1
|
Keaveny TM, Adams AL, Orwoll ES, Khosla S, Siris ES, McClung MR, Bouxsein ML, Fatemi S, Lee DC, Kopperdahl DL. Osteoporosis treatment prevents hip fracture similarly in both sexes: the FOCUS observational study. J Bone Miner Res 2024; 39:1424-1433. [PMID: 38861422 PMCID: PMC11425693 DOI: 10.1093/jbmr/zjae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/17/2024] [Accepted: 06/10/2024] [Indexed: 06/13/2024]
Abstract
Randomized trials have not been performed, and may never be, to determine if osteoporosis treatment prevents hip fracture in men. Addressing that evidence gap, we analyzed data from an observational study of new hip fractures in a large integrated healthcare system to compare the reduction in hip fractures associated with standard-of-care osteoporosis treatment in men versus women. Sampling from 271,389 patients aged ≥ 65 who had a hip-containing CT scan during care between 2005 and 2018, we selected all who subsequently had a first hip fracture (cases) after the CT scan (start of observation) and a sex-matched equal number of randomly selected patients. From those, we analyzed all who tested positive for osteoporosis (DXA-equivalent hip BMD T-score ≤ -2.5, measured from the CT scan using VirtuOst). We defined "treated" as at least six months of any osteoporosis medication by prescription fill data during follow-up; "not-treated" was no prescription fill. Sex-specific odds ratios of hip fracture for treated vs not-treated patients were calculated by logistic regression; adjustments included age, BMD T-score, BMD-treatment interaction, BMD, race/ethnicity, and seven baseline clinical risk factors. At two-year follow-up, 33.9% of the women (750/2,211 patients) and 24.0% of the men (175/728 patients) were treated primarily with alendronate; 51.3% and 66.3%, respectively, were not-treated; and 721 and 269, respectively, had a first hip fracture since the CT scan. Odds ratio of hip fracture for treated vs not-treated was 0.26 (95% confidence interval: 0.21-0.33) for women and 0.21 (0.13-0.34) for men; the ratio of these odds ratios (men:women) was 0.81 (0.47-1.37), indicating no significant sex effect. Various sensitivity and stratified analyses confirmed these trends, including results at five-year follow-up. Given these results and considering the relevant literature, we conclude that osteoporosis treatment prevents hip fracture similarly in both sexes.
Collapse
Affiliation(s)
- Tony M Keaveny
- Departments of Mechanical Engineering and Bioengineering, University of California, Berkeley, CA 94720, United States
| | - Annette L Adams
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA 91101, United States
| | - Eric S Orwoll
- Bone and Mineral Unit, Oregon Health & Science University, Portland, OR 97239, United States
| | - Sundeep Khosla
- Division of Endocrinology, Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, United States
| | - Ethel S Siris
- Department of Medicine, Toni Stabile Osteoporosis Center, Columbia University Medical Center, New York, NY 10032, United States
| | | | - Mary L Bouxsein
- Department of Orthopedic Surgery, Harvard Medical School, Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States
| | - Shireen Fatemi
- Department of Endocrinology, Kaiser Permanente Southern California, Panorama City, CA 91402, United States
| | - David C Lee
- O.N. Diagnostics LLC, Berkeley, CA 94704, United States
| | | |
Collapse
|
2
|
McCloskey E, Tan ATH, Schini M. Update on fracture risk assessment in osteoporosis. Curr Opin Endocrinol Diabetes Obes 2024; 31:141-148. [PMID: 38809256 DOI: 10.1097/med.0000000000000871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
PURPOSE OF REVIEW The assessment of fracture risk is playing an ever-increasing role in osteoporosis clinical management and informing international guidelines for osteoporosis. FRAX, a fracture risk calculator that provides individualized 10-year probabilities of hip and major osteoporotic fracture, has been widely used since 2008. In this review, we recap the development and limitations of intervention thresholds and the role of absolute fracture risk. RECENT FINDINGS There is an increasing awareness of disparities and inequities in the setting of intervention thresholds in osteoporosis. The limitations of the simple use of prior fracture or the DXA-derived BMD T -score threshold are increasingly being discussed; one solution is to use fracture risk or probabilities in the setting of such thresholds. This approach also permits more objective assessment of high and very high fracture risk to enable physicians to make choices not just about the need to treat but what agents to use in individual patients. SUMMARY Like all clinical tools, FRAX has limitations that need to be considered, but the use of fracture risk in deciding who to treat, when to treat and what agent to use is a mechanism to target treatment equitably to those at an increased risk of fracture.
Collapse
Affiliation(s)
- Eugene McCloskey
- Division of Clinical Medicine, School of Medicine and Population Health
- Centre for Metabolic Bone Diseases, University of Sheffield, Sheffield, UK
| | - Andre T H Tan
- Fast and Chronic Programmes, Alexandra Hospital, Queenstown
- Division of Endocrinology, Department of Medicine, National University Health System, Singapore, Singapore
| | - Marian Schini
- Division of Clinical Medicine, School of Medicine and Population Health
- Centre for Metabolic Bone Diseases, University of Sheffield, Sheffield, UK
| |
Collapse
|
3
|
Schini M, Johansson H, Harvey NC, Lorentzon M, Kanis JA, McCloskey EV. An overview of the use of the fracture risk assessment tool (FRAX) in osteoporosis. J Endocrinol Invest 2024; 47:501-511. [PMID: 37874461 PMCID: PMC10904566 DOI: 10.1007/s40618-023-02219-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/03/2023] [Indexed: 10/25/2023]
Abstract
FRAX®, a simple-to-use fracture risk calculator, was first released in 2008 and since then has been used increasingly worldwide. By calculating the 10-year probabilities of a major osteoporotic fracture and hip fracture, it assists clinicians when deciding whether further investigation, for example a bone mineral density measurement (BMD), and/or treatment is needed to prevent future fractures. In this review, we explore the literature around osteoporosis and how FRAX has changed its management. We present the characteristics of this tool and describe the use of thresholds (diagnostic and therapeutic). We also present arguments as to why screening with FRAX should be considered. FRAX has several limitations which are described in this review. This review coincides with the release of a version, FRAXplus, which addresses some of these limitations.
Collapse
Affiliation(s)
- M Schini
- Department of Oncology & Metabolism, Metabolic Bone Centre, Northern General Hospital, University of Sheffield, Herries Road, Sheffield, S5 7AU, UK.
| | - H Johansson
- Sahlgrenska Osteoporosis Centre, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - N C Harvey
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospitals Southampton NHS Foundation Trust, Southampton, UK
| | - M Lorentzon
- Sahlgrenska Osteoporosis Centre, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - J A Kanis
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
- Centre for Metabolic Bone Diseases, University of Sheffield, Sheffield, UK
| | - E V McCloskey
- Department of Oncology & Metabolism, Metabolic Bone Centre, Northern General Hospital, University of Sheffield, Herries Road, Sheffield, S5 7AU, UK
- Centre for Metabolic Bone Diseases, University of Sheffield, Sheffield, UK
| |
Collapse
|
4
|
Miyauchi A, Hamaya E, Shimauchi J, Yoshinaga Y, Nishi K. Effectiveness of romosozumab in patients with osteoporosis at high fracture risk: a Japanese real-world study. J Bone Miner Metab 2024; 42:77-89. [PMID: 38086988 DOI: 10.1007/s00774-023-01477-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/25/2023] [Indexed: 02/10/2024]
Abstract
INTRODUCTION To describe the real-world use of romosozumab in Japan, we conducted a chart review of > 1000 Japanese patients with osteoporosis (OP) at high risk of fracture, across multiple medical institutions. MATERIALS AND METHODS Treatment-naïve and prior OP-treatment patients who received romosozumab for 12 months followed by ≥ 6 months of sequential OP treatment were included. The primary objective described the baseline demographics and clinical characteristics; secondary objectives evaluated changes in bone mineral density (BMD) and bone turnover markers in all patients and effectiveness of romosozumab in a sub-group of treatment-naïve patients using the fracture risk assessment tool (FRAX®). RESULTS Of the 1027 patients (92.4% female), 45.0% were treatment-naïve. The mean ± SD age of treatment-naïve versus prior OP-treatment patients was 76.8 ± 8.5 and 77.1 ± 8.5 years. The most frequent prior OP treatment was bisphosphonates (45.0%). Romosozumab treatment for 12 months increased BMD at the lumbar spine in all groups; the median percent change from baseline in lumbar spine BMD was higher in the treatment-naïve (13.4%) versus prior OP-treatment group (bisphosphonates [9.2%], teriparatide [11.3%], denosumab [DMAb, 4.5%]). DMAb, bisphosphonates, or teriparatide after romosozumab maintained the BMD gains at all skeletal sites at month 18 in treatment-naïve patients. Most treatment-naïve patients were at high risk of fracture, BMD increased consistently with romosozumab regardless of the baseline fracture risk assessed by FRAX. CONCLUSION This large-scale, multicenter chart review provides clinically relevant insights into the profiles of patients initiating romosozumab, effectiveness of real-world romosozumab use, and sequential therapy in Japanese patients at high risk of fracture.
Collapse
Affiliation(s)
| | - Etsuro Hamaya
- Amgen K.K., Midtown Tower 9-7-1 Akasaka, Minato-ku, Tokyo, 107-6239, Japan.
| | | | - Yoko Yoshinaga
- Amgen K.K., Midtown Tower 9-7-1 Akasaka, Minato-ku, Tokyo, 107-6239, Japan
| | - Kiyoshi Nishi
- Amgen K.K., Midtown Tower 9-7-1 Akasaka, Minato-ku, Tokyo, 107-6239, Japan
| |
Collapse
|
5
|
Affiliation(s)
- Marcella Donovan Walker
- From the Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York
| | - Elizabeth Shane
- From the Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York
| |
Collapse
|
6
|
Jayash SN, Hamoudi D, Stephen LA, Argaw A, Huesa C, Joseph S, Wong SC, Frenette J, Farquharson C. Anti-RANKL Therapy Prevents Glucocorticoid-Induced Bone Loss and Promotes Muscle Function in a Mouse Model of Duchenne Muscular Dystrophy. Calcif Tissue Int 2023; 113:449-468. [PMID: 37470794 PMCID: PMC10516841 DOI: 10.1007/s00223-023-01116-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Bisphosphonates prevent bone loss in glucocorticoid (GC)-treated boys with Duchenne muscular dystrophy (DMD) and are recommended as standard of care. Targeting receptor activator of nuclear factor kappa-B ligand (RANKL) may have advantages in DMD by ameliorating dystrophic skeletal muscle function in addition to their bone anti-resorptive properties. However, the potential effects of anti-RANKL treatment upon discontinuation in GC-induced animal models of DMD are unknown and need further investigation prior to exploration in the clinical research setting. In the first study, the effects of anti-RANKL and deflazacort (DFZ) on dystrophic skeletal muscle function and bone microstructure were assessed in mdx mice treated with DFZ or anti-RANKL, or both for 8 weeks. Anti-RANKL and DFZ improved grip force performance of mdx mice but an additive effect was not noted. However, anti-RANKL but not DFZ improved ex vivo contractile properties of dystrophic muscles. This functional improvement was associated with a reduction in muscle damage and fibrosis, and inflammatory cell number. Anti-RANKL treatment, with or without DFZ, also improved trabecular bone structure of mdx mice. In a second study, intravenous zoledronate (Zol) administration (1 or 2 doses) following 2 months of discontinuation of anti-RANKL treatment was mostly required to record an improvement in bone microarchitecture and biomechanical properties in DFZ-treated mdx mice. In conclusion, the ability of anti-RANKL therapy to restore muscle function has profound implications for DMD patients as it offers the possibility of improving skeletal muscle function without the steroid-related skeletal side effects.
Collapse
Affiliation(s)
- Soher Nagi Jayash
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
| | - Dounia Hamoudi
- Centre de Recherche du Centre Hospitalier, Universitaire de Québec-Centre, Hospitalier de L’Université Laval, Université Laval, Quebec City, QC Canada
| | - Louise A. Stephen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
| | - Anteneh Argaw
- Centre de Recherche du Centre Hospitalier, Universitaire de Québec-Centre, Hospitalier de L’Université Laval, Université Laval, Quebec City, QC Canada
| | - Carmen Huesa
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Shuko Joseph
- Royal Hospital for Children Glasgow, School of Medicine, Dentistry and Nursing, Child Health, Queen Elizabeth University Hospital, Glasgow, UK
| | - Sze Choong Wong
- University of Glasgow/Royal Hospital for Children Glasgow, School of Medicine, Dentistry & Nursing, Child Health, Queen Elizabeth University Hospital, Glasgow, UK
| | - Jérôme Frenette
- Centre de Recherche du Centre Hospitalier, Universitaire de Québec-Centre, Hospitalier de L’Université Laval, Université Laval, Quebec City, QC Canada
| | - Colin Farquharson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
| |
Collapse
|
7
|
Händel MN, Cardoso I, von Bülow C, Rohde JF, Ussing A, Nielsen SM, Christensen R, Body JJ, Brandi ML, Diez-Perez A, Hadji P, Javaid MK, Lems WF, Nogues X, Roux C, Minisola S, Kurth A, Thomas T, Prieto-Alhambra D, Ferrari SL, Langdahl B, Abrahamsen B. Fracture risk reduction and safety by osteoporosis treatment compared with placebo or active comparator in postmenopausal women: systematic review, network meta-analysis, and meta-regression analysis of randomised clinical trials. BMJ 2023; 381:e068033. [PMID: 37130601 PMCID: PMC10152340 DOI: 10.1136/bmj-2021-068033] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
OBJECTIVE To review the comparative effectiveness of osteoporosis treatments, including the bone anabolic agents, abaloparatide and romosozumab, on reducing the risk of fractures in postmenopausal women, and to characterise the effect of antiosteoporosis drug treatments on the risk of fractures according to baseline risk factors. DESIGN Systematic review, network meta-analysis, and meta-regression analysis of randomised clinical trials. DATA SOURCES Medline, Embase, and Cochrane Library to identify randomised controlled trials published between 1 January 1996 and 24 November 2021 that examined the effect of bisphosphonates, denosumab, selective oestrogen receptor modulators, parathyroid hormone receptor agonists, and romosozumab compared with placebo or active comparator. ELIGIBILITY CRITERIA FOR SELECTING STUDIES Randomised controlled trials that included non-Asian postmenopausal women with no restriction on age, when interventions looked at bone quality in a broad perspective. The primary outcome was clinical fractures. Secondary outcomes were vertebral, non-vertebral, hip, and major osteoporotic fractures, all cause mortality, adverse events, and serious cardiovascular adverse events. RESULTS The results were based on 69 trials (>80 000 patients). For clinical fractures, synthesis of the results showed a protective effect of bisphosphonates, parathyroid hormone receptor agonists, and romosozumab compared with placebo. Compared with parathyroid hormone receptor agonists, bisphosphonates were less effective in reducing clinical fractures (odds ratio 1.49, 95% confidence interval 1.12 to 2.00). Compared with parathyroid hormone receptor agonists and romosozumab, denosumab was less effective in reducing clinical fractures (odds ratio 1.85, 1.18 to 2.92 for denosumab v parathyroid hormone receptor agonists and 1.56, 1.02 to 2.39 for denosumab v romosozumab). An effect of all treatments on vertebral fractures compared with placebo was found. In the active treatment comparisons, denosumab, parathyroid hormone receptor agonists, and romosozumab were more effective than oral bisphosphonates in preventing vertebral fractures. The effect of all treatments was unaffected by baseline risk indicators, except for antiresorptive treatments that showed a greater reduction of clinical fractures compared with placebo with increasing mean age (number of studies=17; β=0.98, 95% confidence interval 0.96 to 0.99). No harm outcomes were seen. The certainty in the effect estimates was moderate to low for all individual outcomes, mainly because of limitations in reporting, nominally indicating a serious risk of bias and imprecision. CONCLUSIONS The evidence indicated a benefit of a range of treatments for osteoporosis in postmenopausal women for clinical and vertebral fractures. Bone anabolic treatments were more effective than bisphosphonates in the prevention of clinical and vertebral fractures, irrespective of baseline risk indicators. Hence this analysis provided no clinical evidence for restricting the use of anabolic treatment to patients with a very high risk of fractures. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42019128391.
Collapse
Affiliation(s)
- Mina Nicole Händel
- Parker Institute, Bispebjerg and Frederiksberg Hospital, 2000 Frederiksberg, Denmark
- Department of Clinical Research, Odense Patient Data Explorative Network, University of Southern Denmark, Odense, Denmark
| | - Isabel Cardoso
- Parker Institute, Bispebjerg and Frederiksberg Hospital, 2000 Frederiksberg, Denmark
| | - Cecilie von Bülow
- Parker Institute, Bispebjerg and Frederiksberg Hospital, 2000 Frederiksberg, Denmark
- Occupational Science, User Perspectives and Community-Based Interventions, Department of Public Health, University of Southern Denmark, Odense C, Denmark
| | - Jeanett Friis Rohde
- Parker Institute, Bispebjerg and Frederiksberg Hospital, 2000 Frederiksberg, Denmark
| | - Anja Ussing
- Parker Institute, Bispebjerg and Frederiksberg Hospital, 2000 Frederiksberg, Denmark
| | - Sabrina Mai Nielsen
- Parker Institute, Bispebjerg and Frederiksberg Hospital, 2000 Frederiksberg, Denmark
- Research Unit of Rheumatology, Department of Clinical Research, University of Southern Denmark, Odense University Hospital, Odense, Denmark
| | - Robin Christensen
- Parker Institute, Bispebjerg and Frederiksberg Hospital, 2000 Frederiksberg, Denmark
- Research Unit of Rheumatology, Department of Clinical Research, University of Southern Denmark, Odense University Hospital, Odense, Denmark
| | - Jean-Jacques Body
- Department of Medicine, CHU Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Adolfo Diez-Perez
- Department of Internal Medicine, Institut Hospital del Mar of Medical Investigation, Autonomous University of Barcelona and CIBERFES (Frailty and Healthy Aging Research Network), Instituto Carlos III, Barcelona, Spain
| | - Peyman Hadji
- Frankfurt Centre of Bone Health, Frankfurt and Philipps-University of Marburg, Marburg, Germany
| | - Muhammad Kassim Javaid
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | | | - Xavier Nogues
- IMIM (Hospital del Mar Medical Research Institute), Parc de Salut Mar, Pompeu Fabra University, Barcelona, Spain
| | - Christian Roux
- INSERM U 1153, Hospital Paris-Centre, University of Paris, Paris, France
| | - Salvatore Minisola
- Department of Clinical, Internal, Anaesthesiologic, and Cardiovascular Sciences, Rome University, Rome, Italy
| | - Andreas Kurth
- Department of Orthopaedic and Trauma Surgery, Marienhaus Klinikum Mainz, Major Teaching Hospital, University Medicine Mainz, Mainz, Germany
| | - Thierry Thomas
- Université Jean Monnet Saint-Étienne, CHU de Saint-Etienne, Rheumatology Department, INSERM U1059, F-42023, Saint-Etienne, France
| | - Daniel Prieto-Alhambra
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Department of Medical Informatics, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Bente Langdahl
- Departments of Clinical Medicine and of Endocrinology and Internal Medicine, Aarhus University, Aarhus, Denmark
| | - Bo Abrahamsen
- Department of Clinical Research, Odense Patient Data Explorative Network, University of Southern Denmark, Odense, Denmark
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Department of Medicine, Holbæk Hospital, Holbæk, Denmark
| |
Collapse
|
8
|
Axelsson KF, Litsne H, Lorentzon M. The Importance of Recent Prevalent Fracture Site for Imminent Risk of Fracture - A Retrospective, Nationwide Cohort Study of Older Swedish Men and Women. J Bone Miner Res 2023. [PMID: 36970835 DOI: 10.1002/jbmr.4806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/08/2023] [Accepted: 03/21/2023] [Indexed: 04/26/2023]
Abstract
There is limited evidence regarding which fracture types carry the highest risk for subsequent fracture. The aim of this study was to investigate how the risk of imminent fracture depends on index fracture site. This nationwide retrospective cohort study utilized national registers in Sweden to determine the risk of fracture according to recent (≤2 years) index fracture site and according to an old (>2 years) prevalent fracture compared with the risk observed in controls without a fracture. All Swedes 50 years or older between 2007 and 2010 were included in the study. Patients with a recent fracture were designated a specific fracture group depending on the type of previous fracture. Recent fractures were classified as major osteoporotic fracture (MOF), including fractured hip, vertebra, proximal humerus, and wrist, or non-MOF. Patients were followed until December 31, 2017, censored for death and emigration, and the risk of any fracture and hip fracture was assessed. A total of 3,423,320 persons were included in the study, 70,254 with a recent MOF, 75,526 with a recent non-MOF, 293,051 with an old fracture, and 2,984,489 persons with no previous fracture. The median time of follow-up for the four groups was 6.1 (interquartile range [IQR] 3.0-8.8), 7.2 (5.6-9.4), 7.1 (5.8-9.2), and 8.1 years (7.4-9.7), respectively. Patients with a recent MOF, recent non-MOF, and old fracture had a substantially increased risk of any fracture (hazard ratio [HR] adjusted for age and sex 2.11, 95% confidence interval [CI] 2.08-2.14; HR 2.24, 95% CI 2.21-2.27; and HR 1.77, 95% CI 1.76-1.78, respectively) compared with controls. All recent fractures, MOFs, and non-MOFs, as well as older fractures, increase the risk of subsequent fracture, suggesting that all recent fractures should be included in fracture liaison services and that case-finding strategies for those with older fractures may be warranted to prevent subsequent fractures. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Kristian F Axelsson
- Sahlgrenska Osteoporosis Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Närhälsan Norrmalm Health Centre, Skövde, Sweden
| | - Henrik Litsne
- Sahlgrenska Osteoporosis Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mattias Lorentzon
- Sahlgrenska Osteoporosis Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
- Region Västra Götaland, Geriatric Medicine, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
9
|
Gates M, Pillay J, Nuspl M, Wingert A, Vandermeer B, Hartling L. Screening for the primary prevention of fragility fractures among adults aged 40 years and older in primary care: systematic reviews of the effects and acceptability of screening and treatment, and the accuracy of risk prediction tools. Syst Rev 2023; 12:51. [PMID: 36945065 PMCID: PMC10029308 DOI: 10.1186/s13643-023-02181-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 02/02/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND To inform recommendations by the Canadian Task Force on Preventive Health Care, we reviewed evidence on the benefits, harms, and acceptability of screening and treatment, and on the accuracy of risk prediction tools for the primary prevention of fragility fractures among adults aged 40 years and older in primary care. METHODS For screening effectiveness, accuracy of risk prediction tools, and treatment benefits, our search methods involved integrating studies published up to 2016 from an existing systematic review. Then, to locate more recent studies and any evidence relating to acceptability and treatment harms, we searched online databases (2016 to April 4, 2022 [screening] or to June 1, 2021 [predictive accuracy]; 1995 to June 1, 2021, for acceptability; 2016 to March 2, 2020, for treatment benefits; 2015 to June 24, 2020, for treatment harms), trial registries and gray literature, and hand-searched reviews, guidelines, and the included studies. Two reviewers selected studies, extracted results, and appraised risk of bias, with disagreements resolved by consensus or a third reviewer. The overview of reviews on treatment harms relied on one reviewer, with verification of data by another reviewer to correct errors and omissions. When appropriate, study results were pooled using random effects meta-analysis; otherwise, findings were described narratively. Evidence certainty was rated according to the GRADE approach. RESULTS We included 4 randomized controlled trials (RCTs) and 1 controlled clinical trial (CCT) for the benefits and harms of screening, 1 RCT for comparative benefits and harms of different screening strategies, 32 validation cohort studies for the calibration of risk prediction tools (26 of these reporting on the Fracture Risk Assessment Tool without [i.e., clinical FRAX], or with the inclusion of bone mineral density (BMD) results [i.e., FRAX + BMD]), 27 RCTs for the benefits of treatment, 10 systematic reviews for the harms of treatment, and 12 studies for the acceptability of screening or initiating treatment. In females aged 65 years and older who are willing to independently complete a mailed fracture risk questionnaire (referred to as "selected population"), 2-step screening using a risk assessment tool with or without measurement of BMD probably (moderate certainty) reduces the risk of hip fractures (3 RCTs and 1 CCT, n = 43,736, absolute risk reduction [ARD] = 6.2 fewer in 1000, 95% CI 9.0-2.8 fewer, number needed to screen [NNS] = 161) and clinical fragility fractures (3 RCTs, n = 42,009, ARD = 5.9 fewer in 1000, 95% CI 10.9-0.8 fewer, NNS = 169). It probably does not reduce all-cause mortality (2 RCTs and 1 CCT, n = 26,511, ARD = no difference in 1000, 95% CI 7.1 fewer to 5.3 more) and may (low certainty) not affect health-related quality of life. Benefits for fracture outcomes were not replicated in an offer-to-screen population where the rate of response to mailed screening questionnaires was low. For females aged 68-80 years, population screening may not reduce the risk of hip fractures (1 RCT, n = 34,229, ARD = 0.3 fewer in 1000, 95% CI 4.2 fewer to 3.9 more) or clinical fragility fractures (1 RCT, n = 34,229, ARD = 1.0 fewer in 1000, 95% CI 8.0 fewer to 6.0 more) over 5 years of follow-up. The evidence for serious adverse events among all patients and for all outcomes among males and younger females (<65 years) is very uncertain. We defined overdiagnosis as the identification of high risk in individuals who, if not screened, would never have known that they were at risk and would never have experienced a fragility fracture. This was not directly reported in any of the trials. Estimates using data available in the trials suggest that among "selected" females offered screening, 12% of those meeting age-specific treatment thresholds based on clinical FRAX 10-year hip fracture risk, and 19% of those meeting thresholds based on clinical FRAX 10-year major osteoporotic fracture risk, may be overdiagnosed as being at high risk of fracture. Of those identified as being at high clinical FRAX 10-year hip fracture risk and who were referred for BMD assessment, 24% may be overdiagnosed. One RCT (n = 9268) provided evidence comparing 1-step to 2-step screening among postmenopausal females, but the evidence from this trial was very uncertain. For the calibration of risk prediction tools, evidence from three Canadian studies (n = 67,611) without serious risk of bias concerns indicates that clinical FRAX-Canada may be well calibrated for the 10-year prediction of hip fractures (observed-to-expected fracture ratio [O:E] = 1.13, 95% CI 0.74-1.72, I2 = 89.2%), and is probably well calibrated for the 10-year prediction of clinical fragility fractures (O:E = 1.10, 95% CI 1.01-1.20, I2 = 50.4%), both leading to some underestimation of the observed risk. Data from these same studies (n = 61,156) showed that FRAX-Canada with BMD may perform poorly to estimate 10-year hip fracture risk (O:E = 1.31, 95% CI 0.91-2.13, I2 = 92.7%), but is probably well calibrated for the 10-year prediction of clinical fragility fractures, with some underestimation of the observed risk (O:E 1.16, 95% CI 1.12-1.20, I2 = 0%). The Canadian Association of Radiologists and Osteoporosis Canada Risk Assessment (CAROC) tool may be well calibrated to predict a category of risk for 10-year clinical fractures (low, moderate, or high risk; 1 study, n = 34,060). The evidence for most other tools was limited, or in the case of FRAX tools calibrated for countries other than Canada, very uncertain due to serious risk of bias concerns and large inconsistency in findings across studies. Postmenopausal females in a primary prevention population defined as <50% prevalence of prior fragility fracture (median 16.9%, range 0 to 48% when reported in the trials) and at risk of fragility fracture, treatment with bisphosphonates as a class (median 2 years, range 1-6 years) probably reduces the risk of clinical fragility fractures (19 RCTs, n = 22,482, ARD = 11.1 fewer in 1000, 95% CI 15.0-6.6 fewer, [number needed to treat for an additional beneficial outcome] NNT = 90), and may reduce the risk of hip fractures (14 RCTs, n = 21,038, ARD = 2.9 fewer in 1000, 95% CI 4.6-0.9 fewer, NNT = 345) and clinical vertebral fractures (11 RCTs, n = 8921, ARD = 10.0 fewer in 1000, 95% CI 14.0-3.9 fewer, NNT = 100); it may not reduce all-cause mortality. There is low certainty evidence of little-to-no reduction in hip fractures with any individual bisphosphonate, but all provided evidence of decreased risk of clinical fragility fractures (moderate certainty for alendronate [NNT=68] and zoledronic acid [NNT=50], low certainty for risedronate [NNT=128]) among postmenopausal females. Evidence for an impact on risk of clinical vertebral fractures is very uncertain for alendronate and risedronate; zoledronic acid may reduce the risk of this outcome (4 RCTs, n = 2367, ARD = 18.7 fewer in 1000, 95% CI 25.6-6.6 fewer, NNT = 54) for postmenopausal females. Denosumab probably reduces the risk of clinical fragility fractures (6 RCTs, n = 9473, ARD = 9.1 fewer in 1000, 95% CI 12.1-5.6 fewer, NNT = 110) and clinical vertebral fractures (4 RCTs, n = 8639, ARD = 16.0 fewer in 1000, 95% CI 18.6-12.1 fewer, NNT=62), but may make little-to-no difference in the risk of hip fractures among postmenopausal females. Denosumab probably makes little-to-no difference in the risk of all-cause mortality or health-related quality of life among postmenopausal females. Evidence in males is limited to two trials (1 zoledronic acid, 1 denosumab); in this population, zoledronic acid may make little-to-no difference in the risk of hip or clinical fragility fractures, and evidence for all-cause mortality is very uncertain. The evidence for treatment with denosumab in males is very uncertain for all fracture outcomes (hip, clinical fragility, clinical vertebral) and all-cause mortality. There is moderate certainty evidence that treatment causes a small number of patients to experience a non-serious adverse event, notably non-serious gastrointestinal events (e.g., abdominal pain, reflux) with alendronate (50 RCTs, n = 22,549, ARD = 16.3 more in 1000, 95% CI 2.4-31.3 more, [number needed to treat for an additional harmful outcome] NNH = 61) but not with risedronate; influenza-like symptoms with zoledronic acid (5 RCTs, n = 10,695, ARD = 142.5 more in 1000, 95% CI 105.5-188.5 more, NNH = 7); and non-serious gastrointestinal adverse events (3 RCTs, n = 8454, ARD = 64.5 more in 1000, 95% CI 26.4-13.3 more, NNH = 16), dermatologic adverse events (3 RCTs, n = 8454, ARD = 15.6 more in 1000, 95% CI 7.6-27.0 more, NNH = 64), and infections (any severity; 4 RCTs, n = 8691, ARD = 1.8 more in 1000, 95% CI 0.1-4.0 more, NNH = 556) with denosumab. For serious adverse events overall and specific to stroke and myocardial infarction, treatment with bisphosphonates probably makes little-to-no difference; evidence for other specific serious harms was less certain or not available. There was low certainty evidence for an increased risk for the rare occurrence of atypical femoral fractures (0.06 to 0.08 more in 1000) and osteonecrosis of the jaw (0.22 more in 1000) with bisphosphonates (most evidence for alendronate). The evidence for these rare outcomes and for rebound fractures with denosumab was very uncertain. Younger (lower risk) females have high willingness to be screened. A minority of postmenopausal females at increased risk for fracture may accept treatment. Further, there is large heterogeneity in the level of risk at which patients may be accepting of initiating treatment, and treatment effects appear to be overestimated. CONCLUSION An offer of 2-step screening with risk assessment and BMD measurement to selected postmenopausal females with low prevalence of prior fracture probably results in a small reduction in the risk of clinical fragility fracture and hip fracture compared to no screening. These findings were most applicable to the use of clinical FRAX for risk assessment and were not replicated in the offer-to-screen population where the rate of response to mailed screening questionnaires was low. Limited direct evidence on harms of screening were available; using study data to provide estimates, there may be a moderate degree of overdiagnosis of high risk for fracture to consider. The evidence for younger females and males is very limited. The benefits of screening and treatment need to be weighed against the potential for harm; patient views on the acceptability of treatment are highly variable. SYSTEMATIC REVIEW REGISTRATION International Prospective Register of Systematic Reviews (PROSPERO): CRD42019123767.
Collapse
Affiliation(s)
- Michelle Gates
- Department of Pediatrics, Alberta Research Centre for Health Evidence, University of Alberta, Edmonton Clinic Health Academy, 11405-87 Avenue NW, Edmonton, Alberta T6G 1C9 Canada
| | - Jennifer Pillay
- Department of Pediatrics, Alberta Research Centre for Health Evidence, University of Alberta, Edmonton Clinic Health Academy, 11405-87 Avenue NW, Edmonton, Alberta T6G 1C9 Canada
| | - Megan Nuspl
- Department of Pediatrics, Alberta Research Centre for Health Evidence, University of Alberta, Edmonton Clinic Health Academy, 11405-87 Avenue NW, Edmonton, Alberta T6G 1C9 Canada
| | - Aireen Wingert
- Department of Pediatrics, Alberta Research Centre for Health Evidence, University of Alberta, Edmonton Clinic Health Academy, 11405-87 Avenue NW, Edmonton, Alberta T6G 1C9 Canada
| | - Ben Vandermeer
- Department of Pediatrics, Alberta Research Centre for Health Evidence, University of Alberta, Edmonton Clinic Health Academy, 11405-87 Avenue NW, Edmonton, Alberta T6G 1C9 Canada
| | - Lisa Hartling
- Department of Pediatrics, Alberta Research Centre for Health Evidence, University of Alberta, Edmonton Clinic Health Academy, 11405-87 Avenue NW, Edmonton, Alberta T6G 1C9 Canada
| |
Collapse
|
10
|
Haider IT, Loundagin LL, Sawatsky A, Kostenuik PJ, Boyd SK, Edwards WB. Twelve Months of Denosumab and/or Alendronate Is Associated With Improved Bone Fatigue Life, Microarchitecture, and Density in Ovariectomized Cynomolgus Monkeys. J Bone Miner Res 2023; 38:403-413. [PMID: 36533719 DOI: 10.1002/jbmr.4758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/25/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Prolonged use of antiresorptives such as the bisphosphonate alendronate (ALN) and the RANKL inhibitor denosumab (DMAb) are associated with rare cases of atypical femoral fracture (AFF). The etiology of AFF is unclear, but it has been hypothesized that potent osteoclast inhibitors may reduce bone fatigue resistance. The purpose of this study was to quantify the relationship between antiresorptive treatment and fatigue life (cycles to failure) in bone from ovariectomized cynomolgus monkeys. We analyzed humeral bone from 30 animals across five treatment groups. Animals were treated for 12 months with subcutaneous (sc) vehicle (VEH), sc DMAb (25 mg/kg/month), or intravenous (iv) ALN (50 μg/kg/month). Another group received 6 months VEH followed by 6 months DMAb (VEH-DMAb), and the final group received 6 months ALN followed by 6 months DMAb (ALN-DMAb). A total of 240 cortical beam samples were cyclically tested in four-point bending at 80, 100, 120, or 140 MPa peak stress. High-resolution imaging and density measurements were performed to evaluate bone microstructure and composition. Samples from the ALN (p = 0.014), ALN-DMAb (p = 0.008), and DMAb (p < 0.001) groups illustrated higher fatigue-life measurements than VEH. For example, at 140 MPa the VEH group demonstrated a median ± interquartile range (IQR) fatigue life of 1987 ± 10593 cycles, while animals in the ALN, ALN-DMAb, and DMAb groups survived 9850 ± 13648 (+395% versus VEH), 10493 ± 16796 (+428%), and 14495 ± 49299 (+629%) cycles, respectively. All antiresorptive treatment groups demonstrated lower porosity, smaller pore size, greater pore spacing, and lower number of canals versus VEH (p < 0.001). Antiresorptive treatment was also associated with greater apparent density, dry density, and ash density (p ≤ 0.03). We did not detect detrimental changes following antiresorptive treatments that would explain their association with AFF. In contrast, 12 months of treatment may have a protective effect against fatigue fractures. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Ifaz T Haider
- Human Performance Lab, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Lindsay L Loundagin
- Human Performance Lab, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Andrew Sawatsky
- Human Performance Lab, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Paul J Kostenuik
- Phylon Pharma Services, Newbury Park, CA, USA.,School of Dentistry, University of Michigan (Adjunct), Ann Arbor, MI, USA
| | - Steven K Boyd
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - W Brent Edwards
- Human Performance Lab, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
11
|
Sharing Circulating Micro-RNAs between Osteoporosis and Sarcopenia: A Systematic Review. Life (Basel) 2023; 13:life13030602. [PMID: 36983758 PMCID: PMC10051676 DOI: 10.3390/life13030602] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
Background: Osteosarcopenia, a combination of osteopenia/osteoporosis and sarcopenia, is a common condition among older adults. While numerous studies and meta-analyses have been conducted on osteoporosis biomarkers, biomarker utility in osteosarcopenia still lacks evidence. Here, we carried out a systematic review to explore and analyze the potential clinical of circulating microRNAs (miRs) shared between osteoporosis/osteopenia and sarcopenia. Methods: We performed a systematic review on PubMed, Scopus, and Embase for differentially expressed miRs (p-value < 0.05) in (i) osteoporosis and (ii) sarcopenia. Following screening for title and abstract and deduplication, 83 studies on osteoporosis and 11 on sarcopenia were identified for full-text screening. Full-text screening identified 54 studies on osteoporosis, 4 on sarcopenia, and 1 on both osteoporosis and sarcopenia. Results: A total of 69 miRs were identified for osteoporosis and 14 for sarcopenia. There were 9 shared miRs, with evidence of dysregulation (up- or down-regulation), in both osteoporosis and sarcopenia: miR-23a-3p, miR-29a, miR-93, miR-133a and b, miR-155, miR-206, miR-208, miR-222, and miR-328, with functions and targets implicated in the pathogenesis of osteosarcopenia. However, there was little agreement in the results across studies and insufficient data for miRs in sarcopenia, and only three miRs, miR-155, miR-206, and miR-328, showed the same direction of dysregulation (down-regulation) in both osteoporosis and sarcopenia. Additionally, for most identified miRs there has been no replication by more than one study, and this is particularly true for all miRs analyzed in sarcopenia. The study quality was typically rated intermediate/high risk of bias. The large heterogeneity of the studies made it impossible to perform a meta-analysis. Conclusions: The findings of this review are particularly novel, as miRs have not yet been explored in the context of osteosarcopenia. The dysregulation of miRs identified in this review may provide important clues to better understand the pathogenesis of osteosarcopenia, while also laying the foundations for further studies to lead to effective screening, monitoring, or treatment strategies.
Collapse
|
12
|
Hoffmann I, Kohl M, von Stengel S, Jakob F, Kerschan-Schindl K, Lange U, Peters S, Schoene D, Sieber C, Thomasius F, Bischoff-Ferrari HA, Uder M, Kemmler W. Exercise and the prevention of major osteoporotic fractures in adults: a systematic review and meta-analysis with special emphasis on intensity progression and study duration. Osteoporos Int 2023; 34:15-28. [PMID: 36355068 PMCID: PMC9813248 DOI: 10.1007/s00198-022-06592-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022]
Abstract
The role of exercise in preventing osteoporotic fractures is vague, and further recommendations for optimized exercise protocols are very rare. In the present work, we provided positive evidence for exercise effects on the number of osteoporotic fractures in adults, albeit without observing any significant relevance of intensity progression or study duration. INTRODUCTION Osteoporotic fractures are a major challenge confronting our aging society. Exercise might be an efficient agent for reducing osteoporotic fractures in older adults, but the most promising exercise protocol for that purpose has yet to be identified. The present meta-analysis thus aimed to identify important predictors of the exercise effect on osteoporotic fractures in adults. METHODS We conducted a systematic search of six literature databases according to the PRISMA guideline that included controlled exercise studies and reported the number of low-trauma major osteoporotic fractures separately for exercise (EG) and control (CG) groups. Primary study outcome was incidence ratio (IR) for major osteoporotic fractures. Sub-analyses were conducted for progression of intensity (yes vs. no) during the trial and the study duration (≤ 12 months vs. > 12 months). RESULTS In summary, 11 studies with a pooled number of 9715 participant-years in the EG and 9592 in the CG were included. The mixed-effects conditional Poisson regression revealed positive exercise effects on major osteoporotic fractures (RR: 0.75, 95% CI: 0.54-0.94, p = .006). Although studies with intensity progression were more favorable, our subgroup analysis did not determine significant differences for diverging intensity progression (p = .133) or study duration (p = .883). Heterogeneity among the trials of the subgroups (I2 ≤ 0-7.1%) was negligible. CONCLUSION The present systematic review and meta-analysis provided significant evidence for the favorable effect of exercise on major osteoporotic fractures. However, diverging study and exercise characteristics along with the close interaction of exercise parameters prevented the derivation of reliable recommendations for exercise protocols for fracture reductions. PROSPERO ID CRD42021250467.
Collapse
Affiliation(s)
- Isabelle Hoffmann
- Institute of Medical Physics, Friedrich-Alexander University Erlangen-Nürnberg, Henkestrasse 91, 91052, Erlangen, Germany
- Department of Aging Medicine, University Hospital Zurich and City Hospital Zurich, Zurich, Switzerland
| | - Matthias Kohl
- Department of Aging Medicine, University Hospital Zurich and City Hospital Zurich, Zurich, Switzerland
- Department of Medicine and Life Sciences, University of Furtwangen, Schwenningen, Germany
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Simon von Stengel
- Institute of Medical Physics, Friedrich-Alexander University Erlangen-Nürnberg, Henkestrasse 91, 91052, Erlangen, Germany
- Department of Aging Medicine, University Hospital Zurich and City Hospital Zurich, Zurich, Switzerland
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Franz Jakob
- Department of Aging Medicine, University Hospital Zurich and City Hospital Zurich, Zurich, Switzerland
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
- Bernhard-Heine-Center Movement Science, University of Würzburg, Würzburg, Germany
| | - Katharina Kerschan-Schindl
- Department of Aging Medicine, University Hospital Zurich and City Hospital Zurich, Zurich, Switzerland
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
- Austrian Society for Bone and Mineral Research, Vienna, Austria
| | - Uwe Lange
- Department of Aging Medicine, University Hospital Zurich and City Hospital Zurich, Zurich, Switzerland
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
- German Society for Physical and Rehabilitative Medicine, Ulm, Germany
| | - Stefan Peters
- Department of Aging Medicine, University Hospital Zurich and City Hospital Zurich, Zurich, Switzerland
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
- German Association for Health-Related Fitness and Exercise Therapy (DVGS E.V.), Hürth-Efferen, Germany
| | - Daniel Schoene
- Institute of Medical Physics, Friedrich-Alexander University Erlangen-Nürnberg, Henkestrasse 91, 91052, Erlangen, Germany
- Department of Aging Medicine, University Hospital Zurich and City Hospital Zurich, Zurich, Switzerland
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Cornel Sieber
- Department of Aging Medicine, University Hospital Zurich and City Hospital Zurich, Zurich, Switzerland
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
- European Geriatric Medicine Society (EuGMS), Institute for Biomedicine of Aging, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Friederike Thomasius
- Department of Aging Medicine, University Hospital Zurich and City Hospital Zurich, Zurich, Switzerland
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
- Osteology Umbrella Association Austria, Germany, Switzerland
| | - Heike A Bischoff-Ferrari
- Department of Aging Medicine, University Hospital Zurich and City Hospital Zurich, Zurich, Switzerland
- Department of Geriatrics and Aging Research, University Hospital of Zurich, City Hospital of Zurich-Waid and University of Zurich, Zurich, Switzerland
- Centre On Aging and Mobility, University of Zurich, Zurich, Switzerland
| | - Michael Uder
- Department of Aging Medicine, University Hospital Zurich and City Hospital Zurich, Zurich, Switzerland
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
- Research and Writing Group On Austria/Germany/Suisse S3 Guideline "Exercise and Fracture Prevention" (Bone Division), Erlangen, Germany
| | - Wolfgang Kemmler
- Institute of Medical Physics, Friedrich-Alexander University Erlangen-Nürnberg, Henkestrasse 91, 91052, Erlangen, Germany.
- Department of Aging Medicine, University Hospital Zurich and City Hospital Zurich, Zurich, Switzerland.
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany.
- Research and Writing Group On Austria/Germany/Suisse S3 Guideline "Exercise and Fracture Prevention" (Bone Division), Erlangen, Germany.
| |
Collapse
|
13
|
Langdahl B, Hofbauer LC, Ferrari S, Wang Z, Fahrleitner-Pammer A, Gielen E, Lakatos P, Czerwinski E, Gimeno EJ, Timoshanko J, Oates M, Libanati C. Romosozumab efficacy and safety in European patients enrolled in the FRAME trial. Osteoporos Int 2022; 33:2527-2536. [PMID: 36173415 PMCID: PMC9652294 DOI: 10.1007/s00198-022-06544-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022]
Abstract
UNLABELLED In this post hoc analysis, we assessed romosozumab efficacy and safety in European patients enrolled in FRAME. Romosozumab treatment through 12 months, followed by denosumab for a further 24 months, resulted in early and sustained risk reduction for major fracture categories, associated with large gains in bone mineral density. INTRODUCTION In the multinational FRAME phase 3 trial of romosozumab in postmenopausal women with osteoporosis, marked differences between clinical and non-vertebral fracture outcomes were observed among patients from Central and Southern America versus rest of world. This post hoc analysis assessed romosozumab efficacy and safety in European patients enrolled in the FRAME trial and extension study. METHODS In FRAME (NCT01575834), patients were randomised 1:1 to romosozumab 210 mg or placebo monthly (QM) for 12 months, followed by open-label denosumab 60 mg Q6M to month 36, including a 12-month extension study. We report incidence of major fracture outcomes, bone mineral density (BMD) change from baseline and safety for European patients enrolled in FRAME. RESULTS In FRAME, 3013/7180 (41.96%) patients were European; 1494 received romosozumab and 1519 received placebo. Through 12 months, romosozumab reduced fracture risk versus placebo for non-vertebral fracture (1.4% versus 3.0%; p = 0.004), clinical fracture (1.4% versus 3.6%; p < 0.001), new vertebral fracture (0.4% versus 2.1%; p < 0.001) and major osteoporotic fracture (0.9% versus 2.8%; p < 0.001), with results sustained through 36 months following transition to denosumab. Hip fractures were numerically reduced with romosozumab at month 12 (0.2% versus 0.6%; p = 0.092). Romosozumab increased BMD versus placebo at month 12; all patients in the romosozumab and placebo groups experienced further increases by month 36 after transition to denosumab. Adverse events were balanced between groups. CONCLUSIONS Among European patients in FRAME, romosozumab resulted in early and sustained risk reduction for all major fracture categories, associated with large BMD gains that continued after transition to denosumab.
Collapse
Affiliation(s)
- Bente Langdahl
- Department of Endocrinology, Aarhus University Hospital, Aarhus, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Tarantino U, Greggi C, Visconti VV, Cariati I, Bonanni R, Gasperini B, Nardone I, Gasbarra E, Iundusi R. Sarcopenia and bone health: new acquisitions for a firm liaison. Ther Adv Musculoskelet Dis 2022; 14:1759720X221138354. [PMID: 36465879 PMCID: PMC9716454 DOI: 10.1177/1759720x221138354] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/23/2022] [Indexed: 11/15/2023] Open
Abstract
Osteosarcopenia (OS) is a newly defined condition represented by the simultaneous presence of osteopenia/osteoporosis and sarcopenia, the main age-related diseases. The simultaneous coexistence of the two phenotypes derives from the close connection of the main target tissues involved in their pathogenesis: bone and muscle. These two actors constitute the bone-muscle unit, which communicates through a biochemical and mechanical crosstalk which involves multiple factors. Altered pattern of molecular pathways leads to an impairment of both the functionality of the tissue itself and the communication with the complementary tissue, composing the OS pathogenesis. Recent advances in the genetics field have provided the opportunity to delve deeper into the complex biological and molecular mechanisms underlying OS. Unfortunately, there are still many gaps in our understanding of these pathways, but it has proven essential to apply strategies such as exercise and nutritional intervention to counteract OS. New therapeutic strategies that simultaneously target bone and muscle tissue are limited, but recently new targets for the development of dual-action drug therapies have been identified. This narrative review aims to provide an overview of the latest scientific evidence associated with OS, a complex disorder that will pave the way for future research aimed at understanding the bone-muscle-associated pathogenetic mechanisms.
Collapse
Affiliation(s)
- Umberto Tarantino
- Department of Clinical Sciences and
Translational Medicine, University of Rome ‘Tor Vergata’, Rome, Italy
- Department of Orthopedics and Traumatology, PTV
Foundation, Rome, Italy
| | - Chiara Greggi
- Department of Clinical Sciences and
Translational Medicine, University of Rome ‘Tor Vergata’, Rome, Italy
| | - Virginia Veronica Visconti
- Department of Clinical Sciences and
Translational Medicine, University of Rome ‘Tor Vergata’, Via Montpellier 1,
00133 Rome, Italy
| | - Ida Cariati
- Department of Biomedicine and Prevention,
University of Rome ‘Tor Vergata’, Rome, Italy
| | - Roberto Bonanni
- Department of Biomedicine and Prevention,
University of Rome ‘Tor Vergata’, Rome, Italy
| | - Beatrice Gasperini
- Department of Biomedicine and Prevention,
University of Rome ‘Tor Vergata’, Rome, Italy
| | - Italo Nardone
- Department of Orthopedics and Traumatology, PTV
Foundation, Rome, Italy
| | - Elena Gasbarra
- Department of Orthopedics and Traumatology, PTV
Foundation, Rome, Italy
| | - Riccardo Iundusi
- Department of Orthopedics and Traumatology,
PTV Foundation, Rome, Italy
| |
Collapse
|
15
|
Zhang L, Zeng F, Jiang M, Han M, Huang B. Roles of osteoprotegerin in endocrine and metabolic disorders through receptor activator of nuclear factor kappa-B ligand/receptor activator of nuclear factor kappa-B signaling. Front Cell Dev Biol 2022; 10:1005681. [PMID: 36407115 PMCID: PMC9671468 DOI: 10.3389/fcell.2022.1005681] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/17/2022] [Indexed: 11/21/2023] Open
Abstract
Endocrine and metabolic diseases show increasing incidence and high treatment costs worldwide. Due to the complexity of their etiology and mechanism, therapeutic strategies are still lacking. Osteoprotegerin (OPG), a member of the tumor necrosis factor receptor superfamily, appears to be a potential candidate for the treatment of these diseases. Studies based on clinical analysis and rodent animal models reveal the roles of OPG in various endocrine and metabolic processes or disorders, such as bone remodeling, vascular calcification, and β-cell proliferation, through the receptor activator of nuclear factor kappa-B ligand (RANKL) and the receptor activator of NF-κB (RANK). Thus, in this review, we mainly focus on relevant diseases, including osteoporosis, cardiovascular disease (CVD), diabetes, and gestational diabetes mellitus (GDM), to summarize the effects of the RANKL/RANK/OPG system in endocrine and metabolic tissues and diseases, thereby providing a comprehensive insight into OPG as a potential drug for endocrine and metabolic diseases.
Collapse
Affiliation(s)
- Luodan Zhang
- Department of Nephrology, Anhui Provincial Children’s Hospital, Children’s Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Fa Zeng
- Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, Guangdong, China
| | - Minmin Jiang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, MOE Key Laboratory of Population Health Across Life Cycle, NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui, China
| | - Maozhen Han
- College of Life Science, Anhui Medical University, Hefei, Anhui, China
| | - Binbin Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, MOE Key Laboratory of Population Health Across Life Cycle, NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui, China
| |
Collapse
|
16
|
Haider IT, Sawatsky A, Zhu Y, Page R, Kostenuik PJ, Boyd SK, Edwards WB. Denosumab treatment is associated with decreased cortical porosity and increased bone density and strength at the proximal humerus of ovariectomized cynomolgus monkeys. Bone 2022; 164:116517. [PMID: 35961611 DOI: 10.1016/j.bone.2022.116517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/27/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022]
Abstract
Upper extremity fractures, including those at the humerus, are common among women with postmenopausal osteoporosis. Denosumab was shown to reduce humeral fractures in this population; however, no clinical or preclinical studies have quantified the effects of denosumab on humerus bone mineral density or bone microarchitecture changes. This study used micro-computed tomography (μCT) and computed tomography (CT), alongside image-based finite element (FE) models derived from both modalities, to quantify the effects of denosomab (DMAb) and alendronate (ALN) on humeral bone from acutely ovariectomized (OVX) cynomolgus monkeys. Animals were treated with 12 monthly injections of s.c. vehicle (VEH; n = 10), s.c. denosumab (DMAb; 25 mg/kg, n = 9), or i.v. alendronate (ALN; 50 μg/kg, n = 10). Two more groups received 6 months of VEH followed by 6 months of DMAb (VEH-DMAb; n = 7) or 6 months of ALN followed by 6 months of DMAb (ALN-DMAb; n = 9). After treatment, humeri were harvested and μCT was used to quantify tissue mineral density, trabecular morphology, and cortical porosity at the humeral head. Clinical CT imaging was also used to quantify trabecular and cortical bone mineral density (BMD) at the ultra-proximal, proximal, 1/5 proximal and midshaft of the bone. Finally, μCT-based FE models in compression, and CT-based FE models in compression, torsion, and bending, were developed to estimate differences in strength. Compared to VEH, groups that received DMAb at any time demonstrated lower cortical porosity and/or higher tissue mineral density via μCT; no effects on trabecular morphology were observed. FE estimated strength based on μCT was higher after 12-months DMAb (p = 0.020) and ALN-DMAb (p = 0.024) vs. VEH; respectively, FE predicted mean (SD) strength was 4649.88 (710.58) N, and 4621.10 (1050.16) N vs. 3309.4 (876.09) N. All antiresorptive treatments were associated with higher cortical BMD via CT at the 1/5 proximal and midshaft of the humerus; however, no differences in CT-based FE predicted strength were observed. Overall, these results help to explain the observed reductions in humeral fracture rate following DMAb treatment in women with postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Ifaz T Haider
- Human Performance Lab, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Canada
| | - Andrew Sawatsky
- Human Performance Lab, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Canada
| | - Ying Zhu
- McCaig Institute for Bone and Joint Health, University of Calgary, Canada
| | - Rebecca Page
- Human Performance Lab, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Canada
| | | | - Steven K Boyd
- McCaig Institute for Bone and Joint Health, University of Calgary, Canada
| | - W Brent Edwards
- Human Performance Lab, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Canada.
| |
Collapse
|
17
|
Lorentzon M, Johansson H, Harvey NC, Liu E, Vandenput L, Crandall CJ, Cauley JA, LeBoff MS, McCloskey EV, Kanis JA. Menopausal hormone therapy reduces the risk of fracture regardless of falls risk or baseline FRAX probability-results from the Women's Health Initiative hormone therapy trials. Osteoporos Int 2022; 33:2297-2305. [PMID: 35833956 PMCID: PMC9568435 DOI: 10.1007/s00198-022-06483-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/22/2022] [Indexed: 11/28/2022]
Abstract
In a combined analysis of 25,389 postmenopausal women aged 50-79 years, enrolled in the two Women's Health Initiative hormone therapy trials, menopausal hormone therapy vs. placebo reduced the risk of fracture regardless of baseline FRAX fracture probability and falls history. INTRODUCTION The aim of this study was to determine if the anti-fracture efficacy of menopausal hormone therapy (MHT) differed by baseline falls history or fracture risk probability as estimated by FRAX, in a combined analysis of the two Women's Health Initiative (WHI) hormone therapy trials. METHODS A total of 25,389 postmenopausal women aged 50-79 years were randomized to receive MHT (n = 12,739) or matching placebo (n = 12,650). At baseline, questionnaires were used to collect information on falls history, within the last 12 months, and clinical risk factors. FRAX 10-year probability of major osteoporotic fracture (MOF) was calculated without BMD. Incident clinical fractures were verified using medical records. An extension of Poisson regression was used to investigate the relationship between treatment and fractures in (1) the whole cohort; (2) those with prior falls; and (3) those without prior falls. The effect of baseline FRAX probability on efficacy was investigated in the whole cohort. RESULTS Over 4.3 ± 2.1 years (mean ± SD), MHT (vs. placebo) significantly reduced the risk of any clinical fracture (hazard ratio [HR] 0.72 [95% CI, 0.65-0.78]), MOF (HR 0.60 [95% CI, 0.53-0.69]), and hip fracture (0.66 [95% CI, 0.45-0.96]). Treatment was effective in reducing the risk of any clinical fracture, MOF, and hip fracture in women regardless of baseline FRAX MOF probability, with no evidence of an interaction between MHT and FRAX (p > 0.30). Similarly, there was no interaction (p > 0.30) between MHT and prior falls. CONCLUSION In the combined WHI trials, compared to placebo, MHT reduces fracture risk regardless of FRAX probability and falls history in postmenopausal women.
Collapse
Affiliation(s)
- Mattias Lorentzon
- Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Geriatric Medicine, Sahlgrenska University Hospital Mölndal, 43180, Mölndal, Sweden.
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia.
| | - Helena Johansson
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
- Centre for Metabolic Bone Diseases, University of Sheffield, Sheffield, UK
| | - Nicholas C Harvey
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Enwu Liu
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - Liesbeth Vandenput
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carolyn J Crandall
- Department of Medicine, David Geffen School of Medicine at the University of California, Los Angeles, USA
| | - Jane A Cauley
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Meryl S LeBoff
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital Boston, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Eugene V McCloskey
- Mellanby Centre for Bone Research, Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
- Centre for Integrated Research in Musculoskeletal Ageing (CIMA), Mellanby Centre for Bone Research, University of Sheffield, Sheffield, UK
| | - John A Kanis
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
- Centre for Metabolic Bone Diseases, University of Sheffield, Sheffield, UK
| |
Collapse
|
18
|
Goulden EL, Crowley RK. When and how to stop denosumab therapy in a patient with osteoporosis. Clin Endocrinol (Oxf) 2022; 98:649-653. [PMID: 35470448 DOI: 10.1111/cen.14747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 11/28/2022]
Abstract
Denosumab is a human monoclonal antibody that competitively inhibits the receptor activator of nuclear factor kappa B ligand which regulates osteoclast activity. It is an effective treatment for osteoporosis with a reduced cumulative rate of vertebral fractures, hip and nonvertebral fractures as well as an increase in bone mineral density. The benefits have been shown to be maintained when treatment is continued up to and likely after 10 years of therapy, but the effects are lost rapidly if treatment is discontinued abruptly. There are rare medical indications for discontinuation of treatment. Discontinuation of denosumab is often driven by concern about complications such as osteonecrosis of the jaw, atypical femoral fractures and hypocalcaemia, which remain rare events. Further studies are required to confirm safety and efficacy beyond 10 years of treatment, but it is likely that patients will have ongoing benefits from therapy beyond this. We aim to present a personal perspective of why and how denosumab should be discontinued in patients with osteoporosis.
Collapse
Affiliation(s)
- Eirena L Goulden
- Department of Endocrinology, St. Vincent's University Hospital, Dublin, Ireland
| | - Rachel K Crowley
- Department of Endocrinology, St. Vincent's University Hospital, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
19
|
The Role of Bone Muscle Ring Finger-1 (MuRF1), MuRF2, MuRF3, and Atrogin-1 on Microarchitecture In Vivo. Cell Biochem Biophys 2022; 80:415-426. [PMID: 35191000 DOI: 10.1007/s12013-022-01069-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/03/2022] [Indexed: 11/03/2022]
Abstract
Ubiquitin proteasome system was found to contribute to bone loss by regulating bone turnover and metabolism, by modulating osteoblast differentiation and bone formation as well as formation of osteoclasts that contribute to bone resorption. Muscle Ring Finger (MuRF) are novel ubiquitin ligases, which are muscle specific and have not been much implicated in the bone but have been implicated in several human diseases including heart failure and skeletal muscle atrophy. This study is aimed at understanding the role of MuRF1, MuRF2, MuRF3 and Atrogin which are distinct MuRF family proteins in bone homeostasis. Wildtype, heterozygous and homozygous mice of each of the isoforms were used and the bone microarchitecture and mechanical properties were assessed using microCT and biomechanics. MuRF1 depletion was found to alter cortical properties in both males and females, but only trabecular spacing in the females. MuRF2 depletion let to no changes in the cortical and trabecular properties but change in the strain to yield in the females. Depletion of MuRF3 led to decrease in the cortical properties in the females and increase in the trabecular properties in the males. Atrogin depletion was found to reduce cortical properties in both males and females, whereas some trabecular properties were found to be reduced in the females. Each muscle-specific ligase was found to alter the bone structure and mechanical properties in a distinct a sex-dependent manner.
Collapse
|
20
|
McCloskey EV, Harvey NC, Johansson H, Lorentzon M, Liu E, Vandenput L, Leslie WD, Kanis JA. Fracture risk assessment by the FRAX model. Climacteric 2022; 25:22-28. [PMID: 34319212 DOI: 10.1080/13697137.2021.1945027] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 10/20/2022]
Abstract
The introduction of the FRAX algorithms has facilitated the assessment of fracture risk on the basis of fracture probability. FRAX integrates the influence of several well-validated risk factors for fracture with or without the use of bone mineral density. Since age-specific rates of fracture and death differ across the world, FRAX models are calibrated with regard to the epidemiology of hip fracture (preferably from national sources) and mortality (usually United Nations sources). Models are currently available for 73 nations or territories covering more than 80% of the world population. FRAX has been incorporated into more than 80 guidelines worldwide, although the nature of this application has been heterogeneous. The limitations of FRAX have been extensively reviewed. Arithmetic procedures have been proposed in order to address some of these limitations, which can be applied to conventional FRAX estimates to accommodate knowledge of dose exposure to glucocorticoids, concurrent data on lumbar spine bone mineral density, information on trabecular bone score, hip axis length, falls history, type 2 diabetes, immigration status and recency of prior fracture.
Collapse
Affiliation(s)
- E V McCloskey
- Centre for Metabolic Bone Diseases, University of Sheffield Medical School, Sheffield, UK
- Centre for Integrated research in Musculoskeletal Ageing (CIMA), Mellanby Centre for Musculoskeletal Research, University of Sheffield, Sheffield, UK
| | - N C Harvey
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - H Johansson
- Centre for Metabolic Bone Diseases, University of Sheffield Medical School, Sheffield, UK
- Mary McKillop Health Institute, Australian Catholic University, Melbourne, VIC, Australia
| | - M Lorentzon
- Centre for Bone and Arthritis Research (CBAR), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Sweden
| | - E Liu
- Mary McKillop Health Institute, Australian Catholic University, Melbourne, VIC, Australia
| | - L Vandenput
- Mary McKillop Health Institute, Australian Catholic University, Melbourne, VIC, Australia
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Sweden
| | - W D Leslie
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - J A Kanis
- Centre for Metabolic Bone Diseases, University of Sheffield Medical School, Sheffield, UK
- Mary McKillop Health Institute, Australian Catholic University, Melbourne, VIC, Australia
| |
Collapse
|
21
|
Lu W, Xiao W, Xie W, Fu X, Pan L, Jin H, Yu Y, Zhang Y, Li Y. The Role of Osteokines in Sarcopenia: Therapeutic Directions and Application Prospects. Front Cell Dev Biol 2021; 9:735374. [PMID: 34650980 PMCID: PMC8505767 DOI: 10.3389/fcell.2021.735374] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/07/2021] [Indexed: 12/14/2022] Open
Abstract
Sarcopenia is an age-related disease in which muscle mass, strength and function may decline with age or can be secondary to cachexia or malnutrition and can lead to weakness, falls and even death. With the increase in life expectancy, sarcopenia has become a major threat to the health of the elderly. Currently, our understanding of bone-muscle interactions is not limited to their mechanical coupling. Bone and muscle have been identified as secretory endocrine organs, and their interaction may affect the function of each. Both muscle-derived factors and osteokines can play a role in regulating muscle and bone metabolism via autocrine, paracrine and endocrine mechanisms. Herein, we comprehensively summarize the latest research progress on the effects of the osteokines FGF-23, IGF-1, RANKL and osteocalcin on muscle to explore whether these cytokines can be utilized to treat and prevent sarcopenia.
Collapse
Affiliation(s)
- Wenhao Lu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wenfeng Xiao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wenqing Xie
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Fu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Linyuan Pan
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongfu Jin
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yongle Yu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yi Zhang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yusheng Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
22
|
McCloskey EV, Johansson H, Harvey NC, Lorentzon M, Shi Y, Kanis JA. Romosozumab efficacy on fracture outcomes is greater in patients at high baseline fracture risk: a post hoc analysis of the first year of the frame study. Osteoporos Int 2021; 32:1601-1608. [PMID: 33537844 PMCID: PMC8376732 DOI: 10.1007/s00198-020-05815-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/30/2020] [Indexed: 01/01/2023]
Abstract
UNLABELLED This study aimed to determine the interaction between baseline FRAX® fracture probability and romosozumab efficacy. Using an ITT approach, it was determined that the efficacy of romosozumab on clinical fracture, osteoporotic fracture, and major osteoporotic fracture is significantly greater in patients at high baseline fracture risk, when compared with placebo. INTRODUCTION Post hoc analyses of placebo-controlled osteoporosis treatment studies have shown significantly greater reductions of fracture incidence for higher fracture risk patients. This study determined the interaction between baseline FRAX® fracture probability and romosozumab efficacy in the placebo-controlled first year of the phase 3 FRAME study (NCT01575834). METHODS Using an ITT approach, an extension of Poisson regression analysis studied the relationship between treatment, FRAX® 10-year probability of major osteoporotic fracture (MOF, calculated without BMD) and risk of first incident fracture (adjusting for age and follow-up time). Treatment interactions considered outcomes of all clinical fractures, osteoporotic fractures, MOF, clinical vertebral fractures, and morphometric vertebral fractures. Two-sided p value of < 0.1 for the interaction between treatment and FRAX® was considered significant. RESULTS Compared with placebo, romosozumab reduced the incidence of all fracture outcomes in the first year (range: 32% reduction in MOF [p = 0.07] to 80% reduction in clinical vertebral fractures [p = 0.038]). Significant interactions were observed between efficacy and baseline FRAX® probability for composite outcomes of clinical fractures, osteoporotic fractures, and MOF (p = 0.064-0.084), but not vertebral fractures (p > 0.3). For example, romosozumab decreased all clinical fractures by 22% at the 25th centile of FRAX® probability but the reduction was 41% at the 75th centile. Exclusion of vertebral fractures from each composite fracture outcome (i.e. only nonvertebral fractures included) showed even stronger interactions with baseline FRAX® probability (p = 0.036-0.046). CONCLUSIONS Efficacy of romosozumab on clinical fracture, osteoporotic fracture, and MOF is significantly greater in patients at high baseline fracture risk compared with placebo.
Collapse
Affiliation(s)
- E V McCloskey
- Centre for Metabolic Bone Diseases, University of Sheffield, Sheffield, UK.
- Centre for Integrated Research in Musculoskeletal Ageing (CIMA), Mellanby Centre for Bone Research, University of Sheffield, Sheffield, UK.
- Metabolic Bone Centre, Northern General Hospital, Herries Road, Sheffield, S5 7AU, UK.
| | - H Johansson
- Centre for Metabolic Bone Diseases, University of Sheffield, Sheffield, UK
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - N C Harvey
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - M Lorentzon
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Geriatric Medicine, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Y Shi
- Amgen Inc, Thousand Oaks, CA, USA
| | - J A Kanis
- Centre for Metabolic Bone Diseases, University of Sheffield, Sheffield, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
23
|
Nguyen TV. Personalized fracture risk assessment: where are we at? Expert Rev Endocrinol Metab 2021; 16:191-200. [PMID: 33982611 DOI: 10.1080/17446651.2021.1924672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Introduction: Osteoporotic fracture imposes a significant health care burden globally. Personalized assessment of fracture risk can potentially guide treatment decisions. Over the past decade, a number of risk prediction models, including the Garvan Fracture Risk Calculator (Garvan) and FRAX®, have been developed and implemented in clinical practice. Areas covered: This article reviews recent development and validation results concerning the prognostic performance of the two tools. The main areas of review are the need for personalized fracture risk prediction, purposes of risk prediction, predictive performance in terms of discrimination and calibration, concordance between the Garvan and FRAX tools, genetic profiling for improving predictive performance, and treatment thresholds. In some validation studies, FRAX tended to underestimate fracture by as high as 50%. Studies have shown that the predicted risk from the Garvan tool is highly concordant with clinical decision. Expert opinion: Although there are some discrepancy in fracture risk prediction between Garvan and FRAX, both tools are valid and can aid patients and doctors communicate about risk and make informed decision. The ideal of personalized risk assessment for osteoporosis patients will be realized through the incorporation of genetic profiling into existing fracture risk assessment tools.
Collapse
Affiliation(s)
- Tuan V Nguyen
- Healthy Ageing Theme, Garvan Institute of Medical Research Darlinghurst Australia
- St Vincent's Clinical School, UNSW Sydney, Sydney Australia
- School of Biomedical Engineering, University of Technology Sydney Sydney Australia
| |
Collapse
|
24
|
Iconaru L, Moreau M, Baleanu F, Kinnard V, Charles A, Mugisha A, Surquin M, Benoit F, Karmali R, Paesmans M, Body JJ, Bergmann P. Risk factors for imminent fractures: a substudy of the FRISBEE cohort. Osteoporos Int 2021; 32:1093-1101. [PMID: 33411010 DOI: 10.1007/s00198-020-05772-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/01/2020] [Indexed: 10/22/2022]
Abstract
UNLABELLED Multiple factors increase the risk of an imminent fracture, including a recent fracture, older age, osteoporosis, comorbidities, and the fracture site. These findings could be a first step in the development of a model to predict an imminent fracture and select patients most at need of immediate treatment. INTRODUCTION The risk of a recurrent fragility fracture is maximal during the first 2 years following an incident fracture. In this prospective cohort study, we looked at the incidence of recurrent fractures within 2 years after a first incident fracture and we assessed independent clinical risk factors (CRFs) increasing this imminent fracture risk. METHODS A total of 3560 postmenopausal women recruited from 2007 to 2013 were surveyed yearly for the occurrence of fragility fractures. We identified patients who sustained a fracture during the first 2 years following a first incident fragility fracture. We quantified the risk of a new fracture and assessed independent CRFs, associated with an imminent fracture at various sites. RESULTS A recent fracture was a significant CRF for an imminent fracture (OR (95% CI): 3.7 (2.4-5.7) [p < 0.0001]). The incidence of an imminent fracture was higher in subjects above 80 years (p < 0.001). Other CRFs highly predictive in a multivariate analysis were osteoporosis diagnosis (p < 0.01), a central fracture as the index fracture (p < 0.01), and the presence of comorbidities (p < 0.05), with likelihood ratios of 1.9, 1.9, and 2.2, respectively. An imminent fracture was better predicted by a central fracture (p < 0.01) than by a major osteoporotic fracture. The hazard ratio was the highest for a central fracture. CONCLUSION In patients with a recent fracture, older age, osteoporosis, comorbidities, and fracture site were associated with an imminent fracture risk. These findings could be a first step in the development of a model to predict an imminent fracture and select patients most at need of immediate and most appropriate treatment.
Collapse
Affiliation(s)
- L Iconaru
- Department of Endocrinology, CHU Brugmann, Université Libre de Bruxelles, Place van Gehuchten 4, Laeken, 1020, Brussels, Belgium.
| | - M Moreau
- Data Centre, Inst. J. Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - F Baleanu
- Department of Endocrinology, CHU Brugmann, Université Libre de Bruxelles, Place van Gehuchten 4, Laeken, 1020, Brussels, Belgium
| | - V Kinnard
- Department of Internal Medicine, CHU Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - A Charles
- Laboratoire de Recherche Translationnelle, CHU Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - A Mugisha
- Department of Internal Medicine, CHU Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - M Surquin
- Department of Internal Medicine, CHU Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - F Benoit
- Department of Internal Medicine, CHU Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - R Karmali
- Department of Endocrinology, CHU Brugmann, Université Libre de Bruxelles, Place van Gehuchten 4, Laeken, 1020, Brussels, Belgium
| | - M Paesmans
- Data Centre, Inst. J. Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - J J Body
- Department of Endocrinology, CHU Brugmann, Université Libre de Bruxelles, Place van Gehuchten 4, Laeken, 1020, Brussels, Belgium
- Laboratoire de Recherche Translationnelle, CHU Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - P Bergmann
- Laboratoire de Recherche Translationnelle, CHU Brugmann, Université Libre de Bruxelles, Brussels, Belgium
- Department of Nuclear Medicine, CHU Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
25
|
Pizzonia M, Casabella A, Natali M, Petrocchi L, Carmisciano L, Nencioni A, Molfetta L, Giannotti C, Bianchi G, Giusti A, Santolini F, Monacelli F. Osteosarcopenia in Very Old Age Adults After Hip Fracture: A Real-World Therapeutic Standpoint. Front Med (Lausanne) 2021; 8:612506. [PMID: 34095158 PMCID: PMC8172785 DOI: 10.3389/fmed.2021.612506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
Loss of bone and muscle mass and strength (i. e., osteosarcopenia) is a highly prevalent clinical condition in older adults, associated with an increased risk of fragility fractures and unfavorable clinical outcomes. Although sarcopenia is a potential risk factor for osteoporosis and subsequent fracture, and the management of this hazardous duet is the key to preventing osteoporotic fracture, evidence pertaining to the treatment of sarcopenia for the purpose of preventing fragile fractures remains insufficient. Given this scenario we aimed at prospectively compare the long-term effectiveness of bisphosphonates vs. denosumab, on bone and muscle, in a cohort of old age hip fractured patients by virtue of a timely osteo-metabolic and sarcopenic assessment. Ninety-eight patients consecutively enrolled at the IRCCS Hospital San martino, Genoa, Italy, received at baseline comprehensive geriatric assessment and Bone Densitometry (DXA) with the quantitative and quantitative bone analysis and evaluation of relative skeletal muscle index (RSMI) and longitudinally after 1 year form hip surgery. The results showed a slightly and non-significant osteo-metabolic improvement in the Alendronate group compared to the Denosumab group, and a positive trend of RSMI measurements in the Denosumab group. Although preliminary in nature, this is the first report to longitudinally analyze osteosarcopenia in a real-world cohort of very old age patients after hip fracture and moved a step forward in the understanding of the best osteo-metabolic therapy for long- term treatment, exploring as well the potential dual role of denousumab as antiresorptive and muscle strength specific drug for osteosarcopenia in this vulnerable population.
Collapse
Affiliation(s)
- Monica Pizzonia
- Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Policlinico San Martino, Genoa, Italy
| | - Andrea Casabella
- Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Policlinico San Martino, Genoa, Italy.,DIMI, Department of Internal Medicine and Medical Specialties, Section of Geriatrics, University of Genoa, Genoa, Italy
| | - Marta Natali
- Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Policlinico San Martino, Genoa, Italy.,DIMI, Department of Internal Medicine and Medical Specialties, Section of Geriatrics, University of Genoa, Genoa, Italy
| | - Lorena Petrocchi
- Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Policlinico San Martino, Genoa, Italy.,DIMI, Department of Internal Medicine and Medical Specialties, Section of Geriatrics, University of Genoa, Genoa, Italy
| | - Luca Carmisciano
- DISSAL, Department of Health Science, University of Genoa, Genoa, Italy
| | - Alessio Nencioni
- Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Policlinico San Martino, Genoa, Italy.,DIMI, Department of Internal Medicine and Medical Specialties, Section of Geriatrics, University of Genoa, Genoa, Italy
| | - Luigi Molfetta
- DISC, Department of Integrated Surgical and Diagnostic Sciences, University of Genoa, Genoa, Italy
| | - Chiara Giannotti
- Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Policlinico San Martino, Genoa, Italy.,DIMI, Department of Internal Medicine and Medical Specialties, Section of Geriatrics, University of Genoa, Genoa, Italy
| | - Gerolamo Bianchi
- Rheumatology Unit, Department of Musculoskeletal Sciences, Local Health Trust 3, La Colletta Hospital, Genoa, Italy
| | - Andrea Giusti
- Rheumatology Unit, Department of Musculoskeletal Sciences, Local Health Trust 3, La Colletta Hospital, Genoa, Italy
| | - Federico Santolini
- Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Policlinico San Martino, Genoa, Italy
| | - Fiammetta Monacelli
- Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Policlinico San Martino, Genoa, Italy.,DIMI, Department of Internal Medicine and Medical Specialties, Section of Geriatrics, University of Genoa, Genoa, Italy
| |
Collapse
|
26
|
McCloskey EV, Harvey NC, Johansson H, Lorentzon M, Vandenput L, Liu E, Kanis JA. Global impact of COVID-19 on non-communicable disease management: descriptive analysis of access to FRAX fracture risk online tool for prevention of osteoporotic fractures. Osteoporos Int 2021; 32:39-46. [PMID: 33057738 PMCID: PMC7556595 DOI: 10.1007/s00198-020-05542-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/07/2020] [Indexed: 12/31/2022]
Abstract
The COVID-19 pandemic, and its management, is markedly impacting the management of osteoporosis as judged by access to online FRAX fracture risk assessments. Globally, access was 58% lower in April than in February 2020. Strategies to improve osteoporosis care, with greater use of fracture risk assessments, offer a partial solution. INTRODUCTION The COVID-19 pandemic is having a significant detrimental impact on the management of chronic diseases including osteoporosis. We have quantified the global impact by examining changes in the usage of online FRAX fracture risk assessments before and after the declaration of the pandemic (11 March 2020). METHODS The study comprised a retrospective analysis using GoogleAnalytics data on daily sessions on the FRAX® website ( www.sheffield.ac.uk/FRAX ) from November 2019 to April 2020 (main analysis period February-April 2020), and the geographical source of that activity. RESULTS Over February-April 2020, the FRAX website recorded 460,495 sessions from 184 countries, with 210,656 sessions in February alone. In March and April, the number of sessions fell by 23.1% and 58.3% respectively, a pattern not observed over the same period in 2019. There were smaller reductions in Asia than elsewhere, partly related to earlier and less-marked nadirs in some countries (China, Taiwan, Hong Kong, South Korea and Vietnam). In Europe, the majority of countries (24/31, 77.4%) reduced usage by at least 50% in April. Seven countries showed smaller reductions (range - 2.85 to - 44.1%) including Poland, Slovakia, Czech Republic, Germany, Norway, Sweden and Finland. There was no significant relationship between the reduction in FRAX usage and measures of disease burden such as COVID-attributed deaths per million of the population. CONCLUSION This study documents a marked global impact of the COVID-19 pandemic on the management of osteoporosis as reflected by FRAX online fracture risk assessments. The analysis suggests that impact may relate to the societal and healthcare measures taken to ameliorate the pandemic.
Collapse
Affiliation(s)
- E V McCloskey
- Department of Oncology and Metabolism, Academic Unit of Bone Metabolism, Metabolic Bone Centre, Northern General Hospital, Centre for Integrated Research in Musculoskeletal Ageing, Mellanby Centre for Bone Research, University of Sheffield, Sheffield, S5 7AU, UK.
- Centre for Metabolic Bone Diseases, University of Sheffield, Sheffield, UK.
| | - N C Harvey
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - H Johansson
- Centre for Metabolic Bone Diseases, University of Sheffield, Sheffield, UK
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - M Lorentzon
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Geriatric Medicine, Sahlgrenska University Hospital Mölndal, Gothenburg, Sweden
| | - L Vandenput
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - E Liu
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - J A Kanis
- Centre for Metabolic Bone Diseases, University of Sheffield, Sheffield, UK
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| |
Collapse
|
27
|
Kanis JA, Harvey NC, Lorentzon M, Liu E, Vandenput L, McCloskey EV, Johansson H. Combining fracture outcomes in phase 3 trials of osteoporosis: an analysis of the effects of denosumab in postmenopausal women. Osteoporos Int 2021; 32:165-171. [PMID: 33156354 DOI: 10.1007/s00198-020-05699-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/17/2020] [Indexed: 10/23/2022]
Abstract
UNLABELLED This paper explores use of metrics that combine fracture outcomes that add power to phase 3 studies and provide a surrogate outcome for regulatory agencies. INTRODUCTION The aim of this study was to develop an analytic framework that would combine information from all fracture outcomes (including radiographic vertebral fractures) in phase 3 studies to provide a metric for the assessment of treatment efficacy. METHODS Data from the phase 3 study of denosumab were used as an exemplar comparing the effects of active intervention with placebo on the risk of all fractures associated with osteoporosis. Fracture outcomes were assigned utility weights drawn from the published literature and applied to age-specific health state values of the general population. For each fracture outcome in each arm of the study, cumulative disutility was computed to serve as the principal end point. The hypothesis tested was that treatment with denosumab results in a significant reduction in mean fracture-related disutility. RESULTS Treatment with denosumab was associated with significantly lower utility loss compared with placebo. For patients treated with denosumab, mean utility loss was 42% less than with placebo (4.5 vs. 7.5 QALYs/1000 patient years, respectively, p < 0.001). CONCLUSIONS Denosumab significantly decreased utility loss. The use of metrics that combine fracture outcomes may provide added power to phase 3 studies and provide a surrogate outcome for regulatory agencies.
Collapse
Affiliation(s)
- J A Kanis
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia.
- Centre for Metabolic Bone Diseases, University of Sheffield Medical School, Beech Hill Road, Sheffield, S10 2RX, UK.
| | - N C Harvey
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - M Lorentzon
- Geriatric Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - E Liu
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - L Vandenput
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - E V McCloskey
- Centre for Metabolic Bone Diseases, University of Sheffield Medical School, Beech Hill Road, Sheffield, S10 2RX, UK
- Mellanby Centre for bone research, Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - H Johansson
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
- Centre for Metabolic Bone Diseases, University of Sheffield Medical School, Beech Hill Road, Sheffield, S10 2RX, UK
| |
Collapse
|
28
|
Zhang L, Sun Y. Muscle-Bone Crosstalk in Chronic Obstructive Pulmonary Disease. Front Endocrinol (Lausanne) 2021; 12:724911. [PMID: 34650518 PMCID: PMC8505811 DOI: 10.3389/fendo.2021.724911] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/13/2021] [Indexed: 12/30/2022] Open
Abstract
Sarcopenia and osteoporosis are common musculoskeletal comorbidities of chronic obstructive pulmonary disease (COPD) that seriously affect the quality of life and prognosis of the patient. In addition to spatially mechanical interactions, muscle and bone can also serve as endocrine organs by producing myokines and osteokines to regulate muscle and bone functions, respectively. As positive and negative regulators of skeletal muscles, the myokines irisin and myostatin not only promote/inhibit the differentiation and growth of skeletal muscles, but also regulate bone metabolism. Both irisin and myostatin have been shown to be dysregulated and associated with exercise and skeletal muscle dysfunction in COPD. During exercise, skeletal muscles produce a large amount of IL-6 which acts as a myokine, exerting at least two different conflicting functions depending on physiological or pathological conditions. Remarkably, IL-6 is highly expressed in COPD, and considered to be a biomarker of systemic inflammation, which is associated with both sarcopenia and bone loss. For osteokines, receptor activator of nuclear factor kappa-B ligand (RANKL), a classical regulator of bone metabolism, was recently found to play a critical role in skeletal muscle atrophy induced by chronic cigarette smoke (CS) exposure. In this focused review, we described evidence for myokines and osteokines in the pathogenesis of skeletal muscle dysfunction/sarcopenia and osteoporosis in COPD, and proposed muscle-bone crosstalk as an important mechanism underlying the coexistence of muscle and bone diseases in COPD.
Collapse
|
29
|
Noble JA, McKenna MJ, Crowley RK. Should denosumab treatment for osteoporosis be continued indefinitely? Ther Adv Endocrinol Metab 2021; 12:20420188211010052. [PMID: 34104392 PMCID: PMC8072936 DOI: 10.1177/20420188211010052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 03/24/2021] [Indexed: 12/15/2022] Open
Abstract
Denosumab was approved for the treatment of postmenopausal osteoporosis in 2010, based on the FREEDOM study, which indicated a benefit in terms of increased bone mineral density and reduced risk of major osteoporotic fracture. In the initial clinical studies it was noted that discontinuation of denosumab can lead to a rebound of bone turnover markers and loss of accrued bone mineral density. An increased risk of fractures (multiple vertebral fractures in particular) associated with discontinuation was noted after approval and marketing of denosumab. For many patients experiencing gain in bone mineral density and fracture prevention while taking denosumab, there is no reason to stop therapy. However, discontinuation of denosumab may happen due to non-adherence; potential lack of efficacy in an individual; where reimbursement for therapy is limited to those with bone mineral density in the osteoporosis range, when assessment reveals this has been exceeded; or patient or physician concern regarding side effects. This review paper aims to discuss these concerns and to summarize the data available to date regarding sequential osteoporosis therapy following denosumab cessation to reduce the risk of multiple vertebral fracture.
Collapse
Affiliation(s)
- Jane A. Noble
- Department of Endocrinology, St Vincent’s University Hospital, Dublin, Ireland
| | - Malachi J. McKenna
- St Vincent’s Private Hospital, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin, Ireland
| | | |
Collapse
|
30
|
Plain vitamin D or active vitamin D in the treatment of osteoporosis: where do we stand today? Arch Osteoporos 2020; 15:182. [PMID: 33188611 DOI: 10.1007/s11657-020-00842-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023]
Abstract
Osteoporosis is a major cause of morbidity and mortality worldwide and its prevention in order to avert fractures was considered of great importance in maintaining well-being and independence among the elderly. Strategies for osteoporosis prevention are well delineated, but research shows that the treatment options offered today could still be improved. The role of plain vitamin D (cholecalciferol) in bone health and the prevention of osteoporosis are well documented; however, as a treatment for osteoporosis, either with or without calcium, it has been shown to be ineffective. This is due in part to the strong negative feedback mechanisms in place in vitamin D-replete patients. However, other factors linked directly to ageing such as oestrogen depletion, reduced kidney or liver function may also be involved in reducing the body's capability to activate plain vitamin efficiently. This is why active vitamin D analogues such as alfacalcidol, 1-α-(OH)D3, are of clinical interest. Alfacalcidol requires only one hydroxylation reaction to become active 1,25-(OH)2-vitamin D3, and the 25-hydroxylase catalyzing this reaction is found in the liver and also interestingly in osteoblasts suggesting a local effect. Registered for use in postmenopausal osteoporosis, in most countries worldwide, alfacalcidol has also shown efficacy in glucocorticoid-induced and male osteoporosis. The present review provides compelling evidence for the efficacy of this compound in the treatment of osteoporosis and prevention of fractures both in monotherapy and when combined with other osteoporotic drugs where additive effects are clear. The safety profile of alfacalcidol is shown to be highly acceptable and it is considered less likely to induce hypercalcaemia than another more widely used analogue, calcitriol. Therefore, it remains unclear as to why alfacalcidol is not more widely used in clinical practice.
Collapse
|
31
|
Pang KL, Low NY, Chin KY. A Review on the Role of Denosumab in Fracture Prevention. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4029-4051. [PMID: 33061307 PMCID: PMC7534845 DOI: 10.2147/dddt.s270829] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022]
Abstract
Denosumab is a receptor activator of nuclear factor kappa-Β ligand inhibitor, which suppresses the bone resorption process to preserve bone mass. It is usually recommended to postmenopausal women and men with high fracture risk. With the recent publication of the results from FREEDOM study and its extension, the long-term effect of denosumab in preventing fragility fractures has been put forward. This review aims at summarising the evidence of denosumab in reducing fracture risk and its safety derived from clinical studies. Most of the evidence are derived from FREEDOM trials up to 10 years of exposure. Denosumab is reported to prevent vertebral and non-vertebral fractures. It is also proven effective in Japanese women, patients with chronic kidney diseases and breast cancer patients receiving antineoplastic therapy. Denosumab discontinuation leads to high remodeling, loss of bone mineral density and increased fracture risk. These negative effects might be preventable by bisphosphonate treatment. The safety profile of denosumab is consistent with increased years of exposure. In conclusion, denosumab is a safe and effective option for reducing fracture risk among patients with osteoporosis.
Collapse
Affiliation(s)
- Kok-Lun Pang
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nie Yen Low
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.,State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| |
Collapse
|
32
|
Colaianni G, Storlino G, Sanesi L, Colucci S, Grano M. Myokines and Osteokines in the Pathogenesis of Muscle and Bone Diseases. Curr Osteoporos Rep 2020; 18:401-407. [PMID: 32514668 DOI: 10.1007/s11914-020-00600-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW In this review we aim to summarize the latest findings on the network of molecules produced by muscle and bone under physiological and pathological conditions. RECENT FINDINGS The concomitant onset of osteoporosis and sarcopenia is currently one of the main threats that can increase the risk of falling fractures during aging, generating high health care costs due to hospitalization for bone fracture surgery. With the growing emergence of developing innovative therapies to treat these two age-related conditions that often have common onset, a broader understanding of molecular messengers regulating the communication between muscle and bone tissue became imperative. Recently it has been highlighted that two muscle-derived signals, such as the myokines Irisin and L-BAIBA, positively affect bone tissue. In parallel, there are signals derived from bone that affect either positively the skeletal muscle, such as osteocalcin, or negatively, such as RANKL.
Collapse
Affiliation(s)
- G Colaianni
- Department of Emergency and Organ Transplantation, University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - G Storlino
- Department of Emergency and Organ Transplantation, University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - L Sanesi
- Department of Emergency and Organ Transplantation, University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - S Colucci
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, Bari, Italy
| | - Maria Grano
- Department of Emergency and Organ Transplantation, University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy.
| |
Collapse
|
33
|
Compston J. Practical guidance for the use of bisphosphonates in osteoporosis. Bone 2020; 136:115330. [PMID: 32222607 DOI: 10.1016/j.bone.2020.115330] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/12/2020] [Accepted: 03/22/2020] [Indexed: 12/23/2022]
Abstract
Bisphosphonates are widely used in the treatment of osteoporosis in postmenopausal women and older men. In clinical trials they have been shown to reduce fractures in women with osteoporosis and there is increasing evidence that they are also effective in women with osteopenia, in whom the majority of fractures occur. In addition to their role as initial therapy in individuals at increased risk of fracture, bisphosphonates are used as sequential therapy after treatment with anabolic drugs. There are no head-to head studies to compare the anti-fracture efficacy of different bisphosphonates, but there is limited evidence that zoledronate treatment results in greater increases in BMD than risedronate or alendronate. This, together with the need for less frequent administration of zoledronate, supports its wider use in clinical practice, particularly if longer dosing intervals than those currently recommended are shown to be effective.
Collapse
|
34
|
Osteoporosis treatment considerations based upon fracture history, fracture risk assessment, vertebral fracture assessment, and bone density in Canada. Arch Osteoporos 2020; 15:93. [PMID: 32577922 DOI: 10.1007/s11657-020-00775-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/19/2020] [Indexed: 02/03/2023]
Abstract
UNLABELLED Among 39,475 women, age 65 years and older, use of fracture history, major osteoporotic fracture (MOF) probability from FRAX®, vertebral fracture assessment (VFA), and bone mineral density (BMD) T-score stratified women into different levels of risk. The majority of women identified as being at high risk from fracture history, FRAX MOF-BMD > 20%, or vertebral fracture on VFA had a BMD T-score in the osteoporotic range. PURPOSE To inform criteria for pharmacologic treatment in women age 65 years and older, we examined subgroups defined from fracture history, MOF calculated with BMD (MOF-BMD), VFA, and BMD T-score using the population-based Manitoba BMD Program registry. METHODS The study population consisted of women age > 65 years was divided into mutually exclusive subgroups based upon fracture history, MOF-BMD ≥ 20%, vertebral fracture on VFA, and osteoporotic BMD T-score. Healthcare records were assessed for the presence of fracture diagnosis codes occurring after DXA assessment. For each subgroup, we estimated the proportion of individuals with BMD T-score in the osteoporotic range, predicted versus observed 10-year MOF probability, hazard ratio (HR) for MOF, and number needed to treat (NNT) for 3 years to prevent a fracture event. RESULTS The study population consisted of 39,475 women (median age 72 years). The majority of women (76.8%) selected as being at high risk based on fracture history, MOF-BMD > 20%, or vertebral fracture on VFA had a BMD T-score in the osteoporotic range. During a median follow-up of 8 years, 5169 (13.1%) sustained one or more incident MOF. Fracture rates and HRs generally paralleled the FRAX prediction, except in women with a positive VFA where predicted risk based upon clinical risk factors prior to VFA underestimated the observed risk. NNT differed by the risk subgroup, and showed a gradient of decreasing NNT (consistent with greater benefit) in individuals with the highest fracture risk. CONCLUSIONS Fracture history, fracture probability from FRAX, targeted vertebral fracture assessment (VFA), and BMD T-score can stratify older women into different levels of risk and treatment benefit. These results are expected to inform clinical practice guidelines in Canada.
Collapse
|
35
|
Himmelsbach A, Ciliox C, Goettsch C. Cardiovascular Calcification in Chronic Kidney Disease-Therapeutic Opportunities. Toxins (Basel) 2020; 12:toxins12030181. [PMID: 32183352 PMCID: PMC7150985 DOI: 10.3390/toxins12030181] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 02/07/2023] Open
Abstract
Patients with chronic kidney disease (CKD) are highly susceptible to cardiovascular (CV) complications, thus suffering from clinical manifestations such as heart failure and stroke. CV calcification greatly contributes to the increased CV risk in CKD patients. However, no clinically viable therapies towards treatment and prevention of CV calcification or early biomarkers have been approved to date, which is largely attributed to the asymptomatic progression of calcification and the dearth of high-resolution imaging techniques to detect early calcification prior to the 'point of no return'. Clearly, new intervention and management strategies are essential to reduce CV risk factors in CKD patients. In experimental rodent models, novel promising therapeutic interventions demonstrate decreased CKD-induced calcification and prevent CV complications. Potential diagnostic markers such as the serum T50 assay, which demonstrates an association of serum calcification propensity with all-cause mortality and CV death in CKD patients, have been developed. This review provides an overview of the latest observations and evaluates the potential of these new interventions in relation to CV calcification in CKD patients. To this end, potential therapeutics have been analyzed, and their properties compared via experimental rodent models, human clinical trials, and meta-analyses.
Collapse
|
36
|
Wang Y, Yu S, Hsu C, Tsai C, Cheng T. Underestimated fracture risk in postmenopausal women-application of the hybrid intervention threshold. Osteoporos Int 2020; 31:475-483. [PMID: 31696272 DOI: 10.1007/s00198-019-05201-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 10/16/2019] [Indexed: 01/07/2023]
Abstract
UNLABELLED This study evaluated the fragility fracture risk of Taiwanese postmenopausal women with osteopenia. With the incorporation of FRAX and hybrid intervention threshold (HIT), 25% of the participants had high fracture risk. We suggest intervention for fragility fracture for postmenopausal women should be guided by FRAX and HIT instead of bone mineral density alone. INTRODUCTION To explore the risk of fragility fracture in Taiwanese postmenopausal women with osteopenia using the hybrid intervention threshold (HIT) and Fracture Risk Assessment tool (FRAX). METHODS The Taiwan Osteoporosis Association (TOA) conducted a nationwide bone mineral density (BMD) survey between 2008 and 2011 using a bus equipped with a dual-energy X-ray absorptiometry (DXA) machine. All participants completed a structured questionnaire, which included the elements in the FRAX. Based on the results, the group made up of postmenopausal women with osteopenia was identified. In order to explore the risk of fragility fracture by HIT and FRAX among Taiwan postmenopausal women with osteopenia, the 10-year probability of fracture (FRAX score) and individual intervention threshold (IIT) in this group were calculated. If the FRAX score of a participant was higher than or equal to the IIT or fixed intervention threshold (FIT), the participant was considered as above the HIT (HIT could be reached by being over a threshold at either major osteoporotic fracture or hip fracture) and categorized as having a high FRAX fracture risk. RESULTS A total of 13,068 postmenopausal women were enrolled in the program. A total of 5743 (43.9%) participants had osteopenia, of which 1434 (25.0%) had high FRAX fracture risk. CONCLUSIONS One quarter of Taiwanese postmenopausal women with osteopenia had high fragility fracture risk evaluated by FRAX and HIT. Due to the poor sensitivity of BMD for fragility fracture, we suggest that intervention for fragility fracture for postmenopausal women should also be guided by FRAX and HIT instead of BMD alone.
Collapse
Affiliation(s)
- Y Wang
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, No. 123, Dapi Road, Niaosung District, 83301, Kaohsiung City, Taiwan
| | - S Yu
- Division of Rheumatology, Allergy, and Immunology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, No. 123, Dapi Road, Niaosung District, 83301, Kaohsiung City, Taiwan
| | - C Hsu
- Division of Rheumatology, Allergy, and Immunology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, No. 123, Dapi Road, Niaosung District, 83301, Kaohsiung City, Taiwan
| | - C Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, No. 123, Dapi Road, Niaosung District, 83301, Kaohsiung City, Taiwan.
| | - T Cheng
- Division of Rheumatology, Allergy, and Immunology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, No. 123, Dapi Road, Niaosung District, 83301, Kaohsiung City, Taiwan.
- College of Medicine, Chang Gung University, No. 123, Dapi Road, Niaosung District, 83301, Kaohsiung City, Taiwan.
| |
Collapse
|
37
|
Hsu CY, Wu CH, Yu SF, Su YJ, Chiu WC, Chen YC, Lai HM, Chen JF, Ko CH, Chen JF, Cheng TT. Novel algorithm generating strategy to identify high fracture risk population using a hybrid intervention threshold. J Bone Miner Metab 2020; 38:213-221. [PMID: 31583541 DOI: 10.1007/s00774-019-01046-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 09/02/2019] [Indexed: 11/24/2022]
Abstract
INTRODUCTION The aim of this study was to develop an algorithm to identify high-risk populations of fragility fractures in Taiwan. MATERIALS AND METHODS A total of 16,539 postmenopausal women and men (age ≥ 50 years) were identified from the Taiwan Osteoporosis Survey database. Using the Taiwan FRAX® tool, the 10-year probability of major osteoporotic fracture (MOF) and hip fracture (HF) and the individual intervention threshold (IIT) of each participant were calculated. Subjects with either a probability above the IIT or those with MOF ≥ 20% or HF ≥ 9% were included as group A. Subjects with a bone mineral density (BMD) T-score at femoral neck based on healthy subjects of ≤ - 2.5 were included in group B. We tested several cutoff points for MOF and HF so that the number of patients in group A and group B were similar. A novel country-specific hybrid intervention threshold along with an algorithm was generated to identify high fracture risk individuals. RESULTS 3173 (19.2%) and 3129 (18.9%) participants were categorized to groups A and B, respectively. Participants in group B had a significantly lower BMD (p < 0.001), but clinical characteristics, especially the 10-year probability of MOF (p < 0.001) or HF (p < 0.001), were significantly worse in group A. We found the algorithm generated from the hybrid intervention threshold is practical. CONCLUSION The strategy of generating an algorithm for fracture prevention by novel hybrid intervention threshold is more efficient as it identifies patients with a higher risk of fragility fracture and could be a template for other country-specific policies.
Collapse
Affiliation(s)
- Chung-Yuan Hsu
- Division of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 123, Ta-Pei Road, Kaohsiung, 833, Taiwan
| | - Chih-Hsing Wu
- Department of Family Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shan-Fu Yu
- Division of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 123, Ta-Pei Road, Kaohsiung, 833, Taiwan
| | - Yu-Jih Su
- Division of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 123, Ta-Pei Road, Kaohsiung, 833, Taiwan
| | - Wen-Chan Chiu
- Division of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 123, Ta-Pei Road, Kaohsiung, 833, Taiwan
| | - Ying-Chou Chen
- Division of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 123, Ta-Pei Road, Kaohsiung, 833, Taiwan
| | - Han-Ming Lai
- Division of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 123, Ta-Pei Road, Kaohsiung, 833, Taiwan
| | - Jia-Feng Chen
- Division of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 123, Ta-Pei Road, Kaohsiung, 833, Taiwan
| | - Chi-Hua Ko
- Division of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 123, Ta-Pei Road, Kaohsiung, 833, Taiwan
| | - Jung-Fu Chen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tien-Tsai Cheng
- Division of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 123, Ta-Pei Road, Kaohsiung, 833, Taiwan.
| |
Collapse
|
38
|
A decade of FRAX: how has it changed the management of osteoporosis? Aging Clin Exp Res 2020; 32:187-196. [PMID: 32043227 DOI: 10.1007/s40520-019-01432-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 11/21/2019] [Indexed: 01/14/2023]
Abstract
The fracture risk assessment tool, FRAX®, was released in 2008 and provides country-specific algorithms for estimating individualized 10-year probability of hip and major osteoporotic fracture (hip, clinical spine, distal forearm, and proximal humerus). Since its release, 71 models have been made available for 66 countries covering more than 80% of the world population. The website receives approximately 3 million visits annually. Following independent validation, FRAX has been incorporated into more than 80 guidelines worldwide. The application of FRAX in assessment guidelines has been heterogeneous with the adoption of several different approaches in setting intervention thresholds. Whereas most guidelines adopt a case-finding strategy, the case for FRAX-based community screening in the elderly is increasing. The relationship between FRAX and efficacy of intervention has been explored and is expected to influence treatment guidelines in the future.
Collapse
|
39
|
Kojima I, Naito Y, Yamamoto A, Terashima Y, Sho N, Nagayama J, Okada Y, Nagai T. Efficacy of zoledronic acid in older prostate cancer patients undergoing androgen deprivation therapy. Osteoporos Sarcopenia 2020; 5:128-131. [PMID: 31938732 PMCID: PMC6953531 DOI: 10.1016/j.afos.2019.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/28/2019] [Accepted: 11/10/2019] [Indexed: 11/26/2022] Open
Abstract
Objectives The purpose of this study is to evaluate the efficacy of annual zoledronic acid treatment in Japanese patients with nonmetastatic prostate cancer during androgen deprivation therapy (ADT). Methods This is a single institution 12-month study. Between 2016 and 2019, patients aged 70 years or older on ADT for nonmetastatic prostate cancer had bone mineral density (BMD) measured and 10-year probability of fracture calculated using fracture risk assessment tool (FRAX). Patients who showed osteopenia or had a 10-year hip fracture risk ≥ 3% or a 10-year probability of major osteoporotic fracture ≥ 20% were offered treatment with zoledronic acid 5 mg intravenously (ZA group). The patients who did not receive treatment were set as the control group. Lumbar and hip BMD were measured 6 and 12 months after treatment in the ZA group and 12 months after baseline in the control group. The yearly BMD change of both groups was compared. Results The mean ages of the ZA group (n = 26) and control group (n = 12) were 80.5 ± 9.1 and 76.1 ± 6.7 years, respectively. In the ZA group, lumbar and hip BMD changes at 12 months were +2.1% and +0.8%, respectively. In the control group, lumbar and hip BMD changes were -0.9% and -4.9%, respectively. There were statistically significant differences between the 2 groups in BMD percent changes (P < 0.05). Conclusions Without intervention, BMD tends to continue to decrease during ADT. Our findings suggest that administration of zoledronic acid enables maintenance of BMD in the older adults.
Collapse
Affiliation(s)
- Ippei Kojima
- Department of Urology, Toyohashi Municipal Hospital, 50 Aza Hachiken Nishi, Aotake-Cho, Toyohashi, Aichi, 441-8570, Japan
| | - Yushi Naito
- Department of Urology, Toyohashi Municipal Hospital, 50 Aza Hachiken Nishi, Aotake-Cho, Toyohashi, Aichi, 441-8570, Japan
| | - Akiyuki Yamamoto
- Department of Urology, Toyohashi Municipal Hospital, 50 Aza Hachiken Nishi, Aotake-Cho, Toyohashi, Aichi, 441-8570, Japan
| | - Yasuhiro Terashima
- Department of Urology, Toyohashi Municipal Hospital, 50 Aza Hachiken Nishi, Aotake-Cho, Toyohashi, Aichi, 441-8570, Japan
| | - Norie Sho
- Department of Urology, Toyohashi Municipal Hospital, 50 Aza Hachiken Nishi, Aotake-Cho, Toyohashi, Aichi, 441-8570, Japan
| | - Jun Nagayama
- Department of Urology, Toyohashi Municipal Hospital, 50 Aza Hachiken Nishi, Aotake-Cho, Toyohashi, Aichi, 441-8570, Japan
| | - Yurika Okada
- Department of Urology, Toyohashi Municipal Hospital, 50 Aza Hachiken Nishi, Aotake-Cho, Toyohashi, Aichi, 441-8570, Japan
| | - Tatsuya Nagai
- Department of Urology, Toyohashi Municipal Hospital, 50 Aza Hachiken Nishi, Aotake-Cho, Toyohashi, Aichi, 441-8570, Japan
| |
Collapse
|
40
|
Leslie WD, Morin SN, Lix LM, Binkley N. Comparison of treatment strategies and thresholds for optimizing fracture prevention in Canada: a simulation analysis. Arch Osteoporos 2019; 15:4. [PMID: 31858278 DOI: 10.1007/s11657-019-0660-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/02/2019] [Indexed: 02/03/2023]
Abstract
UNLABELLED This comparison of osteoporosis treatment strategies and intervention thresholds highlights tradeoffs in terms of number of individuals qualifying for treatment and estimated fractures prevented. PURPOSE The current analysis was performed to inform the following key question as part of the Osteoporosis Canada's Osteoporosis Guidelines Update: "What is the best strategy to identify those at high fracture risk for pharmacotherapy in order to prevent the most fractures, considering both population and patient perspectives?" METHODS The study population consisted of 66,878 women age 50 years and older (mean age 66.0 ± 9.7 years) with documented fracture probability assessment (FRAX) and fracture outcomes. Fractures over the next 5 years were identified through linked administrative healthcare data. We estimated the fraction of the population that would warrant treatment and the number of fractures avoided per 1000 person-years according to multiple strategies and thresholds. Strategies were then rank ordered using 19 metrics. RESULTS During mean 4.4 years, 863 (3.5%) sustained one or more major osteoporotic fractures (MOF), 212 (0.8%) sustained a hip fracture, and 1210 (4.9%) sustained any incident fracture. For woman age 50-64 years, the highest ranked strategy was treatment based upon total hip T score ≤ -2.5, but several other strategies fell within 0.5 overall ranking. For women age 65 years and older, MOF > 20% was the highest ranked strategy with no closely ranked strategies. Pooling both age subgroups gave MOF > 20% as the highest ranked strategy, with several other strategies within 0.5 overall ranking. CONCLUSIONS Choice of treatment strategy and threshold for osteoporosis management strongly influences the number of individuals for whom pharmacologic treatment would be recommended and on estimated fracture rates in the population. This evidence-based approach to comparing these strategies will help to inform guidelines development in Canada and may be on interest elsewhere.
Collapse
Affiliation(s)
- William D Leslie
- Department of Medicine, University of Manitoba, C5121-409 Tache Avenue, Winnipeg, Manitoba, R2H 2A6, Canada.
| | | | - Lisa M Lix
- Department of Medicine, University of Manitoba, C5121-409 Tache Avenue, Winnipeg, Manitoba, R2H 2A6, Canada
| | | |
Collapse
|
41
|
Reid IR, Horne AM, Mihov B, Stewart A, Garratt E, Wiessing KR, Bolland MJ, Bastin S, Gamble GD. Anti-fracture efficacy of zoledronate in subgroups of osteopenic postmenopausal women: secondary analysis of a randomized controlled trial. J Intern Med 2019; 286:221-229. [PMID: 30887607 DOI: 10.1111/joim.12901] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND We recently reported that the administration of zoledronate every 18 months to osteopenic older women reduces the incidence of fractures. OBJECTIVE Here, we present a more detailed analysis of that trial to determine whether baseline clinical characteristics impact on the anti-fracture efficacy of this intervention. METHODS This is a prospective, randomized, placebo-controlled, double-blind trial in osteopenic postmenopausal women aged ≥ 65 years, to determine the anti-fracture efficacy of zoledronate. 2000 women were recruited using electoral rolls and randomized to receive 4 infusions of either zoledronate 5 mg or normal saline, at 18-month intervals. Each participant was followed for 6 years. Calcium supplements were not supplied. RESULTS Fragility fractures (either vertebral or nonvertebral) occurred in 190 women in the placebo group (227 fractures) and in 122 women in the zoledronate group (131 fractures), odds ratio (OR) 0.59 (95%CI 0.46, 0.76; P < 0.0001). There were no significant interactions between baseline variables (age, anthropometry, BMI, dietary calcium intake, baseline fracture status, recent falls history, bone mineral density, calculated fracture risk) and the treatment effect. In particular, the reduction in fractures appeared to be independent of baseline fracture risk, and numbers needed to treat (NNT) to prevent one woman fracturing were not significantly different across baseline fracture risk tertiles. CONCLUSIONS The present analyses indicate that the decrease in fracture numbers is broadly consistent across this cohort. The lack of relationship between NNTs and baseline fracture risk calls into question the need for BMD measurement and precise fracture risk assessment before initiating treatment in older postmenopausal women.
Collapse
Affiliation(s)
- I R Reid
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Auckland District Health Board, Auckland, New Zealand
| | - A M Horne
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - B Mihov
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - A Stewart
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - E Garratt
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - K R Wiessing
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - M J Bolland
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - S Bastin
- Auckland District Health Board, Auckland, New Zealand
| | - G D Gamble
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
42
|
Fassio A, Adami G, Benini C, Vantaggiato E, Saag KG, Giollo A, Lippolis I, Viapiana O, Idolazzi L, Orsolini G, Rossini M, Gatti D. Changes in Dkk-1, sclerostin, and RANKL serum levels following discontinuation of long-term denosumab treatment in postmenopausal women. Bone 2019; 123:191-195. [PMID: 30910600 DOI: 10.1016/j.bone.2019.03.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/12/2019] [Accepted: 03/16/2019] [Indexed: 02/01/2023]
Abstract
PURPOSE The positive effects of denosumab (DMAb) on bone mineral density (BMD) are quickly reversible after its discontinuation. We investigated whether this rebound was associated with dysregulation of the Wnt canonical pathway and/or by the increase in the receptor-activator of nuclear factor-kappa B ligand (RANKL) serum levels. METHODS The study included patients (n = 15) with postmenopausal osteoporosis to whom DMAb was administered for 78 months and then discontinued. We collected BMD data at baseline/month 0 (M0), M60, M84 (6 months after last DMAb administration, coinciding when the next DMAb dose would typically be due), and after 3 and 12 months of follow-up (FU-M3 and FU-M12, respectively). Serum C-terminal telopeptide of type 1 collagen (CTX-I), Dickkopf-1 (Dkk-1), and sclerostin were measured at M0, M60, M84, FU-M3, and FU-M12. Serum N-terminal propeptide of type 1 procollagen (PINP) and RANKL were dosed at M60, M84, FU-M3, and FU-12. RESULTS We found a significant decrease in the T-score at all sites at FU-M12, when compared to M84 (-0.51 ± 0.91 at the lumbar spine; -0.72 ± 0.33 at the total hip; and -0.42 ± 0.27 at the femoral neck, p < 0.05). After DMAb discontinuation (M84 vs FU M12) CTX-I, PINP increased already at FU-M3 (+0.921 ± 0.482 ng/mL, +126.60 ± 30.36 ng/mL, respectively, p < 0.01), RANKL increased at FU-M12 (+0.041 ± 0.062 ng/mL, p < 0.05), while Dkk-1 and sclerostin decreased at FU-M12 (-10.90 ± 11.80 and - 13.00 ± 10.52 pmol/L, respectively, p < 0.01). No changes in BMD or any of the markers were found between M60 and M84. CONCLUSIONS RANKL serum levels progressively increased after discontinuation of long-term DMAb while Dkk-1 and sclerostin serum levels decreased. The increase in RANKL serum levels supports the hypothesis of a sudden loss of inhibition of the resting osteoclast line after DMAb clearance, with a hyperactivation of these cells. Our results suggest that the changes in serum Wnt inhibitors after DMAb suspension might represent a mere feedback response to the increased bone turnover.
Collapse
Affiliation(s)
- A Fassio
- Rheumatology Unit, University of Verona, Piazzale A. Scuro, 10, 37134 Verona, Italy.
| | - G Adami
- Rheumatology Unit, University of Verona, Piazzale A. Scuro, 10, 37134 Verona, Italy; Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, 510 20th Street South, Faculty Office Tower 820D, Birmingham, AL 35294, USA
| | - C Benini
- Rheumatology Unit, University of Verona, Piazzale A. Scuro, 10, 37134 Verona, Italy
| | - E Vantaggiato
- Rheumatology Unit, University of Verona, Piazzale A. Scuro, 10, 37134 Verona, Italy
| | - K G Saag
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, 510 20th Street South, Faculty Office Tower 820D, Birmingham, AL 35294, USA
| | - A Giollo
- Rheumatology Unit, University of Verona, Piazzale A. Scuro, 10, 37134 Verona, Italy
| | - I Lippolis
- Rheumatology Unit, University of Verona, Piazzale A. Scuro, 10, 37134 Verona, Italy
| | - O Viapiana
- Rheumatology Unit, University of Verona, Piazzale A. Scuro, 10, 37134 Verona, Italy
| | - L Idolazzi
- Rheumatology Unit, University of Verona, Piazzale A. Scuro, 10, 37134 Verona, Italy
| | - G Orsolini
- Rheumatology Unit, University of Verona, Piazzale A. Scuro, 10, 37134 Verona, Italy
| | - M Rossini
- Rheumatology Unit, University of Verona, Piazzale A. Scuro, 10, 37134 Verona, Italy
| | - D Gatti
- Rheumatology Unit, University of Verona, Piazzale A. Scuro, 10, 37134 Verona, Italy
| |
Collapse
|
43
|
Bonnet N, Bourgoin L, Biver E, Douni E, Ferrari S. RANKL inhibition improves muscle strength and insulin sensitivity and restores bone mass. J Clin Invest 2019; 129:3214-3223. [PMID: 31120440 PMCID: PMC6668701 DOI: 10.1172/jci125915] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 05/14/2019] [Indexed: 12/13/2022] Open
Abstract
Receptor activator of Nfkb ligand (RANKL) activates, while osteoprotegerin (OPG) inhibits, osteoclastogenesis. In turn a neutralizing Ab against RANKL, denosumab improves bone strength in osteoporosis. OPG also improves muscle strength in mouse models of Duchenne's muscular dystrophy (mdx) and denervation-induce atrophy, but its role and mechanisms of action on muscle weakness in other conditions remains to be investigated. We investigated the effects of RANKL inhibitors on muscle in osteoporotic women and mice that either overexpress RANKL (HuRANKL-Tg+), or lack Pparb and concomitantly develop sarcopenia (Pparb-/-). In women, denosumab over 3 years improved appendicular lean mass and handgrip strength compared to no treatment, whereas bisphosphonate did not. HuRANKL-Tg+ mice displayed lower limb force and maximal speed, while their leg muscle mass was diminished, with a lower number of type I and II fibers. Both OPG and denosumab increased limb force proportionally to the increase in muscle mass. They markedly improved muscle insulin sensitivity and glucose uptake, and decrease anti-myogenic and inflammatory gene expression in muscle, such as myostatin and protein tyrosine phosphatase receptor-γ. Similarly, in Pparb-/-, OPG increased muscle volume and force, while also normalizing their insulin signaling and higher expression of inflammatory genes in skeletal muscle. In conclusions, RANKL deteriorates, while its inhibitor improves, muscle strength and insulin sensitivity in osteoporotic mice and humans. Hence denosumab could represent a novel therapeutic approach for sarcopenia.
Collapse
Affiliation(s)
- Nicolas Bonnet
- Division of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospital & Faculty of Medicine, Geneva, Switzerland
| | - Lucie Bourgoin
- Division of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospital & Faculty of Medicine, Geneva, Switzerland
| | - Emmanuel Biver
- Division of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospital & Faculty of Medicine, Geneva, Switzerland
| | - Eleni Douni
- Biomedical Sciences Research Center “Alexander Fleming,” Athens, Greece
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Serge Ferrari
- Division of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospital & Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
44
|
Holmberg T, Möller S, Rothmann MJ, Gram J, Herman AP, Brixen K, Tolstrup JS, Høiberg M, Bech M, Rubin KH. Socioeconomic status and risk of osteoporotic fractures and the use of DXA scans: data from the Danish population-based ROSE study. Osteoporos Int 2019; 30:343-353. [PMID: 30465216 DOI: 10.1007/s00198-018-4768-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 11/07/2018] [Indexed: 11/25/2022]
Abstract
UNLABELLED There is a need of studies exploring the link between socioeconomic status and DXA scans and osteoporotic fracture, which was the aim of the present study. No differences in socioeconomic status and risk of osteoporotic fractures were found. However, women with further/higher education and higher income are more often DXA-scanned. INTRODUCTION Lower socioeconomic status is known to be associated with a range of chronic conditions and with access to health care services. The link between socioeconomic status and the use of DXA scans and osteoporotic fracture, however, needs to be explored more closely. Therefore, the aim of this study was to examine the relationship between socioeconomic status and both DXA scan utilization and major osteoporotic fractures (MOF) using a population-based cohort of Danish women and national registers. METHODS The study included 17,155 women (65-81 years) sampled from the Risk-stratified Osteoporosis Strategy Evaluation study (ROSE). Information on socioeconomic background, DXA scans, and MOFs was retrieved from national registers. Competing-risk regression analyses were performed. Mean follow-up was 4.8 years. RESULTS A total of 4245 women had a DXA scan (24.7%) and 1719 (10.0%) had an incident MOF during follow-up. Analyses showed that women with basic education had a lower probability of undergoing DXA scans than women with further or higher education (greater than upper secondary education and vocational training education) (subhazard ratio (SHR) = 0.82; 95% CI 0.75-0.89, adjusted for age and comorbidity). Moreover, women with disposable income in the low and medium tertiles had a lower probability of undergoing DXA scans than women in the high-income tertile (SHR = 0.90; 95% CI 0.84-0.97 and SHR = 0.88, 95% CI 0.82-0.95, respectively, adjusted for age and comorbidity). No association between socioeconomic background and probability of DXA was found in adjusted analyses. CONCLUSION The study found no differences in risk of osteoporotic fractures depending on socioeconomic status. However, women with further or higher education as well as higher income are more often DXA-scanned.
Collapse
Affiliation(s)
- T Holmberg
- National Institute of Public Health, University of Southern Denmark, Studiestræde 6, DK-1355, Copenhagen K, Denmark.
| | - S Möller
- OPEN - Odense Patient Data Explorative Network, Department of Clinical Research, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - M J Rothmann
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
- Department of Rheumatology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - J Gram
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Endocrinology, Hospital of Southwest Denmark, Esbjerg, Denmark
| | - A P Herman
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - K Brixen
- Odense University Hospital, Odense, Denmark
| | - J S Tolstrup
- National Institute of Public Health, University of Southern Denmark, Studiestræde 6, DK-1355, Copenhagen K, Denmark
| | - M Høiberg
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Clinical Research, Hospital of Southern Norway, Kristiansand, Norway
| | - M Bech
- Department of Political Science, Aarhus University, Aarhus, Denmark
| | - K H Rubin
- OPEN - Odense Patient Data Explorative Network, Department of Clinical Research, University of Southern Denmark and Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
45
|
McCloskey EV, Fitzpatrick LA, Hu MY, Williams G, Kanis JA. Effect of abaloparatide on vertebral, nonvertebral, major osteoporotic, and clinical fractures in a subset of postmenopausal women at increased risk of fracture by FRAX probability. Arch Osteoporos 2019; 14:15. [PMID: 30719589 PMCID: PMC6373333 DOI: 10.1007/s11657-019-0564-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 01/20/2019] [Indexed: 02/03/2023]
Abstract
UNLABELLED We evaluated the efficacy of abaloparatide in women who were at increased risk for fracture, based on CHMP recommended risk thresholds, at the Abaloparatide Comparator Trial In Vertebral Endpoints (ACTIVE) study baseline. Among patients at high risk based on FRAX probabilities, 18 months of abaloparatide significantly decreased risk for all fracture endpoints compared with placebo. PURPOSE Abaloparatide, a novel anabolic agent for the treatment of postmenopausal osteoporosis, significantly reduced the risk of vertebral and nonvertebral fractures in the ACTIVE study compared with placebo. In this post hoc analysis, we evaluated abaloparatide's efficacy in a subset of women in the study at an increased risk of fracture at baseline, based on the Committee for Medicinal Products for Human Use (CHMP) recommended risk thresholds for inclusion in clinical trials. METHODS Women with a baseline 10-year risk of major osteoporotic fracture ≥ 10% or hip fracture ≥ 5%, assessed using the FRAX® tool (including femoral neck bone mineral density), were included in the analysis. The proportion with one or more events of new morphometric vertebral fractures was calculated. Event rates for nonvertebral, major osteoporotic, and all clinical fractures were estimated using Kaplan-Meier analysis. RESULTS Following 18 months of treatment, abaloparatide significantly reduced incident vertebral fractures compared with placebo (relative risk reduction = 91%; 0.5% versus 5.6%; p < 0.001). Abaloparatide treatment was also associated with significantly fewer nonvertebral, major osteoporotic, and clinical fractures compared with placebo: 2.7% versus 5.8%, p = 0.036; 1.3% versus 6.0%, p < 0.001; and 3.5% versus 8.2%, p = 0.006, respectively. The effect of abaloparatide on major osteoporotic fractures (78% reduction) was significantly greater than that seen with teriparatide (23% reduction, p = 0.007). CONCLUSION In a subset of postmenopausal women at increased risk of fracture as judged by CHMP guidance, abaloparatide significantly decreased the risk of all fracture endpoints compared with placebo.
Collapse
Affiliation(s)
- E V McCloskey
- Centre for Metabolic Bone Diseases, University of Sheffield, Sheffield, UK.
- Metabolic Bone Centre, Sorby Wing, Northern General Hospital, Herries Road, Sheffield, S57AU, UK.
| | | | - M-Y Hu
- Radius Health, Inc., Waltham, MA, USA
| | | | - J A Kanis
- Centre for Metabolic Bone Diseases, University of Sheffield, Sheffield, UK
| |
Collapse
|
46
|
Kanis JA, Cooper C, Rizzoli R, Reginster JY. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 2019; 30:3-44. [PMID: 30324412 PMCID: PMC7026233 DOI: 10.1007/s00198-018-4704-5] [Citation(s) in RCA: 928] [Impact Index Per Article: 185.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/12/2018] [Indexed: 12/25/2022]
Abstract
Guidance is provided in a European setting on the assessment and treatment of postmenopausal women at risk from fractures due to osteoporosis. INTRODUCTION The International Osteoporosis Foundation and European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis published guidance for the diagnosis and management of osteoporosis in 2013. This manuscript updates these in a European setting. METHODS Systematic reviews were updated. RESULTS The following areas are reviewed: the role of bone mineral density measurement for the diagnosis of osteoporosis and assessment of fracture risk; general and pharmacological management of osteoporosis; monitoring of treatment; assessment of fracture risk; case-finding strategies; investigation of patients; health economics of treatment. The update includes new information on the evaluation of bone microstructure evaluation in facture risk assessment, the role of FRAX® and Fracture Liaison Services in secondary fracture prevention, long-term effects on fracture risk of dietary intakes, and increased fracture risk on stopping drug treatment. CONCLUSIONS A platform is provided on which specific guidelines can be developed for national use.
Collapse
Affiliation(s)
- J A Kanis
- Centre for Metabolic Bone Diseases, University of Sheffield Medical School, Beech Hill Road, Sheffield, S10 2RX, UK.
- Mary McKillop Health Institute, Australian Catholic University, Melbourne, Australia.
| | - C Cooper
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
- NIHR Musculoskeletal Biomedical Research Unit, University of Oxford, Oxford, UK
| | - R Rizzoli
- University Hospitals and Faculty of Medicine of Geneva, Geneva, Switzerland
| | - J-Y Reginster
- Department of Public Health, Epidemiology and Health Economics, University of Liège, Liège, Belgium
- Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
47
|
Balasubramanian A, Zhang J, Chen L, Wenkert D, Daigle SG, Grauer A, Curtis JR. Risk of subsequent fracture after prior fracture among older women. Osteoporos Int 2019; 30:79-92. [PMID: 30456571 PMCID: PMC6332293 DOI: 10.1007/s00198-018-4732-1] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 10/03/2018] [Indexed: 01/22/2023]
Abstract
UNLABELLED Among 377,561 female Medicare beneficiaries who sustained a fracture, 10% had another fracture within 1 year, 18% within 2 years, and 31% within 5 years. Timely management to reduce risk of subsequent fracture is warranted following all nontraumatic fractures, including nonhip nonvertebral fractures, in older women. INTRODUCTION Prior fracture is a strong predictor of subsequent fracture; however, postfracture treatment rates are low. Quantifying imminent (12-24 month) risk of subsequent fracture in older women may clarify the need for early postfracture management. METHODS This retrospective cohort study used Medicare administrative claims data. Women ≥ 65 years who sustained a clinical fracture (clinical vertebral and nonvertebral fracture; index date) and were continuously enrolled for 1-year pre-index and ≥ 1-year (≥ 2 or ≥ 5 years for outcomes at those time points) post-index were included. Cumulative incidence of subsequent fracture was calculated from 30 days post-index to 1, 2, and 5 years post-index. For appendicular fractures, only those requiring hospitalization or surgical repair were counted. Death was considered a competing risk. RESULTS Among 377,561 women (210,621 and 10,969 for 2- and 5-year outcomes), cumulative risk of subsequent fracture was 10%, 18%, and 31% at 1, 2, and 5 years post-index, respectively. Among women age 65-74 years with initial clinical vertebral, hip, pelvis, femur, or clavicle fractures and all women ≥ 75 years regardless of initial fracture site (except ankle and tibia/fibula), 7-14% fractured again within 1 year depending on initial fracture site; risk rose to 15-26% within 2 years and 28-42% within 5 years. Risk of subsequent hip fracture exceeded 3% within 5 years in all women studied, except those < 75 years with an initial tibia/fibula or ankle fracture. CONCLUSIONS We observed a high and early risk of subsequent fracture following a broad array of initial fractures. Timely management with consideration of pharmacotherapy is warranted in older women following all fracture types evaluated.
Collapse
Affiliation(s)
| | - J Zhang
- University of Alabama at Birmingham, 510 20th Street South, Birmingham, AL, 35294, USA
| | - L Chen
- University of Alabama at Birmingham, 510 20th Street South, Birmingham, AL, 35294, USA
| | - D Wenkert
- Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
- Wenkert & Young, LLC, 2345 Mountain Crest Circle, Thousand Oaks, CA, 91362, USA
| | - S G Daigle
- University of Alabama at Birmingham, 510 20th Street South, Birmingham, AL, 35294, USA
| | - A Grauer
- Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| | - J R Curtis
- University of Alabama at Birmingham, 510 20th Street South, Birmingham, AL, 35294, USA
| |
Collapse
|
48
|
FRAX® based intervention thresholds for management of osteoporosis in Singaporean women. Arch Osteoporos 2018; 13:130. [PMID: 30456726 DOI: 10.1007/s11657-018-0542-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/07/2018] [Indexed: 02/03/2023]
Abstract
UNLABELLED Potential FRAX®-based major osteoporotic fracture (MOF) and hip fracture (HF) intervention thresholds (ITs) for postmenopausal Singaporean women were explored. Age-dependent ethnic-specific and weighted mean ITs progressively increased with increasing age. Fixed ITs were derived via discriminatory value analysis. MOF and HF ITs with highest the Youden index were chosen as optimal. INTRODUCTION We aimed to explore FRAX®-based intervention thresholds (ITs) to potentially guide osteoporosis treatment in Singapore, a multi-ethnic nation. METHOD One thousand and one Singaporean postmenopausal community-dwelling women belonging to Chinese, Malay and Indian ethnicities underwent clinical risk factor (CRF) and BMD assessment. FRAX® major osteoporotic fracture (MOF) and hip fracture (HF) probabilities were calculated using ethnic-specific models. We employed the translational logic adopted by NOGG (UK), whereby osteoporosis treatment is recommended to any postmenopausal woman whose fracture probability based on other CRFs is similar to or exceeds that of an age-matched woman with a fracture. Using the same logic, ethnic-specific and mean weighted age-dependent ITs were computed. Employing these age-dependent ITs as a reference, the performance of fixed (age-independent) ITs were examined using ROC curves and discriminatory analysis, with the highest Youden index (YI) (sensitivity + specificity - 1) used to identify the optimal MOF and HF ITs. RESULTS The mean age was 58.9 (6.9) years. Seven hundred and eighty-nine (79%) women were Chinese, 136 (13.5%) Indian and 76 (7.5%) Malay. Age-dependent MOF ITs ranged from 3.1 to 33%, 2.5 to 17% and 2.5 to 16% whilst HF ITs ranged from 0.7 to 17%, 0.4 to 6% and 0.4 to 6.3% in Chinese, Malay and Indian women, respectively, between the ages of 50 and 90 years. The weighted age-dependent MOF and HF ITs ranged from 2.9% and 0.6%, respectively, at the age of 50, to 28% and 14% at 90 years of age. Fixed MOF/HF ITs of 5.5%/1%, 2.5%/1% and 2.5%/0.25% were identified as the most optimal by the highest YI in Chinese, Malay and Indian women, respectively. Fixed MOFP and HF ITs of 4% and 1%, respectively, were found to be most optimal on the weighted means analysis. CONCLUSION The ITs for osteoporosis treatment in Singapore show marked variations across ethnicities. Weighted mean thresholds may overcome the dilemma of intervening at different thresholds for different ethnicities. Choosing fixed ITs may have to involve trade-offs between sensitivity and specificity. FRAX®-based age-dependent or the fixed intervention thresholds suggested as an alternative to be considered for use in Singapore though further studies on the societal and health economic impacts of choosing these thresholds in Singapore are needed.
Collapse
|
49
|
Abstract
This paper reviews the research programme that went into the development of FRAX® and its impact in the 10 years since its release in 2008. INTRODUCTION Osteoporosis is defined on the measurement of bone mineral density though the clinical consequence is fracture. The sensitivity of bone mineral density measurements for fracture prediction is low, leading to the development of FRAX to better calculate the likelihood of fracture and target anti-osteoporosis treatments. METHODS The method used in this paper is literature review. RESULTS FRAX, developed over an 8-year period, was launched in 2008. Since the launch of FRAX, models have been made available for 64 countries and in 31 languages covering more than 80% of the world population. CONCLUSION FRAX provides an advance in fracture risk assessment and a reference technology platform for future improvements in performance characteristics.
Collapse
Affiliation(s)
- John A Kanis
- Centre for Metabolic Bone Diseases, University of Sheffield Medical School, Beech Hill Road, Sheffield, S10 2RX, UK.
- Mary McKillop Research Institute, Australian Catholic University, Melbourne, Australia.
| | - Helena Johansson
- Mary McKillop Research Institute, Australian Catholic University, Melbourne, Australia
| | - Nicholas C Harvey
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Eugene V McCloskey
- Centre for Metabolic Bone Diseases, University of Sheffield Medical School, Beech Hill Road, Sheffield, S10 2RX, UK
- Mellanby Centre for Bone Research, Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| |
Collapse
|
50
|
Abstract
Denosumab (Prolia®; Pralia®) is a human monoclonal antibody targeting the key bone resorption mediator RANKL. The drug is administered via subcutaneous injection once every 6 months and is approved for various indications, including the treatment of postmenopausal (PM) women with osteoporosis at increased/high risk of fracture or failure/intolerance of other osteoporosis therapies (indications featured in this review). Denosumab showed benefit in several phase 3 or 4 studies in PM women with osteoporosis or low bone mineral density (BMD), including the pivotal 3-year double-blind FREEDOM trial and its 7-year open-label extension. Denosumab reduced the risk of vertebral, nonvertebral and hip fractures and increased BMD across skeletal sites versus placebo in FREEDOM, with these benefits maintained over up to 10 years' therapy in the extension. The drug was also more effective in improving BMD than bisphosphonates, including in women switched from a bisphosphonate regimen, in 1-year trials; however, whether these differences translate into differences in anti-fracture efficacy is unclear. Denosumab was generally well tolerated over up to 10 years' treatment, although an increased risk of multiple vertebral fractures was observed after discontinuation of the drug. Thus, denosumab is a key treatment option for PM women with osteoporosis who have an increased/high risk of fracture or failure/intolerance of other osteoporosis therapies, although the potential for multiple vertebral fractures to occur after discontinuation of the drug requires consideration of subsequent management options.
Collapse
Affiliation(s)
- Emma D Deeks
- Springer, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|