1
|
Tavakol M, Vaughan TJ. Elucidating the role of diverse mineralisation paradigms on bone biomechanics - a coarse-grained molecular dynamics investigation. NANOSCALE 2024; 16:3173-3184. [PMID: 38259246 PMCID: PMC10851340 DOI: 10.1039/d3nr04660e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
Bone as a hierarchical composite structure plays a myriad of roles in vertebrate skeletons including providing the structural stability of the body. Despite this critical role, the mechanical behaviour at the sub-micron levels of bone's hierarchy remains poorly understood. At this scale, bone is composed of Mineralised Collagen Fibrils (MCF) embedded within an extra-fibrillar matrix that consists of hydroxyapatite minerals and non-collagenous proteins. Recent experimental studies hint at the significance of the extra-fibrillar matrix in providing the bone with the stiffness and ductility needed to serve its structural roles. However, due to limited resolution of experimental tools, it is not clear how the arrangement of minerals, and in particular their relative distribution between the intra- and extra-fibrillar space contribute to bone's remarkable mechanical properties. In this study, a Coarse Grained Molecular Dynamics (CGMD) framework was developed to study the mechanical properties of MCFs embedded within an extra-fibrillar mineral matrix and the precise roles extra- and intra-fibrillar mineralisation on the load-deformation response was investigated. It was found that the presence of extra-fibrillar mineral resulted in the development of substantial residual stress in the system, by limiting MCF shortening that took place during intra-fibrillar mineralisation, resulting in substantial compressive residual stresses in the extra-fibrillar mineral phase. The simulation results also revealed the crucial role of extra-fibrillar mineralisation in determining the elastic response of the Extrafibrillar mineralised MCF (EFM-MCF) system up to the yield point, while the fibrillar collagen affected the post-yield behaviour. When physiological levels of mineralisation were considered, the mechanical response of the EFM-MCF systems was characterised by high ductility and toughness, with micro-cracks being distributed across the extra-fibrillar matrix, and MCFs effectively bridging these cracks leading to an excellent combination of strength and toughness. Together, these results provide novel insight into the deformation mechanisms of an EFM-MCF system and highlight that this universal building block, which forms the basis for lamellar bone, can provide an excellent balance of stiffness, strength and toughness, achieving mechanical properties that are far beyond the capabilities of the individual constituents acting alone.
Collapse
Affiliation(s)
- Mahdi Tavakol
- Biomedical Engineering and Biomechanics Research Centre, School of Engineering, College of Science and Engineering, University of Galway, Galway, Ireland.
| | - Ted J Vaughan
- Biomedical Engineering and Biomechanics Research Centre, School of Engineering, College of Science and Engineering, University of Galway, Galway, Ireland.
| |
Collapse
|
2
|
Al-Qudsy L, Hu YW, Xu H, Yang PF. Mineralized Collagen Fibrils: An Essential Component in Determining the Mechanical Behavior of Cortical Bone. ACS Biomater Sci Eng 2023; 9:2203-2219. [PMID: 37075172 DOI: 10.1021/acsbiomaterials.2c01377] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Bone comprises mechanically different materials in a specific hierarchical structure. Mineralized collagen fibrils (MCFs), represented by tropocollagen molecules and hydroxyapatite nanocrystals, are the fundamental unit of bone. The mechanical characterization of MCFs provides the unique adaptive mechanical competence to bone to withstand mechanical load. The structural and mechanical role of MCFs is critical in the deformation mechanisms of bone and the marvelous strength and toughness possessed by bone. However, the role of MCFs in the mechanical behavior of bone across multiple length scales is not fully understood. In the present study, we shed light upon the latest progress regarding bone deformation at multiple hierarchical levels and emphasize the role of MCFs during bone deformation. We propose the concept of hierarchical deformation of bone to describe the interconnected deformation process across multiple length scales of bone under mechanical loading. Furthermore, how the deterioration of bone caused by aging and diseases impairs the hierarchical deformation process of the cortical bone is discussed. The present work expects to provide insights on the characterization of MCFs in the mechanical properties of bone and lays the framework for the understanding of the multiscale deformation mechanics of bone.
Collapse
Affiliation(s)
- Luban Al-Qudsy
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- Department of Medical Instrumentation Engineering Techniques, Electrical Engineering Technical College, Middle Technical University, 8998+QHJ Baghdad, Iraq
| | - Yi-Wei Hu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Huiyun Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Peng-Fei Yang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
3
|
Tavakol M, Vaughan TJ. A coarse-grained molecular dynamics investigation of the role of mineral arrangement on the mechanical properties of mineralized collagen fibrils. J R Soc Interface 2023; 20:20220803. [PMID: 36695019 PMCID: PMC9874270 DOI: 10.1098/rsif.2022.0803] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/16/2022] [Indexed: 01/26/2023] Open
Abstract
Mineralized collagen fibrils (MCFs) comprise collagen molecules and hydroxyapatite (HAp) crystals and are considered universal building blocks of bone tissue, across different bone types and species. In this study, we developed a coarse-grained molecular dynamics (CGMD) framework to investigate the role of mineral arrangement on the load-deformation behaviour of MCFs. Despite the common belief that the collagen molecules are responsible for flexibility and HAp minerals are responsible for stiffness, our results showed that the mineral phase was responsible for limiting collagen sliding in the large deformation regime, which helped the collagen molecules themselves undergo high tensile loading, providing a substantial contribution to the ultimate tensile strength of MCFs. This study also highlights different roles for the mineralized and non-mineralized protofibrils within the MCF, with the mineralized groups being primarily responsible for load carrying due to the presence of the mineral phase, while the non-mineralized groups are responsible for crack deflection. These results provide novel insight into the load-deformation behaviour of MCFs and highlight the intricate role that both collagen and mineral components have in dictating higher scale bone biomechanics.
Collapse
Affiliation(s)
- Mahdi Tavakol
- Biomedical Engineering and Biomechanics Research Centre, School of Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Ted J. Vaughan
- Biomedical Engineering and Biomechanics Research Centre, School of Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
| |
Collapse
|
4
|
El Hakam C, Parenté A, Baraige F, Magnol L, Forestier L, Di Meo F, Blanquet V. PHEX L222P Mutation Increases Phex Expression in a New ENU Mouse Model for XLH Disease. Genes (Basel) 2022; 13:1356. [PMID: 36011266 PMCID: PMC9407253 DOI: 10.3390/genes13081356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 02/02/2023] Open
Abstract
PhexL222P mouse is a new ENU mouse model for XLH disease due to Leu to Pro amino acid modification at position 222. PhexL222P mouse is characterized by growth retardation, hypophosphatemia, hypocalcemia, reduced body bone length, and increased epiphyseal growth plate thickness and femur diameter despite the increase in PHEXL222P expression. Actually, PhexL222P mice show an increase in Fgf23, Dmp1, and Mepe and Slc34a1 (Na-Pi IIa cotransporter) mRNA expression similar to those observed in Hyp mice. Femoral osteocalcin and sclerostin and Slc34a1 do not show any significant variation in PhexL222P mice. Molecular dynamics simulations support the experimental data. P222 might locally break the E217-Q224 β-sheet, which in turn might disrupt inter-β-sheet interactions. We can thus expect local protein misfolding, which might be responsible for the experimentally observed PHEXL222P loss of function. This model could be a valuable addition to the existing XLH model for further comprehension of the disease occurrence and testing of new therapies.
Collapse
Affiliation(s)
- Carole El Hakam
- INSERM U1094, INRAE USC1501, IRD U270, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France; (C.E.H.); (A.P.); (F.B.); (L.M.); (L.F.)
| | - Alexis Parenté
- INSERM U1094, INRAE USC1501, IRD U270, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France; (C.E.H.); (A.P.); (F.B.); (L.M.); (L.F.)
| | - Fabienne Baraige
- INSERM U1094, INRAE USC1501, IRD U270, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France; (C.E.H.); (A.P.); (F.B.); (L.M.); (L.F.)
| | - Laetitia Magnol
- INSERM U1094, INRAE USC1501, IRD U270, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France; (C.E.H.); (A.P.); (F.B.); (L.M.); (L.F.)
| | - Lionel Forestier
- INSERM U1094, INRAE USC1501, IRD U270, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France; (C.E.H.); (A.P.); (F.B.); (L.M.); (L.F.)
| | - Florent Di Meo
- INSERM U1248 Pharmacology & Transplantation, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France;
| | - Véronique Blanquet
- INSERM U1094, INRAE USC1501, IRD U270, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France; (C.E.H.); (A.P.); (F.B.); (L.M.); (L.F.)
| |
Collapse
|
5
|
Steier L, Sidhu P, Qasim SS, Mahdi SS, Daood U. Visualization of Initial Bacterial Colonization on Dentin Using Fluorescence Activating headlight for Fluorescence Enhanced Theragnosis. Photodiagnosis Photodyn Ther 2022; 38:102732. [DOI: 10.1016/j.pdpdt.2022.102732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/07/2021] [Accepted: 01/18/2022] [Indexed: 11/30/2022]
|
6
|
Abstract
Understanding the properties of bone is of both fundamental and clinical relevance. The basis of bone’s quality and mechanical resilience lies in its nanoscale building blocks (i.e., mineral, collagen, non-collagenous proteins, and water) and their complex interactions across length scales. Although the structure–mechanical property relationship in healthy bone tissue is relatively well characterized, not much is known about the molecular-level origin of impaired mechanics and higher fracture risks in skeletal disorders such as osteoporosis or Paget’s disease. Alterations in the ultrastructure, chemistry, and nano-/micromechanics of bone tissue in such a diverse group of diseased states have only been briefly explored. Recent research is uncovering the effects of several non-collagenous bone matrix proteins, whose deficiencies or mutations are, to some extent, implicated in bone diseases, on bone matrix quality and mechanics. Herein, we review existing studies on ultrastructural imaging—with a focus on electron microscopy—and chemical, mechanical analysis of pathological bone tissues. The nanometric details offered by these reports, from studying knockout mice models to characterizing exact disease phenotypes, can provide key insights into various bone pathologies and facilitate the development of new treatments.
Collapse
|
7
|
Mukai M, Yamamoto T, Takeyari S, Ohata Y, Kitaoka T, Kubota T, Yamamoto K, Kijima E, Hasegawa Y, Michigami T, Ozono K. Alkaline phosphatase in pediatric patients with genu varum caused by vitamin D-deficient rickets. Endocr J 2021; 68:807-815. [PMID: 33762518 DOI: 10.1507/endocrj.ej20-0622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
An elevated serum alkaline phosphatase (ALP) level is one of the markers for the presence of rickets in children, but it is also associated with bone formation. However, its role in diagnosing genu varum in pediatric patients with vitamin D-deficient rickets is still unknown. To clarify the role of the serum ALP level in assessing the severity of genu varum, we retrospectively investigated this issue statistically using data on rickets such as serum intact parathyroid hormone (iPTH), 25-hydroxyvitamin D, 1,25-dihydroxyvitamin D, ALP, the level of creatinine as the percentage of the median according to age (%Cr), and the metaphyseal diaphyseal angle (MDA) in the lower extremities as an index of the severity of genu varum. A multiple regression analysis revealed that log ALP and %Cr values were negatively associated with MDA values. The former association was also confirmed by a linear mixed model, while iPTH was positively associated with MDA by path model analysis. To elucidate the association of ALP with MDA in the presence of iPTH, we investigated three-dimensional figures by neural network analysis. This indicated the presence of a biphasic association of ALP with MDA: the first phase increases while the second decreases MDA. The latter phenomenon is considered to be associated with the increase in bone formation due to the mechanical stress loaded on the lower extremities. These findings are important and informative for pediatricians to understand the significance of the serum ALP level in pediatric patients with genu varum caused by vitamin D deficiency.
Collapse
Affiliation(s)
- Masashi Mukai
- Department of Pediatrics, Minoh City Hospital, Osaka, Japan
| | | | - Shinji Takeyari
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasuhisa Ohata
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Taichi Kitaoka
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takuo Kubota
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Katsusuke Yamamoto
- Department of Pediatric Nephrology and Metabolism, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Eri Kijima
- Department of Pediatrics, Minoh City Hospital, Osaka, Japan
| | | | - Toshimi Michigami
- Department of Bone and Mineral Research, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
8
|
Abstract
Studying changes in collagen deformation behavior at the nanoscale due to variations in mineralization and hydration is important for characterizing and developing collagen-based bio-composites. Recent studies also find that carbon nanotubes (CNTs) show promise as a reinforcing material for collagenous bio-composites. Currently, the effects of variation in mineral, water, and CNT content on collagen gap and overlap region mechanics during compression is unexplored. We use molecular dynamics simulations to investigate how variations in mineral, water, and CNT contents of collagen bio-composites in compression change their deformation behavior and thermal properties. Results indicate that variations in mineral and water content affect the collagen structure due to expansion or contraction of the gap and overlap regions. The deformation mechanisms of the gap and overlap regions also change. The presence of CNTs in non-mineralized collagen reduces the deformation of the gap region and increases the bio-composite elastic modulus to ranges comparable to mineralized collagen. The collagen/CNT bio-composites are also determined to have a higher specific heat than the studied mineralized collagen bio-composites, making them more likely to be resistant to thermal damage that could occur during implantation or functional use of a collagen collagen/CNT bio-composite biomaterial.
Collapse
Affiliation(s)
- Marco Fielder
- Multiscale Materials Modeling Lab, Department of Mechanical Engineering, University of Arkansas , Fayetteville, AR, USA
| | - Arun K Nair
- Multiscale Materials Modeling Lab, Department of Mechanical Engineering, University of Arkansas , Fayetteville, AR, USA.,Institute for Nanoscience and Engineering, University of Arkansas , Fayetteville, AR, USA
| |
Collapse
|
9
|
Smith AJ, Alcock SG, Davidson LS, Emmins JH, Hiller Bardsley JC, Holloway P, Malfois M, Marshall AR, Pizzey CL, Rogers SE, Shebanova O, Snow T, Sutter JP, Williams EP, Terrill NJ. I22: SAXS/WAXS beamline at Diamond Light Source - an overview of 10 years operation. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:939-947. [PMID: 33950002 PMCID: PMC8127364 DOI: 10.1107/s1600577521002113] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/23/2021] [Indexed: 05/04/2023]
Abstract
Beamline I22 at Diamond Light Source is dedicated to the study of soft-matter systems from both biological and materials science. The beamline can operate in the range 3.7 keV to 22 keV for transmission SAXS and 14 keV to 20 keV for microfocus SAXS with beam sizes of 240 µm × 60 µm [full width half-maximum (FWHM) horizontal (H) × vertical (V)] at the sample for the main beamline, and approximately 10 µm × 10 µm for the dedicated microfocusing platform. There is a versatile sample platform for accommodating a range of facilities and user-developed sample environments. The high brilliance of the insertion device source on I22 allows structural investigation of materials under extreme environments (for example, fluid flow at high pressures and temperatures). I22 provides reliable access to millisecond data acquisition timescales, essential to understanding kinetic processes such as protein folding or structural evolution in polymers and colloids.
Collapse
Affiliation(s)
- A. J. Smith
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - S. G. Alcock
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - L. S. Davidson
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - J. H. Emmins
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - J. C. Hiller Bardsley
- King’s College London, Guy’s Campus, Great Maze Pond, London SE1 1UL, United Kingdom
| | - P. Holloway
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - M. Malfois
- ALBA Synchrotron, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - A. R. Marshall
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - C. L. Pizzey
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - S. E. Rogers
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - O. Shebanova
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - T. Snow
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - J. P. Sutter
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - E. P. Williams
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - N. J. Terrill
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| |
Collapse
|
10
|
Xi L, Zhang Y, Gupta H, Terrill N, Wang P, Zhao T, Fang D. A multiscale study of structural and compositional changes in a natural nanocomposite: Osteoporotic bone with chronic endogenous steroid excess. Bone 2021; 143:115666. [PMID: 33007528 DOI: 10.1016/j.bone.2020.115666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
Abstract
Glucocorticoid (or steroid) induced osteoporosis (GIOP) is the leading form of secondary osteoporosis, affecting up to 50% of patients receiving chronic glucocorticoid therapy. Bone quantity (bone mass) changes in GIOP patients alone are inadequate to explain the increased fracture risk, and bone material changes (bone quality) at multiple levels have been implicated in the reduced mechanics. Quantitative analysis of specific material-level changes is limited. Here, we combined multiscale experimental techniques (scanning small/wide-angle X-ray scattering/diffraction, backscattered electron imaging, and X-ray radiography) to investigate these changes in a mouse model (Crh-120/+) with chronic endogenous steroid production. Nanoscale degree of orientation, the size distribution of mineral nanocrystals in the bone matrix, the spatial map of mineralization on the femoral cortex, and the microporosity showed significant changes between GIOP and the control, especially in the endosteal cortex. Our work can provide insight into the altered structure-property relationship leading to lowered mechanical properties in GIOP. SIGNIFICANCE STATEMENT: As a natural nanocomposite with a hierarchical structure, bone undergoes a staggered load transfer mechanism at the nanoscale. Disease and age-related deterioration of bone mechanics are caused by changes in bone structure at multiple length scales. Although clinical tools such as dual-energy X-ray absorptiometry (DXA) can be used to assess the reduction of bone quantity in these cases, little is known about how altered bone quality in diseased bone can increase fracture risk. It is clear that high-resolution diagnostic techniques need to be developed to narrow the gap between the onset and diagnosis of fracture-related changes. Here, by combining several scanning probe methods on a mouse model (Crh-120/+) of glucocorticoid-induced osteoporosis (GIOP), we developed quantitative and spatially resolved maps of ultrastructural changes in collagen fibrils and mineral nanocrystals, mineralization distribution (microscale), and morphology (macroscale) across femoral osteoporotic bone. Our results indicate that the altered bone remodelling in GIOP leads to 1) heterogeneous bone structure and mineralization, 2) reduced degree of orientation of collagen fibrils and mineral nanocrystals, and 3) reduced length and increased thickness of mineral nanocrystals, which contribute to mechanical abnormalities. The combined multiscale experimental approach presented here will be used to understand musculoskeletal degeneration in aging and osteoporosis.
Collapse
Affiliation(s)
- Li Xi
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, China; School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK; Beamline I22, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Oxfordshire, UK.
| | - Yi Zhang
- Institution of High Energy Physics, Chinese Academy of Science, Beijing, China
| | - Himadri Gupta
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Nick Terrill
- Beamline I22, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Oxfordshire, UK
| | - Pan Wang
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, China.
| | - Tian Zhao
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, China.
| | - Daining Fang
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, China; State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing, China
| |
Collapse
|
11
|
Minisola S, Colangelo L, Pepe J, Diacinti D, Cipriani C, Rao SD. Osteomalacia and Vitamin D Status: A Clinical Update 2020. JBMR Plus 2020; 5:e10447. [PMID: 33553992 PMCID: PMC7839817 DOI: 10.1002/jbm4.10447] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 12/23/2022] Open
Abstract
Historically, rickets and osteomalacia have been synonymous with vitamin D deficiency dating back to the 17th century. The term osteomalacia, which literally means soft bone, was traditionally applied to characteristic radiologically or histologically documented skeletal disease and not just to clinical or biochemical abnormalities. Osteomalacia results from impaired mineralization of bone that can manifest in several types, which differ from one another by the relationships of osteoid (ie, unmineralized bone matrix) thickness both with osteoid surface and mineral apposition rate. Osteomalacia related to vitamin D deficiency evolves in three stages. The initial stage is characterized by normal serum levels of calcium and phosphate and elevated alkaline phosphatase, PTH, and 1,25‐dihydroxyvitamin D [1,25(OH)2D]—the latter a consequence of increased PTH. In the second stage, serum calcium and often phosphate levels usually decline, and both serum PTH and alkaline phosphatase values increase further. However, serum 1,25(OH)2D returns to normal or low values depending on the concentration of its substrate, 25‐hydroxyvitamin D (25OHD; the best available index of vitamin D nutrition) and the degree of PTH elevation. In the final stage, hypocalcemia and hypophosphatemia are invariably low with further exacerbation of secondary hyperparathyroidism. The exact,or even an approximate, prevalence of osteomalacia caused by vitamin D deficiency is difficult to estimate, most likely it is underrecognized or misdiagnosed as osteoporosis. Signs and symptoms include diffuse bone, muscle weakness, and characteristic fracture pattern, often referred to as pseudofractures, involving ribs, scapulae, pubic rami, proximal femurs, and codfish‐type vertebrae. The goal of therapy of vitamin D‐deficiency osteomalacia is to alleviate symptoms, promote fracture healing, restore bone strength, and improve quality of life while correcting biochemical abnormalities. There is a need for better understanding of the epidemiology of osteomalacia. Simplified tools validated by concurrent bone histology should be developed to help clinicians promptly diagnose osteomalacia. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Salvatore Minisola
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome Rome Italy
| | - Luciano Colangelo
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome Rome Italy
| | - Jessica Pepe
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome Rome Italy
| | - Daniele Diacinti
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome Rome Italy
| | - Cristiana Cipriani
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome Rome Italy
| | - Sudhaker D Rao
- Bone and Mineral Research Laboratory, Division of Endocrinology Diabetes & Bore and Mineral Disorders, Henry Ford Hospital Detroit MI USA
| |
Collapse
|
12
|
Ma S, Goh EL, Tay T, Wiles CC, Boughton O, Churchwell JH, Wu Y, Karunaratne A, Bhattacharya R, Terrill N, Cobb JP, Hansen U, Abel RL. Nanoscale mechanisms in age-related hip-fractures. Sci Rep 2020; 10:14208. [PMID: 32848149 PMCID: PMC7450077 DOI: 10.1038/s41598-020-69783-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/13/2020] [Indexed: 01/12/2023] Open
Abstract
Nanoscale mineralized collagen fibrils may be important determinants of whole-bone mechanical properties and contribute to the risk of age-related fractures. In a cross-sectional study nano- and tissue-level mechanics were compared across trabecular sections from the proximal femora of three groups (n = 10 each): ageing non-fractured donors (Controls); untreated fracture patients (Fx-Untreated); bisphosphonate-treated fracture patients (Fx-BisTreated). Collagen fibril, mineral and tissue mechanics were measured using synchrotron X-Ray diffraction of bone sections under load. Mechanical data were compared across groups, and tissue-level data were regressed against nano. Compared to controls fracture patients exhibited significantly lower critical tissue strain, max strain and normalized strength, with lower peak fibril and mineral strain. Bisphosphonate-treated exhibited the lowest properties. In all three groups, peak mineral strain coincided with maximum tissue strength (i.e. ultimate stress), whilst peak fibril strain occurred afterwards (i.e. higher tissue strain). Tissue strain and strength were positively and strongly correlated with peak fibril and mineral strains. Age-related fractures were associated with lower peak fibril and mineral strain irrespective of treatment. Indicating earlier mineral disengagement and the subsequent onset of fibril sliding is one of the key mechanisms leading to fracture. Treatments for fragility should target collagen-mineral interactions to restore nano-scale strain to that of healthy bone.
Collapse
Affiliation(s)
- Shaocheng Ma
- Department of Mechanical Engineering, Faculty of Engineering, Imperial College London, London, SW7 2AZ, UK.,MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W6 8PR, UK
| | - En Lin Goh
- MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W6 8PR, UK
| | - Tabitha Tay
- MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W6 8PR, UK
| | - Crispin C Wiles
- MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W6 8PR, UK.,Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Oliver Boughton
- MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W6 8PR, UK
| | - John H Churchwell
- Department of Medical Physics and Biomedical Engineering, University College London, London, WCIE 6BT, UK
| | - Yong Wu
- Centre for Medicine, University of Leicester Medical School, Leicester, LE1 7HA, UK
| | - Angelo Karunaratne
- Department of Mechanical Engineering, Faculty of Engineering, University of Moratuwa, Moratuwa, 10400, Sri Lanka
| | - Rajarshi Bhattacharya
- St. Mary's Hospital, North West London Major Trauma Centre, Imperial College, London, W2 1NY, UK
| | - Nick Terrill
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Justin P Cobb
- MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W6 8PR, UK
| | - Ulrich Hansen
- Department of Mechanical Engineering, Faculty of Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Richard L Abel
- MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W6 8PR, UK.
| |
Collapse
|
13
|
Xi L, Song Y, Wu W, Qu Z, Wen J, Liao B, Tao R, Ge J, Fang D. Investigation of bone matrix composition, architecture and mechanical properties reflect structure-function relationship of cortical bone in glucocorticoid induced osteoporosis. Bone 2020; 136:115334. [PMID: 32224161 DOI: 10.1016/j.bone.2020.115334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/21/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022]
Abstract
Glucocorticoid induced osteoporosis (GIOP) is the most common negative consequence of long-term glucocorticoid treatment, leading to increased fracture risk followed by loss of mobility and high mortality risk. These biologically induced changes in bone quality at molecular level lead to changes both in bone matrix architecture and bone matrix composition. However, the quantitative details of changes in bone quality - and especially their link to reduced macroscale mechanical properties are still largely missing. In this study, a mouse model for glucocorticoid-induced osteoporosis (GIOP) was used to investigate mechanical and material alterations in bone cortex (natural nanocomposite) at different scale. By combining quantitative backscattered electron (qBSE) imaging, nanoindentation and high brilliance synchrotron X-ray nanomechanical imaging on a genetically modified mouse model of GIOP, we were able to quantify the local indentation modulus, mineralization distribution and the alterations of nanoscale structures and deformation mechanisms in the mid-diaphysis of femur, and relate them to the macroscopic mechanical changes. Our results showed clear and significant changes in terms of material quality of bone at nanoscale and microscale, which manifests itself in development of spatial heterogeneities in mineralization and indentation moduli across the bone organ, with potential implications for increased fracture risk.
Collapse
Affiliation(s)
- Li Xi
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, China; School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK; Beamline I22, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Oxfordshire, UK
| | - Yu Song
- College of Textiles, North Carolina State University, NC, USA
| | - Wenwang Wu
- Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, USA
| | - Zhaoliang Qu
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, China
| | - Jiawei Wen
- Department of Mechanical Engineering, University of Moratuwa, Sri Lanka
| | - Binbin Liao
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, China.
| | - Ran Tao
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, China.
| | - Jingran Ge
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, China.
| | - Daining Fang
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, China; State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing, China
| |
Collapse
|
14
|
Vieth R. Weaker bones and white skin as adaptions to improve anthropological "fitness" for northern environments. Osteoporos Int 2020; 31:617-624. [PMID: 31696275 PMCID: PMC7075826 DOI: 10.1007/s00198-019-05167-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/11/2019] [Indexed: 01/12/2023]
Abstract
The vitamin D paradox relates to the lower risk of osteoporosis in people of sub-Saharan African ancestry (Blacks) compared with people of European ancestry (Whites). The paradox implies that for bone health, Blacks require less vitamin D and calcium than Whites do. Why should populations that migrated northward out of Africa have ended up needing more vitamin D than tropical Blacks? Human skin color became lighter away from the tropics to permit greater skin penetration of the UVB light that generates vitamin D. Lack of vitamin D impairs intestinal calcium absorption and limits the amount of calcium that can deposit into the protein matrix of bone, causing rickets or osteomalacia. These can cause cephalopelvic disproportion and death in childbirth. Whiter skin was more fit for reproduction in UV-light restricted environments, but natural selection was also driven by the phenotype of bone per se. Bone formation starts with the deposition of bone-matrix proteins. Mineralization of the matrix happens more slowly, and it stiffens bone. If vitamin D and/or calcium supplies are marginal, larger bones will not be as fully mineralized as smaller bones. For the same amount of mineral, unmineralized or partially mineralized bone is more easily deformed than fully mineralized bone. The evidence leads to the hypothesis that to minimize the soft bone that causes pelvic deformation, a decrease in amount of bone, along with more rapid mineralization of osteoid improved reproductive fitness in Whites. Adaptation of bone biology for reproductive fitness in response to the environmental stress of limited availability of vitamin D and calcium came at the cost of greater risk of osteoporosis later in life.
Collapse
Affiliation(s)
- R Vieth
- Department of Laboratory Medicine and Pathobiology, and Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Medical Sciences Building, 5th Floor, Room 5253A 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
15
|
Xi L, De Falco P, Barbieri E, Karunaratne A, Bentley L, Esapa CT, Davis GR, Terrill NJ, Cox RD, Pugno NM, Thakker RV, Weinkamer R, Wu WW, Fang DN, Gupta HS. Reduction of fibrillar strain-rate sensitivity in steroid-induced osteoporosis linked to changes in mineralized fibrillar nanostructure. Bone 2020; 131:115111. [PMID: 31726107 DOI: 10.1016/j.bone.2019.115111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/13/2019] [Accepted: 10/15/2019] [Indexed: 01/29/2023]
Abstract
As bone is used in a dynamic mechanical environment, understanding the structural origins of its time-dependent mechanical behaviour - and the alterations in metabolic bone disease - is of interest. However, at the scale of the mineralized fibrillar matrix (nanometre-level), the nature of the strain-rate dependent mechanics is incompletely understood. Here, we investigate the fibrillar- and mineral-deformation behaviour in a murine model of Cushing's syndrome, used to understand steroid induced osteoporosis, using synchrotron small- and wide-angle scattering/diffraction combined with in situ tensile testing at three strain rates ranging from 10-4 to 10-1 s-1. We find that the effective fibril- and mineral-modulus and fibrillar-reorientation show no significant increase with strain-rate in osteoporotic bone, but increase significantly in normal (wild-type) bone. By applying a fibril-lamellar two-level structural model of bone matrix deformation to fit the results, we obtain indications that altered collagen-mineral interactions at the nanoscale - along with altered fibrillar orientation distributions - may be the underlying reason for this altered strain-rate sensitivity. Our results suggest that an altered strain-rate sensitivity of the bone matrix in osteoporosis may be one of the contributing factors to reduced mechanical competence in such metabolic bone disorders, and that increasing this sensitivity may improve biomechanical performance.
Collapse
Affiliation(s)
- L Xi
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China; School of Engineering and Material Sciences, Queen Mary University of London, London, E1 4NS, UK.
| | - P De Falco
- School of Engineering and Material Sciences, Queen Mary University of London, London, E1 4NS, UK; Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, D-14424 Potsdam-Golm, Germany.
| | - E Barbieri
- School of Engineering and Material Sciences, Queen Mary University of London, London, E1 4NS, UK; Department of Mathematical Science and Advanced Technology (MAT), Yokohama Institute for Earth Sciences (YES) 3173-25, Showa-machi, Kanazawa-ku, Yokohama-city, Japan.
| | - A Karunaratne
- Department of Mechanical Engineering, University of Moratuwa, Sri Lanka.
| | - L Bentley
- MRC Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, OX11 0RD, UK.
| | - C T Esapa
- MRC Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, OX11 0RD, UK; Academic Endocrine Unit, Radcliffe Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Headington, Oxford, OX3 7JL, UK.
| | - G R Davis
- Dental Physical Sciences Unit, Queen Mary University of London, London, E1 4NS, UK.
| | - N J Terrill
- Beamline I22, Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire, OX11 0DE, United Kingdom
| | - R D Cox
- MRC Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, OX11 0RD, UK.
| | - N M Pugno
- Laboratory of Bio-Inspired & Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano, 77, 38123, Trento, Italy; School of Engineering and Material Sciences, Queen Mary University of London, London, E1 4NS, UK; Ket Lab, Edoardo Amaldi Foundation, Via del Politecnico snc, 00133, Rome, Italy.
| | - R V Thakker
- Academic Endocrine Unit, Radcliffe Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Headington, Oxford, OX3 7JL, UK.
| | - R Weinkamer
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, D-14424 Potsdam-Golm, Germany.
| | - W W Wu
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - D N Fang
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China; State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing, China.
| | - H S Gupta
- School of Engineering and Material Sciences, Queen Mary University of London, London, E1 4NS, UK.
| |
Collapse
|
16
|
Fawzy A, Daood U, Matinlinna J. Potential of high-intensity focused ultrasound in resin-dentine bonding. Dent Mater 2019; 35:979-989. [DOI: 10.1016/j.dental.2019.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/28/2022]
|
17
|
Huang L, Korhonen RK, Turunen MJ, Finnilä MAJ. Experimental mechanical strain measurement of tissues. PeerJ 2019; 7:e6545. [PMID: 30867989 PMCID: PMC6409087 DOI: 10.7717/peerj.6545] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 01/31/2019] [Indexed: 12/22/2022] Open
Abstract
Strain, an important biomechanical factor, occurs at different scales from molecules and cells to tissues and organs in physiological conditions. Under mechanical strain, the strength of tissues and their micro- and nanocomponents, the structure, proliferation, differentiation and apoptosis of cells and even the cytokines expressed by cells probably shift. Thus, the measurement of mechanical strain (i.e., relative displacement or deformation) is critical to understand functional changes in tissues, and to elucidate basic relationships between mechanical loading and tissue response. In the last decades, a great number of methods have been developed and applied to measure the deformations and mechanical strains in tissues comprising bone, tendon, ligament, muscle and brain as well as blood vessels. In this article, we have reviewed the mechanical strain measurement from six aspects: electro-based, light-based, ultrasound-based, magnetic resonance-based and computed tomography-based techniques, and the texture correlation-based image processing method. The review may help solving the problems of experimental and mechanical strain measurement of tissues under different measurement environments.
Collapse
Affiliation(s)
- Lingwei Huang
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Rami K Korhonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Mikael J Turunen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Mikko A J Finnilä
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
18
|
Daood U, Matinlinna JP, Fawzy AS. Synergistic effects of VE-TPGS and riboflavin in crosslinking of dentine. Dent Mater 2018; 35:356-367. [PMID: 30528297 DOI: 10.1016/j.dental.2018.11.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/24/2018] [Accepted: 11/27/2018] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Effect of d-alpha-tocopheryl poly(ethyleneglycol)-1000-succinate (VE-TPGS) with riboflavin-5'-phosphate solution on crosslinking of dentine collagen was investigated to analyze collagen's structural integrity. METHODS VE-TPGS was added to RF-solution, at RF/VE-TPGS (w/w) ratios of 0.125/0.250 and 0.125/0.500. Demineralized dentine beams were used (10wt.% phosphoric acid), rinsed using deionized-water and analysed using ELISA (Human MMP2 ELISA; Human CTSK/Cathepsin-K for MMP2 and Cathepsin K analysis). AFM of dentine collagen-fibrils structure was done before and after dentine specimens' placement in mineralization solution and tested after 14days in artificial saliva/collagenase (AS/Co) solution. The specimens were tested after 24h in mineralization solution for surface/bulk elastic modulus. Nano-indentation was carried out for each specimen on intertubular-dentine with lateral spacing of 400nm. Reduced elastic-modulus and nano-hardness were calculated and collagen content was determined using hydroxyproline-assay. Micro-Raman were performed. TEM was carried out to study structural variations of dentine-collagen in artificial-saliva (collagenase). Data were presented as mean±standard deviation and analyzed by SPSS v.15, by analysis of variance. RESULTS Synergetic effect of VE-TPGS was observed with RF through higher structural integrity of dentine collagen-fibrils shown by TEM/AFM. Superior surface/bulk mechanical stability was shown by nano-indentation/mechanical testing. Improvement in collagenase degradation resistance for hydroxyproline release was observed and lower endogenous-protease release of MMP-2/Cathepsin-K. Raman-analysis analysed chemical interactions between RF and collagen confirming structural-integrity of collagen fibrils after crosslinking. After 24h mineralization, AFM showed mineral depositions in close association with dentine-collagen fibrils with RF/VE-TPGS formulations. SIGNIFICANCE Potential synergetic effect of RF/VE-TPGS was observed by reflection of higher structural integrity and conformational-stability of dentine-collagen fibrils.
Collapse
Affiliation(s)
- U Daood
- Clinical Dentistry, Restorative Division, Faculty of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, 57000 Bukit Jalil, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - J P Matinlinna
- Dental Materials Science, Applied Oral Sciences, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, China
| | - A S Fawzy
- UWA Dental School, University of Western Australia, 17 Monash Avenue, Nedlands, WA 6009, Australia.
| |
Collapse
|
19
|
Peña Fernández M, Cipiccia S, Dall'Ara E, Bodey AJ, Parwani R, Pani M, Blunn GW, Barber AH, Tozzi G. Effect of SR-microCT radiation on the mechanical integrity of trabecular bone using in situ mechanical testing and digital volume correlation. J Mech Behav Biomed Mater 2018; 88:109-119. [PMID: 30165258 DOI: 10.1016/j.jmbbm.2018.08.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 07/21/2018] [Accepted: 08/13/2018] [Indexed: 01/06/2023]
Abstract
The use of synchrotron radiation micro-computed tomography (SR-microCT) is becoming increasingly popular for studying the relationship between microstructure and bone mechanics subjected to in situ mechanical testing. However, it is well known that the effect of SR X-ray radiation can considerably alter the mechanical properties of bone tissue. Digital volume correlation (DVC) has been extensively used to compute full-field strain distributions in bone specimens subjected to step-wise mechanical loading, but tissue damage from sequential SR-microCT scans has not been previously addressed. Therefore, the aim of this study is to examine the influence of SR irradiation-induced microdamage on the apparent elastic properties of trabecular bone using DVC applied to in situ SR-microCT tomograms obtained with different exposure times. Results showed how DVC was able to identify high local strain levels (> 10,000 µε) corresponding to visible microcracks at high irradiation doses (~ 230 kGy), despite the apparent elastic properties remained unaltered. Microcracks were not detected and bone plasticity was preserved for low irradiation doses (~ 33 kGy), although image quality and consequently, DVC performance were reduced. DVC results suggested some local deterioration of tissue that might have resulted from mechanical strain concentration further enhanced by some level of local irradiation even for low accumulated dose.
Collapse
Affiliation(s)
- Marta Peña Fernández
- Zeiss Global Centre, School of Engineering, University of Portsmouth, Portsmouth, UK
| | | | - Enrico Dall'Ara
- Department of Oncology and Metabolism and INSIGNEO Institute For in Silico Medicine, University of Sheffield, Sheffield, UK
| | | | - Rachna Parwani
- Zeiss Global Centre, School of Engineering, University of Portsmouth, Portsmouth, UK
| | - Martino Pani
- Zeiss Global Centre, School of Engineering, University of Portsmouth, Portsmouth, UK
| | - Gordon W Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Asa H Barber
- Zeiss Global Centre, School of Engineering, University of Portsmouth, Portsmouth, UK; School of Engineering, London South Bank University, London, UK
| | - Gianluca Tozzi
- Zeiss Global Centre, School of Engineering, University of Portsmouth, Portsmouth, UK.
| |
Collapse
|
20
|
Xi L, De Falco P, Barbieri E, Karunaratne A, Bentley L, Esapa CT, Terrill NJ, Brown SDM, Cox RD, Davis GR, Pugno NM, Thakker RV, Gupta HS. Bone matrix development in steroid-induced osteoporosis is associated with a consistently reduced fibrillar stiffness linked to altered bone mineral quality. Acta Biomater 2018; 76:295-307. [PMID: 29902593 PMCID: PMC6084282 DOI: 10.1016/j.actbio.2018.05.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/14/2018] [Accepted: 05/31/2018] [Indexed: 01/24/2023]
Abstract
Glucocorticoid-induced osteoporosis (GIOP) is a major secondary form of osteoporosis, with the fracture risk significantly elevated - at similar levels of bone mineral density - in patients taking glucocorticoids compared with non-users. The adverse bone structural changes at multiple hierarchical levels in GIOP, and their mechanistic consequences leading to reduced load-bearing capacity, are not clearly understood. Here we combine experimental X-ray nanoscale mechanical imaging with analytical modelling of the bone matrix mechanics to determine mechanisms causing bone material quality deterioration during development of GIOP. In situ synchrotron small-angle X-ray diffraction combined with tensile testing was used to measure nanoscale deformation mechanisms in a murine model of GIOP, due to a corticotrophin-releasing hormone promoter mutation, at multiple ages (8-, 12-, 24- and 36 weeks), complemented by quantitative micro-computed tomography and backscattered electron imaging to determine mineral concentrations. We develop a two-level hierarchical model of the bone matrix (mineralized fibril and lamella) to predict fibrillar mechanical response as a function of architectural parameters of the mineralized matrix. The fibrillar elastic modulus of GIOP-bone is lower than healthy bone throughout development, and nearly constant in time, in contrast to the progressively increasing stiffness in healthy bone. The lower mineral platelet aspect ratio value for GIOP compared to healthy bone in the multiscale model can explain the fibrillar deformation. Consistent with this result, independent measurement of mineral platelet lengths from wide-angle X-ray diffraction finds a shorter mineral platelet length in GIOP. Our results show how lowered mineralization combined with altered mineral nanostructure in GIOP leads to lowered mechanical competence. SIGNIFICANCE STATEMENT Increased fragility in musculoskeletal disorders like osteoporosis are believed to arise due to alterations in bone structure at multiple length-scales from the organ down to the supramolecular-level, where collagen molecules and elongated mineral nanoparticles form stiff fibrils. However, the nature of these molecular-level alterations are not known. Here we used X-ray scattering to determine both how bone fibrils deform in secondary osteoporosis, as well as how the fibril orientation and mineral nanoparticle structure changes. We found that osteoporotic fibrils become less stiff both because the mineral nanoparticles became shorter and less efficient at transferring load from collagen, and because the fibrils are more randomly oriented. These results will help in the design of new composite musculoskeletal implants for bone repair.
Collapse
Affiliation(s)
- L Xi
- School of Engineering and Material Sciences, Queen Mary University of London, London E1 4NS, UK; Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27607, USA
| | - P De Falco
- School of Engineering and Material Sciences, Queen Mary University of London, London E1 4NS, UK; Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, D-14424 Potsdam-Golm, Germany.
| | - E Barbieri
- School of Engineering and Material Sciences, Queen Mary University of London, London E1 4NS, UK; Department of Mathematical Science and Advanced Technology (MAT), Yokohama Institute for Earth Sciences (YES) 3173-25, Showa-machi, Kanazawa-ku, Yokohama-city, Japan.
| | - A Karunaratne
- Department of Mechanical Engineering, University of Moratuwa, Sri Lanka
| | - L Bentley
- MRC Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, OX11 0RD, UK.
| | - C T Esapa
- MRC Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, OX11 0RD, UK; Academic Endocrine Unit, Nuffield Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Headington, Oxford OX3 7JL, UK.
| | - N J Terrill
- Beamline I22, Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire OX11 0DE, UK.
| | - S D M Brown
- MRC Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, OX11 0RD, UK.
| | - R D Cox
- MRC Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, OX11 0RD, UK.
| | - G R Davis
- Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Institute of Dentistry, E1 2AD, UK.
| | - N M Pugno
- Laboratory of Bio-Inspired & Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano, 77, 38123 Trento, Italy; School of Engineering and Material Sciences, Queen Mary University of London, London E1 4NS, UK; Ket Lab, Edoardo Amaldi Foundation, Italian Space Agency, Via del Politecnico snc, 00133 Rome, Italy.
| | - R V Thakker
- MRC Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, OX11 0RD, UK; Academic Endocrine Unit, Nuffield Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Headington, Oxford OX3 7JL, UK.
| | - H S Gupta
- School of Engineering and Material Sciences, Queen Mary University of London, London E1 4NS, UK.
| |
Collapse
|
21
|
Ultrafine heat-induced structural perturbations of bone mineral at the individual nanocrystal level. Acta Biomater 2018; 73:500-508. [PMID: 29649638 DOI: 10.1016/j.actbio.2018.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/27/2018] [Accepted: 04/02/2018] [Indexed: 02/06/2023]
Abstract
The nanoscale characteristics of the mineral phase in bone tissue such as nanocrystal size, organization, structure and composition have been identified as potential markers of bone quality. However, such characterization remains challenging since it requires combining structural analysis and imaging modalities with nanoscale precision. In this paper, we report the first application of automated crystal orientation mapping using transmission electron microscopy (ACOM-TEM) to the structural analysis of bone mineral at the individual nanocrystal level. By controlling the nanocrystal growth of a cortical bovine bone model artificially heated up to 1000 °C, we highlight the potential of this technique. We thus show that the combination of sample mapping by scanning and the crystallographic information derived from the collected electron diffraction patterns provides a more rigorous analysis of the mineral nanostructure than standard TEM. In particular, we demonstrate that nanocrystal orientation maps yield valuable information for dimensional analysis. Furthermore, we show that ACOM-TEM has sufficient sensitivity to distinguish between phases with close crystal structures and we address unresolved questions regarding the existence of a hexagonal to monoclinic phase transition induced by heating. This first study therefore opens new perspectives in bone characterization at the nanoscale, a daunting challenge in the biomedical and archaeological fields, which could also prove particularly useful to study the mineral characteristics of tissue grown at the interface with biomaterials implants. STATEMENT OF SIGNIFICANCE In this paper, we propose a new approach to assess the mineral properties of bone at the individual nanocrystal level, a major challenge for decades. We use a modified Transmission Electron Microscopy acquisition mode to perform an Automated Crystal Orientation Mapping (ACOM-TEM) by analyzing electron diffraction patterns. We tune the mineral nanocrystal size by heating a model bovine bone system and show that this method allows precisely assessing the mineral nanocrystal size, orientation and crystallographic phase. ACOM-TEM therefore has sufficient sensitivity to solve problems that couldn't be answered using X-ray diffraction. We thus revisit the fine mechanisms of bone nanocrystal growth upon heating, a process currently used for bone graft manufacturing, also of practical interest for forensic science and archaeology.
Collapse
|
22
|
Wang Z, Vashishth D, Picu RC. Bone toughening through stress-induced non-collagenous protein denaturation. Biomech Model Mechanobiol 2018; 17:1093-1106. [DOI: 10.1007/s10237-018-1016-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/02/2018] [Indexed: 01/17/2023]
|
23
|
Gustafsson A, Mathavan N, Turunen MJ, Engqvist J, Khayyeri H, Hall SA, Isaksson H. Linking multiscale deformation to microstructure in cortical bone using in situ loading, digital image correlation and synchrotron X-ray scattering. Acta Biomater 2018; 69:323-331. [PMID: 29410089 DOI: 10.1016/j.actbio.2018.01.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/20/2017] [Accepted: 01/25/2018] [Indexed: 11/27/2022]
Abstract
The incidence of fragility fractures is expected to increase in the near future due to an aging population. Therefore, improved tools for fracture prediction are required to treat and prevent these injuries efficiently. For such tools to succeed, a better understanding of the deformation mechanisms in bone over different length scales is needed. In this study, an experimental setup including mechanical tensile testing in combination with digital image correlation (DIC) and small/wide angle X-ray scattering (SAXS/WAXS) was used to study deformation at multiple length scales in bovine cortical bone. Furthermore, micro-CT imaging provided detailed information about tissue microstructure. The combination of these techniques enabled measurements of local deformations at the tissue- and nanoscales. The orientation of the microstructure relative to the tensile loading was found to influence the strain magnitude on all length scales. Strains in the collagen fibers were 2-3 times as high as the strains found in the mineral crystals for samples with microstructure oriented parallel to the loading. The local tissue strain at fracture was found to be around 0.5%, independent of tissue orientation. However, the maximum force and the irregularity of the crack path were higher when the load was applied parallel to the tissue orientation. This study clearly shows the potential of combining these different experimental techniques concurrently with mechanical testing to gain a better understanding of bone damage and fracture over multiple length scales in cortical bone. STATEMENT OF SIGNIFICANCE To understand the pathophysiology of bone, it is important to improve our knowledge about the deformation and fracture mechanisms in bone. In this study, we combine several recently available experimental techniques with mechanical loading to investigate the deformation mechanisms in compact bone tissue on several length scales simultaneously. The experimental setup included mechanical tensile testing in combination with digital image correlation, microCT imaging, and small/wide angle X-ray scattering. The combination of techniques enabled measurements of local deformations at the tissue- and nanoscales. The study clearly shows the potential of combining different experimental techniques concurrently with mechanical testing to gain a better understanding of structure-property-function relationships in bone tissue.
Collapse
Affiliation(s)
- Anna Gustafsson
- Department of Biomedical Engineering, Lund University, Box 118, SE-221 00 Lund, Sweden.
| | - Neashan Mathavan
- Department of Biomedical Engineering, Lund University, Box 118, SE-221 00 Lund, Sweden.
| | - Mikael J Turunen
- Department of Biomedical Engineering, Lund University, Box 118, SE-221 00 Lund, Sweden; Department of Applied Physics, University of Eastern Finland, POB 1627, FI-702 11 Kuopio, Finland.
| | - Jonas Engqvist
- Division of Solid Mechanics, Lund University, Box 118, SE-221 00 Lund, Sweden.
| | - Hanifeh Khayyeri
- Department of Biomedical Engineering, Lund University, Box 118, SE-221 00 Lund, Sweden.
| | - Stephen A Hall
- Division of Solid Mechanics, Lund University, Box 118, SE-221 00 Lund, Sweden.
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Box 118, SE-221 00 Lund, Sweden.
| |
Collapse
|
24
|
Karunaratne A, Li S, Bull AMJ. Nano-scale mechanisms explain the stiffening and strengthening of ligament tissue with increasing strain rate. Sci Rep 2018; 8:3707. [PMID: 29487334 PMCID: PMC5829138 DOI: 10.1038/s41598-018-21786-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/10/2018] [Indexed: 11/08/2022] Open
Abstract
Ligament failure is a major societal burden causing disability and pain. Failure is caused by trauma at high loading rates. At the macroscopic level increasing strain rates cause an increase in failure stress and modulus, but the mechanism for this strain rate dependency is not known. Here we investigate the nano scale mechanical property changes of human ligament using mechanical testing combined with synchrotron X-ray diffraction. With increasing strain rate, we observe a significant increase in fibril modulus and a reduction of fibril to tissue strain ratio, revealing that tissue-level stiffening is mainly due to the stiffening of collagen fibrils. Further, we show that the reduction in fibril deformation at higher strain rates is due to reduced molecular strain and fibrillar gaps, and is associated with rapid disruption of matrix-fibril bonding. This reduction in number of interfibrillar cross-links explains the changes in fibril strain; this is verified through computational modelling.
Collapse
Affiliation(s)
- Angelo Karunaratne
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
- Department of Mechanical Engineering, University of Moratuwa, Moratuwa, Sri Lanka
| | - Simin Li
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, UK
| | - Anthony M J Bull
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
25
|
Inamdar SR, Knight DP, Terrill NJ, Karunaratne A, Cacho-Nerin F, Knight MM, Gupta HS. The Secret Life of Collagen: Temporal Changes in Nanoscale Fibrillar Pre-Strain and Molecular Organization during Physiological Loading of Cartilage. ACS NANO 2017; 11:9728-9737. [PMID: 28800220 DOI: 10.1021/acsnano.7b00563] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Articular cartilage is a natural biomaterial whose structure at the micro- and nanoscale is critical for healthy joint function and where degeneration is associated with widespread disorders such as osteoarthritis. At the nanoscale, cartilage mechanical functionality is dependent on the collagen fibrils and hydrated proteoglycans that form the extracellular matrix. The dynamic response of these ultrastructural building blocks at the nanoscale, however, remains unclear. Here we measure time-resolved changes in collagen fibril strain, using small-angle X-ray diffraction during compression of bovine and human cartilage explants. We demonstrate the existence of a collagen fibril tensile pre-strain, estimated from the D-period at approximately 1-2%, due to osmotic swelling pressure from the proteoglycan. We reveal a rapid reduction and recovery of this pre-strain which occurs during stress relaxation, approximately 60 s after the onset of peak load. Furthermore, we show that this reduction in pre-strain is linked to disordering in the intrafibrillar molecular packing, alongside changes in the axial overlapping of tropocollagen molecules within the fibril. Tissue degradation in the form of selective proteoglycan removal disrupts both the collagen fibril pre-strain and the transient response during stress relaxation. This study bridges a fundamental gap in the knowledge describing time-dependent changes in collagen pre-strain and molecular organization that occur during physiological loading of articular cartilage. The ultrastructural details of this transient response are likely to transform our understanding of the role of collagen fibril nanomechanics in the biomechanics of cartilage and other hydrated soft tissues.
Collapse
Affiliation(s)
- Sheetal R Inamdar
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London , London E1 4NS, United Kingdom
| | - David P Knight
- Orthox Ltd. , 66 Innovation Drive, Milton Park, Abingdon OX14 4RQ, United Kingdom
| | - Nicholas J Terrill
- Harwell Science and Innovation Campus, Diamond Light Source , Harwell, Didcot OX11 0DE, United Kingdom
| | - Angelo Karunaratne
- Department of Bioengineering, Imperial College London , London SW7 2AZ, United Kingdom
| | - Fernando Cacho-Nerin
- Harwell Science and Innovation Campus, Diamond Light Source , Harwell, Didcot OX11 0DE, United Kingdom
| | - Martin M Knight
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London , London E1 4NS, United Kingdom
| | - Himadri S Gupta
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London , London E1 4NS, United Kingdom
| |
Collapse
|
26
|
Zhang Y, De Falco P, Wang Y, Barbieri E, Paris O, Terrill NJ, Falkenberg G, Pugno NM, Gupta HS. Towards in situ determination of 3D strain and reorientation in the interpenetrating nanofibre networks of cuticle. NANOSCALE 2017; 9:11249-11260. [PMID: 28753215 DOI: 10.1039/c7nr02139a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Determining the in situ 3D nano- and microscale strain and reorientation fields in hierarchical nanocomposite materials is technically very challenging. Such a determination is important to understand the mechanisms enabling their functional optimization. An example of functional specialization to high dynamic mechanical resistance is the crustacean stomatopod cuticle. Here we develop a new 3D X-ray nanostrain reconstruction method combining analytical modelling of the diffraction signal, fibre-composite theory and in situ deformation, to determine the hitherto unknown nano- and microscale deformation mechanisms in stomatopod tergite cuticle. Stomatopod cuticle at the nanoscale consists of mineralized chitin fibres and calcified protein matrix, which form (at the microscale) plywood (Bouligand) layers with interpenetrating pore-canal fibres. We uncover anisotropic deformation patterns inside Bouligand lamellae, accompanied by load-induced fibre reorientation and pore-canal fibre compression. Lamination theory was used to decouple in-plane fibre reorientation from diffraction intensity changes induced by 3D lamellae tilting. Our method enables separation of deformation dynamics at multiple hierarchical levels, a critical consideration in the cooperative mechanics characteristic of biological and bioinspired materials. The nanostrain reconstruction technique is general, depending only on molecular-level fibre symmetry and can be applied to the in situ dynamics of advanced nanostructured materials with 3D hierarchical design.
Collapse
Affiliation(s)
- Y Zhang
- Queen Mary University of London, Institute of Bioengineering and School of Engineering and Material Science, London, E1 4NS, UK. and Photon Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - P De Falco
- Queen Mary University of London, Institute of Bioengineering and School of Engineering and Material Science, London, E1 4NS, UK.
| | - Y Wang
- Queen Mary University of London, Institute of Bioengineering and School of Engineering and Material Science, London, E1 4NS, UK.
| | - E Barbieri
- Queen Mary University of London, Institute of Bioengineering and School of Engineering and Material Science, London, E1 4NS, UK.
| | - O Paris
- Institute of Physics, Montanuniversitaet Leoben, Leoben, Austria
| | - N J Terrill
- Diamond Light Source, Harwell Science and Innovation Campus, Harwell, UK
| | - G Falkenberg
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - N M Pugno
- Laboratory of Bio-Inspired & Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano, 77, 38123, Trento, Italy and Queen Mary University of London, Institute of Bioengineering and School of Engineering and Material Science, London, E1 4NS, UK. and Ket Lab, Edoardo Amaldi Foundation, Italian Space Agency, Via del Politecnico snc, 00133, Rome, Italy
| | - H S Gupta
- Queen Mary University of London, Institute of Bioengineering and School of Engineering and Material Science, London, E1 4NS, UK.
| |
Collapse
|
27
|
Blowes LM, Egertová M, Liu Y, Davis GR, Terrill NJ, Gupta HS, Elphick MR. Body wall structure in the starfish Asterias rubens. J Anat 2017; 231:325-341. [PMID: 28714118 PMCID: PMC5554833 DOI: 10.1111/joa.12646] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2017] [Indexed: 12/25/2022] Open
Abstract
The body wall of starfish is composed of magnesium calcite ossicles connected by collagenous tissue and muscles and it exhibits remarkable variability in stiffness, which is attributed to the mechanical mutability of the collagenous component. Using the common European starfish Asterias rubens as an experimental animal, here we have employed a variety of techniques to gain new insights into the structure of the starfish body wall. The structure and organisation of muscular and collagenous components of the body wall were analysed using trichrome staining. The muscle system comprises interossicular muscles as well as muscle strands that connect ossicles with the circular muscle layer of the coelomic lining. The collagenous tissue surrounding the ossicle network contains collagen fibres that form loop-shaped straps that wrap around calcite struts near to the surface of ossicles. The 3D architecture of the calcareous endoskeleton was visualised for the first time using X-ray microtomography, revealing the shapes and interactions of different ossicle types. Furthermore, analysis of the anatomical organisation of the ossicles indicates how changes in body shape may be achieved by local contraction/relaxation of interossicular muscles. Scanning synchrotron small-angle X-ray diffraction (SAXD) scans of the starfish aboral body wall and ambulacrum were used to study the collagenous tissue component at the fibrillar level. Collagen fibrils in aboral body wall were found to exhibit variable degrees of alignment, with high levels of alignment probably corresponding to regions where collagenous tissue is under tension. Collagen fibrils in the ambulacrum had a uniformly low degree of orientation, attributed to macrocrimp of the fibrils and the presence of slanted as well as horizontal fibrils connecting antimeric ambulacral ossicles. Body wall collagen fibril D-period lengths were similar to previously reported mammalian D-periods, but were significantly different between the aboral and ambulacral samples. The overlap/D-period length ratio within fibrils was higher than reported for mammalian tissues. Collectively, the data reported here provide new insights into the anatomy of the body wall in A. rubens and a foundation for further studies investigating the structural basis of the mechanical properties of echinoderm body wall tissue composites.
Collapse
Affiliation(s)
- Liisa M Blowes
- School of Biological & Chemical Sciences, Queen Mary University of London, London, UK.,School of Engineering & Materials Science, Queen Mary University of London, London, UK
| | - Michaela Egertová
- School of Biological & Chemical Sciences, Queen Mary University of London, London, UK
| | - Yankai Liu
- School of Engineering & Materials Science, Queen Mary University of London, London, UK
| | - Graham R Davis
- Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Himadri S Gupta
- School of Engineering & Materials Science, Queen Mary University of London, London, UK
| | - Maurice R Elphick
- School of Biological & Chemical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
28
|
Ma S, Goh EL, Jin A, Bhattacharya R, Boughton OR, Patel B, Karunaratne A, Vo NT, Atwood R, Cobb JP, Hansen U, Abel RL. Long-term effects of bisphosphonate therapy: perforations, microcracks and mechanical properties. Sci Rep 2017; 7:43399. [PMID: 28262693 PMCID: PMC5338252 DOI: 10.1038/srep43399] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/20/2017] [Indexed: 12/11/2022] Open
Abstract
Osteoporosis is characterised by trabecular bone loss resulting from increased osteoclast activation and unbalanced coupling between resorption and formation, which induces a thinning of trabeculae and trabecular perforations. Bisphosphonates are the frontline therapy for osteoporosis, which act by reducing bone remodelling, and are thought to prevent perforations and maintain microstructure. However, bisphosphonates may oversuppress remodelling resulting in accumulation of microcracks. This paper aims to investigate the effect of bisphosphonate treatment on microstructure and mechanical strength. Assessment of microdamage within the trabecular bone core was performed using synchrotron X-ray micro-CT linked to image analysis software. Bone from bisphosphonate-treated fracture patients exhibited fewer perforations but more numerous and larger microcracks than both fracture and non-fracture controls. Furthermore, bisphosphonate-treated bone demonstrated reduced tensile strength and Young's Modulus. These findings suggest that bisphosphonate therapy is effective at reducing perforations but may also cause microcrack accumulation, leading to a loss of microstructural integrity and consequently, reduced mechanical strength.
Collapse
Affiliation(s)
- Shaocheng Ma
- Department of Mechanical Engineering, Faculty of Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
- MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W6 8PR, United Kingdom
| | - En Lin Goh
- MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W6 8PR, United Kingdom
| | - Andi Jin
- Department of Mechanical Engineering, Faculty of Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
- MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W6 8PR, United Kingdom
| | - Rajarshi Bhattacharya
- St. Mary’s Hospital, North West London Major Trauma Centre, Imperial College, London, W2 1NY, United Kingdom
| | - Oliver R. Boughton
- Department of Mechanical Engineering, Faculty of Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
- MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W6 8PR, United Kingdom
| | - Bhavi Patel
- MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W6 8PR, United Kingdom
| | - Angelo Karunaratne
- Department of Mechanical Engineering, Faculty of Engineering, University of Moratuwa, Moratuwa, 10400, Sri Lanka
| | - Nghia T. Vo
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, United Kingdom
| | - Robert Atwood
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, United Kingdom
| | - Justin P. Cobb
- MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W6 8PR, United Kingdom
| | - Ulrich Hansen
- Department of Mechanical Engineering, Faculty of Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Richard L. Abel
- MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W6 8PR, United Kingdom
| |
Collapse
|
29
|
REN LI, WANG ZHE, HUANG LINGWEI, YANG PENGFEI, SHANG PENG. TECHNOLOGIES FOR STRAIN ASSESSMENT FROM WHOLE BONE TO MINERALIZED OSTEOID LEVEL: A CRITICAL REVIEW. J MECH MED BIOL 2016. [DOI: 10.1142/s0219519416300027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bone has distinctive structures and mechanical properties at the whole bone, perilacunar and mineralized osteoid levels. A systematic understanding of bone strain magnitudes at different anatomical levels and their internal interactions is the prerequisite to advances in bone mechanobiology. However, due to the intrinsic shortcomings of the strain-measuring technologies, the systematic assessment of bone strain at different anatomical levels under physiological conditions and a deep understanding of their internal interactions are still restricted. To promote technological advances and provide systematic and valuable information for mechanical engineers and bone biomechanical researchers, the most useful methods for measuring bone strain at different anatomical levels are demonstrated in this review, and suggestions for the future development of the technologies and their potential integrated applications are proposed.
Collapse
Affiliation(s)
- LI REN
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Science, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an 710072, P. R. China
| | - ZHE WANG
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Science, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an 710072, P. R. China
| | - LINGWEI HUANG
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Science, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an 710072, P. R. China
| | - PENGFEI YANG
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Science, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an 710072, P. R. China
| | - PENG SHANG
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Science, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an 710072, P. R. China
| |
Collapse
|
30
|
Mo J, Prévost SF, Blowes LM, Egertová M, Terrill NJ, Wang W, Elphick MR, Gupta HS. Interfibrillar stiffening of echinoderm mutable collagenous tissue demonstrated at the nanoscale. Proc Natl Acad Sci U S A 2016; 113:E6362-E6371. [PMID: 27708167 PMCID: PMC5081653 DOI: 10.1073/pnas.1609341113] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The mutable collagenous tissue (MCT) of echinoderms (e.g., sea cucumbers and starfish) is a remarkable example of a biological material that has the unique attribute, among collagenous tissues, of being able to rapidly change its stiffness and extensibility under neural control. However, the mechanisms of MCT have not been characterized at the nanoscale. Using synchrotron small-angle X-ray diffraction to probe time-dependent changes in fibrillar structure during in situ tensile testing of sea cucumber dermis, we investigate the ultrastructural mechanics of MCT by measuring fibril strain at different chemically induced mechanical states. By measuring a variable interfibrillar stiffness (EIF), the mechanism of mutability at the nanoscale can be demonstrated directly. A model of stiffness modulation via enhanced fibrillar recruitment is developed to explain the biophysical mechanisms of MCT. Understanding the mechanisms of MCT quantitatively may have applications in development of new types of mechanically tunable biomaterials.
Collapse
Affiliation(s)
- Jingyi Mo
- School of Engineering and Material Science, Queen Mary University of London, London, E1 4NS, United Kingdom
| | - Sylvain F Prévost
- Beamline ID02, European Synchrotron Radiation Facility, Grenoble 38000, France
| | - Liisa M Blowes
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, United Kingdom
| | - Michaela Egertová
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, United Kingdom
| | - Nicholas J Terrill
- Beamline I22, Diamond Light Source, Harwell Science and Innovation Campus, Harwell, OX11 0DE, United Kingdom
| | - Wen Wang
- School of Engineering and Material Science, Queen Mary University of London, London, E1 4NS, United Kingdom; Institute of Bioengineering, Queen Mary University of London, London, E1 4NS, United Kingdom
| | - Maurice R Elphick
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, United Kingdom;
| | - Himadri S Gupta
- School of Engineering and Material Science, Queen Mary University of London, London, E1 4NS, United Kingdom; Institute of Bioengineering, Queen Mary University of London, London, E1 4NS, United Kingdom
| |
Collapse
|
31
|
Barkaoui A, Tlili B, Vercher-Martínez A, Hambli R. A multiscale modelling of bone ultrastructure elastic proprieties using finite elements simulation and neural network method. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2016; 134:69-78. [PMID: 27480733 DOI: 10.1016/j.cmpb.2016.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/24/2016] [Accepted: 07/04/2016] [Indexed: 06/06/2023]
Abstract
Bone is a living material with a complex hierarchical structure which entails exceptional mechanical properties, including high fracture toughness, specific stiffness and strength. Bone tissue is essentially composed by two phases distributed in approximately 30-70%: an organic phase (mainly type I collagen and cells) and an inorganic phase (hydroxyapatite-HA-and water). The nanostructure of bone can be represented throughout three scale levels where different repetitive structural units or building blocks are found: at the first level, collagen molecules are arranged in a pentameric structure where mineral crystals grow in specific sites. This primary bone structure constitutes the mineralized collagen microfibril. A structural organization of inter-digitating microfibrils forms the mineralized collagen fibril which represents the second scale level. The third scale level corresponds to the mineralized collagen fibre which is composed by the binding of fibrils. The hierarchical nature of the bone tissue is largely responsible of their significant mechanical properties; consequently, this is a current outstanding research topic. Scarce works in literature correlates the elastic properties in the three scale levels at the bone nanoscale. The main goal of this work is to estimate the elastic properties of the bone tissue in a multiscale approach including a sensitivity analysis of the elastic behaviour at each length scale. This proposal is achieved by means of a novel hybrid multiscale modelling that involves neural network (NN) computations and finite elements method (FEM) analysis. The elastic properties are estimated using a neural network simulation that previously has been trained with the database results of the finite element models. In the results of this work, parametric analysis and averaged elastic constants for each length scale are provided. Likewise, the influence of the elastic constants of the tissue constituents is also depicted. Results highlight that intelligent numerical methods are powerful and accurate procedures to deal with the complex multiscale problem in the bone tissue with results in agreement with values found in literature for specific scale levels.
Collapse
Affiliation(s)
- Abdelwahed Barkaoui
- Université de Tunis El Manar, Ecole Nationale d'Ingénieurs de Tunis, LR-11-ES19 Laboratoire de Mécanique Appliquée et Ingénierie (LR-MAI), 1002 Tunis, Tunisie; Université de Tunis El Manar, Institut Préparatoire aux Etudes d'Ingénieurs d'El Manar, B.P 244, 2092 Tunis, Tunisie.
| | - Brahim Tlili
- Université de Tunis El Manar, Ecole Nationale d'Ingénieurs de Tunis, LR-11-ES19 Laboratoire de Mécanique Appliquée et Ingénierie (LR-MAI), 1002 Tunis, Tunisie; Université de Tunis El Manar, Institut Préparatoire aux Etudes d'Ingénieurs d'El Manar, B.P 244, 2092 Tunis, Tunisie
| | - Ana Vercher-Martínez
- Depto. de Ingeniería Mecánica y de Materiales, Centro de Investigación de Tecnología de Vehículos-CITV, Universitat Politècnica de València, Camino de Vera, 46022 Valencia, Spain
| | - Ridha Hambli
- PRISME Laboratory, EA4229, University of Orleans Polytech' Orléans, 8, Rue Léonard de Vinci, 45072 Orléans, France
| |
Collapse
|
32
|
Abstract
Bone is a complex hierarchical structure, and its principal function is to resist mechanical forces and fracture. Bone strength depends not only on the quantity of bone tissue but also on the shape and hierarchical structure. The hierarchical levels are interrelated, especially the micro-architecture, collagen and mineral components; hence, analysis of their specific roles in bone strength and stiffness is difficult. Synchrotron imaging technologies including micro-CT and small/wide angle X-ray scattering/diffraction are becoming increasingly popular for studying bone because the images can resolve deformations in the micro-architecture and collagen-mineral matrix under in situ mechanical loading. Synchrotron cannot be directly applied in vivo due to the high radiation dose but will allow researchers to carry out systematic multifaceted studies of bone ex vivo. Identifying characteristics of aging and disease will underpin future efforts to generate novel devices and interventional therapies for assessing and promoting healthy aging. With our own research work as examples, this paper introduces how synchrotron imaging technology can be used with in situ testing in bone research.
Collapse
Affiliation(s)
- Shaocheng Ma
- Department of Mechanical Engineering, Faculty of Engineering, Imperial College London, London, SW7 2AZ UK
- MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W6 8PR UK
| | - Oliver Boughton
- MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W6 8PR UK
| | - Angelo Karunaratne
- Department of Mechanical Engineering, Faculty of Engineering, University of Moratuwa, Moratuwa, 10400 Sri Lanka
| | - Andi Jin
- Department of Mechanical Engineering, Faculty of Engineering, Imperial College London, London, SW7 2AZ UK
- MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W6 8PR UK
| | - Justin Cobb
- MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W6 8PR UK
| | - Ulrich Hansen
- Department of Mechanical Engineering, Faculty of Engineering, Imperial College London, London, SW7 2AZ UK
| | - Richard Abel
- MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W6 8PR UK
| |
Collapse
|
33
|
Lin L, Samuel J, Zeng X, Wang X. Contribution of extrafibrillar matrix to the mechanical behavior of bone using a novel cohesive finite element model. J Mech Behav Biomed Mater 2016; 65:224-235. [PMID: 27592291 DOI: 10.1016/j.jmbbm.2016.08.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/19/2016] [Accepted: 08/21/2016] [Indexed: 12/21/2022]
Abstract
The mechanical behavior of bone is determined at all hierarchical levels, including lamellae (the basic building block of bone) that are comprised of mineralized collagen fibrils and extrafibrillar matrix. The mechanical behavior of mineralized collagen fibrils has been investigated intensively using both experimental and computational approaches. Yet, the contribution of the extrafibrillar matrix to bone mechanical properties is poorly documented. In this study, we intended to address this issue using a novel cohesive finite element (FE) model, in conjunction with the experimental observations reported in the literature. In the FE model, the extrafibrillar matrix was considered as a nanocomposite of hydroxyapatite (HA) crystals bounded through a thin organic interface modeled as a cohesive interfacial zone. The parameters required by the cohesive FE model were defined based on the experimental data reported in the literature. This hybrid nanocomposite model was tested in two loading modes (i.e. tension and compression) and under two hydration conditions (i.e. wet and dry). The simulation results indicated that (1) the failure modes of the extrafibrillar matrix predicted using the cohesive FE model were closely coincided with those experimentally observed in tension and compression tests; (2) the pre-yield deformation (i.e. internal strain) of HA crystals with respect to the applied strain was consistent with that obtained from the synchrotron X-ray scattering measurements irrespective of the loading modes and hydration status; and (3) the mechanical behavior of the extrafibrillar matrix was dictated by the properties of the organic interface between the HA crystals. Taken together, we postulate that the extrafibrillar matrix plays a major role in the pre-yield deformation and the failure mode of bone, thus, giving rise to important insights in the ultrastructural origins of bone fragility.
Collapse
Affiliation(s)
- Liqiang Lin
- Department of Mechanical Engineering, University of Texas at San Antonio, TX 78249, United States
| | - Jitin Samuel
- Department of Mechanical Engineering, University of Texas at San Antonio, TX 78249, United States
| | - Xiaowei Zeng
- Department of Mechanical Engineering, University of Texas at San Antonio, TX 78249, United States.
| | - Xiaodu Wang
- Department of Mechanical Engineering, University of Texas at San Antonio, TX 78249, United States.
| |
Collapse
|
34
|
Heveran CM, Ortega AM, Cureton A, Clark R, Livingston EW, Bateman TA, Levi M, King KB, Ferguson VL. Moderate chronic kidney disease impairs bone quality in C57Bl/6J mice. Bone 2016; 86:1-9. [PMID: 26860048 PMCID: PMC4833654 DOI: 10.1016/j.bone.2016.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 12/16/2022]
Abstract
Chronic kidney disease (CKD) increases bone fracture risk. While the causes of bone fragility in CKD are not clear, the disrupted mineral homeostasis inherent to CKD may cause material quality changes to bone tissue. In this study, 11-week-old male C57Bl/6J mice underwent either 5/6th nephrectomy (5/6 Nx) or sham surgeries. Mice were fed a normal chow diet and euthanized 11weeks post-surgery. Moderate CKD with high bone turnover was established in the 5/6 Nx group as determined through serum chemistry and bone gene expression assays. We compared nanoindentation modulus and mineral volume fraction (assessed through quantitative backscattered scanning electron microscopy) at matched sites in arrays placed on the cortical bone of the tibia mid-diaphysis. Trabecular and cortical bone microarchitecture and whole bone strength were also evaluated. We found that moderate CKD minimally affected bone microarchitecture and did not influence whole bone strength. Meanwhile, bone material quality decreased with CKD; a pattern of altered tissue maturation was observed with 5/6 Nx whereby the newest 60μm of bone tissue adjacent to the periosteal surface had lower indentation modulus and mineral volume fraction than more interior, older bone. The variance of modulus and mineral volume fraction was also altered following 5/6 Nx, implying that tissue-scale heterogeneity may be negatively affected by CKD. The observed lower bone material quality may play a role in the decreased fracture resistance that is clinically associated with human CKD.
Collapse
Affiliation(s)
- Chelsea M Heveran
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Alicia M Ortega
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Andrew Cureton
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Ryan Clark
- Department of Orthopaedics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Eric W Livingston
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA
| | - Ted A Bateman
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA
| | - Moshe Levi
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado School of Medicine, Aurora, CO, USA; Veterans Affairs, Eastern Colorado Health Care System, Denver, CO, USA
| | - Karen B King
- Department of Orthopaedics, University of Colorado School of Medicine, Aurora, CO, USA; Veterans Affairs, Eastern Colorado Health Care System, Denver, CO, USA
| | - Virginia L Ferguson
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA; Department of Orthopaedics, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
35
|
Karunaratne A, Xi L, Bentley L, Sykes D, Boyde A, Esapa CT, Terrill NJ, Brown SDM, Cox RD, Thakker RV, Gupta HS. Multiscale alterations in bone matrix quality increased fragility in steroid induced osteoporosis. Bone 2016; 84:15-24. [PMID: 26657825 PMCID: PMC4764652 DOI: 10.1016/j.bone.2015.11.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 10/30/2015] [Accepted: 11/27/2015] [Indexed: 12/31/2022]
Abstract
A serious adverse clinical effect of glucocorticoid steroid treatment is secondary osteoporosis, enhancing fracture risk in bone. This rapid increase in bone fracture risk is largely independent of bone loss (quantity), and must therefore arise from degradation of the quality of the bone matrix at the micro- and nanoscale. However, we lack an understanding of both the specific alterations in bone quality n steroid-induced osteoporosis as well as the mechanistic effects of these changes. Here we demonstrate alterations in the nanostructural parameters of the mineralized fibrillar collagen matrix, which affect bone quality, and develop a model linking these to increased fracture risk in glucocorticoid induced osteoporosis. Using a mouse model with an N-ethyl-N-nitrosourea (ENU)-induced corticotrophin releasing hormone promoter mutation (Crh(-120/+)) that developed hypercorticosteronaemia and osteoporosis, we utilized in situ mechanical testing with small angle X-ray diffraction, synchrotron micro-computed tomography and quantitative backscattered electron imaging to link altered nano- and microscale deformation mechanisms in the bone matrix to abnormal macroscopic mechanics. We measure the deformation of the mineralized collagen fibrils, and the nano-mechanical parameters including effective fibril modulus and fibril to tissue strain ratio. A significant reduction (51%) of fibril modulus was found in Crh(-120/+) mice. We also find a much larger fibril strain/tissue strain ratio in Crh(-120/+) mice (~1.5) compared to the wild-type mice (~0.5), indicative of a lowered mechanical competence at the nanoscale. Synchrotron microCT show a disruption of intracortical architecture, possibly linked to osteocytic osteolysis. These findings provide a clear quantitative demonstration of how bone quality changes increase macroscopic fragility in secondary osteoporosis.
Collapse
Affiliation(s)
- A Karunaratne
- Queen Mary University of London, School of Engineering and Material Science, Mile End Road, London E1 4NS, UK.
| | - L Xi
- Queen Mary University of London, School of Engineering and Material Science, Mile End Road, London E1 4NS, UK.
| | - L Bentley
- MRC Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, OX11 0RD, UK.
| | - D Sykes
- Core Research Laboratories, The Natural History Museum, London SW7 5BD, UK.
| | - A Boyde
- Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Institute of Dentistry, E1 2AD, UK.
| | - C T Esapa
- MRC Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, OX11 0RD, UK; Academic Endocrine Unit, Nuffield Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Headington, Oxford OX3 7JL, UK.
| | - N J Terrill
- Diamond Light Source Ltd., Beamline I22, Diamond House, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire, OX11 0DE, UK; Department of Chemistry, University of Sheffield, Dainton Building, Brookhill, Sheffield S3 7HF, UK.
| | - S D M Brown
- MRC Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, OX11 0RD, UK.
| | - R D Cox
- MRC Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, OX11 0RD, UK.
| | - R V Thakker
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Headington, Oxford OX3 7JL, UK.
| | - H S Gupta
- Queen Mary University of London, School of Engineering and Material Science, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
36
|
Zimmermann EA, Busse B, Ritchie RO. The fracture mechanics of human bone: influence of disease and treatment. BONEKEY REPORTS 2015; 4:743. [PMID: 26380080 PMCID: PMC4562496 DOI: 10.1038/bonekey.2015.112] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 06/30/2015] [Accepted: 07/03/2015] [Indexed: 01/09/2023]
Abstract
Aging and bone diseases are associated with increased fracture risk. It is therefore pertinent to seek an understanding of the origins of such disease-related deterioration in bone's mechanical properties. The mechanical integrity of bone derives from its hierarchical structure, which in healthy tissue is able to resist complex physiological loading patterns and tolerate damage. Indeed, the mechanisms through which bone derives its mechanical properties make fracture mechanics an ideal framework to study bone's mechanical resistance, where crack-growth resistance curves give a measure of the intrinsic resistance to the initiation of cracks and the extrinsic resistance to the growth of cracks. Recent research on healthy cortical bone has demonstrated how this hierarchical structure can develop intrinsic toughness at the collagen fibril scale mainly through sliding and sacrificial bonding mechanisms that promote plasticity. Furthermore, the bone-matrix structure develops extrinsic toughness at much larger micrometer length-scales, where the structural features are large enough to resist crack growth through crack-tip shielding mechanisms. Although healthy bone tissue can generally resist physiological loading environments, certain conditions such as aging and disease can significantly increase fracture risk. In simple terms, the reduced mechanical integrity originates from alterations to the hierarchical structure. Here, we review how human cortical bone resists fracture in healthy bone and how changes to the bone structure due to aging, osteoporosis, vitamin D deficiency and Paget's disease can affect the mechanical integrity of bone tissue.
Collapse
Affiliation(s)
- Elizabeth A Zimmermann
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Robert O Ritchie
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Materials Science & Engineering, University of California, Berkeley, CA, USA
| |
Collapse
|
37
|
Bala Y, Seeman E. Bone's Material Constituents and their Contribution to Bone Strength in Health, Disease, and Treatment. Calcif Tissue Int 2015; 97:308-26. [PMID: 25712256 DOI: 10.1007/s00223-015-9971-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/11/2015] [Indexed: 12/24/2022]
Abstract
Type 1 collagen matrix volume, its degree of completeness of its mineralization, the extent of collagen crosslinking and water content, and the non-collagenous proteins like osteopontin and osteocalcin comprise the main constituents of bone's material composition. Each influences material strength and change in different ways during advancing age, health, disease, and drug therapy. These traits are not quantifiable using bone densitometry and their plurality is better captured by the term bone 'qualities' than 'quality'. These qualities are the subject of this manuscript.
Collapse
Affiliation(s)
- Y Bala
- Laboratoire Vibrations Acoustique, Institut National des Sciences Appliquées de Lyon, Campus LyonTech la Doua, Villeurbanne, France
| | | |
Collapse
|
38
|
Abstract
The interface between collagen and the mineral reinforcement phase, carbonated hydroxyapatite (cAp), is essential for bone's remarkable functionality as a biological composite material. The very small dimensions of the cAp phase and the disparate natures of the reinforcement and matrix are essential to the material's performance but also complicate study of this interface. This article summarizes what is known about the cAp-collagen interface in bone and begins with descriptions of the matrix and reinforcement roles in composites, of the phases bounding the interface, of growth of cAp growing within the collagen matrix, and of the effect of intra- and extrafibrilar mineral on determinations of interfacial properties. Different observed interfacial interactions with cAp (collagen, water, non-collagenous proteins) are reviewed; experimental results on interface interactions during loading are reported as are their influence on macroscopic mechanical properties; conclusions of numerical modeling of interfacial interactions are also presented. The data suggest interfacial interlocking (bending of collagen molecules around cAp nanoplatelets) and water-mediated bonding between collagen and cAp are essential to load transfer. The review concludes with descriptions of areas where new research is needed to improve understanding of how the interface functions.
Collapse
Affiliation(s)
- S R Stock
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Chicago, IL, 60611-3008, USA,
| |
Collapse
|
39
|
Davis GR, Fearne JM, Sabel N, Norén JG. Microscopic study of dental hard tissues in primary teeth with Dentinogenesis Imperfecta Type II: Correlation of 3D imaging using X-ray microtomography and polarising microscopy. Arch Oral Biol 2015; 60:1013-20. [DOI: 10.1016/j.archoralbio.2015.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/18/2015] [Accepted: 03/20/2015] [Indexed: 10/23/2022]
|
40
|
Variability in reference point microindentation and recommendations for testing cortical bone: location, thickness and orientation heterogeneity. J Mech Behav Biomed Mater 2015; 46:292-304. [PMID: 25837158 DOI: 10.1016/j.jmbbm.2015.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 02/03/2015] [Accepted: 02/07/2015] [Indexed: 11/24/2022]
Abstract
Reference Point Indentation (RPI) has been proposed as a new clinical tool to aid the diagnosis of Osteoporosis. This study has examined the performance of the tool within entire femurs to improve the understanding of the mechanical properties of bone and also to guide future RPI testing to optimize repeatability of results obtained using the technique. Human, bovine, porcine and rat femurs were indented along three longitudinal axes: anterior and posterior: medial and lateral as well as around the circumference of the femoral head and neck. Cortical and subchondral bone thickness was measured using CT and radiography. The study shows that in some samples, bone is too thin to support the high loads applied with the technique and in these cases, RPI values are highly influenced by thickness. The technique will be useful in the mid-shaft region where cortical thickness is greatest, providing previously established guidelines are followed to optimize measurement repeatability, including performing multiple measurements per sample and investigating multiple samples. The study has also provided evidence that RPI values vary significantly with test site, hence mechanical properties should not be inferred from RPI findings alone away from the test site, even within the same bone. In conclusion, RPI appears to be a useful tool for scientific investigation; however further work is required to examine the feasibility of using RPI for assessing differences between healthy and diseased bone in a clinical setting.
Collapse
|
41
|
Bras W, Koizumi S, Terrill NJ. Beyond simple small-angle X-ray scattering: developments in online complementary techniques and sample environments. IUCRJ 2014; 1:478-91. [PMID: 25485128 PMCID: PMC4224466 DOI: 10.1107/s2052252514019198] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 08/25/2014] [Indexed: 05/20/2023]
Abstract
Small- and wide-angle X-ray scattering (SAXS, WAXS) are standard tools in materials research. The simultaneous measurement of SAXS and WAXS data in time-resolved studies has gained popularity due to the complementary information obtained. Furthermore, the combination of these data with non X-ray based techniques, via either simultaneous or independent measurements, has advanced understanding of the driving forces that lead to the structures and morphologies of materials, which in turn give rise to their properties. The simultaneous measurement of different data regimes and types, using either X-rays or neutrons, and the desire to control parameters that initiate and control structural changes have led to greater demands on sample environments. Examples of developments in technique combinations and sample environment design are discussed, together with a brief speculation about promising future developments.
Collapse
Affiliation(s)
- Wim Bras
- Netherlands Organization for Scientific Research (NWO), DUBBLE@ESRF, BP 220, 6 Rue Jules Horowitz, Grenoble 38043, France
| | - Satoshi Koizumi
- College of Engineering, Ibaraki University, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Nicholas J Terrill
- Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| |
Collapse
|
42
|
Misof BM, Dempster DW, Zhou H, Roschger P, Fratzl-Zelman N, Fratzl P, Silverberg SJ, Shane E, Cohen A, Stein E, Nickolas TL, Recker RR, Lappe J, Bilezikian JP, Klaushofer K. Relationship of bone mineralization density distribution (BMDD) in cortical and cancellous bone within the iliac crest of healthy premenopausal women. Calcif Tissue Int 2014; 95:332-9. [PMID: 25134800 PMCID: PMC4464772 DOI: 10.1007/s00223-014-9901-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 07/18/2014] [Indexed: 02/04/2023]
Abstract
Bone mineralization density distribution (BMDD) is an important determinant of bone mechanical properties. The most available skeletal site for access to the BMDD is the iliac crest. Compared to cancellous bone much less information on BMDD is available for cortical bone. Hence, we analyzed complete transiliac crest bone biopsy samples from premenopausal women (n = 73) aged 25-48 years, clinically classified as healthy, by quantitative backscattered electron imaging for cortical (Ct.) and cancellous (Cn.) BMDD. The Ct.BMDD was characterized by the arithmetic mean of the BMDD of the cortical plates. We found correlations between Ct. and Cn. BMDD variables with correlation coefficients r between 0.42 and 0.73 (all p < 0.001). Additionally to this synchronous behavior of cortical and cancellous compartments, we found that the heterogeneity of mineralization densities (Ct.Ca(Width)), as well as the cortical porosity (Ct.Po) was larger for a lower average degree of mineralization (Ct.Ca(Mean)). Moreover, Ct.Po correlated negatively with the percentage of highly mineralized bone areas (Ct.Ca(High)) and positively with the percentage of lowly mineralized bone areas (Ct.Ca(Low)). In conclusion, the correlation of cortical with cancellous BMDD in the iliac crest of the study cohort suggests coordinated regulation of bone turnover between both bone compartments. Only in a few cases, there was a difference in the degree of mineralization of >1wt % between both cortices suggesting a possible modeling situation. This normative dataset of healthy premenopausal women will provide a reference standard by which disease- and treatment-specific effects can be assessed at the level of cortical bone BMDD.
Collapse
Affiliation(s)
- B. M. Misof
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, First Medical Department, Hanusch Hospital, Heinrich Collin-Str. 30, 1140 Vienna, Austria
| | - D. W. Dempster
- Regional Bone Center, Helen Hayes Hospital, West Haverstraw, New York, NY, USA
- College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Hua Zhou
- Regional Bone Center, Helen Hayes Hospital, West Haverstraw, New York, NY, USA
| | - P. Roschger
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, First Medical Department, Hanusch Hospital, Heinrich Collin-Str. 30, 1140 Vienna, Austria
| | - N. Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, First Medical Department, Hanusch Hospital, Heinrich Collin-Str. 30, 1140 Vienna, Austria
| | - P. Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - S. J. Silverberg
- Department of Medicine and Pathology, Columbia University, New York, NY, USA
| | - E. Shane
- Department of Medicine and Pathology, Columbia University, New York, NY, USA
| | - A. Cohen
- Department of Medicine and Pathology, Columbia University, New York, NY, USA
| | - E. Stein
- Department of Medicine and Pathology, Columbia University, New York, NY, USA
| | - T. L. Nickolas
- Department of Medicine and Pathology, Columbia University, New York, NY, USA
| | - R. R. Recker
- Creighton University Osteoporosis Research Center, Omaha, NE, USA
| | - J. Lappe
- Creighton University Osteoporosis Research Center, Omaha, NE, USA
| | - J. P. Bilezikian
- Department of Medicine and Pathology, Columbia University, New York, NY, USA
| | - K. Klaushofer
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, First Medical Department, Hanusch Hospital, Heinrich Collin-Str. 30, 1140 Vienna, Austria
| |
Collapse
|
43
|
Abstract
The ability of bone to resist fracture is determined by the combination of bone mass and bone quality. Like bone mass, bone quality is carefully regulated. Of the many aspects of bone quality, this review focuses on biological mechanisms that control the material quality of the bone extracellular matrix (ECM). Bone ECM quality depends upon ECM composition and organization. Proteins and signaling pathways that affect the mineral or organic constituents of bone ECM impact bone ECM material properties, such as elastic modulus and hardness. These properties are also sensitive to pathways that regulate bone remodeling by osteoblasts, osteoclasts, and osteocytes. Several extracellular proteins, signaling pathways, intracellular effectors, and transcription regulatory networks have been implicated in the control of bone ECM quality. A molecular understanding of these mechanisms will elucidate the biological control of bone quality and suggest new targets for the development of therapies to prevent bone fragility.
Collapse
Affiliation(s)
- Tamara Alliston
- Department of Orthopaedic Surgery, University of California San Francisco, 513 Parnassus Avenue, Room S-1155, San Francisco, CA, 94143-0514, USA,
| |
Collapse
|
44
|
Bonner TJ, Newell N, Karunaratne A, Pullen AD, Amis AA, M J Bull A, Masouros SD. Strain-rate sensitivity of the lateral collateral ligament of the knee. J Mech Behav Biomed Mater 2014; 41:261-70. [PMID: 25086777 DOI: 10.1016/j.jmbbm.2014.07.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/28/2014] [Accepted: 07/01/2014] [Indexed: 02/04/2023]
Abstract
The material properties of ligaments are not well characterized at rates of deformation that occur during high-speed injuries. The aim of this study was to measure the material properties of lateral collateral ligament of the porcine stifle joint in a uniaxial tension model through strain rates in the range from 0.01 to 100/s. Failure strain, tensile modulus and failure stress were calculated. Across the range of strain rates, tensile modulus increased from 288 to 905 MPa and failure stress increased from 39.9 to 77.3 MPa. The strain-rate sensitivity of the material properties decreased as deformation rates increased, and reached a limit at approximately 1/s, beyond which there was no further significant change. In addition, time resolved microfocus small angle X-ray scattering was used to measure the effective fibril modulus (stress/fibril strain) and fibril to tissue strain ratio. The nanoscale data suggest that the contribution of the collagen fibrils towards the observed tissue-level deformation of ligaments diminishes as the loading rate increases. These findings help to predict the patterns of limb injuries that occur at different speeds and improve computational models used to assess and develop mitigation technology.
Collapse
Affiliation(s)
- Timothy J Bonner
- The Academic Department of Military Surgery and Trauma, The Royal Centre for Defence Medicine, Birmingham B15 2SQ, UK; Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Nicolas Newell
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Angelo Karunaratne
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Andy D Pullen
- Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, UK
| | - Andrew A Amis
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK; Department of Musculoskeletal Surgery, Imperial College London, London W6 8RF, UK
| | - Anthony M J Bull
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Spyros D Masouros
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
45
|
Nair AK, Gautieri A, Buehler MJ. Role of Intrafibrillar Collagen Mineralization in Defining the Compressive Properties of Nascent Bone. Biomacromolecules 2014; 15:2494-500. [DOI: 10.1021/bm5003416] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Arun K. Nair
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 1-235 A&B, Cambridge, Massachusetts 02139, United States
| | - Alfonso Gautieri
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 1-235 A&B, Cambridge, Massachusetts 02139, United States
- Biomechanics
Group, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Golgi 39, 20133 Milan, Italy
| | - Markus J. Buehler
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 1-235 A&B, Cambridge, Massachusetts 02139, United States
- Center
for Computational Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Center
for Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
46
|
van de Peppel J, van Leeuwen JPTM. Vitamin D and gene networks in human osteoblasts. Front Physiol 2014; 5:137. [PMID: 24782782 PMCID: PMC3988399 DOI: 10.3389/fphys.2014.00137] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 03/20/2014] [Indexed: 12/27/2022] Open
Abstract
Bone formation is indirectly influenced by 1,25-dihydroxyvitamin D3 (1,25D3) through the stimulation of calcium uptake in the intestine and re-absorption in the kidneys. Direct effects on osteoblasts and bone formation have also been established. The vitamin D receptor (VDR) is expressed in osteoblasts and 1,25D3 modifies gene expression of various osteoblast differentiation and mineralization-related genes, such as alkaline phosphatase (ALPL), osteocalcin (BGLAP), and osteopontin (SPP1). 1,25D3 is known to stimulate mineralization of human osteoblasts in vitro, and recently it was shown that 1,25D3 induces mineralization via effects in the period preceding mineralization during the pre-mineralization period. For a full understanding of the action of 1,25D3 in osteoblasts it is important to get an integrated network view of the 1,25D3-regulated genes during osteoblast differentiation and mineralization. The current data will be presented and discussed alluding to future studies to fully delineate the 1,25D3 action in osteoblast. Describing and understanding the vitamin D regulatory networks and identifying the dominant players in these networks may help develop novel (personalized) vitamin D-based treatments. The following topics will be discussed in this overview: (1) Bone metabolism and osteoblasts, (2) Vitamin D, bone metabolism and osteoblast function, (3) Vitamin D induced transcriptional networks in the context of osteoblast differentiation and bone formation.
Collapse
Affiliation(s)
- Jeroen van de Peppel
- Department of Internal Medicine, Bone and Calcium Metabolism Erasmus MC, Rotterdam, Netherlands
| | | |
Collapse
|
47
|
Guerette PA, Z. Tay G, Hoon S, Loke JJ, Hermawan AF, Schmitt CNZ, Harrington MJ, Masic A, Karunaratne A, Gupta HS, Tan KS, Schwaighofer A, Nowak C, Miserez A. Integrative and comparative analysis of coiled-coil based marine snail egg cases – a model for biomimetic elastomers. Biomater Sci 2014; 2:710-722. [DOI: 10.1039/c3bm60264h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
48
|
Bianco AC, Anderson G, Forrest D, Galton VA, Gereben B, Kim BW, Kopp PA, Liao XH, Obregon MJ, Peeters RP, Refetoff S, Sharlin DS, Simonides WS, Weiss RE, Williams GR. American Thyroid Association Guide to investigating thyroid hormone economy and action in rodent and cell models. Thyroid 2014; 24:88-168. [PMID: 24001133 PMCID: PMC3887458 DOI: 10.1089/thy.2013.0109] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND An in-depth understanding of the fundamental principles that regulate thyroid hormone homeostasis is critical for the development of new diagnostic and treatment approaches for patients with thyroid disease. SUMMARY Important clinical practices in use today for the treatment of patients with hypothyroidism, hyperthyroidism, or thyroid cancer are the result of laboratory discoveries made by scientists investigating the most basic aspects of thyroid structure and molecular biology. In this document, a panel of experts commissioned by the American Thyroid Association makes a series of recommendations related to the study of thyroid hormone economy and action. These recommendations are intended to promote standardization of study design, which should in turn increase the comparability and reproducibility of experimental findings. CONCLUSIONS It is expected that adherence to these recommendations by investigators in the field will facilitate progress towards a better understanding of the thyroid gland and thyroid hormone dependent processes.
Collapse
Affiliation(s)
- Antonio C. Bianco
- Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine, Miami, Florida
| | - Grant Anderson
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota Duluth, Duluth, Minnesota
| | - Douglas Forrest
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Valerie Anne Galton
- Department of Physiology and Neurobiology, Dartmouth Medical School, Lebanon, New Hampshire
| | - Balázs Gereben
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Brian W. Kim
- Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine, Miami, Florida
| | - Peter A. Kopp
- Division of Endocrinology, Metabolism, and Molecular Medicine, and Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Xiao Hui Liao
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago, Chicago, Illinois
| | - Maria Jesus Obregon
- Institute of Biomedical Investigation (IIB), Spanish National Research Council (CSIC) and Autonomous University of Madrid, Madrid, Spain
| | - Robin P. Peeters
- Division of Endocrinology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Samuel Refetoff
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago, Chicago, Illinois
| | - David S. Sharlin
- Department of Biological Sciences, Minnesota State University, Mankato, Minnesota
| | - Warner S. Simonides
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Roy E. Weiss
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago, Chicago, Illinois
| | - Graham R. Williams
- Department of Medicine, Imperial College London, Hammersmith Campus, London, United Kingdom
| |
Collapse
|
49
|
Woeckel V, van der Eerden B, Schreuders-Koedam M, Eijken M, Van Leeuwen J. 1α,25-dihydroxyvitamin D3stimulates activin A production to fine-tune osteoblast-induced mineralization. J Cell Physiol 2013; 228:2167-74. [DOI: 10.1002/jcp.24388] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 04/03/2013] [Indexed: 01/08/2023]
Affiliation(s)
- V.J. Woeckel
- Departments of Internal Medicine; Erasmus Medical Center; Rotterdam The Netherlands
| | | | - M. Schreuders-Koedam
- Departments of Internal Medicine; Erasmus Medical Center; Rotterdam The Netherlands
| | - M. Eijken
- Departments of Internal Medicine; Erasmus Medical Center; Rotterdam The Netherlands
| | - J.P.T.M. Van Leeuwen
- Departments of Internal Medicine; Erasmus Medical Center; Rotterdam The Netherlands
| |
Collapse
|
50
|
Karunaratne A, Boyde A, Esapa CT, Hiller J, Terrill NJ, Brown SDM, Cox RD, Thakker RV, Gupta HS. Symmetrically reduced stiffness and increased extensibility in compression and tension at the mineralized fibrillar level in rachitic bone. Bone 2013; 52:689-98. [PMID: 23128355 DOI: 10.1016/j.bone.2012.10.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 10/12/2012] [Accepted: 10/24/2012] [Indexed: 10/27/2022]
Abstract
In metabolic bone diseases, the alterations in fibrillar level bone-material quality affecting macroscopic mechanical competence are not well-understood quantitatively. Here, we quantify the fibrillar level deformation in cantilever bending in a mouse model for hereditary rickets (Hpr). Microfocus in-situ synchrotron small-angle X-ray scattering (SAXS) combined with cantilever bending was used to resolve nanoscale fibril strain in tensile- and compressive tissue regions separately, with quantitative backscattered scanning electron microscopy used to measure microscale mineralization. Tissue-level flexural moduli for Hpr mice were significantly (p<0.01) smaller compared to wild-type (~5 to 10-fold reduction). At the fibrillar level, the fibril moduli within the tensile and compressive zones were significantly (p<0.05) lower by ~3- to 5-fold in Hpr mice compared to wild-type mice. Hpr mice have a lower mineral content (24.2±2.1Cawt.% versus 27.4±3.3Ca wt.%) and its distribution was more heterogeneous compared to wild-type animals. However, the average effective fibril modulus did not differ significantly (p>0.05) over ages (4, 7 and 10weeks) between tensile and compressive zones. Our results indicate that incompletely mineralized fibrils in Hpr mice have greater deformability and lower moduli in both compression and tension, and those compressive and tensile zones have similar moduli at the fibrillar level.
Collapse
Affiliation(s)
- A Karunaratne
- School of Engineering and Material Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|