1
|
Calamari ZT, Song A, Cohen E, Akter M, Das Roy R, Hallikas O, Christensen MM, Li P, Marangoni P, Jernvall J, Klein OD. Bank vole genomics links determinate and indeterminate growth of teeth. BMC Genomics 2024; 25:1000. [PMID: 39472825 PMCID: PMC11523675 DOI: 10.1186/s12864-024-10901-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/14/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Continuously growing teeth are an important innovation in mammalian evolution, yet genetic regulation of continuous growth by stem cells remains incompletely understood. Dental stem cells responsible for tooth crown growth are lost at the onset of tooth root formation. Genetic signaling that initiates this loss is difficult to study with the ever-growing incisor and rooted molars of mice, the most common mammalian dental model species, because signals for root formation overlap with signals that pattern tooth size and shape (i.e., cusp patterns). Bank and prairie voles (Cricetidae, Rodentia, Glires) have evolved rooted and unrooted molars while retaining similar size and shape, providing alternative models for studying roots. RESULTS We assembled a de novo genome of Myodes glareolus, a vole with high-crowned, rooted molars, and performed genomic and transcriptomic analyses in a broad phylogenetic context of Glires (rodents and lagomorphs) to assess differential selection and evolution in tooth forming genes. Bulk transcriptomics comparisons of embryonic molar development between bank voles and mice demonstrated overall conservation of gene expression levels, with species-specific differences corresponding to the accelerated and more extensive patterning of the vole molar. We leverage convergent evolution of unrooted molars across the clade to examine changes that may underlie the evolution of unrooted molars. We identified 15 dental genes with changing synteny relationships and six dental genes undergoing positive selection across Glires, two of which were undergoing positive selection in species with unrooted molars, Dspp and Aqp1. Decreased expression of both genes in prairie voles with unrooted molars compared to bank voles supports the presence of positive selection and may underlie differences in root formation. CONCLUSIONS Our results support ongoing evolution of dental genes across Glires and identify candidate genes for mechanistic studies of root formation. Comparative research using the bank vole as a model species can reveal the complex evolutionary background of convergent evolution for ever-growing molars.
Collapse
Affiliation(s)
- Zachary T Calamari
- Baruch College, City University of New York, One Bernard Baruch Way, New York, NY, 10010, USA.
- The Graduate Center, City University of New York, 365 Fifth Ave, New York, NY, 10016, USA.
- Program in Craniofacial Biology, Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA.
- Division of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA.
| | - Andrew Song
- Baruch College, City University of New York, One Bernard Baruch Way, New York, NY, 10010, USA
- Cornell University, 616 Thurston Ave, Ithaca, NY, 14853, USA
| | - Emily Cohen
- Baruch College, City University of New York, One Bernard Baruch Way, New York, NY, 10010, USA
- New York University College of Dentistry, 345 E 34th St, New York, NY, 10010, USA
| | - Muspika Akter
- Baruch College, City University of New York, One Bernard Baruch Way, New York, NY, 10010, USA
| | - Rishi Das Roy
- Institute of Biotechnology, University of Helsinki, Helsinki, FI-00014, Finland
| | - Outi Hallikas
- Institute of Biotechnology, University of Helsinki, Helsinki, FI-00014, Finland
| | - Mona M Christensen
- Institute of Biotechnology, University of Helsinki, Helsinki, FI-00014, Finland
| | - Pengyang Li
- Program in Craniofacial Biology, Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Pediatrics, Cedars-Sinai Guerin Children's, 8700 Beverly Blvd., Suite 2416, Los Angeles, CA, 90048, USA
- Department of Bioengineering, Stanford University, 443 Via Ortega, Rm 119, Stanford, CA, 94305, USA
| | - Pauline Marangoni
- Program in Craniofacial Biology, Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Pediatrics, Cedars-Sinai Guerin Children's, 8700 Beverly Blvd., Suite 2416, Los Angeles, CA, 90048, USA
| | - Jukka Jernvall
- Institute of Biotechnology, University of Helsinki, Helsinki, FI-00014, Finland
- Department of Geosciences and Geography, University of Helsinki, Helsinki, FI-00014, Finland
| | - Ophir D Klein
- Program in Craniofacial Biology, Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA.
- Department of Pediatrics, Cedars-Sinai Guerin Children's, 8700 Beverly Blvd., Suite 2416, Los Angeles, CA, 90048, USA.
| |
Collapse
|
2
|
Calamari ZT, Song A, Cohen E, Akter M, Roy RD, Hallikas O, Christensen MM, Li P, Marangoni P, Jernvall J, Klein OD. Vole genomics links determinate and indeterminate growth of teeth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.18.572015. [PMID: 38187646 PMCID: PMC10769287 DOI: 10.1101/2023.12.18.572015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Continuously growing teeth are an important innovation in mammalian evolution, yet genetic regulation of continuous growth by stem cells remains incompletely understood. Dental stem cells responsible for tooth crown growth are lost at the onset of tooth root formation. Genetic signaling that initiates this loss is difficult to study with the ever-growing incisor and rooted molars of mice, the most common mammalian dental model species, because signals for root formation overlap with signals that pattern tooth size and shape (i.e., cusp patterns). Different species of voles (Cricetidae, Rodentia, Glires) have evolved rooted and unrooted molars that have similar size and shape, providing alternative models for studying roots. We assembled a de novo genome of Myodes glareolus, a vole with high-crowned, rooted molars, and performed genomic and transcriptomic analyses in a broad phylogenetic context of Glires (rodents and lagomorphs) to assess differential selection and evolution in tooth forming genes. We identified 15 dental genes with changing synteny relationships and six dental genes undergoing positive selection across Glires, two of which were undergoing positive selection in species with unrooted molars, Dspp and Aqp1. Decreased expression of both genes in prairie voles with unrooted molars compared to bank voles supports the presence of positive selection and may underlie differences in root formation. Bulk transcriptomics analyses of embryonic molar development in bank voles also demonstrated conserved patterns of dental gene expression compared to mice, with species-specific variation likely related to developmental timing and morphological differences between mouse and vole molars. Our results support ongoing evolution of dental genes across Glires, revealing the complex evolutionary background of convergent evolution for ever-growing molars.
Collapse
Affiliation(s)
- Zachary T. Calamari
- Baruch College, City University of New York, One Bernard Baruch Way, New York, NY 10010, USA
- The Graduate Center, City University of New York, 365 Fifth Ave, New York, NY 10016, USA
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Division of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA
| | - Andrew Song
- Baruch College, City University of New York, One Bernard Baruch Way, New York, NY 10010, USA
- Cornell University, 616 Thurston Ave, Ithaca, NY 14853, USA
| | - Emily Cohen
- Baruch College, City University of New York, One Bernard Baruch Way, New York, NY 10010, USA
- New York University College of Dentistry, 345 E 34th St, New York, NY 10010
| | - Muspika Akter
- Baruch College, City University of New York, One Bernard Baruch Way, New York, NY 10010, USA
| | - Rishi Das Roy
- Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Outi Hallikas
- Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Mona M. Christensen
- Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Pengyang Li
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Pediatrics, Cedars-Sinai Guerin Children’s, 8700 Beverly Blvd., Suite 2416, Los Angeles, CA 90048, USA
| | - Pauline Marangoni
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Pediatrics, Cedars-Sinai Guerin Children’s, 8700 Beverly Blvd., Suite 2416, Los Angeles, CA 90048, USA
| | - Jukka Jernvall
- Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
- Department of Geosciences and Geography, University of Helsinki, FI-00014 Helsinki, Finland
| | - Ophir D. Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Pediatrics, Cedars-Sinai Guerin Children’s, 8700 Beverly Blvd., Suite 2416, Los Angeles, CA 90048, USA
| |
Collapse
|
3
|
Yuan M, Zheng X, Xue Y, He Z, Song G, Song Y. A novel DSPP frameshift mutation causing dentin dysplasia type 2 and disease management strategies. Oral Dis 2023; 29:2394-2400. [PMID: 36597617 DOI: 10.1111/odi.14494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023]
Abstract
The present study aims to investigate the mutation in a Chinese family with dentin dysplasia type II (DD-II) and to summarize mutation hotspots, clinical manifestations, and disease management strategies. Phenotype analysis, clinical intervention, mutation screening, and cosegregation analysis within the enrolled family were performed. A summary of the reported mutations in the dentin phosphoprotein (DPP) region of dentin sialophosphoprotein (DSPP) was analyzed. Pathogenicity prediction analysis of the physical properties and function of DSPP variants was performed by bioinformatic processing. Clinical management strategies are discussed. A novel pathogenic mutation (c.2035delA) in the DPP region of DSPP was identified, which was cosegregated in the family. The immature permanent teeth of patients with DD-II presented with X-shaped root canal phenotypes. Most of the identified mutations for DD-II were clustered in the DPP region between nucleotides 1686-2134. Points of differential diagnosis, clinical interventions, and management strategies are proposed. This study revealed a novel DSPP frameshift mutation and presented new clinical features of DD-II. The locus involving nucleotides 1686-2134 of DSPP may represent a mutational hotspot for the disease. Appropriate management of DD-II at different stages is important to avoid the development of secondary dental lesions.
Collapse
Affiliation(s)
- Minyan Yuan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xueqing Zheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yifan Xue
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhenru He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Guangtai Song
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yaling Song
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Su T, Zhu Y, Wang X, Zhu Q, Duan X. Hereditary dentin defects with systemic diseases. Oral Dis 2023; 29:2376-2393. [PMID: 37094075 DOI: 10.1111/odi.14589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/26/2023]
Abstract
OBJECTIVE This review aimed to summarize recent progress on syndromic dentin defects, promoting a better understanding of systemic diseases with dentin malformations, the molecules involved, and related mechanisms. SUBJECTS AND METHODS References on genetic diseases with dentin malformations were obtained from various sources, including PubMed, OMIM, NCBI, and other websites. The clinical phenotypes and genetic backgrounds of these diseases were then summarized, analyzed, and compared. RESULTS Over 10 systemic diseases, including osteogenesis imperfecta, hypophosphatemic rickets, vitamin D-dependent rickets, familial tumoral calcinosis, Ehlers-Danlos syndrome, Schimke immuno-osseous dysplasia, hypophosphatasia, Elsahy-Waters syndrome, Singleton-Merten syndrome, odontochondrodysplasia, and microcephalic osteodysplastic primordial dwarfism type II were examined. Most of these are bone disorders, and their pathogenic genes may regulate both dentin and bone development, involving extracellular matrix, cell differentiation, and metabolism of calcium, phosphorus, and vitamin D. The phenotypes of these syndromic dentin defects various with the involved genes, part of them are similar to dentinogenesis imperfecta or dentin dysplasia, while others only present one or two types of dentin abnormalities such as discoloration, irregular enlarged or obliterated pulp and canal, or root malformation. CONCLUSION Some specific dentin defects associated with systemic diseases may serve as important phenotypes for dentists to diagnose. Furthermore, mechanistic studies on syndromic dentin defects may provide valuable insights into isolated dentin defects and general dentin development or mineralization.
Collapse
Affiliation(s)
- Tongyu Su
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yulong Zhu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Xiangpu Wang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Qinglin Zhu
- Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University & State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Xi'an, China
| | - Xiaohong Duan
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
5
|
Liang T, Smith CE, Hu Y, Zhang H, Zhang C, Xu Q, Lu Y, Qi L, Hu JCC, Simmer JP. Dentin defects caused by a Dspp -1 frameshift mutation are associated with the activation of autophagy. Sci Rep 2023; 13:6393. [PMID: 37076504 PMCID: PMC10115861 DOI: 10.1038/s41598-023-33362-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023] Open
Abstract
Dentin sialophosphoprotein (DSPP) is primarily expressed by differentiated odontoblasts (dentin-forming cells), and transiently expressed by presecretory ameloblasts (enamel-forming cells). Disease-causing DSPP mutations predominantly fall into two categories: 5' mutations affecting targeting and trafficking, and 3' - 1 frameshift mutations converting the repetitive, hydrophilic, acidic C-terminal domain into a hydrophobic one. We characterized the dental phenotypes and investigated the pathological mechanisms of DsppP19L and Dspp-1fs mice that replicate the two categories of human DSPP mutations. In DsppP19L mice, dentin is less mineralized but contains dentinal tubules. Enamel mineral density is reduced. Intracellular accumulation and ER retention of DSPP is observed in odontoblasts and ameloblasts. In Dspp-1fs mice, a thin layer of reparative dentin lacking dentinal tubules is deposited. Odontoblasts show severe pathosis, including intracellular accumulation and ER retention of DSPP, strong ubiquitin and autophagy activity, ER-phagy, and sporadic apoptosis. Ultrastructurally, odontoblasts show extensive autophagic vacuoles, some of which contain fragmented ER. Enamel formation is comparable to wild type. These findings distinguish molecular mechanisms underlying the dental phenotypes of DsppP19L and Dspp-1fs mice and support the recently revised Shields classification of dentinogenesis imperfecta caused by DSPP mutations in humans. The Dspp-1fs mice may be valuable for the study of autophagy and ER-phagy.
Collapse
Affiliation(s)
- Tian Liang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI, 48109-1078, USA.
| | - Charles E Smith
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI, 48109-1078, USA
- Department of Anatomy & Cell Biology, Faculty of Medicine & Health Sciences, McGill University, Montreal, QC, Canada
| | - Yuanyuan Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI, 48109-1078, USA
| | - Hong Zhang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI, 48109-1078, USA
| | - Chuhua Zhang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI, 48109-1078, USA
| | - Qian Xu
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, 3302 Gaston Ave., Dallas, TX, 75246, USA
| | - Yongbo Lu
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, 3302 Gaston Ave., Dallas, TX, 75246, USA
| | - Ling Qi
- Department of Molecular & Integrative Physiology, Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, 1000 Wall St., Ann Arbor, MI, 48105, USA
| | - Jan C-C Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI, 48109-1078, USA
| | - James P Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI, 48109-1078, USA
| |
Collapse
|
6
|
Zhang Z, Huang G, Huang Y, Liu S, Chen F, Gao X, Dong Y, Tian H. Novel dentin sialophosphoprotein gene frameshift mutations affect dentin mineralization. Arch Oral Biol 2023; 151:105701. [PMID: 37084484 DOI: 10.1016/j.archoralbio.2023.105701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/23/2023]
Abstract
OBJECTIVE This study aimed to identify candidate genes for inheritable dentin defects in three Chinese pedigrees and characterize the property of affected teeth. DESIGN Clinical and radiological features were recorded for the affected individuals. Genomic DNA obtained from peripheral venous blood or saliva were analyzed by whole-exome sequencing. The density and microhardness of affected dentin was measured. Scanning electron microscopy (SEM) was also performed to obtain the microstructure phenotype. RESULTS 1) General appearance: the affected dentitions shared yellowish-brown or milky color. Radiographs showed that the pulp cavity and root canals were obliterated in varying degrees or exhibited a pulp aspect in the 'thistle tube'. Some patients exhibited periapical infections without pulpal exposure, and some affected individuals showed shortened, abnormally thin roots accompanied by severe alveolar bone loss. 2) Genomic analysis: three new frameshift mutations (NM_014208.3: c.2833delA, c.2852delGand c.3239delA) were identified in exon 5 of dentin sialophosphoprotein (DSPP) gene, altering dentin phosphoprotein (DPP) as result. In vitro studies showed that the density and microhardness of affected dentin were decreased, the dentinal tubules were sparse and arranged disorderly, and the dentinal-enamel-junction (DEJ) was abnormal. CONCLUSIONS In this study, we identified three novel frameshift mutations of dentin sialophosphoprotein gene related to inherited dentin defects. These mutations are speculated to cause abnormal coding of dentin phosphoprotein C-terminus, which affect dentin mineralization. These results expand the spectrum of dentin sialophosphoprotein gene mutations causing inheritable dentin defects and broaden our understanding of the biological mechanisms by which dentin forms.
Collapse
Affiliation(s)
- Zhenwei Zhang
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China
| | - Guibin Huang
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China
| | - Yu Huang
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health and Science Center, Beijing, PR China
| | - Siyi Liu
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China
| | - Feng Chen
- Central Laboratory, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China
| | - Xuejun Gao
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China
| | - Yanmei Dong
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China.
| | - Hua Tian
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China.
| |
Collapse
|
7
|
Ni X, Gong Y, Jiang Y, Li X, Pang Q, Liu W, Chi Y, Jiajue R, Wang O, Li M, Xing X, Xia W. The First Compound Heterozygous Mutations of DMP1 Causing Rare Autosomal Recessive Hypophosphatemic Rickets Type 1. J Clin Endocrinol Metab 2023; 108:791-801. [PMID: 36334264 DOI: 10.1210/clinem/dgac640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/11/2022] [Indexed: 11/08/2022]
Abstract
CONTEXT Hereditary hypophosphatemic rickets (HR) consists of a group of inherited hypophosphatemia due to mutations of different genes, which need genetic analysis to make a differential diagnosis. Among them, autosomal recessive hypophosphatemic rickets type 1 (ARHR1), caused by a homozygous mutation of dentin matrix protein 1 (DMP1), is extremely rare, with only 30 reported patients. To date, there has been no case with compound heterozygous DMP1 mutations. OBJECTIVE To report the first compound heterozygous mutations of DMP1 causing ARHR1 and confirm the effect of the mutation on DMP1 protein. METHODS We report the clinical features of a Chinese patient with HR. Whole-exome sequencing (WES) was performed on the proband. Then, Cytoscan HD array, Sanger sequencing, and genomic quantitative PCR (qPCR) were used to confirm the mutations. A cell experiment was conducted to explore the effect of the mutation. RESULTS The proband is a 4-year-old boy, who developed genu varum when he was able to walk at age 1 year and tooth loss after a mild hit at age 3.5 years. Physical examination, biochemical measurement, and imaging finding indicated HR. Family history was negative. WES performed on the proband revealed a novel start codon mutation (c.1A > T, p.Met1Leu) in DMP1 and a large deletion involving most of the small integrin-binding ligand N-linked glycoprotein (SIBLING) family gene, including DSPP, DMP1, IBSP, and MEPE. The novel paternally inherited start codon mutation, which resulted in decreased expression of DMP1 protein with smaller molecular weight and cleavage defect, was confirmed by Sanger sequencing. The maternally inherited deletion was validated by Cytoscan and qPCR, and the breakpoint was finally identified by long-range PCR and Sanger sequencing. Manifestation of dentin dysplasia (DD) or dentinogenesis imperfecta (DGI) caused by DSPP mutations was absent in the patient and his mother, confirming that haploinsufficiency could not lead to DD or DGI. CONCLUSION We report for the first time compound heterozygous DMP1 mutations consisting of a large deletion and a novel start codon mutation (c.1A > T, p.Met1Leu) in a Chinese patient with ARHR1.
Collapse
Affiliation(s)
- Xiaolin Ni
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yiyi Gong
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yan Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiang Li
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Qianqian Pang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Wei Liu
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yue Chi
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ruizhi Jiajue
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ou Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Mei Li
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiaoping Xing
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Weibo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
8
|
Kim YJ, Lee Y, Zhang H, Seymen F, Koruyucu M, Bayrak S, Tuloglu N, Simmer JP, Hu JCC, Kim JW. Translated Mutant DSPP mRNA Expression Level Impacts the Severity of Dentin Defects. J Pers Med 2022; 12:1002. [PMID: 35743786 PMCID: PMC9225647 DOI: 10.3390/jpm12061002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 11/28/2022] Open
Abstract
Hereditary dentin defects are conventionally classified into three types of dentinogenesis imperfecta (DGI) and two types of dentin dysplasia (DD). Mutations in the dentin sialophosphoprotein (DSPP) gene have been identified to cause DGI type II and III and DD type II; therefore, these are not three different conditions, but rather allelic disorders. In this study, we recruited three families with varying clinical phenotypes from DGI-III to DD-II and performed mutational analysis by candidate gene analysis or whole-exome sequencing. Three novel mutations including a silent mutation (NM_014208.3: c.52-2del, c.135+1G>C, and c.135G>A; p.(Gln45=)) were identified, all of which affected pre-mRNA splicing. Comparison of the splicing assay results revealed that the expression level of the DSPP exon 3 deletion transcript correlated with the severity of the dentin defects. This study did not only expand the mutational spectrum of DSPP gene, but also advanced our understanding of the molecular pathogenesis impacting the severity of hereditary dentin defects.
Collapse
Affiliation(s)
- Youn Jung Kim
- Department of Pediatric Dentistry & DRI, School of Dentistry, Seoul National University, Seoul 03080, Korea; (Y.J.K.); (Y.L.)
| | - Yejin Lee
- Department of Pediatric Dentistry & DRI, School of Dentistry, Seoul National University, Seoul 03080, Korea; (Y.J.K.); (Y.L.)
| | - Hong Zhang
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (H.Z.); (J.P.S.); (J.C.-C.H.)
| | - Figen Seymen
- Department of Paediatric Dentistry, Faculty of Dentistry, Altinbas University, Istanbul 34147, Turkey;
| | - Mine Koruyucu
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul 34116, Turkey;
| | - Sule Bayrak
- Private Practice, Eskisehir 26150, Turkey; (S.B.); (N.T.)
| | - Nuray Tuloglu
- Private Practice, Eskisehir 26150, Turkey; (S.B.); (N.T.)
| | - James P. Simmer
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (H.Z.); (J.P.S.); (J.C.-C.H.)
| | - Jan C.-C. Hu
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (H.Z.); (J.P.S.); (J.C.-C.H.)
| | - Jung-Wook Kim
- Department of Pediatric Dentistry & DRI, School of Dentistry, Seoul National University, Seoul 03080, Korea; (Y.J.K.); (Y.L.)
- Department of Molecular Genetics & DRI, School of Dentistry, Seoul National University, Seoul 03080, Korea
| |
Collapse
|
9
|
The Modified Shields Classification and 12 Families with Defined DSPP Mutations. Genes (Basel) 2022; 13:genes13050858. [PMID: 35627243 PMCID: PMC9141616 DOI: 10.3390/genes13050858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 12/14/2022] Open
Abstract
Mutations in Dentin Sialophosphoprotein (DSPP) are known to cause, in order of increasing severity, dentin dysplasia type-II (DD-II), dentinogenesis imperfecta type-II (DGI-II), and dentinogenesis imperfecta type-III (DGI-III). DSPP mutations fall into two groups: a 5′-group that affects protein targeting and a 3′-group that shifts translation into the −1 reading frame. Using whole-exome sequence (WES) analyses and Single Molecule Real-Time (SMRT) sequencing, we identified disease-causing DSPP mutations in 12 families. Three of the mutations are novel: c.53T>C/p.(Val18Ala); c.3461delG/p.(Ser1154Metfs*160); and c.3700delA/p.(Ser1234Alafs*80). We propose genetic analysis start with WES analysis of proband DNA to identify mutations in COL1A1 and COL1A2 causing dominant forms of osteogenesis imperfecta, 5′-DSPP mutations, and 3′-DSPP frameshifts near the margins of the DSPP repeat region, and SMRT sequencing when the disease-causing mutation is not identified. After reviewing the literature and incorporating new information showing distinct differences in the cell pathology observed between knockin mice with 5′-Dspp or 3′-Dspp mutations, we propose a modified Shields Classification based upon the causative mutation rather than phenotypic severity such that patients identified with 5′-DSPP defects be diagnosed as DGI-III, while those with 3′-DSPP defects be diagnosed as DGI-II.
Collapse
|
10
|
Duncan HF, Kobayashi Y, Yamauchi Y, Quispe-Salcedo A, Chao Feng Z, Huang J, Partridge NC, Nakatani T, D’Armiento J, Shimizu E. The Critical Role of MMP13 in Regulating Tooth Development and Reactionary Dentinogenesis Repair Through the Wnt Signaling Pathway. Front Cell Dev Biol 2022; 10:883266. [PMID: 35531096 PMCID: PMC9068941 DOI: 10.3389/fcell.2022.883266] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/14/2022] [Indexed: 12/20/2022] Open
Abstract
Matrix-metalloproteinase-13 (MMP13) is important for bone formation and remodeling; however, its role in tooth development remains unknown. To investigate this, MMP13-knockout (Mmp13−/−) mice were used to analyze phenotypic changes in the dentin–pulp complex, mineralization-associated marker-expression, and mechanistic interactions. Immunohistochemistry demonstrated high MMP13-expression in pulp-tissue, ameloblasts, odontoblasts, and dentin in developing WT-molars, which reduced in adults, with human-DPC cultures demonstrating a >2000-fold increase in Mmp13-expression during mineralization. Morphologically, Mmp13−/− molars displayed critical alterations in the dentin-phenotype, affecting dentin-tubule regularity, the odontoblast-palisade and predentin-definition with significantly reduced dentin volume (∼30% incisor; 13% molar), and enamel and dentin mineral-density. Reactionary-tertiary-dentin in response to injury was reduced at Mmp13−/− molar cusp-tips but with significantly more dystrophic pulpal mineralization in MMP13-null samples. Odontoblast differentiation-markers, nestin and DSP, reduced in expression after MMP13-loss in vivo, with reduced calcium deposition in MMP13-null DPC cultures. RNA-sequencing analysis of WT and Mmp13−/− pulp highlighted 5,020 transcripts to have significantly >2.0-fold change, with pathway-analysis indicating downregulation of the Wnt-signaling pathway, supported by reduced in vivo expression of the Wnt-responsive gene Axin2. Mmp13 interaction with Axin2 could be partly responsible for the loss of odontoblastic activity and alteration to the tooth phenotype and volume which is evident in this study. Overall, our novel findings indicate MMP13 as critical for tooth development and mineralization processes, highlighting mechanistic interaction with the Wnt-signaling pathway.
Collapse
Affiliation(s)
- Henry F. Duncan
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin, Dublin, Ireland
- *Correspondence: Henry F. Duncan, ; Emi Shimizu,
| | - Yoshifumi Kobayashi
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, United States
| | - Yukako Yamauchi
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin, Dublin, Ireland
| | | | - Zhi Chao Feng
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, United States
| | - Jia Huang
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, United States
| | - Nicola C. Partridge
- Department of Molecular Pathobiology, New York University Dentistry, New York, NY, United States
| | - Teruyo Nakatani
- Department of Molecular Pathobiology, New York University Dentistry, New York, NY, United States
| | - Jeanine D’Armiento
- Department of Physiology and Cellular Biophysics, Columbia University Medical Centre, New York, NY, United States
| | - Emi Shimizu
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, United States
- *Correspondence: Henry F. Duncan, ; Emi Shimizu,
| |
Collapse
|
11
|
Du Q, Cao L, Liu Y, Pang C, Wu S, Zheng L, Jiang W, Na X, Yu J, Wang S, Zhu X, Yang J. Phenotype and molecular characterizations of a family with dentinogenesis imperfecta shields type II with a novel DSPP mutation. ANNALS OF TRANSLATIONAL MEDICINE 2022; 9:1672. [PMID: 34988181 PMCID: PMC8667123 DOI: 10.21037/atm-21-5369] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/09/2021] [Indexed: 02/05/2023]
Abstract
Background Dentinogenesis imperfecta (DGI), Shields type-II is an autosomal dominant genetic disease which severely affects the function of the patients’ teeth. The dentin sialophosphoprotein (DSPP) gene is considered to be the pathogenic gene of DGI-II. In this study, a DGI-II family with a novel DSPP mutation were collected, functional characteristics of DGI cells and clinical features were analyzed to better understand the genotype-phenotype relationship of this disease. Methods Clinical data were collected, whole exome sequencing (WES) was conducted, and Sanger sequencing was used to verify the mutation sites. Physical characteristics of the patient’s teeth were examined using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The localization of green fluorescent protein (GFP)-fused wild-type (WT) dentin sialoprotein (DSP) and its variant were evaluated via an immunocytochemistry (ICC) assay. The behaviors of human dental pulp stem cells (hDPSCs) were investigated by flow cytometry, osteogenic differentiation, and quantitative real-time polymerase chain reaction (qRT-PCR). Results A novel heterozygous mutation c.53T > G (p. Val18Gly) in DSPP was found in this family. The SEM results showed that the participants’ teeth had reduced and irregular dentinal tubes. The EDS results showed that the Ca/P ratio of the patients’ teeth was significantly higher than that of the control group. The ICC assay showed that the mutant DSP was entrapped in the endoplasmic reticulum (ER), while the WT DSP located mainly in the Golgi apparatus. In comparison with normal cells, the patient’s cells exhibited significantly decreased mineralization ability and lower expression levels of DSPP and RUNX2. Conclusions The c.53T > G (p. Val18Gly) DSPP variant was shown to present with rare hypoplastic enamel defects. Functional analysis revealed that this novel variant disturbs dentinal characteristics and pulp cell behavior.
Collapse
Affiliation(s)
- Qin Du
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,The Key Laboratory for Human Disease Gene Study of Sichuan Province and Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Li Cao
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Liu
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Chunyan Pang
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Si Wu
- The State Key Lab of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liwei Zheng
- The State Key Lab of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Jiang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoxue Na
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Yu
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Shasha Wang
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xianjun Zhu
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiyun Yang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
12
|
Abstract
Non-syndromic inherited defects of tooth dentin are caused by two classes of dominant negative/gain-of-function mutations in dentin sialophosphoprotein (DSPP): 5' mutations affecting an N-terminal targeting sequence and 3' mutations that shift translation into the - 1 reading frame. DSPP defects cause an overlapping spectrum of phenotypes classified as dentin dysplasia type II and dentinogenesis imperfecta types II and III. Using CRISPR/Cas9, we generated a Dspp-1fs mouse model by introducing a FLAG-tag followed by a single nucleotide deletion that translated 493 extraneous amino acids before termination. Developing incisors and/or molars from this mouse and a DsppP19L mouse were characterized by morphological assessment, bSEM, nanohardness testing, histological analysis, in situ hybridization and immunohistochemistry. DsppP19L dentin contained dentinal tubules but grew slowly and was softer and less mineralized than the wild-type. DsppP19L incisor enamel was softer than normal, while molar enamel showed reduced rod/interrod definition. Dspp-1fs dentin formation was analogous to reparative dentin: it lacked dentinal tubules, contained cellular debris, and was significantly softer and thinner than Dspp+/+ and DsppP19L dentin. The Dspp-1fs incisor enamel appeared normal and was comparable to the wild-type in hardness. We conclude that 5' and 3' Dspp mutations cause dental malformations through different pathological mechanisms and can be regarded as distinct disorders.
Collapse
|
13
|
Shi C, Ma N, Zhang W, Ye J, Shi H, Xiang D, Wu C, Song L, Zhang N, Liu Q. Haploinsufficiency of Dspp Gene Causes Dentin Dysplasia Type II in Mice. Front Physiol 2020; 11:593626. [PMID: 33240110 PMCID: PMC7680915 DOI: 10.3389/fphys.2020.593626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/20/2020] [Indexed: 01/16/2023] Open
Abstract
Dentin dysplasia (DD) and dentinogenesis imperfecta (DGI) patients have abnormal structure, morphology, and function of dentin. DD-II, DGI-II, and DGI-III are caused by heterozygous mutations in the dentin sialophosphoprotein (DSPP) gene in humans. Evidences have shown that loss of function of DSPP in Dspp knockout mice leads to phenotypes similar to DGI-III, and that the abnormal dentinogenesis is associated with decreased levels of DSPP, indicating that DSPP haploinsufficiency may play a role in dentinogenesis. Thus, to testify the haploinsufficiency of Dspp, we used a Dspp heterozygous mouse model to observe the phenotypes in the teeth and the surrounding tissues. We found that Dspp heterozygous mice displayed dentin phenotypes similar to DD-II at the ages of 12 and 18 months, which was characterized by excessive attrition of the enamel at the occlusal surfaces, thicker floor dentin of the pulp chamber, decreased pulp volume, and compromised mineralization of the dentin. In addition, the periodontium was also affected, exhibiting apical proliferation of the junctional epithelium, decreased height and width of the alveolar bone, and infiltration of the inflammatory cells, leading to the destruction of the periodontium. Both the dental and periodontal phenotypes were age-dependent, which were more severe at 18 months old than those at 12 months old. Our report is the first to claim the haploinsufficiency of Dspp gene and a DD-II mouse model, which can be further used to study the molecular mechanisms of DD-II.
Collapse
Affiliation(s)
- Ce Shi
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Jilin University, Changchun, China
| | - Ning Ma
- Department of Rheumatology, First Hospital of Jilin University, Changchun, China
| | - Wei Zhang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Jilin University, Changchun, China
| | - Jiapeng Ye
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Jilin University, Changchun, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Jilin University, Changchun, China
| | - Haibo Shi
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Jilin University, Changchun, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Jilin University, Changchun, China
| | - Danwei Xiang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Jilin University, Changchun, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Jilin University, Changchun, China
| | - Chunyue Wu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Jilin University, Changchun, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Jilin University, Changchun, China
| | - Lina Song
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Jilin University, Changchun, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Jilin University, Changchun, China
| | - Ning Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Jilin University, Changchun, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Jilin University, Changchun, China
| | - Qilin Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Jilin University, Changchun, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Lee JW, Hong J, Seymen F, Kim YJ, Kang J, Koruyucu M, Tuloglu N, Bayrak S, Song JS, Shin TJ, Hyun HK, Kim YJ, Lee JC, Park JC, Hu J, Simmer J, Kim JW. Novel frameshift mutations in DSPP cause dentin dysplasia type II. Oral Dis 2019; 25:2044-2046. [PMID: 31454439 DOI: 10.1111/odi.13182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 12/01/2022]
Affiliation(s)
- Ji Won Lee
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Jiwon Hong
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Figen Seymen
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - Youn Jung Kim
- Department of Molecular Genetics & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Jenny Kang
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Mine Koruyucu
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - Nuray Tuloglu
- Department of Pediatric Dentistry, Faculty of Dentistry, University of Eskisehir Osmangazi, Eskisehir, Turkey
| | - Sule Bayrak
- Department of Pediatric Dentistry, Faculty of Dentistry, University of Eskisehir Osmangazi, Eskisehir, Turkey
| | - Ji-Soo Song
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Teo Jeon Shin
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Hong-Keun Hyun
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Young-Jae Kim
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | | | - Joo-Cheol Park
- Department of Cell and Developmental Biology & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Jan Hu
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - James Simmer
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Jung-Wook Kim
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea.,Department of Molecular Genetics & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| |
Collapse
|
15
|
Fan F, Li N, Huang S, Ma J. A multidisciplinary approach to the functional and esthetic rehabilitation of dentinogenesis imperfecta type II: A clinical report. J Prosthet Dent 2019; 122:95-103. [DOI: 10.1016/j.prosdent.2018.10.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 10/27/2022]
|
16
|
Liang T, Zhang H, Xu Q, Wang S, Qin C, Lu Y. Mutant Dentin Sialophosphoprotein Causes Dentinogenesis Imperfecta. J Dent Res 2019; 98:912-919. [PMID: 31173534 PMCID: PMC6616118 DOI: 10.1177/0022034519854029] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Dentin sialophosphoprotein (DSPP) is an extracellular matrix protein highly expressed by odontoblasts in teeth. DSPP mutations in humans may cause dentinogenesis imperfecta (DGI), an autosomal dominant dentin disorder. We recently generated a mouse model (named "DsppP19L/+ mice") that expressed a mutant DSPP in which the proline residue at position 19 was replaced by a leucine residue. We found that the DsppP19L/+ and DsppP19L/P19L mice at a younger age displayed a tooth phenotype resembling human DGI type III characterized by enlarged dental pulp chambers, while the teeth of older DsppP19L/+ and DsppP19L/P19L mice had smaller dental pulp chambers mimicking DGI type II. The teeth of DsppP19L/+ and DsppP19L/P19L mice had a narrower pulp chamber roof predentin layer, thinner pulp chamber roof dentin, and thicker pulp chamber floor dentin. In addition, these mice also had increased enamel attrition, accompanied by excessive deposition of peritubular dentin. Immunohistochemistry, in situ hybridization, and real-time polymerase chain reaction analyses showed that the odontoblasts in both DsppP19L/+ and DsppP19L/P19L mice had reduced DSPP expression, compared to the wild-type mice. We also observed that the levels of DSPP expression were much higher in the roof-forming odontoblasts than in the floor-forming odontoblasts in the wild-type mice and mutant mice. Moreover, immunohistochemistry showed that while the immunostaining signals of dentin sialoprotein (N-terminal fragment of DSPP) were decreased in the dentin matrix, they were remarkably increased in the odontoblasts of the DsppP19L/+ and DsppP19L/P19L mice. Consistently, our in vitro studies showed that the secretion of the mutant DSPP was impaired and accumulated within endoplasmic reticulum. These findings suggest that the dental phenotypes of the mutant mice were associated with the intracellular retention of the mutant DSPP in the odontoblasts of the DSPP-mutant mice.
Collapse
Affiliation(s)
- T. Liang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - H. Zhang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - Q. Xu
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - S. Wang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - C. Qin
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - Y. Lu
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, USA
| |
Collapse
|
17
|
Yin Y, Garcia MR, Novak AJ, Saunders AM, Ank RS, Nam AS, Fisher LW. Surf4 (Erv29p) binds amino-terminal tripeptide motifs of soluble cargo proteins with different affinities, enabling prioritization of their exit from the endoplasmic reticulum. PLoS Biol 2018; 16:e2005140. [PMID: 30086131 PMCID: PMC6097701 DOI: 10.1371/journal.pbio.2005140] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 08/17/2018] [Accepted: 07/17/2018] [Indexed: 01/16/2023] Open
Abstract
Some secreted proteins that assemble into large complexes, such as extracellular matrices or hormones and enzymes in storage granules, must be kept at subaggregation concentrations during intracellular trafficking. We show surfeit locus protein 4 (Surf4) is the cargo receptor that establishes different steady-state concentrations for a variety of soluble cargo proteins within the endoplasmic reticulum (ER) through interaction with the amino-terminal tripeptides exposed after removal of leader sequences. We call this motif the ER-Exit by Soluble Cargo using Amino-terminal Peptide-Encoding motif (ER-ESCAPE motif). Proteins that most readily aggregate in the ER lumen (e.g., dentin sialophosphoprotein [DSPP] and amelogenin, X-linked [AMELX]) have strong ER-ESCAPE motifs to inhibit aggregate formation, while less susceptible cargo exhibits weaker motifs. Specific changes in a single amino acid of the tripeptide result in aggregate formation and failure to efficiently traffic cargo out of the ER. A logical subset of 8,000 possible tripeptides starting a model soluble cargo protein (growth hormone) established a continuum of steady-state ER concentrations ranging from low (i.e., high affinity for receptor) to the highest concentrations associated with bulk flow-limited trafficking observed for nonbinding motifs. Human cells lacking Surf4 no longer preferentially trafficked cargo expressing strong ER-ESCAPE motifs. Reexpression of Surf4 or expression of yeast's ortholog, ER-derived vesicles protein 29 (Erv29p), rescued enhanced ER trafficking in Surf4-null cells. Hence our work describes a new way of preferentially exporting soluble cargo out of the ER that maintains proteins below the concentrations at which they form damaging aggregates.
Collapse
Affiliation(s)
- Ying Yin
- Matrix Biochemistry Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mekka R. Garcia
- Matrix Biochemistry Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alexander J. Novak
- Matrix Biochemistry Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Allison M. Saunders
- Matrix Biochemistry Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Raira S. Ank
- Matrix Biochemistry Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Anna S. Nam
- Matrix Biochemistry Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Larry W. Fisher
- Matrix Biochemistry Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
18
|
Bao Q, Zhang J, Wang XX. Effects of Btbd7 knockdown on the proliferation of human dental pulp cells and expression of Dspp. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:1460-1465. [PMID: 31938244 PMCID: PMC6958179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 01/27/2018] [Indexed: 06/10/2023]
Abstract
BTB/POZ domain-containing protein 7 (Btbd7) is recognized as a regulatory gene that promotes epithelial tissue remodeling and branching morphogenesis. In cancer cells, it is involved in epithelial-mesenchymal transition and cell invasion. However, the role of Btbd7 in human dental pulp cells (hDPCs) is not clear. The aim of this study is to explore the function of Btbd7 in hDPCs. Expression of Btbd7 in hDPCs was examined by immunocytochemical staining. Lentiviral vectors expressing small interfering RNA (siRNA)-Btbd7 were used to knockdown expression of Btbd7 in hDPCs. Proliferation of Btbd7 knockdown hDPCs was determined using a cell counting Kit-8 assay, and expression of dentin sialophosphoprotein (Dspp) was assessed using real-time quantitative reverse transcription-PCR and Western blot. Btbd7 was mainly expressed in the cytoplasm and nucleus of hDPCs. Suppression of Btbd7 temporarily promoted hDPC proliferation and significantly inhibited expression of Dspp in hDPCs. Our results show that Btbd7 plays a role in hDPC proliferation, and possibly participates in odontoblast differentiation of hDPCs and dentin formation by regulating the expression of Dspp.
Collapse
Affiliation(s)
- Qi Bao
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong UniversityJinan, Shandong, China
- Shandong Provincial Key Laboratory of Oral BiomedicineJinan, Shandong, China
- Shanxian Central HospitalShanxian, Shandong, China
| | - Jun Zhang
- Shandong Provincial Key Laboratory of Oral BiomedicineJinan, Shandong, China
- Department of Orthodontics, School of Stomatology, Shandong UniversityJinan, Shandong, China
| | - Xu-Xia Wang
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong UniversityJinan, Shandong, China
- Shandong Provincial Key Laboratory of Oral BiomedicineJinan, Shandong, China
| |
Collapse
|
19
|
Li F, Liu Y, Liu H, Yang J, Zhang F, Feng H. Phenotype and genotype analyses in seven families with dentinogenesis imperfecta or dentin dysplasia. Oral Dis 2017; 23:360-366. [PMID: 27973701 DOI: 10.1111/odi.12621] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 11/29/2016] [Accepted: 12/05/2016] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Hereditary dentin defects can be categorised into two classes according to their clinical manifestations: dentinogenesis imperfecta (DGI), which includes three types (DGI-I, DGI-II and DGI-III), and dentin dysplasia (DD), which includes two types (DD-I and DD-II). This study investigated the phenotypic characteristics and genetic causes of hereditary dentin defects in seven Chinese families. MATERIALS AND METHODS Seven families affected with DGI-II, DGI-III or DD-II were enrolled. Clinical examinations were performed to determine the phenotypic characteristics, and DNA samples were collected for Sanger sequencing. RESULTS Clinical diagnoses revealed DGI-II in five families, DGI-III in one family and DD-II in one family. Variants of the dentin sialophosphoprotein (DSPP) gene were found in six of the seven families. Of these, c.52G>T was identified in two families. Each of the remaining four families had a different variant: c.2684delG, c.52-2A>G, c.1874-1877delACAG and c.3509-3521del13bp; the last three variants were novel. CONCLUSIONS This is the first study to analyse all three important types of hereditary dentin defect and include comprehensive genetic analyses of both dentin sialoprotein and dentin phosphoprotein in Chinese families. This study expands the spectrum of DSPP variants, highlighting their associated phenotypic continuum.
Collapse
Affiliation(s)
- F Li
- Department of Prosthodontics, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Y Liu
- Department of Prosthodontics, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - H Liu
- Department of Prosthodontics, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - J Yang
- Department of Prosthodontics, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - F Zhang
- Department of Pediatrics, Peking University School and Hospital of Stomatology, Beijing, China
| | - H Feng
- Department of Prosthodontics, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
20
|
Dentin sialophosphoprotein is a potentially latent bioactive protein in dentin. J Oral Biosci 2016; 58:134-142. [DOI: 10.1016/j.job.2016.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/01/2016] [Indexed: 11/18/2022]
|
21
|
Smith CEL, Murillo G, Brookes SJ, Poulter JA, Silva S, Kirkham J, Inglehearn CF, Mighell AJ. Deletion of amelotin exons 3-6 is associated with amelogenesis imperfecta. Hum Mol Genet 2016; 25:3578-3587. [PMID: 27412008 PMCID: PMC5179951 DOI: 10.1093/hmg/ddw203] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/17/2016] [Accepted: 06/21/2016] [Indexed: 11/15/2022] Open
Abstract
Amelogenesis imperfecta (AI) is a heterogeneous group of genetic conditions that result in defective dental enamel formation. Amelotin (AMTN) is a secreted protein thought to act as a promoter of matrix mineralization in the final stage of enamel development, and is strongly expressed, almost exclusively, in maturation stage ameloblasts. Amtn overexpression and Amtn knockout mouse models have defective enamel with no other associated phenotypes, highlighting AMTN as an excellent candidate gene for human AI. However, no AMTN mutations have yet been associated with human AI. Using whole exome sequencing, we identified an 8,678 bp heterozygous genomic deletion encompassing exons 3-6 of AMTN in a Costa Rican family segregating dominant hypomineralised AI. The deletion corresponds to an in-frame deletion of 92 amino acids, shortening the protein from 209 to 117 residues. Exfoliated primary teeth from an affected family member had enamel that was of a lower mineral density compared to control enamel and exhibited structural defects at least some of which appeared to be associated with organic material as evidenced using elemental analysis. This study demonstrates for the first time that AMTN mutations cause non-syndromic human AI and explores the human phenotype, comparing it with that of mice with disrupted Amtn function.
Collapse
Affiliation(s)
- Claire E L Smith
- Leeds Institute of Biomedical and Clinical Sciences, St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK.,Department of Oral Biology, St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Gina Murillo
- University of Costa Rica, School of Dentistry, San Pedro, Costa Rica
| | - Steven J Brookes
- Department of Oral Biology, St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - James A Poulter
- Leeds Institute of Biomedical and Clinical Sciences, St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Sandra Silva
- University of Costa Rica, Molecular Biology Cellular Centre (CBCM), San Pedro, Costa Rica and
| | - Jennifer Kirkham
- Department of Oral Biology, St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Chris F Inglehearn
- Leeds Institute of Biomedical and Clinical Sciences, St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Alan J Mighell
- Leeds Institute of Biomedical and Clinical Sciences, St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK, .,School of Dentistry, University of Leeds, Leeds LS2 9LU, UK
| |
Collapse
|
22
|
Jaha H, Husein D, Ohyama Y, Xu D, Suzuki S, Huang GTJ, Mochida Y. N-terminal Dentin Sialoprotein fragment induces type I collagen production and upregulates dentinogenesis marker expression in osteoblasts. Biochem Biophys Rep 2016; 6:190-196. [PMID: 27158678 PMCID: PMC4857711 DOI: 10.1016/j.bbrep.2016.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Bone and dentin are mineralized extracellular matrices produced by osteoblasts and odontoblasts, respectively, and their major organic portion is type I collagen. Dentinogenesis Imperfecta (DGI) is one of the most common clinically- and genetically-based disturbances of dentin formation, causing irreversible dentin defects. Among several types of DGI, patients with DGI type II exhibit opalescent dentin with partial or complete pulp obliteration. It has been previously reported that the non-sense mutation (c.133C>T) in Dentin Sialophosphoprotein (DSPP) was identified in DGI type II patients at glutamine residue 45, resulting in the premature stop codon (p.Q45X). DSPP is known to be synthesized as a single gene product and further processed at Gly462-Asp463, resulting in the production of Dentin Sialoprotein (DSP) and Dentin Phosphoprotein (DPP). We hypothesized that the shorter form (Q45X) of N-terminal Dentin Sialoprotein (N-DSP) may cause over-production of type I collagen protein as obliterated pulp is occupied by dentin. To test this hypothesis, we generated mouse recombinant Glutathione-S-Transferase (GST)-N-DSP fusion protein, and the effect of GST-N-DSP was investigated in calvarial bone explant culture and MC3T3-E1 osteoblastic culture systems. Here we show that a significant increase in calvarial bone formation is observed by GST-N-DSP. GST-N-DSP accelerates MC3T3-E1 osteoblast cell growth and proliferation and subsequent osteoblast differentiation by inducing the expression of certain osteogenic markers such as type I collagen, Runx2, Osterix and ATF4. Interestingly, GST-N-DSP significantly enhances dentinogenesis marker gene expression including Dspp and Dmp1 gene expression in non-odontogenic MC3T3-E1 cells. To rule out any artificial effect of GST-tag, we also used the synthetic peptide of N-DSP and confirmed the results of N-DSP peptide were essentially similar to those of GST-N-DSP. Taken together, our data suggest that N-DSP promotes bone formation by accelerating osteoblast cell proliferation and subsequent osteoblast differentiation accompanied by marked up-regulation of the dentin matrix markers, such as Dspp and Dmp1 genes. Recombinant N-terminal DSP (N-DSP) protein was generated. N-DSP mimics the non-sense mutation form of Dentinogenesis Imperfecta type II. N-DSP enhances bone formation in clavarial ex vivo cultures. N-DSP accelerates osteoblast proliferation. N-DSP upregulates type I collagen and Dspp expression in non-odontogenic osteoblasts.
Collapse
Affiliation(s)
- Haytham Jaha
- Department of Molecular and Cell Biology, Boston University, Henry M. Goldman School of Dental Medicine, Boston, MA 02118, USA
| | - Dina Husein
- Department of Molecular and Cell Biology, Boston University, Henry M. Goldman School of Dental Medicine, Boston, MA 02118, USA
| | - Yoshio Ohyama
- Department of Molecular and Cell Biology, Boston University, Henry M. Goldman School of Dental Medicine, Boston, MA 02118, USA
| | - Dongliang Xu
- Department of Molecular and Cell Biology, Boston University, Henry M. Goldman School of Dental Medicine, Boston, MA 02118, USA; Henan Province People 's Hospital, 7 Weiwu Rd, Zhengzhou, 450003, China
| | - Shigeki Suzuki
- Department of Biological Endodontics, Integrated Health Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
| | - George T-J Huang
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Yoshiyuki Mochida
- Department of Molecular and Cell Biology, Boston University, Henry M. Goldman School of Dental Medicine, Boston, MA 02118, USA
| |
Collapse
|
23
|
Zhang H, Liu P, Wang S, Liu C, Jani P, Lu Y, Qin C. Transgenic expression of dentin phosphoprotein inhibits skeletal development. Eur J Histochem 2016; 60:2587. [PMID: 26972716 PMCID: PMC4800252 DOI: 10.4081/ejh.2016.2587] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 11/23/2022] Open
Abstract
Dentin sialophosphoprotein (DSPP) is proteolytically processed into an NH2-terminal fragment called dentin sialoprotein (DSP) and a COOH-terminal fragment known as dentin phosphoprotein (DPP). These two fragments are believed to perform distinct roles in formation of bone and dentin. To investigate the functions of DPP in skeletal development, we generated transgenic mice to overexpress hemagglutinin (HA)-tagged DPP under the control of a 3.6 kb type I collagen (Col1a1) promoter (designated as Col1a1-HA-DPP). The Col1a1-HA-DPP transgenic mice were significantly smaller by weight, had smaller skeletons and shorter long bones than their wild type littermates, as demonstrated by X-ray radiography. They displayed reduced trabecular bone formation and narrower zones of proliferative and hypertrophic chondrocytes in the growth plates of the long bones. Histological analyses showed that the transgenic mice had reduced cell proliferation in the proliferating zone, but lacked obvious defects in the chondrocyte differentiation. In addition, the transgenic mice with a high level of transgene expression developed spontaneous long bone fractures. In conclusion, overexpressing DPP inhibited skeletal development, suggesting that the balanced actions between the NH2- and COOH-terminal fragments of DSPP may be required for normal skeletal development.
Collapse
Affiliation(s)
- H Zhang
- Texas A&M University, Baylor College of Dentistry.
| | | | | | | | | | | | | |
Collapse
|
24
|
Boskey AL, Villarreal-Ramirez E. Intrinsically disordered proteins and biomineralization. Matrix Biol 2016; 52-54:43-59. [PMID: 26807759 DOI: 10.1016/j.matbio.2016.01.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/19/2016] [Accepted: 01/19/2016] [Indexed: 01/21/2023]
Abstract
In vertebrates and invertebrates, biomineralization is controlled by the cell and the proteins they produce. A large number of these proteins are intrinsically disordered, gaining some secondary structure when they interact with their binding partners. These partners include the component ions of the mineral being deposited, the crystals themselves, the template on which the initial crystals form, and other intrinsically disordered proteins and peptides. This review speculates why intrinsically disordered proteins are so important for biomineralization, providing illustrations from the SIBLING (small integrin binding N-glycosylated) proteins and their peptides. It is concluded that the flexible structure, and the ability of the intrinsically disordered proteins to bind to a multitude of surfaces is crucial, but details on the precise-interactions, energetics and kinetics of binding remain to be determined.
Collapse
Affiliation(s)
- Adele L Boskey
- Musculoskeletal Integrity Program, Hospital for Special Surgery, New York, NY 10021, USA.
| | | |
Collapse
|
25
|
Yang J, Kawasaki K, Lee M, Reid BM, Nunez SM, Choi M, Seymen F, Koruyucu M, Kasimoglu Y, Estrella-Yuson N, Lin BPJ, Simmer JP, Hu JCC. The dentin phosphoprotein repeat region and inherited defects of dentin. Mol Genet Genomic Med 2016; 4:28-38. [PMID: 26788535 PMCID: PMC4707025 DOI: 10.1002/mgg3.176] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 11/12/2022] Open
Abstract
Nonsyndromic dentin defects classified as type II dentin dysplasia and types II and III dentinogenesis imperfecta are caused by mutations in DSPP (dentin sialophosphoprotein). Most reported disease‐causing DSPP mutations occur within the repetitive DPP (dentin phosphoprotein) coding sequence. We characterized the DPP sequences of five probands with inherited dentin defects using single molecule real‐time (SMRT) DNA sequencing. Eight of the 10 sequences matched previously reported DPP length haplotypes and two were novel. Alignment with known DPP sequences showed 32 indels arranged in 36 different patterns. Sixteen of the 32 indels were not represented in more than one haplotype. The 25 haplotypes with confirmed indels were aligned to generate a tree that describes how the length variations might have evolved. Some indels were independently generated in multiple lines. A previously reported disease‐causing DSPP mutation in Family 1 was confirmed and its position clarified (c.3135delC; p.Ser1045Argfs*269). A novel frameshift mutation (c.3504_3508dup; p.Asp1170Alafs*146) caused the dentin defects in Family 2. A COL1A2 (c.2027G>A or p.Gly676Asp) missense mutation, discovered by whole‐exome sequencing, caused the dentin defects in Family 3. We conclude that SMRT sequencing characterizes the DPP repeat region without cloning and can improve our understanding of normal and pathological length variations in DSPP alleles.
Collapse
Affiliation(s)
- Jie Yang
- Department of Biologic and Materials SciencesUniversity of Michigan School of Dentistry1210 Eisenhower PlaceAnn ArborMichigan; Department of Pediatric DentistrySchool and Hospital of StomatologyPeking University22 South AvenueZhongguancun Haidian DistrictBeijing100081China
| | - Kazuhiko Kawasaki
- Department of Anthropology Pennsylvania State University University Park Pennsylvania 16802
| | - Moses Lee
- Department of Biomedical Sciences Seoul National University College of Medicine 275-1 Yongon-dong, Chongno-gu Seoul 110-768 Korea
| | - Bryan M Reid
- Department of Biologic and Materials Sciences University of Michigan School of Dentistry 1210 Eisenhower Place Ann Arbor Michigan
| | - Stephanie M Nunez
- Department of Biologic and Materials Sciences University of Michigan School of Dentistry 1210 Eisenhower Place Ann Arbor Michigan
| | - Murim Choi
- Department of Biomedical Sciences Seoul National University College of Medicine 275-1 Yongon-dong, Chongno-gu Seoul 110-768 Korea
| | - Figen Seymen
- Department of Pedodontics Faculty of Dentistry Istanbul University Istanbul Turkey
| | - Mine Koruyucu
- Department of Pedodontics Faculty of Dentistry Istanbul University Istanbul Turkey
| | - Yelda Kasimoglu
- Department of Pedodontics Faculty of Dentistry Istanbul University Istanbul Turkey
| | - Ninna Estrella-Yuson
- Department of Paediatric Dentistry Women's and Children's Hospital 72 King William Road North Adelaide South Australia 5006 Australia
| | - Brent P J Lin
- Department of Pediatric Dentistry School of Dentistry University of California San Francisco California
| | - James P Simmer
- Department of Biologic and Materials Sciences University of Michigan School of Dentistry 1210 Eisenhower Place Ann Arbor Michigan
| | - Jan C-C Hu
- Department of Biologic and Materials Sciences University of Michigan School of Dentistry 1210 Eisenhower Place Ann Arbor Michigan
| |
Collapse
|
26
|
Accelerated enamel mineralization in Dspp mutant mice. Matrix Biol 2016; 52-54:246-259. [PMID: 26780724 DOI: 10.1016/j.matbio.2016.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 11/21/2022]
Abstract
Dentin sialophosphoprotein (DSPP) is one of the major non-collagenous proteins present in dentin, cementum and alveolar bone; it is also transiently expressed by ameloblasts. In humans many mutations have been found in DSPP and are associated with two autosomal-dominant genetic diseases - dentinogenesis imperfecta II (DGI-II) and dentin dysplasia (DD). Both disorders result in the development of hypomineralized and mechanically compromised teeth. The erupted mature molars of Dspp(-/-) mice have a severe hypomineralized dentin phenotype. Since dentin and enamel formations are interdependent, we decided to investigate the process of enamel onset mineralization in young Dspp(-/-) animals. We focused our analysis on the constantly erupting mouse incisor, to capture all of the stages of odontogenesis in one tooth, and the unerupted first molars. Using high-resolution microCT, we revealed that the onset of enamel matrix deposition occurs closer to the cervical loop and both secretion and maturation of enamel are accelerated in Dspp(-/-) incisors compared to the Dspp(+/-) control. Importantly, these differences did not translate into major phenotypic differences in mature enamel in terms of the structural organization, mineral density or hardness. The only observable difference was the reduction in thickness of the outer enamel layer, while the total enamel thickness remained unchanged. We also observed a compromised dentin-enamel junction, leading to delamination between the dentin and enamel layers. The odontoblast processes were widened and lacked branching near the DEJ. Finally, for the first time we demonstrate expression of Dspp mRNA in secretory ameloblasts. In summary, our data show that DSPP is important for normal mineralization of both dentin and enamel.
Collapse
|
27
|
Liang T, Meng T, Wang S, Qin C, Lu Y. The LPV Motif Is Essential for the Efficient Export of Secretory DMP1 From the Endoplasmic Reticulum. J Cell Physiol 2015; 231:1468-75. [PMID: 26595451 DOI: 10.1002/jcp.25265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 11/19/2015] [Indexed: 11/07/2022]
Abstract
Dentin matrix protein 1 (DMP1) is found abundantly in the extracellular matrices of bone and dentin. Secretory DMP1 begins with a tripeptide of leucine-proline-valine (LPV) after the endoplasmic reticulum (ER)-entry signal peptide is cleaved. The goal of this study was to determine the role of the LPV motif in the secretion of DMP1. A series of DNA constructs was generated to express various forms of DMP1 with or without the LPV motif. These constructs were transfected into a preosteoblast cell line, the MC3T3-E1 cells, and the subcellular localization and secretion of various forms of DMP1 were examined by immunofluorescent staining and Western-blotting analyses. Immunofluorescent staining showed that the LPV-containing DMP1 variants were primarily localized in the Golgi complex, whereas the LPV-lacking DMP1 variants were found abundantly within the ER. Western-blotting analyses demonstrated that the LPV-containing DMP1 variants were rapidly secreted from the transfected cells, as they did not accumulate within the cells, and the amounts increased in the conditioned media over time. In contrast, the LPV-lacking DMP1 variants were predominantly retained within the cells, and only small amounts were secreted out of the cells over time. These results suggest that the LPV motif is essential for the efficient export of secretory DMP1 from the ER to the Golgi complex.
Collapse
Affiliation(s)
- Tian Liang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, Texas
| | - Tian Meng
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, Texas
| | - Suzhen Wang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, Texas
| | - Chunlin Qin
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, Texas
| | - Yongbo Lu
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, Texas
| |
Collapse
|
28
|
Jia J, Bian Z, Song Y. Dspp mutations disrupt mineralization homeostasis during odontoblast differentiation. Am J Transl Res 2015; 7:2379-2396. [PMID: 26807185 PMCID: PMC4697717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 10/13/2015] [Indexed: 06/05/2023]
Abstract
The main pathological feature in isolated hereditary dentin disorders is the abnormality of dentin mineralization. Dentin sialophosphoprotein (DSPP) gene is the only identified causative gene for the disorders. The present study aims to explore the molecular association between Dspp mutations and the disrupted mineralization homeostasis during odontoblast differentiation. We generated lentivirus constructs with the mouse full-length wild type Dspp cDNA and 3 Dspp mutants and transfected them into mouse odontoblast-lineage cells (OLCs) which were then performed 21-day mineralization inducing differentiation. The formation of mineralized nodules was obviously fewer in mutants. Digital Gene Expression (DGE) showed that Dspp mutation affected the OLC differentiation in a degree. Further examination validated that Dspp (LV-Dspp) overexpressing OLCs possessed the ability to strictly orchestrate framework for mineralization inductors like Bmp2, Col1 and Runx2, and proliferative markers for mineralization like Alp and Ocn, as well as mineral homeostasis feedback regulators Mgp and Htra1. However, the missense mutation in Dspp signal peptide region (LV-M2) and the nonsense mutation (LV-M5) broke this orchestration. The results suggested that the mutant Dspp disrupt the dynamic homeostasis of mineralization during OLC differentiation. We are the first to use full-length mouse Dspp gene expression system to explore the mineralization mechanism by which inductors and inhibitors adjust each other during odontoblast differentiation. Our findings shed new light on association between Dspp and the dynamic homeostasis of mineralization inductors and inhibitors, and indicate the disruption of mineralization homeostasis might be a crucial reason for Dspp mutations resulting in dentin disorders.
Collapse
Affiliation(s)
- Jie Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University 237 Luoyu Road, Wuhan 430079, China
| | - Zhuan Bian
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University 237 Luoyu Road, Wuhan 430079, China
| | - Yaling Song
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University 237 Luoyu Road, Wuhan 430079, China
| |
Collapse
|
29
|
Gullard A, Croney CM, Wu X, Mamaeva O, Sohn P, Cao X, MacDougall M. Reduced Dentin Matrix Protein Expression in Camurati-Engelmann Disease Transgenic Mouse Model. J Cell Physiol 2015; 231:1106-13. [PMID: 26427011 DOI: 10.1002/jcp.25207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 11/11/2022]
Abstract
UNLABELLED Overexpression of transforming growth factor-β1 (TGF-β1) has been shown to lead to mineralization defects in both the enamel and dentin layers of teeth. A TGFB1 point mutation (H222D), derived from published cases of Camurati-Engelmann disease (CED), has been shown to constitutively activate TGF-β1, leading to excess bone matrix production. Although CED has been well documented in clinical case reports, there are no published studies on the effect of CED on the dentition. The objective of this study was to determine the dental manifestations of hyperactivated TGF-β1 signaling using an established mouse model of CED-derived TGF-β1 mutation. Murine dental tissues were studied via radiography, micro-CT, immunohistochemistry, and qRT-PCR. Results showed that initial decreased dental mineralized tissue density is resolved. Proliferation assays of incisor pulp and alveolar bone cell cultures revealed that cells from transgenic animals displayed a reduced rate of growth compared to alveolar bone cultures from wild-type mice. TGF-β family gene expression analysis indicated significant fold changes in the expression of Alpl, Bmp2-5, Col-1, -2, -4, and -6, Fgf, Mmp, Runx2, Tgfb3, Tfgbr3, and Vdr genes. Assessment of SIBLINGs revealed downregulation of Ibsp, Dmp1, Dspp, Mepe, and Spp1, as well as reduced staining for BMP-2 and VDR in mesenchymal-derived pulp tissue in CED animals. Treatment of dental pulp cells with recombinant human TGF-β1 resulted in increased SIBLING gene expression. CONCLUSIONS Our results provide in vivo evidence suggesting that TFG-β1 mediates expression of important dentin extracellular matrix components secreted by dental pulp, and when unbalanced, may contribute to abnormal dentin disorders.
Collapse
Affiliation(s)
- Angela Gullard
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama.,Institute of Oral Health Research, University of Alabama at Birmingham, Birmingham, Alabama
| | - Christina M Croney
- Institute of Oral Health Research, University of Alabama at Birmingham, Birmingham, Alabama
| | - Xiangwei Wu
- Department of Surgery, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Olga Mamaeva
- Institute of Oral Health Research, University of Alabama at Birmingham, Birmingham, Alabama
| | - Philip Sohn
- Institute of Oral Health Research, University of Alabama at Birmingham, Birmingham, Alabama
| | - Xu Cao
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland
| | - Mary MacDougall
- Institute of Oral Health Research, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
30
|
Immunolocalization of skeletal matrix proteins in tissue and mineral of the coral Stylophora pistillata. Proc Natl Acad Sci U S A 2014; 111:12728-33. [PMID: 25139990 DOI: 10.1073/pnas.1408621111] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The precipitation and assembly of calcium carbonate skeletons by stony corals is a precisely controlled process regulated by the secretion of an ECM. Recently, it has been reported that the proteome of the skeletal organic matrix (SOM) contains a group of coral acid-rich proteins as well as an assemblage of adhesion and structural proteins, which together, create a framework for the precipitation of aragonite. To date, we are aware of no report that has investigated the localization of individual SOM proteins in the skeleton. In particular, no data are available on the ultrastructural mapping of these proteins in the calcification site or the skeleton. This information is crucial to assessing the role of these proteins in biomineralization. Immunological techniques represent a valuable approach to localize a single component within a calcified skeleton. By using immunogold labeling and immunohistochemical assays, here we show the spatial arrangement of key matrix proteins in tissue and skeleton of the common zooxanthellate coral, Stylophora pistillata. To our knowledge, our results reveal for the first time that, at the nanoscale, skeletal proteins are embedded within the aragonite crystals in a highly ordered arrangement consistent with a diel calcification pattern. In the tissue, these proteins are not restricted to the calcifying epithelium, suggesting that they also play other roles in the coral's metabolic pathways.
Collapse
|
31
|
Nam AS, Yin Y, von Marschall Z, Fisher LW. Efficient trafficking of acidic proteins out of the endoplasmic reticulum involves a conserved amino terminal IleProVal (IPV)-like tripeptide motif. Connect Tissue Res 2014; 55 Suppl 1:138-41. [PMID: 24844412 PMCID: PMC4153534 DOI: 10.3109/03008207.2014.923852] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Most of the proposed extracellular biomineralization processes include the secretion of proteins that interact with mineral ions and/or mineral surfaces. Typically these proteins are acidic or have acidic domains that interact with multivalent cations in the extracellular environment. We propose that most acidic, Ca(2+)-binding proteins challenge the cell's mechanisms for trafficking through the endoplasmic reticulum (ER) lumen due to lumenal mM calcium that cause them to form large aggregates. We have recently shown that >95% of the DSPP mutations that cause non-syndromic genetic dentin diseases start their dominant negative affects by failing to rapidly exit the ER likely by forming complexes that cannot be normally trafficked to the Golgi. The complexes of mutant DSPP then capture more (severe disease) or less (mild disease) of the DSPP translated from the normal allele. After searching genomic databases as well as the published literature, we found the IleProVal (IPV)-like motif at the predicted amino terminus of many acidic proteins made in the mineralizing as well as non-mineralizing tissues of many species including vertebrates, echinoderms, mollusks, and yeast. While we often focused on acidic proteins reported associated with mineralizing structures, proteins associated with hormones and their storage/secretion, digestion, blood functions, as well as milk and other secreted fluids started with variations of the motif. Our hypothesis is that the IPV-like motif interacts with a highly conserved cargo receptor in the ER that efficiently traffics the acidic proteins out of the organelle before they can form harmful aggregates in the Ca(2+)-rich lumen.
Collapse
Affiliation(s)
| | | | | | - Larry W. Fisher
- corresponding author: Room 223, Building 30, 9000 Rockville Pike, Bethesda, MD, 20892-4320. Phone: 301-496-5769, Fax: 301-402-0824,
| |
Collapse
|
32
|
Abstract
Biomineralization is the process by which living organisms deposit mineral in the extracellular matrix. In nature, almost 50% of biominerals are calcium-bearing minerals. In addition to calcium, we find biominerals formed from silica and magnetite. Calcium-containing biominerals could be either calcium phosphate as in apatite found in vertebrates or calcium carbonate as in calcite and aragonite found in many invertebrates. Since all biomineralization is matrix mediated, an understanding of the nature of the proteins involved is essential in elucidating its mechanism. This review will discuss some of the proteins involved in the process of biomineralization involving calcium. Two proteins, dentin matrix protein 1 and dentin phosphoprotein (Phosphophoryn) will serve as models for the vertebrate system, and two others - P16 and phosphodontin will serve as models for the invertebrate system.
Collapse
Affiliation(s)
- Keith Alvares
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL. 60611
| |
Collapse
|
33
|
Mass T, Drake J, Haramaty L, Kim J, Zelzion E, Bhattacharya D, Falkowski P. Cloning and Characterization of Four Novel Coral Acid-Rich Proteins that Precipitate Carbonates In Vitro. Curr Biol 2013; 23:1126-31. [DOI: 10.1016/j.cub.2013.05.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 04/17/2013] [Accepted: 05/07/2013] [Indexed: 01/09/2023]
|
34
|
A DSPP mutation causing dentinogenesis imperfecta and characterization of the mutational effect. BIOMED RESEARCH INTERNATIONAL 2012; 2013:948181. [PMID: 23509818 PMCID: PMC3591212 DOI: 10.1155/2013/948181] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 09/28/2012] [Accepted: 10/12/2012] [Indexed: 11/17/2022]
Abstract
Mutations in the DSPP gene have been identified in nonsyndromic hereditary dentin defects, but the genotype-phenotype correlations are not fully understood. Recently, it has been demonstrated that the mutations of DSPP affecting the IPV leader sequence result in mutant DSPP retention in rough endoplasmic reticulum (ER). In this study, we identified a Korean family with dentinogenesis imperfecta type III. To identify the disease causing mutation in this family, we performed mutational analysis based on candidate gene sequencing. Exons and exon-intron boundaries of DSPP gene were sequenced, and the effects of the identified mutation on the pre-mRNA splicing and protein secretion were investigated. Candidate gene sequencing revealed a mutation (c.50C > T, p.P17L) in exon 2 of the DSPP gene. The splicing assay showed that the mutation did not influence pre-mRNA splicing. However, the mutation interfered with protein secretion and resulted in the mutant protein remaining largely in the ER. These results suggest that the mutation affects ER-to-Golgi apparatus export and results in the reduction of secreted DSPP and ER overload. This may induce cell stress and damage processing and/or transport of dentin matrix proteins or other critical proteins.
Collapse
|