to the hydrogel systems was observed. Stress–strain results indicated that the poly(2-hydroxyethyl methacrylate), poly(ε-caprolactone), and poly(ethylene glycol) hydrogel system (85:10:5) possessed better mechanical properties. Cytotoxic assessment by direct contact method of 85:10:5 systems found that the hydrogel was non-cytotoxic to L929 fibroblasts. This hydrophilic polymer system has a potential for wound dressing applications.
Collapse
Affiliation(s)
- PK Rethikala
- Dental Products Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Trivandrum, India
| | - Krishnan V Kalliyana
- Dental Products Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Trivandrum, India
| |
Collapse
|
27
|
Mi HY, Jing X, Salick MR, Cordie TM, Peng XF, Turng LS. Properties and fibroblast cellular response of soft and hard thermoplastic polyurethane electrospun nanofibrous scaffolds. J Biomed Mater Res B Appl Biomater 2014; 103:960-70. [DOI: 10.1002/jbm.b.33271] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/18/2014] [Accepted: 08/08/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Hao-Yang Mi
- The Key Laboratory for Polymer Processing Engineering of Ministry of Education; South China University of Technology; Guangzhou 510640 China
- Wisconsin Institute for Discovery; University of Wisconsin-Madison; Madison Wisconsin 53715
- Department of Mechanical Engineering; University of Wisconsin-Madison; Madison Wisconsin 53706
| | - Xin Jing
- The Key Laboratory for Polymer Processing Engineering of Ministry of Education; South China University of Technology; Guangzhou 510640 China
- Wisconsin Institute for Discovery; University of Wisconsin-Madison; Madison Wisconsin 53715
- Department of Mechanical Engineering; University of Wisconsin-Madison; Madison Wisconsin 53706
| | - Max R. Salick
- Wisconsin Institute for Discovery; University of Wisconsin-Madison; Madison Wisconsin 53715
- Department of Engineering Physics; University of Wisconsin-Madison; Wisconsin 53706
| | - Travis M. Cordie
- Wisconsin Institute for Discovery; University of Wisconsin-Madison; Madison Wisconsin 53715
| | - Xiang-Fang Peng
- The Key Laboratory for Polymer Processing Engineering of Ministry of Education; South China University of Technology; Guangzhou 510640 China
| | - Lih-Sheng Turng
- Wisconsin Institute for Discovery; University of Wisconsin-Madison; Madison Wisconsin 53715
- Department of Mechanical Engineering; University of Wisconsin-Madison; Madison Wisconsin 53706
| |
Collapse
|
28
|
Blends and Nanocomposite Biomaterials for Articular Cartilage Tissue Engineering. MATERIALS 2014; 7:5327-5355. [PMID: 28788131 PMCID: PMC5455822 DOI: 10.3390/ma7075327] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/10/2014] [Accepted: 07/14/2014] [Indexed: 12/18/2022]
Abstract
This review provides a comprehensive assessment on polymer blends and nanocomposite systems for articular cartilage tissue engineering applications. Classification of various types of blends including natural/natural, synthetic/synthetic systems, their combination and nanocomposite biomaterials are studied. Additionally, an inclusive study on their characteristics, cell responses ability to mimic tissue and regenerate damaged articular cartilage with respect to have functionality and composition needed for native tissue, are also provided.
Collapse
|
29
|
Bakare RA, Bhan C, Raghavan D. Synthesis and Characterization of Collagen Grafted Poly(hydroxybutyrate–valerate) (PHBV) Scaffold for Loading of Bovine Serum Albumin Capped Silver (Ag/BSA) Nanoparticles in the Potential Use of Tissue Engineering Application. Biomacromolecules 2013; 15:423-35. [DOI: 10.1021/bm401686v] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Rotimi A. Bakare
- Polymer Group, Department
of Chemistry, Howard University, Washington, D.C. 20059, United States
| | - Chandra Bhan
- Polymer Group, Department
of Chemistry, Howard University, Washington, D.C. 20059, United States
| | - Dharmaraj Raghavan
- Polymer Group, Department
of Chemistry, Howard University, Washington, D.C. 20059, United States
| |
Collapse
|
30
|
Fabrication of interpenetrating polymer network to enhance the biological activity of synthetic hydrogels. POLYMER 2013. [DOI: 10.1016/j.polymer.2013.08.052] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Cell culture and characterization of cross-linked poly(vinyl alcohol)-g-starch 3D scaffold for tissue engineering. Carbohydr Polym 2013; 98:574-80. [PMID: 23987384 DOI: 10.1016/j.carbpol.2013.06.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/10/2013] [Accepted: 06/13/2013] [Indexed: 11/20/2022]
Abstract
The research goal of this experiment is chemically to cross-link poly(vinyl alcohol) (PVA) and starch to form a 3D scaffold that is effective water absorbent, has a stable structure, and supports cell growth. PVA and starch can be chemically cross-linked to form a PVA-g-starch 3D scaffold polymer, as observed by Fourier transform infrared spectroscopy (FTIR), with an absorbency of up to 800%. Tensile testing reveals that, as the amount of starch increases, the strength of the 3D scaffold strength reaches 4×10(-2) MPa. Scanning electron microscope (SEM) observations of the material reveal that the 3D scaffold is highly porous formed using a homogenizer at 500 rpm. In an enzymatic degradation, the 3D scaffold was degraded by various enzymes at a rate of up to approximately 30-60% in 28 days. In vitro tests revealed that cells proliferate and grow in the 3D scaffold material. Energy dispersive spectrometer (EDS) analysis further verified that the bio-compatibility of this scaffold.
Collapse
|
32
|
Controlled biomineralization of electrospun poly(ε-caprolactone) fibers to enhance their mechanical properties. Acta Biomater 2013; 9:5698-707. [PMID: 23131385 DOI: 10.1016/j.actbio.2012.10.042] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 09/24/2012] [Accepted: 10/30/2012] [Indexed: 11/24/2022]
Abstract
Electrospun polymeric fibers have been investigated as scaffolding materials for bone tissue engineering. However, their mechanical properties, and in particular stiffness and ultimate tensile strength, cannot match those of natural bones. The objective of the study was to develop novel composite nanofiber scaffolds by attaching minerals to polymeric fibers using an adhesive material - the mussel-inspired protein polydopamine - as a "superglue". Herein, we report for the first time the use of dopamine to regulate mineralization of electrospun poly(ε-caprolactone) (PCL) fibers to enhance their mechanical properties. We examined the mineralization of the PCL fibers by adjusting the concentration of HCO(3)(-) and dopamine in the mineralized solution, the reaction time and the surface composition of the fibers. We also examined mineralization on the surface of polydopamine-coated PCL fibers. We demonstrated the control of morphology, grain size and thickness of minerals deposited on the surface of electrospun fibers. The obtained mineral coatings render electrospun fibers with much higher stiffness, ultimate tensile strength and toughness, which could be closer to the mechanical properties of natural bone. Such great enhancement of mechanical properties for electrospun fibers through mussel protein-mediated mineralization has not been seen previously. This study could also be extended to the fabrication of other composite materials to better bridge the interfaces between organic and inorganic phases.
Collapse
|
33
|
Engineering cartilage tissue interfaces using a natural glycosaminoglycan hydrogel matrix — An in vitro study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:575-82. [DOI: 10.1016/j.msec.2012.09.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 08/30/2012] [Accepted: 09/24/2012] [Indexed: 12/22/2022]
|
34
|
Izadifar Z, Chen X, Kulyk W. Strategic design and fabrication of engineered scaffolds for articular cartilage repair. J Funct Biomater 2012; 3:799-838. [PMID: 24955748 PMCID: PMC4030923 DOI: 10.3390/jfb3040799] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 09/13/2012] [Accepted: 10/17/2012] [Indexed: 01/19/2023] Open
Abstract
Damage to articular cartilage can eventually lead to osteoarthritis (OA), a debilitating, degenerative joint disease that affects millions of people around the world. The limited natural healing ability of cartilage and the limitations of currently available therapies make treatment of cartilage defects a challenging clinical issue. Hopes have been raised for the repair of articular cartilage with the help of supportive structures, called scaffolds, created through tissue engineering (TE). Over the past two decades, different designs and fabrication techniques have been investigated for developing TE scaffolds suitable for the construction of transplantable artificial cartilage tissue substitutes. Advances in fabrication technologies now enable the strategic design of scaffolds with complex, biomimetic structures and properties. In particular, scaffolds with hybrid and/or biomimetic zonal designs have recently been developed for cartilage tissue engineering applications. This paper reviews critical aspects of the design of engineered scaffolds for articular cartilage repair as well as the available advanced fabrication techniques. In addition, recent studies on the design of hybrid and zonal scaffolds for use in cartilage tissue repair are highlighted.
Collapse
Affiliation(s)
- Zohreh Izadifar
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon SK S7N5A9, Canada.
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon SK S7N5A9, Canada.
| | - William Kulyk
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, 107 Wiggins Rd., Saskatoon SK S7N 5E5, Canada.
| |
Collapse
|
35
|
Dash TK, Konkimalla VB. Polymeric Modification and Its Implication in Drug Delivery: Poly-ε-caprolactone (PCL) as a Model Polymer. Mol Pharm 2012; 9:2365-79. [DOI: 10.1021/mp3001952] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tapan K. Dash
- School of Biological Sciences,
National Institute of
Science Education and Research, Institute of Physics Campus, Sainik
School, Sachivalaya marg, Bhubaneswar-751005, India
| | - V. Badireenath Konkimalla
- School of Biological Sciences,
National Institute of
Science Education and Research, Institute of Physics Campus, Sainik
School, Sachivalaya marg, Bhubaneswar-751005, India
| |
Collapse
|
36
|
Schoener C, Peppas N. Oral delivery of chemotherapeutic agents: background and potential of drug delivery systems for colon delivery. J Drug Deliv Sci Technol 2012. [DOI: 10.1016/s1773-2247(12)50081-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
Abstract
Hydrogels are swollen, crosslinked networks that have great potential for use in biomedicine. Their softness, biocompatibility and ability for rapid diffusion of molecules make them useful for drug delivery, cell culture, wound healing and sensing applications. The chemical functionality of the gels can be easily modified to provide signalling and growth factors for cell proliferation. To allow the ingress of large cells, either porosity of the substrate can be controlled, or the gel can be made biodegradable. One ultimate goal is the growth of entire organs in the laboratory for eventual transplantation. Gels can be used as drug-delivery vehicles, either as implantable depots, or as microgels in blood-based delivery systems. One expanding area is the use of gels as surgical aides to prevent bleeding, infection and post-operative complications.
Collapse
|
38
|
Schoener CA, Hutson HN, Fletcher GK, Peppas NA. Amphiphilic Interpenetrating Networks for the Delivery of Hydrophobic, Low Molecular Weight Therapeutic Agents. Ind Eng Chem Res 2011; 50:12556-12561. [PMID: 22247592 DOI: 10.1021/ie201593h] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To investigate the delivery of hydrophobic therapeutic agents, a novel class of interpenetrating networks (IPNs) were synthesized and composed of two networks: methacrylic acid grafted with poly(ethylene glycol) tethers, P(MAA-g-EG), and poly(n-butyl acrylate) (PBA). The hydrophilic P(MAA-g-EG) networks are pH-responsive hydrogels capable of triggered release of an encapsulated therapeutic agent, such as a low molecular weight drug or a protein, when it passes from the stomach (low pH) to upper small intestine (neutral pH). PBA is a hydrophobic homopolymer that can affect the IPN swelling behavior, the therapeutic agent loading efficiencies in IPNs, and solute release profiles from IPNs. In dynamic swelling conditions, IPNs had greater swelling ratios than P(MAA-g-EG), but in equilibrium swelling conditions the IPN swelling ratio decreased with increasing PBA content. Loading efficiencies of the model therapeutic agent fluorescein ranged from 21 - 44%. Release studies from neat P(MAA-g-EG) and the ensuing IPNs indicated that the transition from low pH (2.0) to neutral pH (7.0) triggered fluorescein release. Maximum fluorescein release depended on the structure and hydrophilicity of the carriers used in these studies.
Collapse
Affiliation(s)
- Cody A Schoener
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
39
|
Poly-є-caprolactone based formulations for drug delivery and tissue engineering: A review. J Control Release 2011; 158:15-33. [PMID: 21963774 DOI: 10.1016/j.jconrel.2011.09.064] [Citation(s) in RCA: 610] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 08/07/2011] [Indexed: 11/20/2022]
Abstract
Biodegradable polymer based novel drug delivery systems have provided many avenues to improve therapeutic efficacy and pharmacokinetic parameters of medicinal entities. Among synthetic biodegradable polymer, poly-є-caprolactone (PCL) is a polymer with very low glass transition temperature and melting point. Owing to its amicable nature and tailorable properties it has been trialed in almost all novel drug delivery systems and tissue engineering application in use/investigated so far. This review aims to provide an up to date of drugs incorporated in different PCL based formulations, their purpose and brief outcomes. Demonstrated PCL formulations with or without drugs, intended for drug delivery and/or tissue engineering application such as microsphere, nanoparticles, scaffolds, films, fibers, micelles etc. are categorized based on method of preparation.
Collapse
|
40
|
Mishra GP, Tamboli V, Mitra AK. Effect of hydrophobic and hydrophilic additives on sol-gel transition and release behavior of timolol maleate from polycaprolactone-based hydrogel. Colloid Polym Sci 2011; 289:1553-1562. [PMID: 21892247 DOI: 10.1007/s00396-011-2476-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The objective of this work was to delineate the effect of hydrophilic and hydrophobic polymeric additives on sol-gel transition and release profile of timolol maleate (TM) from poly (ethylene glycol)-poly (ε-caprolactone)- poly (ethylene glycol) (PEG-PCL-PEG)-based thermosensitive hydrogel. Polycaprolactone (hydrophobic additive) and polyvinyl alcohol (PVA) (hydrophilic additive) reduced critical gel concentration of PEG-PCL-PEG triblock polymer. The effect of PCL on sol-gel transition was more pronounced than PVA. However, with PCL no statistically significant difference in release profile was observed. The effect of PVA on release profile was more pronounced, which reduced the cumulative percentage release of TM from 86.4±0.8% to 73.7±1.8% over 316 h. Moreover, cytotoxicity of the hydrogel was also investigated utilizing rabbit primary corneal epithelial culture cells. No significant cytotoxicity of hydrogel alone or in presence of additives was observed. So, polymeric additive strategy serves as a valuable tool for optimizing TM release kinetics from PEG-PCL-PEG hydrogel matrix.
Collapse
Affiliation(s)
- Gyan P Mishra
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108-2718, USA
| | | | | |
Collapse
|
41
|
Shalumon KT, Anulekha KH, Nair SV, Nair SV, Chennazhi KP, Jayakumar R. Sodium alginate/poly(vinyl alcohol)/nano ZnO composite nanofibers for antibacterial wound dressings. Int J Biol Macromol 2011; 49:247-54. [PMID: 21635916 DOI: 10.1016/j.ijbiomac.2011.04.005] [Citation(s) in RCA: 296] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 04/06/2011] [Indexed: 11/25/2022]
Abstract
Sodium alginate (SA)/poly (vinyl alcohol) (PVA) fibrous mats were prepared by electrospinning technique. ZnO nanoparticles of size ∼160nm was synthesized and characterized by UV spectroscopy, dynamic light scattering (DLS), XRD and infrared spectroscopy (IR). SA/PVA electrospinning was further carried out with ZnO with different concentrations (0.5, 1, 2 and 5%) to get SA/PVA/ZnO composite nanofibers. The prepared composite nanofibers were characterized using FT-IR, XRD, TGA and SEM studies. Cytotoxicity studies performed to examine the cytocompatibility of bare and composite SA/PVA fibers indicate that those with 0.5 and 1% ZnO concentrations are less toxic where as those with higher concentrations of ZnO is toxic in nature. Cell adhesion potential of this mats were further proved by studying with L929 cells for different time intervals. Antibacterial activity of SA/PVA/ZnO mats were examined with two different bacteria strains; Staphylococcus aureus and Escherichia coli, and found that SA/PVA/ZnO mats shows antibacterial activity due to the presence of ZnO. Our results suggest that this could be an ideal biomaterial for wound dressing applications once the optimal concentration of ZnO which will give least toxicity while providing maximum antibacterial activity is identified.f.
Collapse
Affiliation(s)
- K T Shalumon
- Amrita Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham University, Kochi 682 041, India
| | | | | | | | | | | |
Collapse
|
42
|
Spiller KL, Holloway JL, Gribb ME, Lowman AM. Design of semi-degradable hydrogels based on poly(vinyl alcohol) and poly(lactic-co-glycolic acid) for cartilage tissue engineering. J Tissue Eng Regen Med 2010; 5:636-47. [DOI: 10.1002/term.356] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 07/12/2010] [Indexed: 11/08/2022]
|
43
|
Xie J, MacEwan MR, Ray WZ, Liu W, Siewe DY, Xia Y. Radially aligned, electrospun nanofibers as dural substitutes for wound closure and tissue regeneration applications. ACS NANO 2010; 4:5027-36. [PMID: 20695478 PMCID: PMC2947607 DOI: 10.1021/nn101554u] [Citation(s) in RCA: 200] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
This paper reports the fabrication of scaffolds consisting of radially aligned poly(ε-caprolactone) nanofibers by utilizing a collector composed of a central point electrode and a peripheral ring electrode. This novel class of scaffolds was able to present nanoscale topographic cues to cultured cells, directing and enhancing their migration from the periphery to the center. We also established that such scaffolds could induce faster cellular migration and population than nonwoven mats consisting of random nanofibers. Dural fibroblast cells cultured on these two types of scaffolds were found to express type I collagen, the main extracellular matrix component in dural mater. The type I collagen exhibited a high degree of organization on the scaffolds of radially aligned fibers and a haphazard distribution on the scaffolds of random fibers. Taken together, the scaffolds based on radially aligned, electrospun nanofibers show great potential as artificial dural substitutes and may be particularly useful as biomedical patches or grafts to induce wound closure and/or tissue regeneration.
Collapse
Affiliation(s)
- Jingwei Xie
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63130
| | - Matthew R. MacEwan
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63130
| | - Wilson Z. Ray
- Department of Neurosurgery, Washington University, School of Medicine, St. Louis, Missouri 63110
| | - Wenying Liu
- Department of Energy, Environmental & Chemical Engineering, Washington University, St. Louis, Missouri 63130
| | - Daku Y. Siewe
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63130
| | - Younan Xia
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63130
- Address correspondence to:
| |
Collapse
|
44
|
Mohan N, Nair PD. A synthetic scaffold favoring chondrogenic phenotype over a natural scaffold. Tissue Eng Part A 2010; 16:373-84. [PMID: 19566439 DOI: 10.1089/ten.tea.2009.0314] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The three-dimensional scaffolds play a very important role in regulating cell adhesion and the production of extracellular matrix molecules in in vitro regeneration of cartilage. This study evaluates how the three-dimensional structure and physicochemical properties of the polymeric scaffolds influence in vitro regeneration of cartilage tissue. A synthetic poly(vinyl alcohol)-poly(caprolactone) semi-interpenetrating polymer network (IPN) scaffold and gelatin-albumin, made of natural polymers, are used for the study. The polymers in the semi-IPN synthetic scaffold mimic the properties of collagen and glycosaminoglycans present in native cartilage. Its appropriate swelling and pore structure enabled cell-cell and cell-matrix interactions. This helped the chondrocytes to retain its spherical morphology and resulted in enhanced secretion of extracellular matrix components. In contrast, the biomimetic structure in gelatin-albumin scaffold induced chondrocytes to loose its phenotype by spreading and becoming fibroblastic in morphology. Its high swelling and the large pore size failed to recreate an appropriate microenvironment for chondrogenesis that resulted in less secretion of cartilage-specific molecules. Mesenchymal stem cell differentiation to chondrocytes in the presence of growth factors is also enhanced in the synthetic semi-IPN scaffold. The study thus indicates that the chemical composition and the physicochemical properties of the scaffolds play a very important role in providing appropriate niche in in vitro tissue regeneration.
Collapse
Affiliation(s)
- Neethu Mohan
- Division of Tissue Engineering & Regeneration Technologies, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Trivandrum, Kerala, India
| | | |
Collapse
|
45
|
Annabi N, Nichol JW, Zhong X, Ji C, Koshy S, Khademhosseini A, Dehghani F. Controlling the porosity and microarchitecture of hydrogels for tissue engineering. TISSUE ENGINEERING. PART B, REVIEWS 2010; 16:371-83. [PMID: 20121414 PMCID: PMC2946907 DOI: 10.1089/ten.teb.2009.0639] [Citation(s) in RCA: 750] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 01/29/2010] [Indexed: 12/19/2022]
Abstract
Tissue engineering holds great promise for regeneration and repair of diseased tissues, making the development of tissue engineering scaffolds a topic of great interest in biomedical research. Because of their biocompatibility and similarities to native extracellular matrix, hydrogels have emerged as leading candidates for engineered tissue scaffolds. However, precise control of hydrogel properties, such as porosity, remains a challenge. Traditional techniques for creating bulk porosity in polymers have demonstrated success in hydrogels for tissue engineering; however, often the conditions are incompatible with direct cell encapsulation. Emerging technologies have demonstrated the ability to control porosity and the microarchitectural features in hydrogels, creating engineered tissues with structure and function similar to native tissues. In this review, we explore the various technologies for controlling the porosity and microarchitecture within hydrogels, and demonstrate successful applications of combining these techniques.
Collapse
Affiliation(s)
- Nasim Annabi
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, Australia
| | - Jason W. Nichol
- Department of Medicine, Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Xia Zhong
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, Australia
| | - Chengdong Ji
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, Australia
| | - Sandeep Koshy
- Department of Medicine, Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Ali Khademhosseini
- Department of Medicine, Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Fariba Dehghani
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, Australia
| |
Collapse
|
46
|
Bonakdar S, Emami SH, Shokrgozar MA, Farhadi A, Ahmadi SAH, Amanzadeh A. Preparation and characterization of polyvinyl alcohol hydrogels crosslinked by biodegradable polyurethane for tissue engineering of cartilage. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2010. [DOI: 10.1016/j.msec.2010.02.017] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Mohan N, Nair PD, Tabata Y. Growth factor-mediated effects on chondrogenic differentiation of mesenchymal stem cells in 3D semi-IPN poly(vinyl alcohol)-poly(caprolactone) scaffolds. J Biomed Mater Res A 2010; 94:146-59. [DOI: 10.1002/jbm.a.32680] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
48
|
Krogman NR, Weikel AL, Nguyen NQ, Kristhart KA, Nukavarapu SP, Nair LS, Laurencin CT, Allcock HR. Hydrogen bonding in blends of polyesters with dipeptide-containing polyphosphazenes. J Appl Polym Sci 2010. [DOI: 10.1002/app.31057] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
49
|
Mohan N, Nair PD, Tabata Y. A 3D biodegradable protein based matrix for cartilage tissue engineering and stem cell differentiation to cartilage. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2009; 20 Suppl 1:S49-60. [PMID: 18560767 DOI: 10.1007/s10856-008-3481-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 05/19/2008] [Indexed: 05/20/2023]
Abstract
A protein based 3D porous scaffold is fabricated by blending gelatin and albumin. The biomimetic biodegradable gelatin, promoted good cell adhesion and its hydrophilic nature enabled absorption of culture media. Albumin is proposed to serve as a nontoxic foaming agent and also helped to attain a hydrophobic-hydrophilic balance. The hydrophobic-hydrophilic balance and appropriate crosslinking of the scaffold avoided extensive swelling, as well as retained the stability of scaffold in culture medium for long period. The scaffold is found to be highly porous with open interconnected pores. The adequate swelling and mechanical property of the scaffold helped to withstand the loads imparted by the cells during in vitro culture. The scaffold served as a nontoxic material to monolayer of fibroblast cells and is found to be cell compatible. The suitability of scaffold for chondrocyte culture and stem cell differentiation to chondrocytes is further explored in this work. The scaffold provided appropriate environment for chondrocyte culture, resulting in deposition of cartilage specific matrix molecules that completely masked the pores of the porous scaffold. The scaffold promoted the proliferation and differentiation of mesenchymal stem cells to chondrocytes in presence of growth factors. The transforming growth factor, TGFbeta3 promoted better chondrogenic differentiation than its isoform TGFbeta1 in this scaffold.
Collapse
Affiliation(s)
- Neethu Mohan
- Laboratory for Polymer Analysis, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India.
| | | | | |
Collapse
|
50
|
Quintana L, zur Nieden NI, Semino CE. Morphogenetic and regulatory mechanisms during developmental chondrogenesis: new paradigms for cartilage tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2009; 15:29-41. [PMID: 19063663 DOI: 10.1089/ten.teb.2008.0329] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cartilage is the first skeletal tissue to be formed during embryogenesis leading to the creation of all mature cartilages and bones, with the exception of the flat bones in the skull. Therefore, errors occurring during the process of chondrogenesis, the formation of cartilage, often lead to severe skeletal malformations such as dysplasias. There are hundreds of skeletal dysplasias, and the molecular genetic etiology of some remains more elusive than of others. Many efforts have aimed at understanding the morphogenetic event of chondrogenesis in normal individuals, of which the main morphogenetic and regulatory mechanisms will be reviewed here. For instance, many signaling molecules that guide chondrogenesis--for example, transforming growth factor-beta, bone morphogenetic proteins, fibroblast growth factors, and Wnts, as well as transcriptional regulators such as the Sox family--have already been identified. Moreover, extracellular matrix components also play an important role in this developmental event, as evidenced by the promotion of the chondrogenic potential of chondroprogenitor cells caused by collagen II and proteoglycans like versican. The growing evidence of the elements that control chondrogenesis and the increasing number of different sources of progenitor cells will, hopefully, help to create tissue engineering platforms that could overcome many developmental or degenerative diseases associated with cartilage defects.
Collapse
Affiliation(s)
- Lluís Quintana
- Tissue Engineering Division, Department of Bioengineering, IQS-Ramon Llull University, Barcelona, Spain
| | | | | |
Collapse
|