1
|
Alimy AR, Thiessen ML, Strahl A, Boese CK, von Kroge S, Beil FT, Rolvien T, Ries C. Sex-Specific Association of Clinical Parameters and Components of Femoral Bone Quality in Patients Undergoing Total Hip Arthroplasty. Calcif Tissue Int 2024; 115:570-580. [PMID: 39277556 PMCID: PMC11531446 DOI: 10.1007/s00223-024-01286-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/28/2024] [Indexed: 09/17/2024]
Abstract
Poor bone quality is a critical factor associated with an increased risk of complications after total hip arthroplasty (THA). However, no consistent recommendations have yet been established for assessing indicators of bone quality preoperatively. Thus, it remains unclear which preoperatively available and readily accessible parameters are most closely associated with femoral bone quality. Here, we obtained femoral neck specimens from 50 patients undergoing THA. Preoperative Dual-energy X-ray absorptiometry (DXA) scans, pelvic radiographs, and laboratory parameters were analyzed. In the obtained specimens, bone microstructure was assessed using micro-CT and histomorphometry. Additionally, matrix mineralization and osteocyte lacunar morphology were evaluated using quantitative backscattered electron imaging. Our analysis revealed that DXA-derived T-scores correlated with trabecular microstructure. Furthermore, radiographic indices and body mass index correlated differentially with aspects of bone quality in women and men. Contrary to previous observations, no correlation was found between serum vitamin D levels and osteoid indices, nor between clinical parameters and matrix mineralization. Age was strongly associated with the number of mineralized osteocyte lacunae, a factor that appeared to be independent of sex. Taken together, our study demonstrates that no single preoperatively available parameter exhibits a strong and consistent association with femoral bone quality. However, DXA remains a reliable preoperative measure for determining the trabecular microstructure of the femoral neck. In clinical practice, surgeons should adopt an individualized approach to preoperative assessments by considering age, sex, BMI, and radiographic indices to enhance their insight into femoral bone quality, particularly when DXA is unavailable.
Collapse
Affiliation(s)
- Assil-Ramin Alimy
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Maximilian Lenard Thiessen
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - André Strahl
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Christoph Kolja Boese
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Simon von Kroge
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Institute of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Timo Beil
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Tim Rolvien
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| | - Christian Ries
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
2
|
Knani L, Venditti M, Rouis H, Minucci S, Messaoudi I. Effects of dopaminergic neuron degeneration on osteocyte apoptosis and osteogenic markers in 6-OHDA male rat model of Parkinson's disease. Bone 2024; 190:117271. [PMID: 39369834 DOI: 10.1016/j.bone.2024.117271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/22/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Parkinson's disease (PD) and osteoporosis are prevalent chronic conditions that impact a significant proportion of the aging population. Observational and longitudinal studies consistently demonstrate that individuals with PD face an elevated risk of osteoporosis and reduced bone mineral density compared to control groups. However, there is currently no experimental evidence demonstrating the impact of dopaminergic neuron degeneration on bone metabolism. In the present study, we used a male rat model of PD induced by unilateral injection of 6-hydroxydopamine (6-OHDA) in the left medial forebrain bundle (MFB) to evaluate the effect of dopaminergic neuron lesion on certain parameters of bone metabolism. To confirm the dopaminergic neuron lesion, cylinder and Rotarod tests were applied to rats injected with 6-OHDA or vehicle. Osteocyte density and viability were determined through histology and TUNEL assay. Western Blot and immunohistochemistry analysis were performed to investigate whether dopaminergic degeneration influences the expression of some apoptotic markers (Caspase 3 and Cytochrome C) and some osteogenic markers (ALP, OCN, and RUNX2). Our findings show that the dopaminergic lesion resulting from the injection of 6-OHDA was successfully confirmed through behavioral tests. Furthermore, the degeneration of dopaminergic neurons induced by 6-OHDA leads to apoptosis of osteocytes associated with a significant reduction in the tissue expression of the studied osteogenic markers. Thus, our study provides evidence that 6-OHDA-induced degeneration of dopaminergic neurons leads to osteocyte apoptosis, which may contribute to the development of some signs of osteoporosis.
Collapse
Affiliation(s)
- Latifa Knani
- LR11ES41: Génétique, Biodiversité et Valorisation des Bioressources, Institut Supérieur de Biotechnologie, Université de Monastir, Monastir, Tunisia.
| | - Massimo Venditti
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate "F. Bottazzi", Università della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Hajer Rouis
- LR11ES41: Génétique, Biodiversité et Valorisation des Bioressources, Institut Supérieur de Biotechnologie, Université de Monastir, Monastir, Tunisia
| | - Sergio Minucci
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate "F. Bottazzi", Università della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Imed Messaoudi
- LR11ES41: Génétique, Biodiversité et Valorisation des Bioressources, Institut Supérieur de Biotechnologie, Université de Monastir, Monastir, Tunisia
| |
Collapse
|
3
|
Karacan I, Türker KS. Exploring neuronal mechanisms of osteosarcopenia in older adults. J Physiol 2024. [PMID: 39119811 DOI: 10.1113/jp285666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Until recently, research on the pathogenesis and treatment of osteoporosis and sarcopenia has primarily focused on local and systemic humoral mechanisms, often overlooking neuronal mechanisms. However, there is a growing body of literature on the neuronal regulation of bone and skeletal muscle structure and function, which may provide insights into the pathogenesis of osteosarcopenia. This review aims to integrate these neuronal regulatory mechanisms to form a comprehensive understanding and inspire future research that could uncover novel strategies for preventing and treating osteosarcopenia. Specifically, the review explores the functional adaptation of weight-bearing bone to mechanical loading throughout evolutionary development, from Wolff's law and Frost's mechanostat theory to the mosaic hypothesis, which emphasizes neuronal regulation. The recently introduced bone osteoregulation reflex points to the importance of the osteocytic mechanoreceptive network as a receptor in this neuronal regulation mechanism. Finally, the review focuses on the bone myoregulation reflex, which is known as a mechanism by which bone loading regulates muscle functions neuronally. Considering the ageing-related regressive changes in the nerve fibres that provide both structural and functional regulation in bone and skeletal muscle tissue and the bone and muscle tissues they innervate, it is suggested that neuronal mechanisms might play a central role in explaining osteosarcopenia in older adults.
Collapse
Affiliation(s)
- Ilhan Karacan
- Physical Medicine and Rehabilitation Department, Hamidiye Medical School, Health Science University Istanbul, Istanbul, Turkey
- Istanbul Physical Therapy Rehabilitation Training and Research Hospital, Istanbul, Turkey
| | - Kemal Sıtkı Türker
- Physiology, Faculty of Dentistry, Istanbul Gelisim University, Istanbul, Turkey
| |
Collapse
|
4
|
von Brackel FN, Oheim R. Iron and bones: effects of iron overload, deficiency and anemia treatments on bone. JBMR Plus 2024; 8:ziae064. [PMID: 38957399 PMCID: PMC11215550 DOI: 10.1093/jbmrpl/ziae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/24/2024] [Accepted: 05/10/2024] [Indexed: 07/04/2024] Open
Abstract
Iron is a vital trace element and exerts opposing effects on bone in both iron overload and iron deficiency situations. Remarkably, iron supplementation through intravenous infusion in patients with iron deficiency can also have detrimental effects on bone in special cases. The diverse mechanisms underlying these effects and their manifestations contribute to the complexity of this relationship. Iron overload impacts both bone resorption and formation, accelerating bone resorption while reducing bone formation. These effects primarily result from the direct action of reactive oxygen species (ROS), which influence the proliferation, differentiation, and activity of both osteoclasts and osteoblasts differently. This imbalance favors osteoclasts and inhibits the osteoblasts. Simultaneously, multiple pathways, including bone morphogenic proteins, RANK ligand, and others, contribute to these actions, leading to a reduction in bone mass and an increased susceptibility to fractures. In contrast, iron deficiency induces low bone turnover due to energy and co-factor deficiency, both of which require iron. Anemia increases the risk of fractures in both men and women. This effect occurs at various levels, reducing muscular performance and, on the bone-specific level, decreasing bone mineral density. Crucially, anemia increases the synthesis of the phosphaturic hormone iFGF23, which is subsequently inactivated by cleavage under physiological conditions. Thus, iFGF23 levels and phosphate excretion are not increased. However, in specific cases where anemia has to be managed with intravenous iron treatment, constituents-particularly maltoses-of the iron infusion suppress the cleavage of iFGF23. As a result, patients can experience severe phosphate wasting and, consequently, hypophosphatemic osteomalacia. This condition is often overlooked in clinical practice and is often caused by ferric carboxymaltose. Ending iron infusions or changing the agent, along with phosphate and vitamin D supplementation, can be effective in addressing this issue.
Collapse
Affiliation(s)
- Felix N von Brackel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| |
Collapse
|
5
|
Cirovic A, Djuric M, Milovanovic P. Deficiency of protein C or protein S as a possible cause of osteoporosis. Endocrine 2024; 85:558-565. [PMID: 38483687 DOI: 10.1007/s12020-024-03774-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/07/2024] [Indexed: 08/16/2024]
Abstract
Proteins C and S are vitamin K-dependent anticoagulative factors that also exert a significant influence on bone quality. Clinical studies have linked the deficiency of proteins C and S to lower bone mineral density and the onset of femoral head osteonecrosis in children. Rare foundational studies analyzing this topic have demonstrated that activated protein C, upon binding to the endothelial protein C receptor expressed on the surface of osteoblasts, promotes osteoblast proliferation. It is also established that proteins C and S play crucial roles in proper collagen synthesis and in maintaining the number of osteoclasts and blood vessels. However, the association between protein C and/or S deficiency and the gradual onset of osteoporosis remains largely uninvestigated. Calculations based on data from peer-reviewed journals suggest that approximately one in every 10 individuals may develop osteoporosis due to congenital protein C or S deficiency. Moreover, when secondary causes of protein C and S deficiency are also considered, the proportion likely further increases. In this paper, we discuss the pathophysiological background of the potential relationship between protein C and S deficiency and the genesis of osteoporosis.
Collapse
Affiliation(s)
- Aleksandar Cirovic
- Center of Bone Biology, Institute of Anatomy, University of Belgrade - Faculty of Medicine, Dr Subotica 4/2, Belgrade, Serbia
| | - Marija Djuric
- Center of Bone Biology, Institute of Anatomy, University of Belgrade - Faculty of Medicine, Dr Subotica 4/2, Belgrade, Serbia
| | - Petar Milovanovic
- Center of Bone Biology, Institute of Anatomy, University of Belgrade - Faculty of Medicine, Dr Subotica 4/2, Belgrade, Serbia.
| |
Collapse
|
6
|
Ravazzano L, Colaianni G, Tarakanova A, Xiao YB, Grano M, Libonati F. Multiscale and multidisciplinary analysis of aging processes in bone. NPJ AGING 2024; 10:28. [PMID: 38879533 PMCID: PMC11180112 DOI: 10.1038/s41514-024-00156-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/07/2024] [Indexed: 06/19/2024]
Abstract
The world population is increasingly aging, deeply affecting our society by challenging our healthcare systems and presenting an economic burden, thus turning the spotlight on aging-related diseases: exempli gratia, osteoporosis, a silent disease until you suddenly break a bone. The increase in bone fracture risk with age is generally associated with a loss of bone mass and an alteration in the skeletal architecture. However, such changes cannot fully explain increased fragility with age. To successfully tackle age-related bone diseases, it is paramount to comprehensively understand the fundamental mechanisms responsible for tissue degeneration. Aging mechanisms persist at multiple length scales within the complex hierarchical bone structure, raising the need for a multiscale and multidisciplinary approach to resolve them. This paper aims to provide an overarching analysis of aging processes in bone and to review the most prominent outcomes of bone aging. A systematic description of different length scales, highlighting the corresponding techniques adopted at each scale and motivating the need for combining diverse techniques, is provided to get a comprehensive description of the multi-physics phenomena involved.
Collapse
Affiliation(s)
- Linda Ravazzano
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy
| | - Graziana Colaianni
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Piazza Giulio Cesare 11, Bari, 70124, Italy
| | - Anna Tarakanova
- School of Mechanical, Aerospace, and Manufacturing Engineering, University of Connecticut, 191 Auditorium Road, Unit 3139, Storrs, 06269, CT, USA
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, CT, 06269, Storrs, USA
| | - Yu-Bai Xiao
- School of Mechanical, Aerospace, and Manufacturing Engineering, University of Connecticut, 191 Auditorium Road, Unit 3139, Storrs, 06269, CT, USA
| | - Maria Grano
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Piazza Giulio Cesare 11, Bari, 70124, Italy
| | - Flavia Libonati
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy.
- Department of Mechanical, Energy, Management and Transport Engineering - DIME, University of Genova, Via all'Opera Pia 15, Genova, 16145, Italy.
| |
Collapse
|
7
|
Kim S, Kim B, Han KD, Park J, Yoo JE, Choi HL, Chang WH, Cho IY, Shin DW. Risk of fracture among patients with spinal cord injury: A nationwide cohort study in South Korea. Bone 2024; 183:117093. [PMID: 38579925 DOI: 10.1016/j.bone.2024.117093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Clinical concerns about preventing and managing fractures after spinal cord injury (SCI) have been growing. OBJECTIVE This study investigates the risk of fractures among SCI patients according to the presence of disability, disease severity, and level of injury. METHODS We performed a retrospective cohort study using the Korean National Health Insurance Service (KNHIS 2010-2018) database. We included 5190 SCI patients and 1:3 age- and sex-matched control participants. The primary outcome was fracture, and the cohort was followed until December 31, 2019. RESULTS SCI patients had a higher fracture risk than the matched controls (adjusted hazard ratio [aHR] 1.33, 95 % CI 1.16-1.54). The risk of fracture was higher in the presence of disability (aHR 1.57, 95 % CI 1.19-2.07), especially among patients with severe disability (aHR 1.65, 95 % CI 1.05-2.60). Higher fracture risks were observed among SCI patients regardless of injury level, but statistical significance was found only with cervical-level injury. When we considered site-specific fractures, vertebral (aHR 1.31, 95 % CI 1.04-1.64) and hip fracture risks (aHR 2.04, 95 % CI 1.39-2.98) were both higher among SCI patients than the controls. SCI patients with disability and cervical-level injury showed the highest hip fracture risk (aHR 3.67, 95 % CI 1.90-7.07). CONCLUSIONS Compared with the controls, SCI patients were at higher risk of any fracture, particularly hip fracture, especially those with disability and cervical-level injury. Clinicians should be aware of the fracture risk among SCI patients to provide proper management.
Collapse
Affiliation(s)
- Seonghye Kim
- Department of Family Medicine & Supportive Care Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Bongseong Kim
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea
| | - Kyung-Do Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea
| | - Junhee Park
- Department of Family Medicine & Supportive Care Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jung Eun Yoo
- Department of Family Medicine, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Republic of Korea; Department of Family Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hea Lim Choi
- Department of Family Medicine, Executive Healthcare Clinic, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Science and Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
| | - Won Hyuk Chang
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - In Young Cho
- Department of Family Medicine & Supportive Care Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Science and Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea.
| | - Dong Wook Shin
- Department of Family Medicine & Supportive Care Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Science and Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea; Department of Digital Health, Samsung Advanced Institute for Health Science and Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Delsmann J, Eissele J, Simon A, Alimy AR, von Kroge S, Mushumba H, Püschel K, Busse B, Ries C, Amling M, Beil FT, Rolvien T. Alterations in compositional and cellular properties of the subchondral bone are linked to cartilage degeneration in hip osteoarthritis. Osteoarthritis Cartilage 2024; 32:535-547. [PMID: 38403152 DOI: 10.1016/j.joca.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/21/2023] [Accepted: 01/22/2024] [Indexed: 02/27/2024]
Abstract
OBJECTIVE The subchondral bone is an emerging regulator of osteoarthritis (OA). However, knowledge of how specific subchondral alterations relate to cartilage degeneration remains incomplete. METHOD Femoral heads were obtained from 44 patients with primary OA during total hip arthroplasty and from 30 non-OA controls during autopsy. A multiscale assessment of the central subchondral bone region comprising histomorphometry, quantitative backscattered electron imaging, nanoindentation, and osteocyte lacunocanalicular network characterization was employed. RESULTS In hip OA, thickening of the subchondral bone coincided with a higher number of osteoblasts (controls: 3.7 ± 4.5 mm-1, OA: 16.4 ± 10.2 mm-1, age-adjusted mean difference 10.5 mm-1 [95% CI 4.7 to 16.4], p < 0.001) but a similar number of osteoclasts compared to controls (p = 0.150). Furthermore, higher matrix mineralization heterogeneity (CaWidth, controls: 2.8 ± 0.2 wt%, OA: 3.1 ± 0.3 wt%, age-adjusted mean difference 0.2 wt% [95% CI 0.1 to 0.4], p = 0.011) and lower tissue hardness (controls: 0.69 ± 0.06 GPa, OA: 0.67 ± 0.06 GPa, age-adjusted mean difference -0.05 GPa [95% CI -0.09 to -0.01], p = 0.032) were detected. While no evidence of altered osteocytic perilacunar/canalicular remodeling in terms of fewer osteocyte canaliculi was found in OA, specimens with advanced cartilage degeneration showed a higher number of osteocyte canaliculi and larger lacunocanalicular network area compared to those with low-grade cartilage degeneration. Multiple linear regression models indicated that several subchondral bone properties, especially osteoblast and osteocyte parameters, were closely related to cartilage degeneration (R2 adjusted = 0.561, p < 0.001). CONCLUSION Subchondral bone properties in OA are affected at the compositional, mechanical, and cellular levels. Based on their strong interaction with cartilage degeneration, targeting osteoblasts/osteocytes may be a promising therapeutic OA approach. DATA AND MATERIALS AVAILABILITY All data are available in the main text or the supplementary materials.
Collapse
Affiliation(s)
- Julian Delsmann
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julian Eissele
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Simon
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Assil-Ramin Alimy
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon von Kroge
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Herbert Mushumba
- Department of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Püschel
- Department of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Ries
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Timo Beil
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Rolvien
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
9
|
Hering RN, von Kroge S, Delsmann J, Simon A, Ondruschka B, Püschel K, Schmidt FN, Rolvien T. Pronounced cortical porosity and sex-specific patterns of increased bone and osteocyte lacunar mineralization characterize the human distal fibula with aging. Bone 2024; 182:117068. [PMID: 38458304 DOI: 10.1016/j.bone.2024.117068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
The high occurrence of distal fibula fractures among older women suggests a potential link to impaired bone health. Here we used a multiscale imaging approach to investigate the microarchitecture, mineralization, and biomechanics of the human distal fibula in relation to age and sex. Micro-computed tomography was performed to analyze the local volumetric bone mineral density and various microarchitectural parameters of the trabecular and the cortical compartment. Bone mineral density distribution and osteocyte lacunar parameters were quantified using quantitative backscattered electron imaging in periosteal, endocortical, and trabecular regions. Additionally, cortical hardness and Young's modulus were assessed by nanoindentation. While cortical porosity strongly increased with age independent of sex, trabecular microarchitecture remained stable. Notably, nearly half of the specimens showed non-bony hypermineralized tissue located at the periosteum, similar to that previously detected in the femoral neck, with no consistent association with advanced age. Independent of this finding, cortical and trabecular mineralization, i.e., mean calcium content, as well as endocortical tissue hardness increased with age in males but not females. Importantly, we also observed mineralized osteocyte lacunae that increased with age specifically in females. In conclusion, our results indicate that skeletal aging of the distal fibula is signified not only by pronounced cortical porosity but also by an increase in mineralized osteocyte lacunae in females. These findings may provide an explanation for the increased occurrence of ankle fractures in older women.
Collapse
Affiliation(s)
- Robin-Nicolas Hering
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon von Kroge
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julian Delsmann
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Simon
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Püschel
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Felix Nikolai Schmidt
- Institute of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Rolvien
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
10
|
Cirovic A, Schmidt FN, Vujacic M, Sihota P, Petrovic B, Zivkovic V, Bascarevic Z, Nikolic S, Djonic D, Djuric M, Busse B, Milovanovic P. Lower microhardness along with less heterogeneous mineralization in the femoral neck of individuals with type 2 diabetes mellitus indicates higher fracture risk. JBMR Plus 2024; 8:ziae005. [PMID: 38741606 PMCID: PMC11090112 DOI: 10.1093/jbmrpl/ziae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/02/2024] [Accepted: 01/08/2024] [Indexed: 05/16/2024] Open
Abstract
There is still limited understanding of the microstructural reasons for the higher susceptibility to fractures in individuals with type 2 diabetes mellitus (T2DM). In this study, we examined bone mineralization, osteocyte lacunar parameters, and microhardness of the femoral neck trabeculae in 18 individuals with T2DM who sustained low-energy fracture (T2DMFx: 78 ± 7 years, 15 women and 3 men) and 20 controls (74 ± 7 years, 16 women and 4 men). Femoral necks of the T2DMFx subjects were obtained at a tertiary orthopedic hospital, while those of the controls were collected at autopsy. T2DMFx individuals had lower trabecular microhardness (P = .023) and mineralization heterogeneity (P = .001), and a tendency to a lower bone area with mineralization above 95th percentile (P = .058) than the controls. There were no significant intergroup differences in the numbers of osteocyte lacunae per bone area, mineralized lacunae per bone area, and total lacunae per bone area (each P > .05). After dividing the T2DMFx group based on the presence of vascular complications (VD) to T2DMFxVD (VD present) and T2DMFxNVD (VD absent), we observed that microhardness was particularly reduced in the T2DMFxVD group (vs. control group, P = .02), while mineralization heterogeneity was significantly reduced in both T2DMFx subgroups (T2DMFxNVD vs. control, P = .002; T2DMFxVD vs. control, P = .038). The observed changes in mineralization and microhardness may contribute to the increased hip fracture susceptibility in individuals with T2DM.
Collapse
Affiliation(s)
- Aleksandar Cirovic
- Center of Bone Biology, Institute of Anatomy, University of Belgrade - Faculty of Medicine, 11000 Belgrade, Serbia
| | - Felix N Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
- Interdisciplinary Competence Center for Interface Research (ICCIR), 20246 Hamburg, Germany
| | - Marko Vujacic
- Institute for Orthopedic Surgery “Banjica”; University of Belgrade - Faculty of Medicine, 11000 Belgrade, Serbia
| | - Praveer Sihota
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Bojan Petrovic
- Institute for Orthopedic Surgery “Banjica”; University of Belgrade - Faculty of Medicine, 11000 Belgrade, Serbia
| | - Vladimir Zivkovic
- Center of Bone Biology, Institute of Anatomy, University of Belgrade - Faculty of Medicine, 11000 Belgrade, Serbia
- Institute of Forensic Medicine, University of Belgrade - Faculty of Medicine, 11000 Belgrade, Serbia
| | - Zoran Bascarevic
- Institute for Orthopedic Surgery “Banjica”; University of Belgrade - Faculty of Medicine, 11000 Belgrade, Serbia
| | - Slobodan Nikolic
- Center of Bone Biology, Institute of Anatomy, University of Belgrade - Faculty of Medicine, 11000 Belgrade, Serbia
- Institute of Forensic Medicine, University of Belgrade - Faculty of Medicine, 11000 Belgrade, Serbia
| | - Danijela Djonic
- Center of Bone Biology, Institute of Anatomy, University of Belgrade - Faculty of Medicine, 11000 Belgrade, Serbia
| | - Marija Djuric
- Center of Bone Biology, Institute of Anatomy, University of Belgrade - Faculty of Medicine, 11000 Belgrade, Serbia
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
- Interdisciplinary Competence Center for Interface Research (ICCIR), 20246 Hamburg, Germany
| | - Petar Milovanovic
- Center of Bone Biology, Institute of Anatomy, University of Belgrade - Faculty of Medicine, 11000 Belgrade, Serbia
| |
Collapse
|
11
|
Smit A, Meijer O, Winter E. The multi-faceted nature of age-associated osteoporosis. Bone Rep 2024; 20:101750. [PMID: 38566930 PMCID: PMC10985042 DOI: 10.1016/j.bonr.2024.101750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Age-associated osteoporosis (AAOP) poses a significant health burden, characterized by increased fracture risk due to declining bone mass and strength. Effective prevention and early treatment strategies are crucial to mitigate the disease burden and the associated healthcare costs. Current therapeutic approaches effectively target the individual contributing factors to AAOP. Nonetheless, the management of AAOP is complicated by the multitude of variables that affect its development. Main intrinsic and extrinsic factors contributing to AAOP risk are reviewed here, including mechanical unloading, nutrient deficiency, hormonal disbalance, disrupted metabolism, cognitive decline, inflammation and circadian disruption. Furthermore, it is discussed how these can be targeted for prevention and treatment. Although valuable as individual targets for intervention, the interconnectedness of these risk factors result in a unique etiology for every patient. Acknowledgement of the multifaceted nature of AAOP will enable the development of more effective and sustainable management strategies, based on a holistic, patient-centered approach.
Collapse
Affiliation(s)
- A.E. Smit
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden, the Netherlands
| | - O.C. Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden, the Netherlands
| | - E.M. Winter
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden, the Netherlands
- Department of Medicine, Center for Bone Quality, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
12
|
Wang H, Wang J, Lyu L, Wei S, Zhang C. Numerical simulation on mass transfer in the bone lacunar-canalicular system under different gravity fields. Comput Methods Biomech Biomed Engin 2024; 27:478-488. [PMID: 36912751 DOI: 10.1080/10255842.2023.2187738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/13/2023] [Indexed: 03/14/2023]
Abstract
The bone lacunar-canalicular system (LCS) is a unique complex 3D microscopic tubular network structure within the osteon that contains interstitial fluid flow to ensure the efficient transport of signaling molecules, nutrients, and wastes to guarantee the normal physiological activities of bone tissue. The mass transfer laws in the LCS under microgravity and hypergravity are still unclear. In this paper, a multi-scale 3D osteon model was established to mimic the cortical osteon, and a finite element method was used to numerically analyze the mass transfer in the LCS under hypergravity, normal gravity and microgravity and combined with high-intensity exercise conditions. It was shown that hypergravity promoted mass transfer in the LCS to the deep lacunae, and the number of particles in lacunae increased more significantly from normal gravity to hypergravity the further away from the Haversian canal. The microgravity environment inhibited particles transport in the LCS to deep lacunae. Under normal gravity and microgravity, the number of particles in lacunae increased greatly when doing high-intensity exercise compared to stationary standing. This paper presents the first simulation of mass transfer within the LCS with different gravity fields combined with high-intensity exercise using the finite element method. The research suggested that hypergravity can greatly promote mass transfer in the LCS to deep lacunae, and microgravity strongly inhibited this mass transfer; high-intensity exercise increased the mass transfer rate in the LCS. This study provided a new strategy to combat and treat microgravity-induced osteoporosis.
Collapse
Affiliation(s)
- Hao Wang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, P.R. China
| | - Jiaming Wang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, P.R. China
| | - Linwei Lyu
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, P.R. China
| | - Shuping Wei
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, P.R. China
| | - Chunqiu Zhang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, P.R. China
| |
Collapse
|
13
|
Häckel S, Kämpf T, Baur H, von Aesch A, Kressig RW, Stuck AE, Bastian JD. Assessing lower extremity loading during activities of daily living using continuous-scale physical functional performance 10 and wireless sensor insoles: a comparative study between younger and older adults. Eur J Trauma Emerg Surg 2023; 49:2521-2529. [PMID: 37480378 PMCID: PMC10728254 DOI: 10.1007/s00068-023-02331-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
PURPOSE This study aims to investigate the lower extremity loading during activities of daily living (ADLs) using the Continuous Scale of Physical Functional Performance (CS-PFP 10) test and wireless sensor insoles in healthy volunteers. METHODS In this study, 42 participants were recruited, consisting of 21 healthy older adults (mean age 69.6 ± 4.6 years) and 21 younger healthy adults (mean age 23.6 ± 1.8 years). The performance of the subjects during ADLs was assessed using the CS-PFP 10 test, which comprised 10 tasks. The lower extremity loading was measured using wireless sensor insoles (OpenGo, Moticon, Munich, Germany) during the CS-PFP 10 test, which enabled the measurement of ground reaction forces, including the mean and maximum total forces during the stance phase, expressed in units of body weight (BW). RESULTS The total CS-PFP 10 score was significantly lower in older participants compared to the younger group (mean total score of 57.1 ± 9.0 compared to 78.2 ± 5.4, respectively). No significant differences in the mean total forces were found between older and young participants. The highest maximum total forces were observed during the tasks 'endurance walk' (young: 1.97 ± 0.34 BW, old: 1.70 ± 0.43 BW) and 'climbing stairs' (young: 1.65 ± 0.36 BW, old: 1.52 ± 0.28 BW). Only in the endurance walk, older participants showed a significantly higher maximum total force (p < 0.001). CONCLUSION The use of wireless sensor insoles in a laboratory setting can effectively measure the load on the lower extremities during ADLs. These findings could offer valuable insights for developing tailored recommendations for patients with partial weight-bearing restrictions.
Collapse
Affiliation(s)
- Sonja Häckel
- Department of Orthopaedic Surgery and Traumatology, Inselspital, University Hospital Bern, University of Bern, Freiburgstrasse 18, 3010, Bern, Switzerland.
| | - Tobias Kämpf
- Department of Orthopaedic Surgery and Traumatology, Inselspital, University Hospital Bern, University of Bern, Freiburgstrasse 18, 3010, Bern, Switzerland
| | - Heiner Baur
- Department of Health Professions, Bern University of Applied Sciences, Murtenstrasse 10, Bern, Switzerland
- Physiotherapie SportClinic Zurich, Giesshübelstrasse 15, 8045, Zurich, Switzerland
| | - Arlene von Aesch
- Department of Health Professions, Bern University of Applied Sciences, Murtenstrasse 10, Bern, Switzerland
- Physiotherapie SportClinic Zurich, Giesshübelstrasse 15, 8045, Zurich, Switzerland
| | - Reto Werner Kressig
- University Department of Geriatric Medicine Felix Platter and University of Basel, Basel, Switzerland
| | - Andreas Ernst Stuck
- Department of Geriatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Johannes Dominik Bastian
- Department of Orthopaedic Surgery and Traumatology, Inselspital, University Hospital Bern, University of Bern, Freiburgstrasse 18, 3010, Bern, Switzerland
| |
Collapse
|
14
|
Danyukova T, Alimy AR, Velho RV, Yorgan TA, Di Lorenzo G, von Kroge S, Tidow H, Wiegert JS, Hermans-Borgmeyer I, Schinke T, Rolvien T, Pohl S. Mice heterozygous for an osteogenesis imperfecta-linked MBTPS2 variant display a compromised subchondral osteocyte lacunocanalicular network associated with abnormal articular cartilage. Bone 2023; 177:116927. [PMID: 37797712 DOI: 10.1016/j.bone.2023.116927] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Missense variants in the MBTPS2 gene, located on the X chromosome, have been associated with an X-linked recessive form of osteogenesis imperfecta (X-OI), an inherited bone dysplasia characterized by multiple and recurrent bone fractures, short stature, and various skeletal deformities in affected individuals. The role of site-2 protease, encoded by MBTPS2, and the molecular pathomechanism underlying the disease are to date elusive. This study is the first to report on the generation of two Mbtps2 mouse models, a knock-in mouse carrying one of the disease-causative MBTPS2 variants (N455S) and a Mbtps2 knock-out (ko) mouse. Because both loss-of-function variants lead to embryonic lethality in hemizygous male mutant mice, we performed a comprehensive skeletal analysis of heterozygous Mbtps2+/N455S and Mbtps2+/ko female mice. Both models displayed osteochondral abnormalities such as thinned subchondral bone, altered subchondral osteocyte interconnectivity as well as thickened articular cartilage with chondrocyte clustering, altogether resembling an early osteoarthritis (OA) phenotype. However, distant from the joints, no alterations in the bone mass and turnover could be detected in either of the mutant mice. Based on our findings we conclude that MBTPS2 haploinsufficiency results in early OA-like alterations in the articular cartilage and underlying subchondral bone, which likely precede the development of typical OI phenotype in bone. Our study provides first evidence for a potential role of site-2 protease for maintaining homeostasis of both bone and cartilage.
Collapse
Affiliation(s)
- Tatyana Danyukova
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Assil-Ramin Alimy
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Renata Voltolini Velho
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Timur A Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Giorgia Di Lorenzo
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Simon von Kroge
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Henning Tidow
- The Hamburg Advanced Research Center for Bioorganic Chemistry (HARBOR), Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany.
| | - J Simon Wiegert
- Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Irm Hermans-Borgmeyer
- Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Tim Rolvien
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Sandra Pohl
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
15
|
Zak M, Wasik M, Sikorski T, Aleksandrowicz K, Miszczuk R, Courteix D, Dutheil F, Januszko-Szakiel A, Brola W. Rehabilitation in Older Adults Affected by Immobility Syndrome, Aided by Virtual Reality Technology: A Narrative Review. J Clin Med 2023; 12:5675. [PMID: 37685741 PMCID: PMC10488935 DOI: 10.3390/jcm12175675] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Individual mobility deficit in older adults induces a variety of medical conditions, diminishing their functional capacity in pursuing activities of daily living. In immobility syndrome patients, such conditions are prone further deterioration through a drastically reduced scope of physical activity, owing mostly to poor self-motivation and the monotonous character of conventional rehabilitation regimens. As evidenced by published research, virtual reality technology solutions in rehabilitation management actually add significantly to patients' self-motivation, while promoting their active involvement in therapy through visual, auditory, and kinaesthetic stimuli. Effective rehabilitation training aided by virtual reality solutions helps patients acquire specific physical and cognitive skills to be subsequently emulated in the real-world environment. The extra added advantage lies in facilitating such training within patients' own home environments, combined with online monitoring of their progress, when not personally supervised by a physiotherapist, which also boosts the overall cost effectiveness of the therapeutic management itself. This narrative review appears to be the very first one principally focused on critically comparing individual immobilisation with immobility syndrome, especially through the application of the Authors' own substantial hands-on therapeutic experience in managing various rehabilitation schemes, specifically aided by diverse virtual reality technology solutions.
Collapse
Affiliation(s)
- Marek Zak
- Institute of Health Sciences, Collegium Medicum, Jan Kochanowski University, Zeromskiego 5, 25-369 Kielce, Poland;
| | - Magdalena Wasik
- Doctoral School, Collegium Medicum, Jan Kochanowski University, Zeromskiego 5, 25-369 Kielce, Poland; (M.W.); (T.S.)
| | - Tomasz Sikorski
- Doctoral School, Collegium Medicum, Jan Kochanowski University, Zeromskiego 5, 25-369 Kielce, Poland; (M.W.); (T.S.)
| | - Krzysztof Aleksandrowicz
- Department of Physiotherapy, Faculty of Health Sciences, Wroclaw Medical University, T. Chałubińskiego 3, 50-368 Wroclaw, Poland;
- Institute of Heart Diseases, University Hospital, Borowska 213, 50-556 Wroclaw, Poland
| | - Renata Miszczuk
- Institute of Pedagogy, Jan Kochanowski University, Zeromskiego 5, 25-369 Kielce, Poland;
| | - Daniel Courteix
- Laboratory of the Metabolic Adaptations to Exercise under Physiological and Pathological Conditions (AME2P), Université Clermont Auvergne, 63000 Clermont-Ferrand, France;
| | - Frederic Dutheil
- Occupational and Environmental Medicine, CHU, 63000 Clermont-Ferrand, France;
- Physiological and Psychosocial Stress, Université Clermont Auvergne, CNRS, LaPSCo, 63000 Clermont-Ferrand, France
| | - Aneta Januszko-Szakiel
- Institute of Information Studies, Faculty of Managment and Social Communication, Jagiellonian University, ul. Lojasiewicza 4, 30-348 Krakow, Poland;
| | - Waldemar Brola
- Institute of Health Sciences, Collegium Medicum, Jan Kochanowski University, Zeromskiego 5, 25-369 Kielce, Poland;
| |
Collapse
|
16
|
Bone adaptation and osteoporosis prevention in hibernating mammals. Comp Biochem Physiol A Mol Integr Physiol 2023; 280:111411. [PMID: 36871815 DOI: 10.1016/j.cbpa.2023.111411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Hibernating bears and rodents have evolved mechanisms to prevent disuse osteoporosis during the prolonged physical inactivity that occurs during hibernation. Serum markers and histological indices of bone remodeling in bears indicate reduced bone turnover during hibernation, which is consistent with organismal energy conservation. Calcium homeostasis is maintained by balanced bone resorption and formation since hibernating bears do not eat, drink, urinate, or defecate. Reduced and balanced bone remodeling protect bear bone structure and strength during hibernation, unlike the disuse osteoporosis that occurs in humans and other animals during prolonged physical inactivity. Conversely, some hibernating rodents show varying degrees of bone loss such as osteocytic osteolysis, trabecular loss, and cortical thinning. However, no negative effects of hibernation on bone strength in rodents have been found. More than 5000 genes in bear bone tissue are differentially expressed during hibernation, highlighting the complexity of hibernation induced changes in bone. A complete picture of the mechanisms that regulate bone metabolism in hibernators still alludes us, but existing data suggest a role for endocrine and paracrine factors such as cocaine- and amphetamine-regulated transcript (CART) and endocannabinoid ligands like 2-arachidonoyl glycerol (2-AG) in decreasing bone remodeling during hibernation. Hibernating bears and rodents evolved the capacity to preserve bone strength during long periods of physical inactivity, which contributes to their survival and propagation by allowing physically activity (foraging, escaping predators, and mating) without risk of bone fracture following hibernation. Understanding the biological mechanisms regulating bone metabolism in hibernators may inform novel treatment strategies for osteoporosis in humans.
Collapse
|
17
|
Dragoun Kolibová S, Wölfel EM, Hemmatian H, Milovanovic P, Mushumba H, Wulff B, Neidhardt M, Püschel K, Failla AV, Vlug A, Schlaefer A, Ondruschka B, Amling M, Hofbauer LC, Rauner M, Busse B, Jähn-Rickert K. Osteocyte apoptosis and cellular micropetrosis signify skeletal aging in type 1 diabetes. Acta Biomater 2023; 162:254-265. [PMID: 36878337 DOI: 10.1016/j.actbio.2023.02.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/03/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
Bone fragility is a profound complication of type 1 diabetes mellitus (T1DM), increasing patient morbidity. Within the mineralized bone matrix, osteocytes build a mechanosensitive network that orchestrates bone remodeling; thus, osteocyte viability is crucial for maintaining bone homeostasis. In human cortical bone specimens from individuals with T1DM, we found signs of accelerated osteocyte apoptosis and local mineralization of osteocyte lacunae (micropetrosis) compared with samples from age-matched controls. Such morphological changes were seen in the relatively young osteonal bone matrix on the periosteal side, and micropetrosis coincided with microdamage accumulation, implying that T1DM drives local skeletal aging and thereby impairs the biomechanical competence of the bone tissue. The consequent dysfunction of the osteocyte network hampers bone remodeling and decreases bone repair mechanisms, potentially contributing to the enhanced fracture risk seen in individuals with T1DM. STATEMENT OF SIGNIFICANCE: Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease that causes hyperglycemia. Increased bone fragility is one of the complications associated with T1DM. Our latest study on T1DM-affected human cortical bone identified the viability of osteocytes, the primary bone cells, as a potentially critical factor in T1DM-bone disease. We linked T1DM with increased osteocyte apoptosis and local accumulation of mineralized lacunar spaces and microdamage. Such structural changes in bone tissue suggest that T1DM speeds up the adverse effects of aging, leading to the premature death of osteocytes and potentially contributing to diabetes-related bone fragility.
Collapse
Affiliation(s)
- Sofie Dragoun Kolibová
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Eva Maria Wölfel
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany; Interdisciplinary Competence Center for Interface Research, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Haniyeh Hemmatian
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Petar Milovanovic
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany; University of Belgrade, Faculty of Medicine, Center of Bone Biology, Institute of Anatomy, Belgrade, Serbia
| | - Herbert Mushumba
- University Medical Center Hamburg Eppendorf, Institute of Legal Medicine, Hamburg, Germany
| | - Birgit Wulff
- University Medical Center Hamburg Eppendorf, Institute of Legal Medicine, Hamburg, Germany
| | - Maximilian Neidhardt
- Institute of Medical Technology and Intelligent Systems, Hamburg University of Technology, Am-Schwarzenberg-Campus 3, Hamburg 21073, Germany; Interdisciplinary Competence Center for Interface Research, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Klaus Püschel
- University Medical Center Hamburg Eppendorf, Institute of Legal Medicine, Hamburg, Germany
| | - Antonio Virgilio Failla
- University Medical Center Hamburg Eppendorf, UKE microscopy Imaging facility, Hamburg, Germany
| | - Annegreet Vlug
- Leiden University Medical Center (LUMC), Centre for Bone Quality, Leiden, the Netherlands
| | - Alexander Schlaefer
- Institute of Medical Technology and Intelligent Systems, Hamburg University of Technology, Am-Schwarzenberg-Campus 3, Hamburg 21073, Germany; Interdisciplinary Competence Center for Interface Research, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Benjamin Ondruschka
- University Medical Center Hamburg Eppendorf, Institute of Legal Medicine, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Lorenz C Hofbauer
- Division of Endocrinology, Department of Medicine III, Technische Universität Dresden Medical Center, Diabetes, and Metabolic Bone Diseases, Dresden, Germany
| | - Martina Rauner
- Division of Endocrinology, Department of Medicine III, Technische Universität Dresden Medical Center, Diabetes, and Metabolic Bone Diseases, Dresden, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany; Interdisciplinary Competence Center for Interface Research, University Medical Center Hamburg Eppendorf, Hamburg, Germany.
| | - Katharina Jähn-Rickert
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany; Mildred Scheel Cancer Career Center Hamburg, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| |
Collapse
|
18
|
Liu X, Yan Z, Cai J, Wang D, Yang Y, Ding Y, Shao X, Hao X, Luo E, Guo XE, Luo P, Shen L, Jing D. Glucose- and glutamine-dependent bioenergetics sensitize bone mechanoresponse after unloading by modulating osteocyte calcium dynamics. J Clin Invest 2023; 133:164508. [PMID: 36512405 PMCID: PMC9888392 DOI: 10.1172/jci164508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Disuse osteoporosis is a metabolic bone disease resulting from skeletal unloading (e.g., during extended bed rest, limb immobilization, and spaceflight), and the slow and insufficient bone recovery during reambulation remains an unresolved medical challenge. Here, we demonstrated that loading-induced increase in bone architecture/strength was suppressed in skeletons previously exposed to unloading. This reduction in bone mechanosensitivity was directly associated with attenuated osteocytic Ca2+ oscillatory dynamics. The unloading-induced compromised osteocytic Ca2+ response to reloading resulted from the HIF-1α/PDK1 axis-mediated increase in glycolysis, and a subsequent reduction in ATP synthesis. HIF-1α also transcriptionally induced substantial glutaminase 2 expression and thereby glutamine addiction in osteocytes. Inhibition of glycolysis by blockade of PDK1 or glutamine supplementation restored the mechanosensitivity in those skeletons with previous unloading by fueling the tricarboxylic acid cycle and rescuing subsequent Ca2+ oscillations in osteocytes. Thus, we provide mechanistic insight into disuse-induced deterioration of bone mechanosensitivity and a promising therapeutic approach to accelerate bone recovery after long-duration disuse.
Collapse
Affiliation(s)
- Xiyu Liu
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
| | - Zedong Yan
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
| | - Jing Cai
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Dan Wang
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
| | - Yongqing Yang
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
| | - Yuanjun Ding
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
| | - Xi Shao
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
| | - Xiaoxia Hao
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
| | - Erping Luo
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
| | - X. Edward Guo
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital
| | - Liangliang Shen
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology
| | - Da Jing
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China.,Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, and,Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
19
|
Sato M, Shah FA. Contributions of Resin Cast Etching to Visualising the Osteocyte Lacuno-Canalicular Network Architecture in Bone Biology and Tissue Engineering. Calcif Tissue Int 2023; 112:525-542. [PMID: 36611094 PMCID: PMC10106349 DOI: 10.1007/s00223-022-01058-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/21/2022] [Indexed: 01/09/2023]
Abstract
Recent years have witnessed an evolution of imaging technologies towards sophisticated approaches for visualising cells within their natural environment(s) and for investigating their interactions with other cells, with adjacent anatomical structures, and with implanted biomaterials. Resin cast etching (RCE) is an uncomplicated technique involving sequential acid etching and alkali digestion of resin embedded bone to observe the osteocyte lacuno-canalicular network using scanning electron microscopy. This review summarises the applicability of RCE to bone and the bone-implant interface. Quantitative parameters such as osteocyte size, osteocyte density, and number of canaliculi per osteocyte, and qualitative metrics including osteocyte shape, disturbances in the arrangement of osteocytes and canaliculi, and physical communication between osteocytes and implant surfaces can be investigated. Ageing, osteoporosis, long-term immobilisation, spinal cord injury, osteoarthritis, irradiation, and chronic kidney disease have been shown to impact osteocyte lacuno-canalicular network morphology. In addition to titanium, calcium phosphates, and bioactive glass, observation of direct connectivity between osteocytes and cobalt chromium provides new insights into the osseointegration potential of materials conventionally viewed as non-osseointegrating. Other applications include in vivo and in vitro testing of polymer-based tissue engineering scaffolds and tissue-engineered ossicles, validation of ectopic osteochondral defect models, ex vivo organ culture of whole bones, and observing the effects of gene dysfunction/deletion on the osteocyte lacuno-canalicular network. Without additional contrast staining, any resin embedded specimen (including clinical biopsies) can be used for RCE. The multitude of applications described here attest to the versatility of RCE for routine use within correlative analytical workflows, particularly in biomaterials science.
Collapse
Affiliation(s)
- Mari Sato
- Oral Biochemistry and Molecular Biology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Furqan A Shah
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
20
|
Wang H, Wang J, Li K, Gao L, Wang A, Wei S, Lyu L, Zhang C. The effect of different gravity fields on mass transfer in the rat bone lacunar-canalicular system. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2023. [DOI: 10.1016/j.medntd.2023.100208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
21
|
Soldati E, Roseren F, Guenoun D, Mancini L, Catelli E, Prati S, Sciutto G, Vicente J, Iotti S, Bendahan D, Malucelli E, Pithioux M. Multiscale Femoral Neck Imaging and Multimodal Trabeculae Quality Characterization in an Osteoporotic Bone Sample. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8048. [PMID: 36431532 PMCID: PMC9694313 DOI: 10.3390/ma15228048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Although multiple structural, mechanical, and molecular factors are definitely involved in osteoporosis, the assessment of subregional bone mineral density remains the most commonly used diagnostic index. In this study, we characterized bone quality in the femoral neck of one osteoporotic patients as compared to an age-matched control subject, and so used a multiscale and multimodal approach including X-ray computed microtomography at different spatial resolutions (pixel size: 51.0, 4.95 and 0.9 µm), microindentation and Fourier transform infrared spectroscopy. Our results showed abnormalities in the osteocytes lacunae volume (358.08 ± 165.00 for the osteoporotic sample vs. 287.10 ± 160.00 for the control), whereas a statistical difference was found neither for shape nor for density. The osteoporotic femoral head and great trochanter reported reduced elastic modulus (Es) and hardness (H) compared to the control reference (−48% (p < 0.0001) and −34% (p < 0.0001), respectively for Es and H in the femoral head and −29% (p < 0.01) and −22% (p < 0.05), respectively for Es and H in the great trochanter), whereas the corresponding values in the femoral neck were in the same range. The spectral analysis could distinguish neither subregional differences in the osteoporotic sample nor between the osteoporotic and healthy samples. Although, infrared spectroscopic measurements were comparable among subregions, and so regardless of the bone osteoporotic status, the trabecular mechanical properties were comparable only in the femoral neck. These results illustrate that bone remodeling in osteoporosis is a non-uniform process with different rates in different bone anatomical regions, hence showing the interest of a clear analysis of the bone microarchitecture in the case of patients’ osteoporotic evaluation.
Collapse
Affiliation(s)
- Enrico Soldati
- Aix Marseille University, CNRS, IUSTI, 13453 Marseille, France
- Aix Marseille University, CNRS, CRMBM, 13385 Marseille, France
- Aix Marseille University, CNRS, ISM, 13288 Marseille, France
| | - Flavy Roseren
- Aix Marseille University, CNRS, ISM, 13288 Marseille, France
| | - Daphne Guenoun
- Aix Marseille University, CNRS, ISM, 13288 Marseille, France
- Aix Marseille University, APHM, CNRS, ISM, Sainte Marguerite Hospital, Institute for Locomotion, Department of Radiology, 13274 Marseille, France
| | - Lucia Mancini
- Elettra-Sincrotrone Trieste S.C.p.A, SS 14–km 1535 in Area Science Park, Basovizza, 34149 Trieste, Italy
- Slovenian National Building and Civil Engineering Institute, Dimičeva ulica 12, 1000 Ljubljana, Slovenia
| | - Emilio Catelli
- University of Bologna, Department of Chemistry “G. Ciamician”, Ravenna Campus, Via Guaccimanni, 42, 48121 Ravenna, Italy
| | - Silvia Prati
- University of Bologna, Department of Chemistry “G. Ciamician”, Ravenna Campus, Via Guaccimanni, 42, 48121 Ravenna, Italy
| | - Giorgia Sciutto
- University of Bologna, Department of Chemistry “G. Ciamician”, Ravenna Campus, Via Guaccimanni, 42, 48121 Ravenna, Italy
| | - Jerome Vicente
- Aix Marseille University, CNRS, IUSTI, 13453 Marseille, France
| | - Stefano Iotti
- Università di Bologna, Department of Pharmacy and Biotechnology (FaBit), Via Zamboni 33, 40126 Bologna, Italy
- National Institute of Biostructures and Biosystems, Viale delle Medaglie d’Oro 305, 00136 Roma, Italy
| | - David Bendahan
- Aix Marseille University, CNRS, CRMBM, 13385 Marseille, France
| | - Emil Malucelli
- Università di Bologna, Department of Pharmacy and Biotechnology (FaBit), Via Zamboni 33, 40126 Bologna, Italy
| | - Martine Pithioux
- Aix Marseille University, CNRS, ISM, 13288 Marseille, France
- Aix Marseille University, APHM, CNRS, ISM, Sainte-Marguerite Hospital, Institute for Locomotion, Department of Orthopaedics and Traumatology, 13274 Marseille, France
| |
Collapse
|
22
|
Savic I, Farver C, Milovanovic P. Pathogenesis of Pulmonary Calcification and Homologies with Biomineralization in Other Tissues. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1496-1505. [PMID: 36030837 DOI: 10.1016/j.ajpath.2022.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/18/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Lungs often present tissue calcifications and even ossifications, both in the context of high or normal serum calcium levels. Precise mechanisms governing lung calcifications have not been explored. Herein, we emphasize recent advances about calcification processes in other tissues (especially vascular and bone calcifications) and discuss potential sources of calcium precipitates in the lungs, involvement of mineralization promoters and crystallization inhibitors, as well as specific cytokine milieu and cellular phenotypes characteristic for lung diseases, which may be involved in pulmonary calcifications. Further studies are necessary to demonstrate the exact mechanisms underlying calcifications in the lungs, document homologies in biomineralization processes between various tissues in physiological and pathologic conditions, and unravel any locally specific characteristics of mineralization processes that may be targeted to reduce or prevent functionally relevant lung calcifications without negatively affecting the skeleton.
Collapse
Affiliation(s)
- Ivana Savic
- Institute of Pathology, University of Belgrade Faculty of Medicine, Belgrade, Serbia
| | - Carol Farver
- Department of Pathology, Cleveland Clinic, Cleveland, Ohio
| | - Petar Milovanovic
- Laboratory of Bone Biology and Bioanthropology, Institute of Anatomy, University of Belgrade Faculty of Medicine, Belgrade, Serbia; Center of Bone Biology, University of Belgrade Faculty of Medicine, Belgrade, Serbia.
| |
Collapse
|
23
|
Wadiura LI, Butylina M, Reinprecht A, Aretin MB, Mischkulnig M, Gleiss A, Pietschmann P, Kerschan-Schindl K. Denosumab for Prevention of Acute Onset Immobilization-Induced Alterations of Bone Turnover: A Randomized Controlled Trial. J Bone Miner Res 2022; 37:2156-2164. [PMID: 36056473 PMCID: PMC10086960 DOI: 10.1002/jbmr.4694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/16/2022] [Accepted: 08/28/2022] [Indexed: 11/08/2022]
Abstract
Metabolic bone disease is a devastating condition in critically ill patients admitted to an intensive care unit (ICU). We investigated the effects of early administration of the antiresorptive drug denosumab on bone metabolism in previously healthy patients. Fourteen patients with severe intracerebral or subarachnoid hemorrhage were included in a phase 2 trial. Within 72 hours after ICU admission, they were randomized in a 1:1 ratio to receive denosumab 60 mg or placebo subcutaneously. The primary endpoint was group differences in the percentage change of C-terminal telopeptide of type 1 collagen (CTX-1) levels in serum from denosumab/placebo application to 4 weeks thereafter. Changes in serum levels of bone formation markers and urinary calcium excretion were secondary outcome parameters. Regarding serum levels of CTX-1, changes over time averaged -0.45 ng/mL (95% confidence interval [CI] -0.72, -0.18) for the denosumab group and 0.29 ng/mL (95% CI -0.01, 0.58) for the placebo group. The primary endpoint, the group difference in changes between baseline and secondary measurement, adjusted for baseline serum levels and baseline neurological status, averaged -0.74 ng/mL (95% CI -1.14, -0.34; p = 0.002). The group difference in changes between baseline and secondary osteocalcin measurement averaged -5.60 ng/mL (95% CI -11.2, -0.04; p = 0.049). The group difference in averaged change between baseline and secondary measurement of 24-hour urine calcium excretion was significant (-1.77 mmol/L [95% CI -3.48, -0.06; p = 0.044]). No adverse events could be attributed to the study medication. The investigation proved that a single application of denosumab early after admission to an ICU prevents acute immobilization-associated increase in bone resorption among previously healthy individuals. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Lisa Irina Wadiura
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Maria Butylina
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| | - Andrea Reinprecht
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | | | - Mario Mischkulnig
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Andreas Gleiss
- Center of Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Peter Pietschmann
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| | - Katharina Kerschan-Schindl
- Department of Physical Medicine, Rehabilitation and Occupational Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
24
|
Wang H, Gao L, Chen X, Zhang C. Study on mass transfer in the bone lacunar-canalicular system under different gravity fields. J Bone Miner Metab 2022; 40:940-950. [PMID: 36350408 DOI: 10.1007/s00774-022-01373-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/22/2022] [Indexed: 11/11/2022]
Abstract
INTRODUCTION The bone lacunar-canalicular system (LCS) is an important microstructural basis for signaling and material transport in bone tissue, guaranteeing normal physiological processes in tissues. Spaceflight astronauts and elderly osteoporosis are related to its function, so it is necessary to reveal the mass transfer laws in bone microstructure under different gravity fields to provide insight for effective clinical treatment. MATERIALS AND METHODS Using the natural LCS structure of bovine tibial cortical bone as the object, the mass transfer experiments on cortical bone were conducted by using sodium fluorescein tracer through different frequency pulsating pressure provided by dynamic perfusion loading device and different high G environments provided by high-speed centrifuge to analyze the mass transfer laws under different gravity fields and different pulsating pressures. RESULTS The fluorescence intensity of lacunae within the osteon was lower the farther away from the Haversian canal. As the gravity field magnitude increased, the fluorescence intensity within each lacuna enhanced, and the more distant the lacunae from the Haversian canal, the greater the fluorescence intensity enhancement. High-frequency pulsating pressure simulated high-intensity exercise in humans can improve mass transfer efficiency in the LCS. CONCLUSION High-intensity exercise may greatly increase solute molecules, nutrients, and signaling molecules in osteocytes and improve the activity of osteocytes. Hypergravity can enhance the transport of solute molecules, nutrients, and signaling molecules in the LCS, especially promoting mass transfer to deep layer lacunae. Conversely, mass transfer to deep layer lacunae may be inhibited under microgravity, causing bone loss and ultimately leading to osteoporosis.
Collapse
Affiliation(s)
- Hao Wang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
| | - Lilan Gao
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
| | - Xuyi Chen
- Characteristic Medical Center of People's Armed Police Forces, Institute of Brain Trauma and Neurological Diseases of the Armed Police Force, Tianjin, People's Republic of China.
| | - Chunqiu Zhang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China.
| |
Collapse
|
25
|
Simon A, Schäfer HS, Schmidt FN, Stürznickel J, Amling M, Rolvien T. Compartment-specific effects of muscle strength on bone microarchitecture in women at high risk of osteoporosis. J Cachexia Sarcopenia Muscle 2022; 13:2310-2321. [PMID: 35852049 PMCID: PMC9530535 DOI: 10.1002/jcsm.13044] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/27/2022] [Accepted: 06/25/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND It is well known that skeletal integrity is influenced by the musculature. Poor muscle strength (i.e. sarcopenia) is considered a major predictor of fragility fractures. While this observation appears particularly relevant for older women with increased risk of osteoporosis, there has been no comprehensive investigation to determine the influence of muscle performance on compartment-specific bone microarchitecture in multiple body regions. METHODS We retrospectively analysed data from different muscle performance and bone microarchitecture assessments in 230 women (aged 21 to 87 years) at high risk of osteoporosis. Muscle performance tests included grip strength and chair rising test (CRT) combined with mechanography. Balance was determined by Romberg posturography. Areal bone mineral density (BMD) was measured by dual-energy X-ray absorptiometry (DXA) at the hip and lumbar spine. Compartment-specific volumetric BMD, microarchitecture, and geometry were assessed by second-generation high-resolution peripheral quantitative computed tomography (HR-pQCT) at multiple skeletal sites (distal radius, tibia, and fibula). Regression models were applied to test for interactions between muscle and bone parameters. Subgroups were defined to compare women with osteoporosis and osteosarcopenia regarding BMD and microarchitecture. RESULTS While osteoporosis was diagnosed in 115/230 (50.0%) women, sarcopenia was detected in 38/230 (16.5%). Positive associations of both grip strength and CRT maximum force with cortical geometric and microarchitectural parameters were detected at all measured sites, with the strongest effect applying to CRT maximum force and tibial parameters (e.g. tibial cortical area R2 = 0.36, P < 0.0001, and tibial cortical thickness R2 = 0.26, P < 0.0001). Balance parameters showed much weaker or no associations with HR-pQCT parameters. Major associations between muscle strength and trabecular parameters could not be confirmed. Age and body mass index were confirmed as negative and positive predictors for several microarchitectural parameters, respectively. An independent predictive value of grip strength on radial, tibial, and fibular (all P < 0.01) cortical area and of CRT maximum relative force on cortical thickness (all P < 0.05) was revealed. Women with osteosarcopenia showed significantly reduced cortical HR-pQCT parameters but no differences in DXA values compared with women with osteoporosis but no sarcopenia. Stratification by fracture and treatment status revealed that vertebral fractures and denosumab treatment altered the muscle-bone interaction. CONCLUSIONS A systemic interaction between muscle strength and bone microarchitecture was demonstrated, and this interaction appears to be primarily with the cortical bone compartment. The value of muscle assessments in fracture risk evaluation may be partly mediated by their effects on bone microarchitecture.
Collapse
Affiliation(s)
- Alexander Simon
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Department of Trauma and Orthopaedic Surgery, Division of OrthopaedicsUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Hannah S. Schäfer
- Department of Trauma and Orthopaedic Surgery, Division of OrthopaedicsUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Felix N. Schmidt
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Julian Stürznickel
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Department of Trauma and Orthopaedic Surgery, Division of OrthopaedicsUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Michael Amling
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Tim Rolvien
- Department of Trauma and Orthopaedic Surgery, Division of OrthopaedicsUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| |
Collapse
|
26
|
Effects of Pamidronate Disodium Combined with Calcium on BMD Values and Severity of Pain in Elderly Patients with Osteoporosis Based on Mobile Terminal Platform for Internet of Things. DISEASE MARKERS 2022; 2022:5069918. [PMID: 36016848 PMCID: PMC9398865 DOI: 10.1155/2022/5069918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 12/04/2022]
Abstract
Objective To explore the effects of pamidronate disodium combined with calcium on BMD values and the severity of pain in elderly patients with osteoporosis based on the mobile terminal platform for the Internet of Things. Methods The data of 120 patients admitted to our hospital from January 2019 to December 2020 were retrospectively analyzed. According to the patients' condition and medication wills, they were divided into the experimental group (n = 68) and the control group (n = 52). All patients were given chronic disease management based on the mobile terminals for the Internet of Things, and they received the treatment of bisphosphonates and calcium, with the supplement of calcium at a daily dose of 1000 mg. The control group was given alendronate sodium once a week, and the experimental group was given pamidronate disodium by intravenous infusion three times a month, with the treatment cycle as 1 year. The patients' bone mineral density (BMD) values and the pain indexes were compared after treatment. Results There was no statistical difference in general information between the two groups (p > 0.05). The BMD values of the lumbar vertebrae L2-4, total hip, and femur neck at 6 months and 1 year after treatment in the experimental group were significantly higher than those in the control group (p < 0.001). The pain scores at 6 months and 1 year after treatment in the experimental group were significantly lower than those in the control group (p < 0.001). Conclusion The treatment of pamidronate disodium combined with calcium based on the mobile terminal platform for the Internet of Things can reduce the severity of pain in elderly patients with osteoporosis and improve the BMD, which has a generalization value.
Collapse
|
27
|
Ledoux C, Boaretti D, Sachan A, Müller R, Collins CJ. Clinical Data for Parametrization of In Silico Bone Models Incorporating Cell-Cytokine Dynamics: A Systematic Review of Literature. Front Bioeng Biotechnol 2022; 10:901720. [PMID: 35910035 PMCID: PMC9335409 DOI: 10.3389/fbioe.2022.901720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
In silico simulations aim to provide fast, inexpensive, and ethical alternatives to years of costly experimentation on animals and humans for studying bone remodeling, its deregulation during osteoporosis and the effect of therapeutics. Within the varied spectrum of in silico modeling techniques, bone cell population dynamics and agent-based multiphysics simulations have recently emerged as useful tools to simulate the effect of specific signaling pathways. In these models, parameters for cell and cytokine behavior are set based on experimental values found in literature; however, their use is currently limited by the lack of clinical in vivo data on cell numbers and their behavior as well as cytokine concentrations, diffusion, decay and reaction rates. Further, the settings used for these parameters vary across research groups, prohibiting effective cross-comparisons. This review summarizes and evaluates the clinical trial literature that can serve as input or validation for in silico models of bone remodeling incorporating cells and cytokine dynamics in post-menopausal women in treatment, and control scenarios. The GRADE system was used to determine the level of confidence in the reported data, and areas lacking in reported measures such as binding site occupancy, reaction rates and cell proliferation, differentiation and apoptosis rates were highlighted as targets for further research. We propose a consensus for the range of values that can be used for the cell and cytokine settings related to the RANKL-RANK-OPG, TGF-β and sclerostin pathways and a Levels of Evidence-based method to estimate parameters missing from clinical trial literature.
Collapse
Affiliation(s)
- Charles Ledoux
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | | | - Akanksha Sachan
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Caitlyn J. Collins
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
- Department for Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VI,United States
- *Correspondence: Caitlyn J. Collins,
| |
Collapse
|
28
|
Abstract
Disuse osteoporosis describes a state of bone loss due to local skeletal unloading or systemic immobilization. This review will discuss advances in the field that have shed light on clinical observations, mechanistic insights and options for the treatment of disuse osteoporosis. Clinical settings of disuse osteoporosis include spinal cord injury, other neurological and neuromuscular disorders, immobilization after fractures and bed rest (real or modeled). Furthermore, spaceflight-induced bone loss represents a well-known adaptive process to microgravity. Clinical studies have outlined that immobilization leads to immediate bone loss in both the trabecular and cortical compartments accompanied by relatively increased bone resorption and decreased bone formation. The fact that the low bone formation state has been linked to high levels of the osteocyte-secreted protein sclerostin is one of the many findings that has brought matrix-embedded, mechanosensitive osteocytes into focus in the search for mechanistic principles. Previous basic research has primarily involved rodent models based on tail suspension, spaceflight and other immobilization methods, which have underlined the importance of osteocytes in the pathogenesis of disuse osteoporosis. Furthermore, molecular-based in vitro and in vivo approaches have revealed that osteocytes sense mechanical loading through mechanosensors that translate extracellular mechanical signals to intracellular biochemical signals and regulate gene expression. Osteocytic mechanosensors include the osteocyte cytoskeleton and dendritic processes within the lacuno-canalicular system (LCS), ion channels (e.g., Piezo1), extracellular matrix, primary cilia, focal adhesions (integrin-based) and hemichannels and gap junctions (connexin-based). Overall, disuse represents one of the major factors contributing to immediate bone loss and osteoporosis, and alterations in osteocytic pathways appear crucial to the bone loss associated with unloading.
Collapse
Affiliation(s)
- Tim Rolvien
- Division of Orthopaedics, Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529, Hamburg, Germany.
| |
Collapse
|
29
|
He S, Kang K, Jing Y, Wang Q. Plasma EBF1 as a Novel Biomarker for Postmenopausal Osteoporosis. J Clin Densitom 2022; 25:230-236. [PMID: 34272166 DOI: 10.1016/j.jocd.2021.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/05/2021] [Accepted: 06/10/2021] [Indexed: 11/16/2022]
Abstract
Postmenopausal osteoporosis (OPO) is one of the most common types of primary osteoporosis. There is currently lack of a plasma biomarker for sensitive and early diagnosis of OPO. Here we aimed to explore the potential of early B cell factor 1 (EBF1) as a new plasma biomarker of OPO. Quantitative real-time PCR was used to measure the plasma EBF1 levels. Absorptiometry markers, such as lumbar spine (LS) bone mineral density (BMD) and LS T score were obtained after X-ray scans. Biochemical analyses used to measure osteopontin (OPN), β-isomerized C-terminal telopeptides and total N-terminal procollagen of type-I collagen levels of patients with osteopenia (OPE, n = 81), osteoporosis (OPO, n = 98) as well as healthy subjects (NC, n = 110). Quantitative real-time PCR was used to measure the plasma levels of PAX5 and GSTP1, which are target genes of EBF1. EBF1 was downregulated in OPO patients. Levels of EBF1 were positively correlated to clinicopathological characteristics, including LS BMD and LS T scores, and negatively correlated to OPN and total N-terminal procollagen of type-I collagen levels. Increased PAX5 and GSTP1 levels also demonstrated strong correlations with higher EBF1, LS BMD and LS T score. Anti-osteoporotic treatment resulted in significant upregulation of EBF1, PAX5 and GSTP1 at 6 mo after treatment. Our study suggests that plasma EBF1 is a potential biomarker for diagnosing and assessing treatment outcome of OPO.
Collapse
Affiliation(s)
- Shi He
- The Second Ward of Department of Orthopedics, Daqing Longnan Hospital, Daqing, Heilongjiang, China
| | - Kai Kang
- The Second Ward of Department of Orthopedics, Daqing Longnan Hospital, Daqing, Heilongjiang, China
| | - Yuanhai Jing
- The Second Ward of Department of Orthopedics, Daqing Longnan Hospital, Daqing, Heilongjiang, China
| | - Qiang Wang
- The Second Ward of Department of Orthopedics, Daqing Longnan Hospital, Daqing, Heilongjiang, China.
| |
Collapse
|
30
|
von Kroge S, Stürznickel J, Bechler U, Stockhausen KE, Eissele J, Hubert J, Amling M, Beil FT, Busse B, Rolvien T. Impaired bone quality in the superolateral femoral neck occurs independent of hip geometry and bone mineral density. Acta Biomater 2022; 141:233-243. [PMID: 34999261 DOI: 10.1016/j.actbio.2022.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 11/01/2022]
Abstract
Skeletal adaptation is substantially influenced by mechanical loads. Osteocytes and their lacuno-canalicular network have been identified as a key player in load sensation and bone quality regulation. In the femoral neck, one of the most common fracture sites, a complex loading pattern with lower habitual loading in the superolateral neck and higher compressive stresses in the inferomedial neck is present. Variations in the femoral neck-shaft angle (NSA), i.e., coxa vara or coxa valga, provide the opportunity to examine the influence of loading patterns on bone quality. We obtained femoral neck specimens of 28 osteoarthritic human subjects with coxa vara, coxa norma and coxa valga during total hip arthroplasty. Bone mineral density (BMD) was assessed preoperatively by dual energy X-ray absorptiometry (DXA). Cortical and trabecular microstructure and three-dimensional osteocyte lacunar characteristics were assessed in the superolateral and inferomedial neck using ex vivo high resolution micro-computed tomography. Additionally, BMD distribution and osteocyte lacunar characteristics were analyzed by quantitative backscattered electron imaging (qBEI). All groups presented thicker inferomedial than superolateral cortices. Furthermore, the superolateral site exhibited a lower osteocyte lacunar density along with lower lacunar sphericity than the inferomedial site, independent of NSA. Importantly, BMD and corresponding T-scores correlated with microstructural parameters at the inferomedial but not superolateral neck. In conclusion, we provide micromorphological evidence for fracture vulnerability of the superolateral neck, which is independent of NSA and BMD. The presented bone qualitative data provide an explanation why DXA may be insufficient to predict a substantial proportion of femoral neck fractures. STATEMENT OF SIGNIFICANCE: The femoral neck, one of the most common fracture sites, is subject to a complex loading pattern. Site-specific differences (i.e., superolateral vs. inferomedial) in bone quality influence fracture risk, but it is unclear how this relates to hip geometry and bone mineral density (BMD) measurements in vivo. Here, we examine femoral neck specimens using a variety of high-resolution imaging techniques and demonstrate impaired bone quality in the superolateral compared to the inferomedial neck. Specifically, we found impaired cortical and trabecular microarchitecture, mineralization, and osteocyte properties, regardless of neck-shaft angle. Since BMD correlated with bone quality of the inferomedial but not the superolateral neck, our results illustrate why bone densitometry may not predict a substantial proportion of femoral neck fractures.
Collapse
|
31
|
A mouse model of disuse osteoporosis based on a movable noninvasive 3D-printed unloading device. J Orthop Translat 2022; 33:1-12. [PMID: 35070713 PMCID: PMC8753063 DOI: 10.1016/j.jot.2021.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/02/2021] [Accepted: 11/22/2021] [Indexed: 01/16/2023] Open
Abstract
Objective Disuse osteoporosis is a major type of bone loss disease characterized by regional bone loss and microstructure alterations. The condition is induced by a marked decrease in weight bearing over time, which usually occurs due to limb immobilization, therapeutic bed rest or space flight. To date, the most commonly used mouse model of disuse osteoporosis is constructed using the classical tail suspension method, which causes tail injury, movement inconvenience and mental stress. This study aimed to propose a noninvasive and effective method for the establishment of a mouse model of disuse osteoporosis and compared this method with the tail suspension method. Methods 3D printing technology was applied to construct a movable unloading device. A movable noninvasive 3D-printed unloading device (3D-ULD) was used to unload the hindlimbs of the mice. The bone microstructure and bone volume of unloaded femurs were analysed through micro-CT and H&E staining, and von Kossa staining was performed for the detection of bone mineralization in the femurs. TRAP staining, IHC-CTSK and Q-PCR were performed for evaluation of the bone resorption ability, and double labelling, IHC-DMP1, ALP staining and Q-PCR assays were conducted to assess the osteogenic ability. The mechanical properties of disused bone were detected using the three-point bending test. The body, thymus and spleen weights of the mice were recorded, and the serum corticosterone level of the mice was assayed by enzyme-linked immunosorbent assay (ELISA). Results The micro-CT results showed significant trabecular bone loss, and 3D-ULD induced cortical bone loss in disused femurs as well as a decrease in the bone mineral density in the unloaded mice. TRAP staining and IHC-CTSK staining results indicated increases in the osteoclast number per bone perimeter (Oc.N/B.Pm) and the osteoclast surface per bone surface (Oc.S/BS) in the unloaded mice. The Ctsk, Trap and Mmp9 expression levels were significantly increased in the unloaded mice. Decreases in the ratio of the mineral surface to bone surface (MS/BS), mineral apposition rate (MAR) and bone formation rate per bone surface (BFR/BS) were found in unloaded mice in the 3D-ULD by double labelling. The IHC-DMP1 and ALP staining results showed decreases in the osteoblast number per bone perimeter (Ob.N/B.Pm) and osteoblast surface per bone surface (Ob. S/BS) in the mice unloaded in the 3D-ULD, and these mice also showed decreased Runx2, Alp and Dmp1 expression levels. Three-point bending test results showed that the mechanical properties were attenuated in the disused femurs of the unloaded mice. Less skin rupture and rare alterations in the thymus and spleen weights were found in the unloaded mice in the 3D-ULD. The ELISA results indicated the serum corticosterone level of the mice unloaded in the 3D-ULD was significantly lower than that of mice suspended by their tail. Conclusion This new disuse osteoporosis mouse model based on 3D-ULD could induce effective disuse bone loss with significantly alleviated side effects. Translational potential of this article This study proposes a new disuse osteoporosis mouse model based on 3D-ULD that can be used to better understand disuse bone loss in the future.
Collapse
|
32
|
Zhao J, Xiao X, Zhou G, Xu N, Liu J. Effectiveness of Yushen Hezhi therapy for postmenopausal osteoporosis: An overview of systematic reviews of randomized controlled trials. Front Endocrinol (Lausanne) 2022; 13:1015483. [PMID: 36225202 PMCID: PMC9548895 DOI: 10.3389/fendo.2022.1015483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To review systematic reviews (SRs) and meta-analyses (MAs) of Yushen Hezhi therapy (YSHZT) for postmenopausal osteoporosis (PMOP) to provide an evidence-based recommendation for researchers and decision makers. METHODS We searched the PubMed, Cochrane Library, Embase, China National Knowledge Infrastructure (CNKI), China Biology Medicine (CBM) and Wanfang databases for published SRs and MAs on YSHZT for the treatment of PMOP. The retrieval time was limited to July 2022. The Assessing the Methodological Quality of Systematic Reviews (AMSTAR)-2 tool and Grades of Recommendations, Assessment, Development, and Evaluation (GRADE) classification system were used to evaluate the methodological quality and the evidence quality of the SRs and MAs, respectively. RESULTS A total of 14 SRs and MAs involving 14720 cases of PMOP were included. The results of the methodological quality evaluation indicated that there were no studies with medium- or high-quality methodology included in the study and that there were 9 and 5 low- and very low-quality studies, respectively. The GRADE evaluation results show that while there was no high-level evidence based on 86 evaluation indicators, there was 1 study with moderate-level evidence (1%), 44 studies with low-level evidence (51%) and 41 with very low-level evidence (48%) based on other indicators. YSHZT can significantly improve the bone mineral density (BMD) of Ward's triangle, with a mean difference range of 0.03 to 0.12. Different conclusions were reported regarding the BMD of the lumbar spine, femoral trochanter, femoral neck, and hip, as well as bone turnover markers, adverse reactions and other outcome indicators in different SRs and thus still need further study. CONCLUSIONS The methodological quality and the evidence quality of the outcome indicators for YSHZT in the treatment of PMOP are poor, and the efficacy and safety of YSHZT in the treatment of PMOP still need to be further verified by more high-quality studies.
Collapse
Affiliation(s)
- Jinlong Zhao
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Xiao Xiao
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guanghui Zhou
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Nanjun Xu
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jun Liu
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- The Fifth Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Second Traditional Chinese Medicine Hospital (Guangdong Province Enginering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, China
- *Correspondence: Jun Liu,
| |
Collapse
|
33
|
Chen X, Hu Y, Geng Z, Su J. The "Three in One" Bone Repair Strategy for Osteoporotic Fractures. Front Endocrinol (Lausanne) 2022; 13:910602. [PMID: 35757437 PMCID: PMC9218483 DOI: 10.3389/fendo.2022.910602] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/09/2022] [Indexed: 12/17/2022] Open
Abstract
In aging society, osteoporotic fractures have become one major social problem threatening the health of the elderly population in China. Compared with conventional fractures, low bone mass, bone defect and retarded healing issues of osteoporotic fractures lead to great difficulties in treatment and rehabilitation. Addressing major concerns in clinical settings, we proposed the "three in one" bone repair strategy focusing on anti-osteoporosis therapies, appropriate bone grafting and fracture healing accelerating. We summarize misconceptions and repair strategies for osteoporotic fracture management, expecting improvement of prognosis and clinical outcomes for osteoporotic fractures, to further improve therapeutic effect and living quality of patients.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Traumatic Orthopedics, First Affiliated Hospital of Navy Medical University, Shanghai, China
| | - Yan Hu
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Jiacan Su
- Department of Traumatic Orthopedics, First Affiliated Hospital of Navy Medical University, Shanghai, China
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- *Correspondence: Jiacan Su,
| |
Collapse
|
34
|
Zhang Y, Huang X, Sun K, Li M, Wang X, Han T, Shen H, Qi B, Xie Y, Wei X. The Potential Role of Serum IGF-1 and Leptin as Biomarkers: Towards Screening for and Diagnosing Postmenopausal Osteoporosis. J Inflamm Res 2022; 15:533-543. [PMID: 35095282 PMCID: PMC8791302 DOI: 10.2147/jir.s344009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/07/2022] [Indexed: 01/05/2023] Open
Abstract
Purpose To investigate the differences of several serum markers among population with different bone mass and to explore the utility of new potential biomarker for the diagnosing and screening for postmenopausal osteoporosis (PMOP). Materials and Methods A total of 1055 postmenopausal women were screened and gathered data on BMD screening, biological samples, and questionnaire information. A liquid chip assay was used to measure serum IL-6, IGF-1, BMP-2, VEGF, leptin and FGF23. The predictive value of the indicator panels was assessed using the area under the receiver-operator characteristic curve (AUC). Statistical analyses were conducted by using SAS 9.4 and R software 4.1.1. Figures were created in GraphPad Prism 8.0. Results When compared against the normal group, in addition to the vitamin D, the PMOP group showed a significant increase in median values for other indicators (P < 0.05), especially in P1NP and β-CTX. Among the six cytokines representing different osteoporosis mechanisms, currently, we found that only IGF-1 and leptin showed significant differences between the groups. Also, the liquid chip assay results showed that IGF-1 and leptin, as newer cytokines in osteoporosis, not only have significant differences between groups, but also have a strong correlation with each other (P < 0.05). Then, we reported the accuracy of different indicator combinations by using AUC and, moreover, we demonstrated that IGF-1 with leptin did significantly provide incremental value to the AUC of conventional indexes, it markedly improved diagnostic efficacy, displaying an IDI of 9.45% (P = 0.000). Conclusion IFG-1 and leptin seem to be key biomarker associated with PMOP. The high prevalence of PMOP makes these cytokines might bear the potential of becoming a very useful screening test also for clinical follow-up of patients.
Collapse
Affiliation(s)
- Yili Zhang
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Xinyi Huang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Kai Sun
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Mengyuan Li
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Xu Wang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Tao Han
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Hao Shen
- Changxindian Community Health Service Center, Beijing, People’s Republic of China
| | - Baoyu Qi
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Yanming Xie
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
- Correspondence: Yanming Xie; Xu Wei, Tel +86 13911112416; +86 13488716557, Email ;
| | - Xu Wei
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
35
|
Wang H, Liu H, Wang X, Zhang C. The lack of mass transfer in bone lacunar-canalicular system may be the decisive factor of osteoporosis under microgravity. LIFE SCIENCES IN SPACE RESEARCH 2021; 31:80-84. [PMID: 34689953 DOI: 10.1016/j.lssr.2021.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
During spaceflight, astronauts experience 1-1.5% bone loss per month, especially in the lumbar spine, pelvis and lower limbs. The bone loss leads to osteoporosis and increased the risk of fracture. Current researches focus on anti-osteoporosis under microgravity mainly by inhibiting bone resorption of osteoclasts and / or increasing bone formation of osteoblasts. However, studies on the effects of mass transfer in the bone lacunar-canalicular system (LCS) on osteoporosis are lacking. Osteocytes reside in the lacunae and communicate with other osteocytes, osteoblasts and osteoclasts through the LCS in the bone matrix. Osteocytes are mainly responsible for mechanosensing and signal regulation in bone, and the LCS is the basic structure for signaling, mass transfer and mechanical stimulation. Microgravity causes deficient mass transfer in the LCS, especially in the outer layer of osteon. Osteocytes far away from the Haversian canals are inhibited or accelerated apoptosis to stimulate osteoclasts which result in bone loss. Deficient mass transfer in the LCS may be a determinant of human osteoporosis under microgravity, which will open up a new way to treat osteoporosis in space.
Collapse
Affiliation(s)
- Hao Wang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Haiying Liu
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xin Wang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Chunqiu Zhang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
36
|
Liang W, Wu X, Dong Y, Chen X, Zhou P, Xu F. Mechanical stimuli-mediated modulation of bone cell function-implications for bone remodeling and angiogenesis. Cell Tissue Res 2021; 386:445-454. [PMID: 34665321 DOI: 10.1007/s00441-021-03532-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 09/21/2021] [Indexed: 12/20/2022]
Abstract
Bone remodeling, expressed as bone formation and turnover, is a complex and dynamic process closely related to its form and function. Different events, such as development, aging, and function, play a critical role in bone remodeling and metabolism. The ability of the bone to adapt to new loads and forces has been well known and has proven useful in orthopedics and insightful for research in bone and cell biology. Mechanical stimulation is one of the most important drivers of bone metabolism. Interestingly, different types of forces will have specific consequences in bone remodeling, and their beneficial effects can be traced using different biomarkers. In this narrative review, we summarize the major mediators and events in bone remodeling, focusing on the effects of mechanical stimulation on bone metabolism, cell populations, and ultimately, bone health.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan 316000, Zhejiang Province, People's Republic of China.
| | - Xudong Wu
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan 316000, Zhejiang Province, People's Republic of China
| | - Yongqiang Dong
- Department of Orthopaedics, Xinchang People's Hospital, Shaoxing, 312500, Zhejiang Province, People's Republic of China
| | - Xuerong Chen
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, Zhejiang Province, People's Republic of China
| | - Ping Zhou
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, Zhejiang Province, People's Republic of China
| | - Fangming Xu
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan 316000, Zhejiang Province, People's Republic of China.
| |
Collapse
|
37
|
Kague E, Turci F, Newman E, Yang Y, Brown KR, Aglan MS, Otaify GA, Temtamy SA, Ruiz-Perez VL, Cross S, Royall CP, Witten PE, Hammond CL. 3D assessment of intervertebral disc degeneration in zebrafish identifies changes in bone density that prime disc disease. Bone Res 2021; 9:39. [PMID: 34465741 PMCID: PMC8408153 DOI: 10.1038/s41413-021-00156-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/22/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
Back pain is a common condition with a high social impact and represents a global health burden. Intervertebral disc disease (IVDD) is one of the major causes of back pain; no therapeutics are currently available to reverse this disease. The impact of bone mineral density (BMD) on IVDD has been controversial, with some studies suggesting osteoporosis as causative for IVDD and others suggesting it as protective for IVDD. Functional studies to evaluate the influence of genetic components of BMD in IVDD could highlight opportunities for drug development and repurposing. By taking a holistic 3D approach, we established an aging zebrafish model for spontaneous IVDD. Increased BMD in aging, detected by automated computational analysis, is caused by bone deformities at the endplates. However, aged zebrafish spines showed changes in bone morphology, microstructure, mineral heterogeneity, and increased fragility that resembled osteoporosis. Elements of the discs recapitulated IVDD symptoms found in humans: the intervertebral ligament (equivalent to the annulus fibrosus) showed disorganized collagen fibers and herniation, while the disc center (nucleus pulposus equivalent) showed dehydration and cellular abnormalities. We manipulated BMD in young zebrafish by mutating sp7 and cathepsin K, leading to low and high BMD, respectively. Remarkably, we detected IVDD in both groups, demonstrating that low BMD does not protect against IVDD, and we found a strong correlation between high BMD and IVDD. Deep learning was applied to high-resolution synchrotron µCT image data to analyze osteocyte 3D lacunar distribution and morphology, revealing a role of sp7 in controlling the osteocyte lacunar 3D profile. Our findings suggest potential avenues through which bone quality can be targeted to identify beneficial therapeutics for IVDD.
Collapse
Affiliation(s)
- Erika Kague
- grid.5337.20000 0004 1936 7603School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, UK
| | - Francesco Turci
- grid.5337.20000 0004 1936 7603School of Physics, HH Wills Physics Laboratory, University of Bristol, Bristol, UK
| | - Elis Newman
- grid.5337.20000 0004 1936 7603School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, UK
| | - Yushi Yang
- grid.5337.20000 0004 1936 7603School of Physics, HH Wills Physics Laboratory, University of Bristol, Bristol, UK ,grid.5337.20000 0004 1936 7603Centre for Nanoscience and Quantum Information, University of Bristol, Bristol, UK ,grid.5337.20000 0004 1936 7603Bristol Centre for Functional Nanomaterials, University of Bristol, Bristol, UK
| | - Kate Robson Brown
- grid.5337.20000 0004 1936 7603Department of Anthropology and Archaeology, University of Bristol, Bristol, UK ,grid.5337.20000 0004 1936 7603Department of Mechanical Engineering, University of Bristol, Bristol, UK
| | - Mona S. Aglan
- grid.419725.c0000 0001 2151 8157Clinical Genetics Department, Human Genetics and Genome Research Division, Center of Excellence for Human Genetics, National Research Centre, Cairo, Egypt
| | - Ghada A. Otaify
- grid.419725.c0000 0001 2151 8157Clinical Genetics Department, Human Genetics and Genome Research Division, Center of Excellence for Human Genetics, National Research Centre, Cairo, Egypt
| | - Samia A. Temtamy
- grid.419725.c0000 0001 2151 8157Clinical Genetics Department, Human Genetics and Genome Research Division, Center of Excellence for Human Genetics, National Research Centre, Cairo, Egypt
| | - Victor L. Ruiz-Perez
- grid.413448.e0000 0000 9314 1427Instituto de Investigaciones, Biomedicas de Madrid, and Ciber de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Stephen Cross
- grid.5337.20000 0004 1936 7603Wolfson Bioimaging Facility, Biomedical Sciences, University of Bristol, Bristol, UK
| | - C. Patrick Royall
- grid.5337.20000 0004 1936 7603School of Physics, HH Wills Physics Laboratory, University of Bristol, Bristol, UK ,grid.5337.20000 0004 1936 7603School of Chemistry, University of Bristol, Bristol, UK
| | - P. Eckhard Witten
- grid.5342.00000 0001 2069 7798Evolutionary Developmental Biology, Department of Biology, Ghent University, Ghent, Belgium
| | - Chrissy L. Hammond
- grid.5337.20000 0004 1936 7603School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
38
|
Zhang Z, Zeng J, Li Y, Liao Q, Huang D, Zou Y, Liu G. Tail suspension delays ectopic ossification in proteoglycan-induced ankylosing spondylitis in mice via miR-103/DKK1. Exp Ther Med 2021; 22:965. [PMID: 34335907 PMCID: PMC8290398 DOI: 10.3892/etm.2021.10397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 06/15/2021] [Indexed: 11/14/2022] Open
Abstract
Ankylosing spondylitis (AS), characterized by inflammatory lesions and osteophyte formation, is a common immune rheumatic disease affecting the sacroiliac and axial joints. A high-intensity mechanical load is known to accelerate the heterotopic ossification associated with enthesitis in AS. Thus, the present study explored whether decreased mechanical load could delay the heterotopic ossification in AS. First, 24-week-old female BALB/c mice were induced with proteoglycan (PG) to establish an AS model. The AS-induced pathological and bone morphological changes of the sacroiliac joint were confirmed by hematoxylin and eosin staining and microCT analysis, respectively. Subsequently, the mice were treated with interventions of different mechanical loads. Using reverse transcription-quantitative PCR, it was revealed that expression levels of the osteogenesis-related genes bone morphogenetic protein-2, runt-related transcription factor 2 and osteocalcin were significantly reduced in sacroiliac bone tissue after intervention with a reduced mechanical load. The level of mechanosensory microRNA (miR)-103 increased in response to reduced mechanical loads. Consistently, in groups with reduced mechanical load, proteins with mechanical functions, including ρ-associated coiled-coil-containing protein kinase 1 (ROCK1), phosphorylated (p)-Erk1/2 and β-catenin, were reduced compared with the PG control. A dual-luciferase assay verified that miR-103 binds to the 3'-untranslated region end of Rock1 mRNA, thus negatively regulating the activity of Rock1 and affecting pathological ossification during AS. However, immunohistochemical staining indicated that the expression of dickkopf Wnt signaling pathway inhibitor 1, an inhibitor of the Wnt/β-catenin pathway, was increased in sacroiliac tissues. The results indicated that tail suspension decreased the mechanical load, thus reducing the bone formation in AS mice. Furthermore, tail suspension could inhibit the activation of mechanical kinase ROCK1 and p-Erk1/2 in the MAPK signaling pathway by upregulating miR-103, thereby inhibiting the classical osteogenesis-related Wnt/β-catenin pathway in AS. In summary, the present study uncovered the ameliorative effect of suspension on AS and its therapeutic potential for AS.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510000, P.R. China.,Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,Department of Rehabilitation, Hankou Hospital, Wuhan, Hubei 430015, P.R. China
| | - Jing Zeng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Yang Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Qing Liao
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Dongdong Huang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Yucong Zou
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Gang Liu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510000, P.R. China.,Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
39
|
Transcriptional changes and preservation of bone mass in hibernating black bears. Sci Rep 2021; 11:8281. [PMID: 33859306 PMCID: PMC8050052 DOI: 10.1038/s41598-021-87785-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/05/2021] [Indexed: 11/19/2022] Open
Abstract
Physical inactivity leads to losses of bone mass and strength in most mammalian species. In contrast, hibernating bears show no bone loss over the prolonged periods (4–6 months) of immobility during winter, which suggests that they have adaptive mechanisms to preserve bone mass. To identify transcriptional changes that underlie molecular mechanisms preventing disuse osteoporosis, we conducted a large-scale gene expression screening in the trabecular bone and bone marrow, comparing hibernating and summer active bears through sequencing of the transcriptome. Gene set enrichment analysis showed a coordinated down-regulation of genes involved in bone resorption, osteoclast differentiation and signaling, and apoptosis during hibernation. These findings are consistent with previous histological findings and likely contribute to the preservation of bone during the immobility of hibernation. In contrast, no significant enrichment indicating directional changes in gene expression was detected in the gene sets of bone formation and osteoblast signaling in hibernating bears. Additionally, we revealed significant and coordinated transcriptional induction of gene sets involved in aerobic energy production including fatty acid beta oxidation, tricarboxylic acid cycle, oxidative phosphorylation, and mitochondrial metabolism. Mitochondrial oxidation was likely up-regulated by transcriptionally induced AMPK/PGC1α pathway, an upstream stimulator of mitochondrial function.
Collapse
|
40
|
Donahue SW, Wojda SJ, McGee-Lawrence ME, Auger J, Black HL. Osteoporosis prevention in an extraordinary hibernating bear. Bone 2021; 145:115845. [PMID: 33450432 DOI: 10.1016/j.bone.2021.115845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 11/20/2022]
Abstract
Disuse osteoporosis results from physical inactivity. Reduced mechanical loading of bone stimulates bone resorption leading to bone loss, decreased mechanical properties, and increased fracture risk. Compensatory mechanisms evolved in hibernators to preserve skeletal muscle and bone during the prolonged physical inactivity that occurs during annual hibernation. This paper reports the preservation of bone properties in an exceptionally old black bear that was physically inactive for about 6 months annually for 31 years. The biological mechanisms that preserve bone during prolonged disuse during hibernation are also reviewed.
Collapse
Affiliation(s)
- Seth W Donahue
- Department of Biomedical Engineering, University of Massachusetts, Amherst, United States of America.
| | - Samantha J Wojda
- Department of Biomedical Engineering, University of Massachusetts, Amherst, United States of America
| | - Meghan E McGee-Lawrence
- Department of Cellular Biology and Anatomy, Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, United States of America
| | - Janene Auger
- Monte L. Bean Life Science Museum, Brigham Young University, United States of America
| | - Hal L Black
- Department of Plant and Wildlife Sciences, Brigham Young University, United States of America
| |
Collapse
|
41
|
Bohns FR, Shih Y, Chuang Y, Akhtar R, Chen P. Influence of Prednisolone and Alendronate on the de novo Mineralization of Zebrafish Caudal Fin. JBMR Plus 2021; 5:e10435. [PMID: 33615104 PMCID: PMC7872341 DOI: 10.1002/jbm4.10435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/22/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
Dysregulated balance between bone resorption and formation mediates the onset and progression of osteoporosis. The administration of prednisolone is known to induce osteoporosis, whereas alendronate is commonly used to reverse the process. However, the assessment of the effects of such medicines on the nanostructure of bone remodeling and mechanical properties remains a major technical challenge. The aim of this study was to apply various analytical approaches to evaluate the compositional, morphological, and mechanical properties of regenerative zebrafish caudal fin bony rays affected by prednisolone and alendronate. Adult wild-type AB strain zebrafish were first exposed to 125μM of prednisolone for 14 days to develop glucocorticoid-induced osteoporosis. Fish fins were then amputated and let to regenerate for 21 days in tank water containing 30μM of alendronate or no alendronate. The lepidotrichia in the proximal and distal regions were evaluated separately using confocal microscope, scanning electron microscope, electron-dispersive spectroscopy, Raman spectroscopy, atomic force microscopy, and a triboindenter. As expected, prednisolone led to significant osteoporotic phenotypes. A decrease of Ca/P ratio was observed in the osteoporotic subjects (1.46 ± 0.04) as compared to the controls (1.74 ± 0.10). Subsequent treatment of alendronate overmineralized the bony rays during regeneration. Enhanced phosphate deposition was detected in the proximal part with alendronate treatment. Moreover, prednisolone attenuated the reduced elastic modulus and hardness levels (5.60 ± 5.04 GPa and 0.12 ± 0.17 GPa, respectively), whereas alendronate recovered them to the pre-amputation condition (8.68 ± 8.74 GPa and 0.34 ± 0.47 GPa, respectively). As an emerging model of osteoporosis, regrowth of zebrafish caudal fin was shown to be a reliable assay system to investigate the various effects of medicines in the de novo mineralization process. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Fabio Rocha Bohns
- Department of Materials Science and EngineeringNational Tsing Hua UniversityHsinchuTaiwan
- Department of Mechanical, Materials and Aerospace EngineeringUniversity of LiverpoolLiverpoolUK
- International Intercollegiate Ph.D. ProgramNational Tsing Hua University 101HsinchuTaiwan
| | - Yann‐Rong Shih
- Department of Materials Science and EngineeringNational Tsing Hua UniversityHsinchuTaiwan
| | - Yung‐Jen Chuang
- Department of Medical Science and Institute of Bioinformatics and Structural BiologyNational Tsing Hua UniversityHsinchuTaiwan
| | - Riaz Akhtar
- Department of Mechanical, Materials and Aerospace EngineeringUniversity of LiverpoolLiverpoolUK
| | - Po‐Yu Chen
- Department of Materials Science and EngineeringNational Tsing Hua UniversityHsinchuTaiwan
| |
Collapse
|
42
|
Jung W, Kim DO, Kim J, Kim SH. Novel and reproducible technique coping with intraoperative anchor pullout during arthroscopic rotator cuff repair. Knee Surg Sports Traumatol Arthrosc 2021; 29:223-229. [PMID: 32232537 DOI: 10.1007/s00167-020-05935-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 02/28/2020] [Indexed: 11/29/2022]
Abstract
PURPOSE To evaluate the incidence of intraoperative anchor pullout during arthroscopic rotator cuff repair, to compare the outcomes of different methods of managing anchor pullout, and to introduce a new technique for anchor pullout. METHODS 1076 patients who underwent arthroscopic rotator cuff repair using a single-row repair technique were included. In 483 patients, rotator cuff repair was performed using a screw-in type anchor, and in 593 patients, soft anchors were used. When intraoperative anchor pullout occurred, it was managed by buddy screwing, anchor insertion in a different location, cement augmentation, or by bar anchoring using a threaded Steinmann pin. Plain radiography and sonography were used to check anchor locations and healing. RESULTS Fifty-two patients experienced anchor pullout intra- or postoperatively (48 and four patients, respectively). Anchor pullouts were more frequently observed for larger tears, women, older patients, and in patients with preoperative stiffness (limitations of both active and passive movements of the affected shoulder joint). For screw-in type anchors, pullout during surgery occurred in 16 patients (3.3%, 16/483), and all were managed using the buddy screwing technique. For soft anchor cases, pullout occurred in 32 patients (5.4%, 32/593) and was managed by anchor insertion in a different location (17 patients), cement augmentation (two patients), or bar anchoring using a threaded Steinmann pin (13 patients). Three patients managed by buddy screwing and two patients managed by anchor insertion in a different location had anchor failure after repair. Tendon healing at 6 months was observed in 12/16 patients treated by buddy screwing, 11/17 treated by anchor insertion in a different location, 2/2 treated by cement augmentation, and 12/13 treated by bar anchoring with a threaded Steinmann pin. CONCLUSION Intraoperative anchor pullout during arthroscopic rotator cuff repair is an uncommon but cumbersome complication. There are some techniques already introduced to deal with this complication. In comparison, not one technique is overwhelmingly superior to others; however, our new technique which is bar anchoring with a threaded Steinmann pin could be another solution, since it could utilize primary anchor sites and results appear to be acceptable. Level of evidence III.
Collapse
Affiliation(s)
- Whanik Jung
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, Korea
| | - Dong Ook Kim
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, Korea
| | - Jangwoo Kim
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, Korea
| | - Sae Hoon Kim
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, Korea.
| |
Collapse
|
43
|
Ries C, Boese CK, Stürznickel J, Koehne T, Hubert J, Pastor MF, Hahn M, Meier SL, Beil FT, Püschel K, Amling M, Rolvien T. Age-related changes of micro-morphological subchondral bone properties in the healthy femoral head. Osteoarthritis Cartilage 2020; 28:1437-1447. [PMID: 32795512 DOI: 10.1016/j.joca.2020.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Alterations in the subchondral bone (SCB) are likely to play a decisive role in the development of osteoarthritis (OA). Since aging represents a major risk factor for OA, the aim of the current study was to assess the microstructural changes of the subchondral bone in the femoral head during aging. DESIGN Femoral heads and matched iliac crest biopsies of 80 individuals (age 21-99 years) were collected post-mortem. The bone microstructure of the subchondral trabecular bone as well as the cartilage thickness (Cg.Th) and subchondral bone plate thickness (SCB.Th) were quantified using histomorphometry. The different subregions of the SCB were also imaged by quantitative backscattered electron imaging (qBEI) in 31 aged cases to assess the bone mineral density distribution (BMDD). RESULTS The detected linear decline of bone volume per tissue volume (BV/TV) in the femoral head with aging (Slope, 95% CI: -0.208 to -0.109 %/yr.) was primarily due to a decrease in trabecular thickness (Tb.Th, Slope, 95% CI: -0.774 to -0.343 μm/yr). While SCB.Th declined with aging (Slope, 95% CI: -1.941 to -0.034 μm/yr), no changes in Cg.Th were detected (Slope, 95% CI: -0.001 to 0.005 mm/yr). The matrix mineralization of the subchondral bone was lower compared to the trabecular bone and also decreased with aging. CONCLUSIONS Regular changes of the SCB during aging primarily involve a reduction of Tb.Th, SCB.Th and matrix mineralization. Our findings facilitate future interpretations of early and late OA specimens to decipher the role of the SCB in OA pathogenesis.
Collapse
Affiliation(s)
- C Ries
- Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany.
| | - C K Boese
- Department of Orthopaedic and Trauma Surgery, University Hospital of Cologne, Cologne, Germany
| | - J Stürznickel
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - T Koehne
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany; Department of Orthodontics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - J Hubert
- Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - M-F Pastor
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany; Department of Orthopedic Surgery, Medical School Hannover, DIAKOVERE Annastift, Hannover, Germany
| | - M Hahn
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - S L Meier
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany; Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - F T Beil
- Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - K Püschel
- Department of Forensic Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - M Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - T Rolvien
- Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany.
| |
Collapse
|
44
|
Zimmermann EA, Fiedler IAK, Busse B. Breaking new ground in mineralized tissue: Assessing tissue quality in clinical and laboratory studies. J Mech Behav Biomed Mater 2020; 113:104138. [PMID: 33157423 DOI: 10.1016/j.jmbbm.2020.104138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/15/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023]
Abstract
Mineralized tissues, such as bone and teeth, have extraordinary mechanical properties of both strength and toughness. This mechanical behavior originates from deformation and fracture resistance mechanisms in their multi-scale structure. The term quality describes the matrix composition, multi-scale structure, remodeling dynamics, water content, and micro-damage accumulation in the tissue. Aging and disease result in changes in the tissue quality that may reduce strength and toughness and lead to elevated fracture risk. Therefore, the capability to measure the quality of mineralized tissues provides critical information on disease progression and mechanical integrity. Here, we provide an overview of clinical and laboratory-based techniques to assess the quality of mineralized tissues in health and disease. Current techniques used in clinical settings include radiography-based (radiographs, dual energy x-ray absorptiometry, EOS) and x-ray tomography-based methods (high resolution peripheral quantitative computed tomography, cone beam computed tomography). In the laboratory, tissue quality can be investigated in ex vivo samples with x-ray imaging (micro and nano-computed tomography, x-ray microscopy), electron microscopy (scanning/transmission electron imaging (SEM/STEM), backscattered scanning electron microscopy, Focused Ion Beam-SEM), light microscopy, spectroscopy (Raman spectroscopy and Fourier transform infrared spectroscopy) and assessment of mechanical behavior (mechanical testing, fracture mechanics and reference point indentation). It is important for clinicians and basic science researchers to be aware of the techniques available in different types of research. While x-ray imaging techniques translated to the clinic have provided exceptional advancements in patient care, the future challenge will be to incorporate high-resolution laboratory-based bone quality measurements into clinical settings to broaden the depth of information available to clinicians during diagnostics, treatment and management of mineralized tissue pathologies.
Collapse
Affiliation(s)
| | - Imke A K Fiedler
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
45
|
A novel, multi-level approach to assess allograft incorporation in revision total hip arthroplasty. Sci Rep 2020; 10:15226. [PMID: 32939007 PMCID: PMC7494851 DOI: 10.1038/s41598-020-72257-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/20/2020] [Indexed: 11/09/2022] Open
Abstract
The successful use of allografts in reconstructive orthopedic surgery, including revision total hip arthroplasty (THA), has been outlined repeatedly. Nonetheless, as previous studies were primarily based on clinical follow-ups, we aimed to create an algorithm that accurately determines the extent of allograft incorporation in the acetabulum and femur using a suite of high-resolution imaging techniques. This study is based on a large patient database including > 4,500 patient data with previous revision THA and simultaneous use of allografts. While the database was continuously matched with the deceased individuals at the local forensic medicine department, complete hips were retrieved in case of a positive match. A positive match was achieved for n = 46 hips at a mean follow-up of 11.8 ± 5.1 years. Comprehensive imaging included contact radiography, high-resolution computed tomography (HR-pQCT), undecalcified histology of ground sections and quantitative backscattered electron imaging (qBEI). We here define a histomorphometric toolkit of parameters to precisely characterize the incorporation of structural (bulk) and morselized (chip) allografts in the acetabulum (n = 38) and femur (n = 8), including the defect area and interface length, microstructural and cellular bone turnover parameters as well as overlap and fibrosis thickness. This collection of samples, through its unique study design and precise definition of incorporation parameters, will provide the scientific community with a valuable source for further in-depth investigation of allograft incorporation and, beyond that, the regenerative potential of this osteoconductive scaffold.
Collapse
|
46
|
Jandl NM, von Kroge S, Stürznickel J, Baranowsky A, Stockhausen KE, Mushumba H, Beil FT, Püschel K, Amling M, Rolvien T. Large osteocyte lacunae in iliac crest infantile bone are not associated with impaired mineral distribution or signs of osteocytic osteolysis. Bone 2020; 135:115324. [PMID: 32198110 DOI: 10.1016/j.bone.2020.115324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/29/2020] [Accepted: 03/16/2020] [Indexed: 12/13/2022]
Abstract
The enlargement of osteocyte lacunae via osteocytic osteolysis was previously detected in situations of increased calcium demand (e.g., lactation, vitamin D deficiency). However, it is unclear whether similar processes occur also in the growing infantile skeleton and how this is linked to the mineral distribution within the bone matrix. Human iliac crest biopsies of 30 subjects (0-6 months, n = 14; 2-8 years, n = 6 and 18-25 years, n = 10) were acquired. Bone microarchitecture was assessed by micro-CT, while cellular bone histomorphometry was performed on undecalcified histological sections. Quantitative backscattered electron imaging (qBEI) was conducted to determine the bone mineral density distribution (BMDD) as well as osteocyte lacunar size and density. We additionally evaluated cathepsin K positive osteocytes using immunohistochemistry. Infantile bone was characterized by various signs of ongoing bone development such as higher bone (re)modeling, lower cortical and trabecular thickness compared to young adults. Importantly, a significantly higher osteocyte lacunar density and increased lacunar area were detected. Large osteocyte lacunae were associated with a more heterogeneous bone mineral density distribution of the trabecular bone matrix due to the presence of hypermineralized cartilage remnants, whereas the mean mineralization (i.e., CaMean) was not different in infantile bone. Absence of cathepsin K expression in osteocyte lacunae indicated nonexistent osteocytic osteolysis. Taken together, we demonstrated that the overall mineralization distribution in infantile bone is not altered compared to young adults besides high trabecular mineralization heterogeneity. Our study also provides important reference values for bone microstructure, BMDD and osteocyte characteristics in infants, children and young adults. Infantile bone displays large osteocyte lacunae indicating a developmental phenomenon rather than osteocytic osteolysis. Larger osteocytes may have superior mechanosensory abilities to enable bone adaption during growth.
Collapse
Affiliation(s)
- Nico Maximilian Jandl
- Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529 Hamburg, Germany
| | - Simon von Kroge
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529 Hamburg, Germany
| | - Julian Stürznickel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529 Hamburg, Germany
| | - Anke Baranowsky
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529 Hamburg, Germany
| | - Kilian Elia Stockhausen
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529 Hamburg, Germany
| | - Herbert Mushumba
- Department of Legal Medicine, University Medical Center Hamburg-Eppendorf, Butenfeld 34, 22529 Hamburg, Germany
| | - Frank Timo Beil
- Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Klaus Püschel
- Department of Legal Medicine, University Medical Center Hamburg-Eppendorf, Butenfeld 34, 22529 Hamburg, Germany
| | - Michael Amling
- Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Tim Rolvien
- Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529 Hamburg, Germany.
| |
Collapse
|
47
|
Milovanovic P, Busse B. Phenomenon of osteocyte lacunar mineralization: indicator of former osteocyte death and a novel marker of impaired bone quality? Endocr Connect 2020; 9:R70-R80. [PMID: 32168472 PMCID: PMC7159263 DOI: 10.1530/ec-19-0531] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/13/2020] [Indexed: 11/09/2022]
Abstract
An increasing number of patients worldwide suffer from bone fractures that occur after low intensity trauma. Such fragility fractures are usually associated with advanced age and osteoporosis but also with long-term immobilization, corticosteroid therapy, diabetes mellitus, and other endocrine disorders. It is important to understand the skeletal origins of increased bone fragility in these conditions for preventive and therapeutic strategies to combat one of the most common health problems of the aged population. This review summarizes current knowledge pertaining to the phenomenon of micropetrosis (osteocyte lacunar mineralization). As an indicator of former osteocyte death, micropetrosis is more common in aged bone and osteoporotic bone. Considering that the number of mineralized osteocyte lacunae per bone area can distinguish healthy, untreated osteoporotic and bisphosphonate-treated osteoporotic patients, it could be regarded as a novel structural marker of impaired bone quality. Further research is needed to clarify the mechanism of lacunar mineralization and to explore whether it could be an additional target for preventing or treating bone fragility related to aging and various endocrine diseases.
Collapse
Affiliation(s)
- Petar Milovanovic
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Laboratory for Anthropology and Skeletal Biology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Correspondence should be addressed to B Busse:
| |
Collapse
|
48
|
Jähn-Rickert K, Wölfel EM, Jobke B, Riedel C, Hellmich M, Werner M, McDonald MM, Busse B. Elevated Bone Hardness Under Denosumab Treatment, With Persisting Lower Osteocyte Viability During Discontinuation. Front Endocrinol (Lausanne) 2020; 11:250. [PMID: 32499755 PMCID: PMC7243474 DOI: 10.3389/fendo.2020.00250] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/06/2020] [Indexed: 12/14/2022] Open
Abstract
Denosumab is a potent osteoclast inhibitor targeted to prevent osteoporotic bone loss and thereby reduce fractures in the aging population. Recently, an elevated risk of rebound fractures following denosumab discontinuation was identified, unless patients were transitioned to an alternative antiresorptive medication. How denosumab affects the interaction of mechanosensitive osteocytes and bone quality remains unknown. We hypothesized that denosumab influences osteocyte function contributing to bone reorganization and increased fractures during discontinuation. Bone quality and osteocytes were assessed in archived iliac crest bone biopsies obtained from patients with high fracture occurrence from 2011 to 2016. Biopsies were obtained due to high fracture occurrence prior and during osteoporosis therapy from (i) patients with at least two semiannual subcutaneous injections of 60 mg denosumab, (ii) patients with rebound fractures during discontinuation, and (iii) patients of a treatment-naive group. In total, biopsies from 43 individuals were analyzed (mean age, 65.5 ± 12.1 years). Our results showed that during denosumab treatment, iliac cortical bone had a higher bone tissue hardness compared to treatment-naive bone (p = 0.0077) and a higher percentage of mineralized osteocyte lacunae (p = 0.0095). The density of empty osteocyte lacunae was higher with denosumab compared to treatment-naive (p = 0.014) and remained high in trabecular bone during discontinuation (p = 0.0071). We conclude that during denosumab treatment, increased bone hardness may contribute to improved fracture resistance. In biopsies from patients with high fracture occurrence, denosumab treatment reduced osteocyte viability, an effect that persisted during treatment discontinuation. High-resolution imaging of osteocyte viability indicates a role for osteocytes as a potential future mechanistic target to understand rebound bone loss and increased fractures with denosumab discontinuation.
Collapse
Affiliation(s)
- Katharina Jähn-Rickert
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eva M. Wölfel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Jobke
- Telemedicine Clinic/Unilabs, Barcelona, Spain
| | - Christoph Riedel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Michelle M. McDonald
- Garvan Institute of Medical Research, Bone Microenvironment Group, Darlinghurst, NSW, Australia
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- *Correspondence: Björn Busse
| |
Collapse
|
49
|
Creecy A, Damrath JG, Wallace JM. Control of Bone Matrix Properties by Osteocytes. Front Endocrinol (Lausanne) 2020; 11:578477. [PMID: 33537002 PMCID: PMC7848033 DOI: 10.3389/fendo.2020.578477] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
Osteocytes make up 90-95% of the cellular content of bone and form a rich dendritic network with a vastly greater surface area than either osteoblasts or osteoclasts. Osteocytes are well positioned to play a role in bone homeostasis by interacting directly with the matrix; however, the ability for these cells to modify bone matrix remains incompletely understood. With techniques for examining the nano- and microstructure of bone matrix components including hydroxyapatite and type I collagen becoming more widespread, there is great potential to uncover novel roles for the osteocyte in maintaining bone quality. In this review, we begin with an overview of osteocyte biology and the lacunar-canalicular system. Next, we describe recent findings from in vitro models of osteocytes, focusing on the transitions in cellular phenotype as they mature. Finally, we describe historical and current research on matrix alteration by osteocytes in vivo, focusing on the exciting potential for osteocytes to directly form, degrade, and modify the mineral and collagen in their surrounding matrix.
Collapse
Affiliation(s)
- Amy Creecy
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, United States
| | - John G. Damrath
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Joseph M. Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, United States
- *Correspondence: Joseph M. Wallace,
| |
Collapse
|