1
|
Shariati K, Bedar M, Huang KX, Moghadam S, Mirzaie S, LaGuardia JS, Chen W, Kang Y, Ren X, Lee JC. Biomaterial Cues for Regulation of Osteoclast Differentiation and Function in Bone Regeneration. ADVANCED THERAPEUTICS 2025; 8:2400296. [PMID: 39867107 PMCID: PMC11756815 DOI: 10.1002/adtp.202400296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Indexed: 01/28/2025]
Abstract
Tissue regeneration involves dynamic dialogue between and among different cells and their surrounding matrices. Bone regeneration is specifically governed by reciprocity between osteoblasts and osteoclasts within the bone microenvironment. Osteoclast-directed resorption and osteoblast-directed formation of bone are essential to bone remodeling, and the crosstalk between these cells is vital to curating a sequence of events that culminate in the creation of bone tissue. Among bone biomaterial strategies, many have investigated the use of different material cues to direct the development and activity of osteoblasts. However, less attention has been given to exploring features that similarly target osteoclast formation and activity, with even fewer strategies demonstrating or integrating biomaterial-directed modulation of osteoblast-osteoclast coupling. This review aims to describe various biomaterial cues demonstrated to influence osteoclastogenesis and osteoclast function, emphasizing those that enhance a material construct's ability to achieve bone healing and regeneration. Additionally discussed are approaches that influence the communication between osteoclasts and osteoblasts, particularly in a manner that takes advantage of their coupling. Deepening our understanding of how biomaterial cues may dictate osteoclast differentiation, function, and influence on the microenvironment may enable the realization of bone-replacement interventions with enhanced integrative and regenerative capacities.
Collapse
Affiliation(s)
- Kaavian Shariati
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Meiwand Bedar
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
| | - Kelly X. Huang
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Shahrzad Moghadam
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Sarah Mirzaie
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Jonnby S. LaGuardia
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Wei Chen
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
| | - Youngnam Kang
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
| | - Xiaoyan Ren
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
| | - Justine C. Lee
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
- Department of Orthopaedic Surgery, Los Angeles, CA, 90095, USA
- UCLA Molecular Biology Institute, Los Angeles, CA, 90095, USA
| |
Collapse
|
2
|
Tippen SP, Metzger CE, Sacks SA, Allen MR, Mitchell CF, McNulty MA. Clinically relevant doses of tiludronate do not affect bone remodelling in pasture-exercised horses. Equine Vet J 2024. [PMID: 38924597 DOI: 10.1111/evj.14119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/16/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Bisphosphonates are widely used in equine athletes to reduce lameness associated with skeletal disorders. Widespread off-label use has led to concern regarding potential negative effects on bone healing, but little evidence exists to support or refute this. OBJECTIVES To investigate the influence of clinically relevant doses of tiludronate on bone remodelling and bone healing. STUDY DESIGN Randomised, controlled in vivo experiments. METHODS Each horse had a single tuber coxae biopsied (Day 0), then were divided into a treatment (IV tiludronate) or control (IV saline) group. Treatments were administered 30 and 90 days following initial biopsy. Biopsy of the tuber coxae was repeated on Day 60 to evaluate bone healing following a single treatment. Oxytetracycline was administered on Days 137 and 147 to label bone formation. The contralateral tuber coxae was biopsied on Day 150 to evaluate effects of repeated treatment. Bone biopsies were evaluated with micro-computed tomography and/or dynamic histomorphometry using standard techniques. RESULTS Nineteen horses completed the study, with no complications following the biopsies and treatments. No significant differences in the trabecular bone parameters or bone formation rate were observed between treatment groups. MAIN LIMITATIONS The use of a first-generation bisphosphonate may mean some effects of these drugs are underrepresented using this model. The results pertain to the tuber coxae and may not reflect injury or the healing response that occurs in long bones in training or racing. CONCLUSIONS In this model, tiludronate did not affect normal bone remodelling in the horse, despite repeat dosages.
Collapse
Affiliation(s)
- Samantha P Tippen
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Education, Innovation, & Technology, Baylor College of Medicine, Houston, Texas, USA
| | - Corinne E Metzger
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Spencer A Sacks
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Matthew R Allen
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Colin F Mitchell
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Margaret A McNulty
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
3
|
Kim G, Nakayama L, Blum JA, Akiyama T, Boeynaems S, Chakraborty M, Couthouis J, Tassoni-Tsuchida E, Rodriguez CM, Bassik MC, Gitler AD. Genome-wide CRISPR screen reveals v-ATPase as a drug target to lower levels of ALS protein ataxin-2. Cell Rep 2022; 41:111508. [PMID: 36288714 PMCID: PMC9664452 DOI: 10.1016/j.celrep.2022.111508] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/20/2022] [Accepted: 09/22/2022] [Indexed: 01/27/2023] Open
Abstract
Mutations in the ataxin-2 gene (ATXN2) cause the neurodegenerative disorders amyotrophic lateral sclerosis (ALS) and spinocerebellar ataxia type 2 (SCA2). A therapeutic strategy using antisense oligonucleotides targeting ATXN2 has entered clinical trial in humans. Additional ways to decrease ataxin-2 levels could lead to cheaper or less invasive therapies and elucidate how ataxin-2 is normally regulated. Here, we perform a genome-wide fluorescence-activated cell sorting (FACS)-based CRISPR-Cas9 screen in human cells and identify genes encoding components of the lysosomal vacuolar ATPase (v-ATPase) as modifiers of endogenous ataxin-2 protein levels. Multiple FDA-approved small molecule v-ATPase inhibitors lower ataxin-2 protein levels in mouse and human neurons, and oral administration of at least one of these drugs-etidronate-is sufficient to decrease ataxin-2 in the brains of mice. Together, we propose v-ATPase as a drug target for ALS and SCA2 and demonstrate the value of FACS-based screens in identifying genetic-and potentially druggable-modifiers of human disease proteins.
Collapse
Affiliation(s)
- Garam Kim
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Neurosciences Interdepartmental Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lisa Nakayama
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jacob A Blum
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Neurosciences Interdepartmental Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tetsuya Akiyama
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Steven Boeynaems
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Meenakshi Chakraborty
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Julien Couthouis
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Caitlin M Rodriguez
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael C Bassik
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
4
|
Pan J, Liu JY. Mechanism, prevention, and treatment for medication-related osteonecrosis of the jaws. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2021; 39:245-254. [PMID: 34041871 DOI: 10.7518/hxkq.2021.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The morbidity rate of medication-related osteonecrosis of the jaws (MRONJ) increased rapidly in recent years. Thusfar, the mechanism of MRONJ has no consensus. The possible mechanisms may include bone remodeling inhibition theory, angiogenesis inhibition theory, oral microorganism infection theory, immunosuppression theory, cytotoxicity-targeted oral epithelial cells, microcrack formation of maxillary or mandibular bone, and single nucleotide polymorphism. However, the efficacy of prevention and treatment based on a single mechanism is not ideal. Routine oral examination before MRONJ-related drug treatment, treatment of related dental diseases, and regular oral follow-up during drug treatment are of great significance for the prevention of MRONJ. During the treatment of MRONJ, the stage of MRONJ must be determined accurately, treatment must be standardized in accordance with the guidelines, and personalized adjustments must be made considering the specific conditions of patients. This review aimed to combine the latest research and guidelines for MRONJ and the experiences on the treatment of MRONJ in the Maxillofacial Surgery Department of West China Hospital of Stomatology, Sichuan University, and discuss the strategies to improve the clinical process.
Collapse
Affiliation(s)
- Jian Pan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ji-Yuan Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Tzschentke TM. Pharmacology of bisphosphonates in pain. Br J Pharmacol 2019; 178:1973-1994. [PMID: 31347149 DOI: 10.1111/bph.14799] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/11/2019] [Accepted: 07/19/2019] [Indexed: 01/15/2023] Open
Abstract
The treatment of pain, in particular, chronic pain, remains a clinical challenge. This is particularly true for pain associated with severe or rare conditions, such as bone cancer pain, vulvodynia, or complex regional pain syndrome. Over the recent years, there is an increasing interest in the potential of bisphosphonates in the treatment of pain, although there are few papers describing antinociceptive and anti-hypersensitizing effects of bisphosphonates in various animal models of pain. There is also increasing evidence for clinical efficacy of bisphosphonates in chronic pain states, although the number of well-controlled studies is still limited. However, the mechanisms underlying the analgesic effects of bisphosphonates are still largely elusive. This review provides an overview of preclinical and clinical studies of bisphosphonates in pain and discusses various pharmacological mechanisms that have been postulated to explain their analgesic effects. LINKED ARTICLES: This article is part of a themed issue on The molecular pharmacology of bone and cancer-related bone diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.9/issuetoc.
Collapse
|
6
|
Argüelles D, Saitua A, de Medina AS, Muñoz JA, Muñoz A. Clinical efficacy of clodronic acid in horses diagnosed with navicular syndrome: A field study using objective and subjective lameness evaluation. Res Vet Sci 2019; 125:298-304. [PMID: 31351199 DOI: 10.1016/j.rvsc.2019.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 11/18/2022]
Abstract
Navicular syndrome, a common cause of equine forelimb lameness, is associated with pathological changes in the navicular bone. Consequently, administration of bisphosphonates (BPs) has been advocated in order to modify the rate of bone turnover. The present study aimed to assess the clinical efficacy of intramuscularly administered clodronic acid for the treatment of 11 horses with clinical and radiographic findings compatible with navicular syndrome. Magnetic resonance imaging was performed in 5 of the 11 horses. The animals were treated with an intramuscular dose of clodronic acid of 765 mg/horse, administered over three separate injection sites. Before and at 7, 30 and 90 days after treatment, horses were subjected to lameness and accelerometric evaluations. A clinical improvement was observed in 6 of the 11 horses. These 6 horses showed a mean reduction of two degrees in lameness score. Accelerometry in these horses revealed increased velocity, stride length, stride regularity and dorsoventral displacement of the gravity of centre together with a reduction in stride frequency, suggesting a gait improvement. This study demonstrates that intramuscular clodronic acid can be useful for lameness reduction in some horses with navicular syndrome.
Collapse
Affiliation(s)
- David Argüelles
- Department of Animal Medicine and Surgery, School of Veterinary Medicine, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain; Veterinary Teaching Hospital, University of Córdoba, Spain
| | - Aritz Saitua
- Department of Animal Medicine and Surgery, School of Veterinary Medicine, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain; Equine Sport Medicine Centre CEMEDE, School of Veterinary Medicine, University of Córdoba, Spain
| | - Antonia Sánchez de Medina
- Veterinary Teaching Hospital, University of Córdoba, Spain; Department of Animal Medicine and Surgery, School of Veterinary Medicine, University of Córdoba, Spain
| | - Juan A Muñoz
- Department of Animal Medicine and Surgery, School of Veterinary Medicine, Universidad Alfonso X el Sabio, Villanueva de la Cañada, Madrid, Spain
| | - Ana Muñoz
- Equine Sport Medicine Centre CEMEDE, School of Veterinary Medicine, University of Córdoba, Spain; Department of Animal Medicine and Surgery, School of Veterinary Medicine, University of Córdoba, Spain.
| |
Collapse
|
7
|
Chappuis V, Avila-Ortiz G, Araújo MG, Monje A. Medication-related dental implant failure: Systematic review and meta-analysis. Clin Oral Implants Res 2019; 29 Suppl 16:55-68. [PMID: 30328197 DOI: 10.1111/clr.13137] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2018] [Indexed: 12/29/2022]
Abstract
OBJECTIVES The aim of this systematic review was to investigate the association between the intake of systemic medications that may affect bone metabolism and their subsequent impact on implant failures. MATERIAL AND METHODS Electronic and manual literature searches were conducted. Implant failure (IF) was the primary outcome, while biological/mechanical and the causes/timing associated with IF were set as secondary outcomes. Meta-analyses for the binary outcome IF and odds ratio were performed to investigate the association with medications. RESULTS A final selection of 17 articles was screened for qualitative assessment. As such, five studies focused on evaluating the association of implant failure and non-steroidal anti-inflammatory drugs (NSAIDs), two on selective serotonin reuptake inhibitors (SSRIs), two on proton pump inhibitors (PPIs), seven on bisphosphonates (BPs), and one on anti-hypertensives (AHTNs). For PPIs, the fixed effect model estimated a difference of IF rates of 4.3%, indicating significantly higher IF rates in the test compared to the control group (p < 0.5). Likewise, for SSRIs, the IF was shown to be significantly higher in the individuals taking SSRIs (p < 0.5) as estimated a difference of 7.5%. No subset meta-analysis could be conducted for AHTNs medications as only one study fulfilled the inclusion criteria, which revealed an increased survival rate of AHTN medication. None of the other medications yielded significance. CONCLUSIONS The present systematic review showed an association of PPIs and SSRIs with an increased implant failure rate. Hence, clinicians considering implant therapy should be aware of possible medication-related implant failures.
Collapse
Affiliation(s)
- Vivianne Chappuis
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Gustavo Avila-Ortiz
- Department of Periodontics, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Mauricio G Araújo
- Department of Dentistry, State University of Maringa, Maringa, Brazil
| | - Alberto Monje
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Heron PW, Abellán-Flos M, Salmon L, Sygusch J. Bisphosphonate Inhibitors of Mammalian Glycolytic Aldolase. J Med Chem 2018; 61:10558-10572. [PMID: 30418024 DOI: 10.1021/acs.jmedchem.8b01000] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The glycolytic enzyme aldolase is an emerging drug target in diseases such as cancer and protozoan infections which are dependent on a hyperglycolytic phenotype to synthesize adenosine 5'-triphosphate and metabolic precursors for biomass production. To date, structural information for the enzyme in complex with phosphate-derived inhibitors has been lacking. Thus, we determined the crystal structure of mammalian aldolase in complex with naphthalene 2,6-bisphosphate (1) that served as a template for the design of bisphosphonate-based inhibitors, namely, 2-phosphate-naphthalene 6-bisphosphonate (2), 2-naphthol 6-bisphosphonate (3), and 1-phosphate-benzene 4-bisphosphonate (4). All inhibitors targeted the active site, and the most promising lead, 2, exhibited slow-binding inhibition with an overall inhibition constant of ∼38 nM. Compound 2 inhibited proliferation of HeLa cancer cells, whereas HEK293 cells expressing a normal phenotype were not inhibited. The crystal structures delineated the essential features of high-affinity phosphate-derived inhibitors and provide a template for the development of inhibitors with prophylaxis potential.
Collapse
Affiliation(s)
- Paul W Heron
- Département de Biochimie et Médecine Moléculaire , Université de Montréal , CP 6128, Succursale Centre-Ville, Montréal , Québec H3C 3J7 , Canada
| | - Marta Abellán-Flos
- Equipe de Chimie Bioorganique et Bioinorganique, Institut de Chimie Moléculaire et des Matériaux D'Orsay (ICMMO) , Univ Paris-Saclay, Univ Paris-Sud, CNRS UMR8182, LabEx LERMIT , rue du doyen Georges Poitou , F-91405 Orsay , France
| | - Laurent Salmon
- Equipe de Chimie Bioorganique et Bioinorganique, Institut de Chimie Moléculaire et des Matériaux D'Orsay (ICMMO) , Univ Paris-Saclay, Univ Paris-Sud, CNRS UMR8182, LabEx LERMIT , rue du doyen Georges Poitou , F-91405 Orsay , France
| | - Jurgen Sygusch
- Département de Biochimie et Médecine Moléculaire , Université de Montréal , CP 6128, Succursale Centre-Ville, Montréal , Québec H3C 3J7 , Canada
| |
Collapse
|
9
|
Local administration of Tiludronic Acid downregulates important mediators involved in periodontal tissue destruction in experimental periodontitis in rats. Arch Oral Biol 2018; 88:1-9. [DOI: 10.1016/j.archoralbio.2018.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 12/30/2017] [Accepted: 01/09/2018] [Indexed: 11/18/2022]
|
10
|
Jian P, Qizhang W, Jiyuan L. [Research progress on bisphosphonate-related osteonecrosis of the jaws]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2017; 35:29-36. [PMID: 28326724 PMCID: PMC7030198 DOI: 10.7518/hxkq.2017.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/13/2016] [Indexed: 02/05/2023]
Abstract
Bisphosphonates (BPs), as potent drugs inhibiting bone resorption, have been widely used for treatment of several diseases. In recent years, dentists and oral and maxillofacial surgeons reported continuously increasing cases of bisphosphonate-related osteonecrosis of the jaws (BRONJ). This disease is clinically characterized by exposed bones, formation of sequestrum, pain, and halitosis. Provided that pathogenesis of BRONJ is unclear, effective treatments for this disease are currently unavailable. Thus, prevention plays an important role in the management of BRONJ. This review summarizes research progress on pathogenesis, risk factors, clinical characteristics, treatment, and prevention of this condition.
Collapse
Affiliation(s)
- Pan Jian
- State Key Laboratory of Oral Diseases, Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wang Qizhang
- State Key Laboratory of Oral Diseases, Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Liu Jiyuan
- State Key Laboratory of Oral Diseases, Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
11
|
Ferlazzo V, Sferrazza C, Caccamo N, Di Fede G, Di Lorenzo G, D'Asaro M, Meraviglia S, Dieli F, Rini G, Salerno A. In Vitro Effects of Aminobisphosphonates on Vγ9Vδ2 T Cell Activation and Differentiation. Int J Immunopathol Pharmacol 2016; 19:309-17. [PMID: 16831298 DOI: 10.1177/039463200601900208] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study we have evaluated the in vitro effects of four different aminobisphosphonates, alendronate, risedronate, neridronate and zoledronate, on Vγ9Vδ2 T cell activation and differentiation. All tested aminobisphosphonates induce an IL-2-dependent activation and expansion of Vγ9Vδ2 T lymphocytes in primary PBMC cultures of healthy donors. Most notably, they also determine a different distribution of Vγ9Vδ2 T cell subsets, with decrease of Tnaive and TCM cells and increase of TEM and TEMRA Vγ9Vδ2 cells, indicating that in vitro treatment with aminobisphosphonates induces Vγ9Vδ2 T lymphocytes to differentiate towards an effector/cytotoxic phenotype. Accordingly, Vγ9Vδ2 T lymphocytes cultured with aminobisphosphonates and IL-2 showed a major content of IFN-γ and acquired the ability to kill tumor target cells.
Collapse
Affiliation(s)
- V Ferlazzo
- Dept. of Biopathology and Biomedical Methods, University of Palermo, 90134 Palermo, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kiełbowicz Z, Piątek A, Kuropka P, Mytnik E, Nikodem A, Bieżyński J, Skrzypczak P, Pezowicz C, Kuryszko J, Reichert P. Experimental osteoporosis in sheep – mechanical and histological approach. Pol J Vet Sci 2016; 19:109-18. [DOI: 10.1515/pjvs-2016-0014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The implementation of new methods of osteoporotic therapy requires tests on animal model. The use of sheep as model has numerous advantages over other animals. The aim of this study was to describe the change in parameters in sheep with osteoporosis induced using steroids and ovariorectomy methods as opposed to the parameters in healthy sheep. The study was performed on female „merinos” breed sheep divided into the three groups: negative control (NC) - healthy animals, positive control (PC) - ovariorectomized animals and steroid control group (SC) - in which methylprednisolone was administered. This paper presents histological and ultrastructural examination with mechanical comparative tests for force/strength values as well as indentation tests of joint cartilage. The obtained results confirm the loss of bone mass associated with mineral composition content in bones, which has an influence on bone strength.
Collapse
|
13
|
Rasmusson L, Abtahi J. Bisphosphonate associated osteonecrosis of the jaw: an update on pathophysiology, risk factors, and treatment. Int J Dent 2014; 2014:471035. [PMID: 25254048 PMCID: PMC4164242 DOI: 10.1155/2014/471035] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/18/2014] [Indexed: 01/06/2023] Open
Abstract
Osteonecrosis of the jaw in patients treated with bisphosphonates is a relatively rare but well known complication at maxillofacial units around the world. It has been speculated that the medication, especially long-term i.v. bisphosphonate treatment, could cause sterile necrosis of the jaws. The aim of this narrative review of the literature was to elaborate on the pathological mechanisms behind the condition and also to gather an update on incidence, risk factors, and treatment of bisphosphonate associated osteonecrosis of the jaw. In total, ninety-one articles were reviewed. All were published in internationally recognized journals with referee systems. We can conclude that necrotic lesions in the jaw seem to be following upon exposure of bone, for example, after tooth extractions, while other interventions like implant placement do not increase the risk of osteonecrosis. Since exposure to the bacterial environment in the oral cavity seems essential for the development of necrotic lesions, we believe that the condition is in fact chronic osteomyelitis and should be treated accordingly.
Collapse
Affiliation(s)
- Lars Rasmusson
- Department Oral and Maxillofacial Surgery, The Sahlgrenska Academy, University of Gothenburg, P.O. Box 450, 405 30 Gothenburg, Sweden
| | - Jahan Abtahi
- Maxillofacial Unit, Linköping University Hospital, 581 85 Linköping, Sweden
| |
Collapse
|
14
|
Soto SA, Chiappe Barbará A. Bisphosphonates: Pharmacology and Clinical Approach to Their Use in Equine Osteoarticular Diseases. J Equine Vet Sci 2014. [DOI: 10.1016/j.jevs.2014.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
15
|
Low toxicity and unprecedented anti-osteoclast activity of a simple sulfur-containing gem-bisphosphonate: a comparative study. Eur J Med Chem 2013; 65:448-55. [PMID: 23748153 DOI: 10.1016/j.ejmech.2013.04.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/08/2013] [Accepted: 04/11/2013] [Indexed: 11/22/2022]
Abstract
Bisphosphonates (BPs) are key drugs for the treatment of bone resorption diseases like osteoporosis, Paget's disease and some forms of tumors. Recent findings underlined the importance of lipophilic N-containing BPs to ensure high biological activity. Herein we present some unprecedented results concerning the low toxicity and good anti-osteoclast activity of low molecular weight hydrophilic S-containing BPs. A series of S and N-containing BPs bearing aromatic and aliphatic substitution were prepared through Michael addition reaction between vinylidenebisphosphonate tetraethyl ester and the proper nucleophile under basic catalysis. S-containing BPs showed a generally low toxicity, determined with the neutral-red assay using the L929 cell line, and, in particular for an aliphatic one, a good biological activity assessed on primary cultures of human osteoclasts.
Collapse
|
16
|
Bertaim T, Chapuy E, Caussade F, Ardid D. Dose and Administration Schedule Effect of Tiludronate on Joint Damage in the Model of Complete Freund Adjuvant Induced Monoarthritis in Rats. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ojra.2013.31004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Proton pump (H+/K+-ATPase) inhibitors weaken the protective effect of alendronate on bone mechanical properties in estrogen-deficient rats. Pharmacol Rep 2012; 64:625-34. [DOI: 10.1016/s1734-1140(12)70858-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 03/09/2012] [Indexed: 11/17/2022]
|
18
|
Abstract
The first full publications on the biological effects of the diphosphonates, later renamed bisphosphonates, appeared in 1969, so it is timely after 40years to review the history of their development and their impact on clinical medicine. This special issue of BONE contains a series of review articles covering the basic science and clinical aspects of these drugs, written by some of many scientists who have participated in the advances made in this field. The discovery and development of the bisphosphonates (BPs) as a major class of drugs for the treatment of bone diseases has been a fascinating story, and is a paradigm of a successful journey from 'bench to bedside'. Bisphosphonates are chemically stable analogues of inorganic pyrophosphate (PPi), and it was studies on the role of PPi as the body's natural 'water softener' in the control of soft tissue and skeletal mineralisation that led to the need to find inhibitors of calcification that would resist hydrolysis by alkaline phosphatase. The observation that PPi and BPs could not only retard the growth but also the dissolution of hydroxyapatite crystals prompted studies on their ability to inhibit bone resorption. Although PPi was unable to do this, BPs turned out to be remarkably effective inhibitors of bone resorption, both in vitro and in vivo experimental systems, and eventually in humans. As ever more potent BPs were synthesised and studied, it became apparent that physico-chemical effects were insufficient to explain their biological effects, and that cellular actions must be involved. Despite many attempts, it was not until the 1990s that their biochemical actions were elucidated. It is now clear that bisphosphonates inhibit bone resorption by being selectively taken up and adsorbed to mineral surfaces in bone, where they interfere with the action of the bone-resorbing osteoclasts. Bisphosphonates are internalised by osteoclasts and interfere with specific biochemical processes. Bisphosphonates can be classified into at least two groups with different molecular modes of action. The simpler non-nitrogen containing bisphosphonates (such as etidronate and clodronate) can be metabolically incorporated into non-hydrolysable analogues of ATP, which interfere with ATP-dependent intracellular pathways. The more potent, nitrogen-containing bisphosphonates (including pamidronate, alendronate, risedronate, ibandronate and zoledronate) are not metabolised in this way but inhibit key enzymes of the mevalonate/cholesterol biosynthetic pathway. The major enzyme target for bisphosphonates is farnesyl pyrophosphate synthase (FPPS), and the crystal structure elucidated for this enzyme reveals how BPs bind to and inhibit at the active site via their critical N atoms. Inhibition of FPPS prevents the biosynthesis of isoprenoid compounds (notably farnesol and geranylgeraniol) that are required for the post-translational prenylation of small GTP-binding proteins (which are also GTPases) such as rab, rho and rac, which are essential for intracellular signalling events within osteoclasts. The accumulation of the upstream metabolite, isopentenyl pyrophosphate (IPP), as a result of inhibition of FPPS may be responsible for immunomodulatory effects on gamma delta (γδ) T cells, and can also lead to production of another ATP metabolite called ApppI, which has intracellular actions. Effects on other cellular targets, such as osteocytes, may also be important. Over the years many hundreds of BPs have been made, and more than a dozen have been studied in man. As reviewed elsewhere in this issue, bisphosphonates are established as the treatments of choice for various diseases of excessive bone resorption, including Paget's disease of bone, the skeletal complications of malignancy, and osteoporosis. Several of the leading BPs have achieved 'block-buster' status with annual sales in excess of a billion dollars. As a class, BPs share properties in common. However, as with other classes of drugs, there are obvious chemical, biochemical, and pharmacological differences among the various BPs. Each BP has a unique profile in terms of mineral binding and cellular effects that may help to explain potential clinical differences among the BPs. Even though many of the well-established BPs have come or are coming to the end of their patent life, their use as cheaper generic drugs is likely to continue for many years to come. Furthermore in many areas, e.g. in cancer therapy, the way they are used is not yet optimised. New 'designer' BPs continue to be made, and there are several interesting potential applications in other areas of medicine, with unmet medical needs still to be fulfilled. The adventure that began in Davos more than 40 years ago is not yet over.
Collapse
Affiliation(s)
- R Graham G Russell
- Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences, Oxford NIHR Biomedical Research Unit, The Oxford University Institute of Musculoskeletal Sciences, The Botnar Research Centre, Headington, Oxford, UK.
| |
Collapse
|
19
|
Tiludronate treatment improves structural changes and symptoms of osteoarthritis in the canine anterior cruciate ligament model. Arthritis Res Ther 2011; 13:R98. [PMID: 21693018 PMCID: PMC3218913 DOI: 10.1186/ar3373] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 06/21/2011] [Indexed: 12/15/2022] Open
Abstract
Introduction The aim of this prospective, randomized, controlled, double-blind study was to evaluate the effects of tiludronate (TLN), a bisphosphonate, on structural, biochemical and molecular changes and function in an experimental dog model of osteoarthritis (OA). Methods Baseline values were established the week preceding surgical transection of the right cranial/anterior cruciate ligament, with eight dogs serving as OA placebo controls and eight others receiving four TLN injections (2 mg/kg subcutaneously) at two-week intervals starting the day of surgery for eight weeks. At baseline, Week 4 and Week 8, the functional outcome was evaluated using kinetic gait analysis, telemetered locomotor actimetry and video-automated behaviour capture. Pain impairment was assessed using a composite numerical rating scale (NRS), a visual analog scale, and electrodermal activity (EDA). At necropsy (Week 8), macroscopic and histomorphological analyses of synovium, cartilage and subchondral bone of the femoral condyles and tibial plateaus were assessed. Immunohistochemistry of cartilage (matrix metalloproteinase (MMP)-1, MMP-13, and a disintegrin and metalloproteinase domain with thrombospondin motifs (ADAMTS5)) and subchondral bone (cathepsin K) was performed. Synovial fluid was analyzed for inflammatory (PGE2 and nitrite/nitrate levels) biomarkers. Statistical analyses (mixed and generalized linear models) were performed with an α-threshold of 0.05. Results A better functional outcome was observed in TLN dogs than OA placebo controls. Hence, TLN dogs had lower gait disability (P = 0.04 at Week 8) and NRS score (P = 0.03, group effect), and demonstrated behaviours of painless condition with the video-capture (P < 0.04). Dogs treated with TLN demonstrated a trend toward improved actimetry and less pain according to EDA. Macroscopically, both groups had similar level of morphometric lesions, TLN-treated dogs having less joint effusion (P = 0.01), reduced synovial fluid levels of PGE2 (P = 0.02), nitrites/nitrates (P = 0.01), lower synovitis score (P < 0.01) and a greater subchondral bone surface (P < 0.01). Immunohistochemical staining revealed lower levels in TLN-treated dogs of MMP-13 (P = 0.02), ADAMTS5 (P = 0.02) in cartilage and cathepsin K (P = 0.02) in subchondral bone. Conclusion Tiludronate treatment demonstrated a positive effect on gait disability and joint symptoms. This is likely related to the positive influence of the treatment at improving some OA structural changes and reducing the synthesis of catabolic and inflammatory mediators.
Collapse
|
20
|
Zhang X, Hu J, Li Y, Yin G, Luo E. Effects of ibandronate-hydroxyapatite on resorptive activity of osteoclasts. Arch Med Sci 2011; 7:53-60. [PMID: 22291733 PMCID: PMC3258676 DOI: 10.5114/aoms.2011.20604] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 07/15/2010] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION Bisphosphonates (BPs) can be locally used to improve the osteogenesis around hydroxyapatite (HA) implants. However, there are almost no reports discussing the effects of BPs in the bound state with HA on osteoclasts. Ibandronate is a BP widely used in clinical practice. This study was designed to evaluate the effects of ibandronate combined with HA on the morphology and resorptive activity of osteoclasts. MATERIAL AND METHODS The HA and ibandronate-HA were prepared. Osteoclasts were isolated from Sprague-Dawley rats and then the cells were cultured with both HA and ibandronate-HA. Then the cell morphology was inspected by inverted phase contrast microscope and transmission electron microscopy observation. The resorptive activity was tested using the dyeing agent seminaphthofluorescein and bone resorption assay. RESULTS Compared with the control group, the osteoclasts demonstrated morphological alterations, and the hydrogen ion concentration was significantly lower in the ibandronate-HA group. Areas of the resorption pits formed by the osteoclasts were significantly smaller, the trabecula thickness appeared thicker, and concentration of CTx was also significantly lower in the experimental group. CONCLUSIONS Resorptive activity of osteoclasts cultured with ibandronate-HA was weaker than that of the control group. Ibandronate on HA in the bound state could maintain its action as an inhibitor to osteoclasts.
Collapse
Affiliation(s)
- Xiaohui Zhang
- State Key Laboratory of Oral Disease, Sichuan University, Chengdu, Sichuan Province, China
| | | | | | | | | |
Collapse
|
21
|
Arnold C, Chaffin MK, Cohen N, Fajt VR, Taylor RJ, Bernstein LR. Pharmacokinetics of gallium maltolate after intragastric administration in adult horses. Am J Vet Res 2010; 71:1371-6. [DOI: 10.2460/ajvr.71.11.1371] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Viornery C, Péchy P, Boegli M, Aronsson BO, Descouts P, Grätzel M. Synthesis of New Polyphosphonic Acids. PHOSPHORUS SULFUR 2010. [DOI: 10.1080/10426500210217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Carine Viornery
- a Department of Chemistry, Laboratory for Photonics and Interfaces , Swiss Federal Institute of Technology--Lausanne , Lausanne, Switzerland
| | - Péter Péchy
- a Department of Chemistry, Laboratory for Photonics and Interfaces , Swiss Federal Institute of Technology--Lausanne , Lausanne, Switzerland
| | - Mickaël Boegli
- a Department of Chemistry, Laboratory for Photonics and Interfaces , Swiss Federal Institute of Technology--Lausanne , Lausanne, Switzerland
| | - Björn-O. Aronsson
- b Group of Applied Physics , University of Geneva , Biomedical, Geneva, Switzerland
| | - Pierre Descouts
- b Group of Applied Physics , University of Geneva , Biomedical, Geneva, Switzerland
| | - Michael Grätzel
- a Department of Chemistry, Laboratory for Photonics and Interfaces , Swiss Federal Institute of Technology--Lausanne , Lausanne, Switzerland
| |
Collapse
|
23
|
PELLETIER JEANPIERRE, TRONCY ÉRIC, BERTAIM THIERRY, THIBAUD DOMINIQUE, GOULET ANNECHRISTINE, ABRAM FRANÇOIS, CARON JUDITH, BOILEAU CHRISTELLE, d’ANJOU MARCANDRÉ, MOREAU MAXIM, LUSSIER BERTRAND, MARTEL-PELLETIER JOHANNE. Treatment with Tiludronic Acid Helps Reduce the Development of Experimental Osteoarthritis Lesions in Dogs with Anterior Cruciate Ligament Transection Followed by Reconstructive Surgery: A 1-Year Study with Quantitative Magnetic Resonance Imaging. J Rheumatol 2010; 38:118-28. [DOI: 10.3899/jrheum.100642] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Objective.To investigate over a 1-year period in dogs that underwent extracapsular stabilization surgery (ECS) following anterior cruciate ligament (ACL) transection: whether reconstructive surgery could prevent osteoarthritis (OA) progression and whether treatment with the bisphosphonate tiludronic acid (TA) could improve the chronic evolution of OA structural changes.Methods.ACL transection was performed on dogs on Day 0 and ECS on Day 28. Dogs were randomly divided into 2 groups: 15 received placebo and 16 were treated with TA (2 mg/kg subcutaneous injection) on Days 14, 28, 56, and 84. Magnetic resonance images were acquired on Days −10, 26, 91, 210, and 357, and cartilage volume was quantified. At sacrifice (Day 364), cartilage from femoral condyles and tibial plateaus was macroscopically and histologically evaluated. Expression levels of MMP-1, -3, -13, ADAMTS-4, -5, BMP-2, FGF-2, IGF-1, TGF-ß1, collagen type II, and aggrecan were determined using real-time RT-PCR.Results.The loss of cartilage volume observed after ACL transection stabilized following ECS. Thereafter, a gradual gain occurred, with the cartilage volume loss on the tibial plateaus reduced at Day 91 (p < 0.02) and Day 210 (p < 0.001) in the TA-treated dogs. At sacrifice, TA-treated dogs presented a reduction in the severity of macroscopic (p = 0.03 for plateaus) and histologic (p = 0.07 for plateaus) cartilage lesions, had a better preserved collagen network, and showed decreased MMP-13 (p = 0.04), MMP-1 and MMP-3 levels.Conclusion.Our findings indicate that in dogs with ACL transection, ECS greatly prevents development of cartilage volume loss. Treatment with TA provided an additional benefit of reducing the development of OA lesions.
Collapse
|
24
|
|
25
|
DELGUSTE C, AMORY H, GUYONNET J, THIBAUD D, GARNERO P, DETILLEUX J, LEPAGE OM, DOUCET M. Comparative pharmacokinetics of two intravenous administration regimens of tiludronate in healthy adult horses and effects on the bone resorption marker CTX-1. J Vet Pharmacol Ther 2008; 31:108-16. [DOI: 10.1111/j.1365-2885.2007.00936.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Graham R, Russell G. The Bisphosphonate Odyssey. A Journey from Chemistry to the Clinic. PHOSPHORUS SULFUR 2008. [DOI: 10.1080/10426509908546364] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- R. Graham
- a Division of Biochemical and Musculoskeletal Metabolism, Human Metabolism and Clinical Biochemistry, University of Sheffield Medical School , Sheffield S10 2RX, UK
- b Division of Biochemical and Musculoskeletal Metabolism, Human Metabolism and Clinical Biochemistry, University of Sheffield Medical School , Sheffield S10 2RX, UK
| | - G. Russell
- a Division of Biochemical and Musculoskeletal Metabolism, Human Metabolism and Clinical Biochemistry, University of Sheffield Medical School , Sheffield S10 2RX, UK
- b Division of Biochemical and Musculoskeletal Metabolism, Human Metabolism and Clinical Biochemistry, University of Sheffield Medical School , Sheffield S10 2RX, UK
| |
Collapse
|
27
|
|
28
|
Hacchou Y, Uematsu T, Ueda O, Usui Y, Uematsu S, Takahashi M, Uchihashi T, Kawazoe Y, Shiba T, Kurihara S, Yamaoka M, Furusawa K. Inorganic polyphosphate: a possible stimulant of bone formation. J Dent Res 2007; 86:893-7. [PMID: 17720862 DOI: 10.1177/154405910708600917] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Inorganic polyphosphates [Poly(P)] are often distributed in osteoblasts. We undertook the present study to verify the hypothesis that Poly(P) stimulates osteoblasts and facilitates bone formation. The osteoblast-like cell line MC 3T3-E1 was cultured with Poly(P), and gene expression and potential mineralization were evaluated by reverse-transcription polymerase chain-reaction. Alkaline phosphatase activity, von Kossa staining, and resorption pit formation analyses were also determined. The potential role of Poly(P) in bone formation was assessed in a rat alveolar bone regeneration model. Poly(P) induced osteopontin, osteocalcin, collagen 1alpha, and osteoprotegerin expression and increased alkaline phosphatase activity in MC 3T3-E1 cells. Dentin slice pit formation decreased with mouse osteoblast and bone marrow macrophage co-cultivation in the presence of Poly(P). Promotion of alveolar bone regeneration was observed locally in Poly(P)-treated rats. These findings suggest that Poly(P) plays a role in osteoblastic differentiation, activation, and bone mineralization. Thus, local poly(P) delivery may have a therapeutic benefit in periodontal disease.
Collapse
Affiliation(s)
- Y Hacchou
- Department of Oral and Maxillofacial Surgery, Matsumoto Dental University School of Dentistry, Nagano, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Gutta R, Louis PJ. Bisphosphonates and osteonecrosis of the jaws: Science and rationale. ACTA ACUST UNITED AC 2007; 104:186-93. [PMID: 17448709 DOI: 10.1016/j.tripleo.2006.12.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 11/21/2006] [Accepted: 12/09/2006] [Indexed: 12/12/2022]
Abstract
Bisphosphonates as a group of drugs were introduced for the management of various conditions such as osteoporosis, Paget's disease, multiple myeloma, hypercalcemia of malignancy, breast cancer, prostate cancer, and other tumors. This group of drugs has improved the quality of life in many patients with proven efficacy in limiting pain and skeletal-related events. The controversy of osteonecrosis of the jaws and bisphosphonates is a recent and growing problem. Osteonecrosis of the jaws is recognized as a serious complication of bisphosphonate therapy, more commonly with the intravenous form of the drugs. However, there is limited scientific understanding about the association between osteonecrosis of the jaws and bisphosphonates. In the present article we discuss various mechanisms of action of bisphosphonates, the rationale for occurrence of osteonecrosis in the jaws, and treatment guidelines for the condition.
Collapse
Affiliation(s)
- Rajesh Gutta
- Oral and Maxillofacial Surgery, University of Alabama, Birmingham, AL, USA.
| | | |
Collapse
|
30
|
Abstract
The profound effects of the bisphosphonates on calcium metabolism were discovered over 30 years ago, and they are now well established as the major drugs used for the treatment of bone diseases associated with excessive resorption. Their principal uses are for Paget disease of bone, myeloma, bone metastases, and osteoporosis in adults, but there has been increasing and successful application in pediatric bone diseases, notably osteogenesis imperfecta. Bisphosphonates are structural analogues of inorganic pyrophosphate but are resistant to enzymatic and chemical breakdown. Bisphosphonates inhibit bone resorption by selective adsorption to mineral surfaces and subsequent internalization by bone-resorbing osteoclasts where they interfere with various biochemical processes. The simpler, non-nitrogen-containing bisphosphonates (eg, clodronate and etidronate) can be metabolically incorporated into nonhydrolysable analogues of adenosine triphosphate (ATP) that may inhibit ATP-dependent intracellular enzymes. In contrast, the more potent, nitrogen-containing bisphosphonates (eg, pamidronate, alendronate, risedronate, ibandronate, and zoledronate) inhibit a key enzyme, farnesyl pyrophosphate synthase, in the mevalonate pathway, thereby preventing the biosynthesis of isoprenoid compounds that are essential for the posttranslational modification of small guanosine triphosphate (GTP)-binding proteins (which are also GTPases) such as Rab, Rho, and Rac. The inhibition of protein prenylation and the disruption of the function of these key regulatory proteins explains the loss of osteoclast activity. The recently elucidated crystal structure of farnesyl diphosphate reveals how bisphosphonates bind to and inhibit at the active site via their critical nitrogen atoms. Although bisphosphonates are now established as an important class of drugs for the treatment of many bone diseases, there is new knowledge about how they work and the subtle but potentially important differences that exist between individual bisphosphonates. Understanding these may help to explain differences in potency, onset and duration of action, and clinical effectiveness.
Collapse
Affiliation(s)
- R Graham G Russell
- Botnar Research Centre, Oxford University Institute of Musculoskeletal Sciences, Oxford, United Kingdom.
| |
Collapse
|
31
|
Abstract
The discovery and development of the bisphosphonates (BPs) as a major class of drugs for the treatment of bone diseases has been a fascinating journey that is still not over. In clinical medicine, several BPs are established as the treatments of choice for various diseases of excessive bone resorption, including Paget's disease of bone, myeloma and bone metastases, and osteoporosis. Bisphosphonates are chemically stable analogues of inorganic pyrophosphate, and are resistant to breakdown by enzymatic hydrolysis. Bisphosphonates inhibit bone resorption by being selectively taken up and adsorbed to mineral surfaces in bone, where they interfere with the action of the bone-resorbing osteoclasts. Bisphosphonates are internalized by osteoclasts and interfere with specific biochemical processes. Bisphosphonates can be classified into at least two groups with different molecular modes of action. The simpler non-nitrogen-containing bisphosphonates (such as clodronate and etidronate) can be metabolically incorporated into nonhydrolyzable analogues of adenosine triphosphate (ATP) that may inhibit ATP-dependent intracellular enzymes. The more potent, nitrogen-containing bisphosphonates (such as pamidronate, alendronate, risedronate, ibandronate, and zoledronate) are not metabolized in this way but can inhibit enzymes of the mevalonate pathway, thereby preventing the biosynthesis of isoprenoid compounds that are essential for the posttranslational modification of small GTP-binding proteins (which are also GTPases) such as rab, rho, and rac. The inhibition of protein prenylation and the disruption of the function of these key regulatory proteins explain the loss of osteoclast activity and induction of apoptosis. The key target for bisphosphonates is farnesyl pyrophosphate synthase (FPPS) within osteoclasts, and the recently elucidated crystal structure of this enzyme reveals how BPs bind to and inhibit at the active site via their critical N atoms. In conclusion, bisphosphonates are now established as an important class of drugs for the treatment of many bone diseases, and their mode of action is being unraveled. As a result their full therapeutic potential is gradually being realized.
Collapse
Affiliation(s)
- R Graham G Russell
- The Botnar Research Centre, Nuffield Department of Orthopaedic Surgery, University of Oxford, Headington, Oxford, OX3 7LD, UK.
| |
Collapse
|
32
|
Yu J, Chang SS, Suratwala S, Chung WS, Abdelmessieh P, Lee HJ, Yang J, Lee FYI. Zoledronate induces apoptosis in cells from fibro-cellular membrane of unicameral bone cyst (UBC). J Orthop Res 2005; 23:1004-12. [PMID: 15921873 DOI: 10.1016/j.orthres.2005.02.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 02/08/2005] [Accepted: 02/15/2005] [Indexed: 02/04/2023]
Abstract
Unicameral bone cyst (UBC) is a benign cystic lesion in children which is prone to fracture. Various treatments are available, but recurrence after different types of percutaneous injection therapy can cause bone destruction and pathologic fracture. The potential therapeutic effects of anti-resorptive agents, such as bisphosphonates, have not been investigated for UBC. The objective of this study was to characterize the cells from the fibro-cellular membrane of unicameral bone cyst (UBC cells) and to determine whether zoledronate, a nitrogen-containing bisphosphonate, could induce apoptosis in UBC cells. Flow cytometry and immunoblotting were performed in order to determine whether zoledronate induced apoptosis. Cells derived from normal human trabecular bones were used as controls against UBC cells to compare the effect of zoledronate in inducing apoptosis. Immunohisto/cytochemistry (IHC/ICC) and mini-array analyses were performed on tissues and cultured cells. Isolated peripheral blood mononuclear cells were incubated with conditioned media from the UBC cells to determine whether they are capable of inducing osteoclastogenesis. UBC membrane is composed of cells staining positively with CD68, SDF-1, STRO-1 and RANKL, but in vitro cells showed no staining with antibodies to CD68 and STRO-1, suggesting that there was a clonal selection of stromal cells during cell culture. UBC cells also express RUNX2 (runt-related transcription factor-2, core binding factor-1), a key transcription factor for osteoblastic differentiation. In addition, media collected from UBC cells induced a generation of multi-nucleated osteoclast-like cells of peripheral blood mononuclear cells. Zoledronate induced apoptosis of UBC cells in a dose-dependent manner. Apoptosis was evidenced by induction of the active cleaved form of caspase-3. The baseline apoptotic fractions were similar in UBC cells and trabecular bone cells. However, in the overall apoptotic fractions in this study, trabecular bone cells showed 17.2% of apoptosis, significantly lower than 24.2% of UBC cells (p-value=0.007). With the various zoledronate concentrations, mean apoptotic fractions of trabecular bone cells was 19.2%, significantly lower than 27.8% of UBC cells (p-value=0.040). With GGOH co-treatment in various zoledronate concentrations, 15.1% apoptosis was shown in trabecular bone cells, which was not significantly lower than 20.6% of UBC cells (p-value=0.076). This data suggests that zoledronate causes apoptosis in both UBC and trabecular bone cells by inhibition of the mevalonate pathway. In addition to the known anti-osteoclastogenic effect of bisphosphonates, the GGOH inhibitory effects of zoledronate were more prominent in UBC cells than trabecular bone cells, indicating their potential therapeutic role in UBC.
Collapse
Affiliation(s)
- John Yu
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Shao W, Orlando RC, Awayda MS. Bisphosphonates stimulate an endogenous nonselective cation channel in Xenopus oocytes: potential mechanism of action. Am J Physiol Cell Physiol 2005; 289:C248-56. [PMID: 15788487 DOI: 10.1152/ajpcell.00393.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanisms of action of bisphosphonates (BPs) have been poorly determined. Besides their actions on osteoclasts, these agents exhibit gastrointestinal complications. They have also recently been described as affecting various preparations that express an epithelial Na+ channel (ENaC). To understand the effects of BP on ion channels and the ENaC in particular, we used the Xenopus oocyte expression system. Alendronate, and similarly risedronate, two aminobisphosphonates, caused a large stimulation of an endogenous nonselective cation conductance (NSCC). This stimulation averaged 63 ± 12 μS ( n = 18) 60 min after the addition of 2 mM alendronate. The effects on the endogenous NSCC were blocked by extracellular acidification to pH 6.4. On the other hand, alendronate caused a small inhibition of ENaC conductance at pH 7.4 and 6.4, but the effects at pH 6.4 were more readily observed in the absence of changes of the endogenous conductance. The effects on membrane capacitance were also markedly different, with a clear decrease at pH 6.4 and no consistent changes at pH 7.4. The effects on the endogenous channel were further augmented by genistein and were inhibited by a tyrosine phosphatase inhibitor, indicating the involvement of the tyrosine kinase pathway. Stimulation of NSCC with BP is expected to cause membrane depolarization and may explain, in part, its mechanisms of action in inhibiting osteoclasts.
Collapse
Affiliation(s)
- Weijian Shao
- Department of Physiology, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | | | | |
Collapse
|
34
|
Saba N, Khuri F. The Role of Bisphosphonates in the Management of Advanced Cancer with a Focus on Non-Small-Cell Lung Cancer. Oncology 2005; 68:10-7. [PMID: 15775688 DOI: 10.1159/000084517] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Accepted: 11/22/2004] [Indexed: 11/19/2022]
Abstract
With recent advances in cancer management, patients with metastatic bone disease are likely to have a prolonged clinical course, with skeletal-related events such as pain, hypercalcemia, pathologic fractures, spinal cord and nerve compression. Bisphosphonate use has resulted in the reduction of skeletal-related complications for a number of tumors including breast, prostate and myeloma, and improvements in the quality of life for patients. There is now evidence that newer, highly potent, nitrogen-containing bisphosphonates reduce skeletal complications in patients with bone metastases from other solid tumors (including lung cancer). The early identification of patients at high risk for developing bone metastases may help curtail a complex and costly clinical problem--skeletal-related events. In this article, we review the different mechanisms of bisphosphonates and the potential role of newer-generation bisphosphonates, such as zoledronic acid, in the management of advanced, metastatic bone disease. We include a review of mechanistic studies and preclinical data. Additionally, the utility of evolving concepts such as bone markers and imaging of bone metastases are discussed.
Collapse
Affiliation(s)
- Nabil Saba
- Winship Cancer Institute, Emory University, Atlanta, Ga., USA.
| | | |
Collapse
|
35
|
|
36
|
|
37
|
Rogers MJ. From molds and macrophages to mevalonate: a decade of progress in understanding the molecular mode of action of bisphosphonates. Calcif Tissue Int 2004; 75:451-61. [PMID: 15332174 DOI: 10.1007/s00223-004-0024-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Accepted: 04/17/2004] [Indexed: 02/07/2023]
Abstract
Although bisphosphonates were first used as therapeutic agents to inhibit bone resorption in the early 1970s, their mode of action at the molecular level has only become fully clear within the last few years. One of the reasons for this lack of understanding was the difficulty in isolating large numbers of pure osteoclasts for biochemical studies. In the last decade, the identification of appropriate surrogate models that reflected the antiresorptive potencies of bisphosphonates, such as Dictyostelium slime molds and macrophages, helped overcome this problem and proved to be instrumental in elucidating the molecular pathways by which these compounds inhibit osteoclast-mediated bone resorption. This brief review summarizes our current understanding of these pathways.
Collapse
Affiliation(s)
- M J Rogers
- Bone Research Group, Institute of Medical Sciences, University of Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
38
|
Chang SS, Suratwala SJ, Jung KM, Doppelt JD, Zhang HZ, Blaine TA, Kim TW, Winchester RJ, Lee FYI. Bisphosphonates may reduce recurrence in giant cell tumor by inducing apoptosis. Clin Orthop Relat Res 2004:103-9. [PMID: 15346059 DOI: 10.1097/01.blo.0000141372.54456.80] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Giant cell tumor of bone is an aggressive tumor characterized by extensive bone destruction and high recurrence rates. This tumor consists of stromal cells and hematopoietic cells that interact in an autocrine manner to produce tumoral osteoclastogenesis and bone resorption. This autocrine regulation may be disrupted by novel therapeutic agents. Nonspecific local adjuvant therapies such as phenol or liquid nitrogen have been used in the treatment of giant cell tumor, but specific adjuvant therapies have not been described. The bisphosphonates pamidronate and Zoledronate can induce apoptosis in giant cell tumor culture in a dose-dependent manner. We established giant cell tumor cultures from patients with extensive destruction of bone. One of the four cultures formed osteoclastlike giant cells in vitro after more than six passages without exogenous receptor activator of NF-kappaB ligand or macrophage colony stimulating factor. Annexin V staining, presence of active cleaved form of caspase-3, and disappearance of poly (ADP-ribose) polymerase on Western blotting indicated activation of apoptosis by bisphosphonates in giant cell tumor. These results indicate that topical or systemic use of pamidronate or zoledronate can be a novel adjuvant therapy for giant cell tumor by targeting osteoclastlike giant cells, mononuclear giant cell precursor cells, and the autocrine loop of tumor osteoclastogenesis.
Collapse
Affiliation(s)
- Seong Sil Chang
- Center for Orthopaedic Research, Department of Orthopaedic Surgery, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Niikura K, Takano M, Sawada M. A novel inhibitor of vacuolar ATPase, FR167356, which can discriminate between osteoclast vacuolar ATPase and lysosomal vacuolar ATPase. Br J Pharmacol 2004; 142:558-66. [PMID: 15148249 PMCID: PMC1574973 DOI: 10.1038/sj.bjp.0705812] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1 Vacuolar ATPase (V-ATPase) has been proposed as a drug target in lytic bone diseases. Studies of bafilomycin derivatives suggest that the key issue regarding the therapeutic usefulness of V-ATPase inhibitors is selective inhibition of osteoclast V-ATPase. Previous efforts to develop therapeutic inhibitors of osteoclast V-ATPase have been frustrated by a lack of synthetically tractable and biologically selective leads. Therefore, we tried to find novel potent and specific V-ATPase inhibitors, which have new structural features and inhibition selectivity, from random screening using osteoclast microsomes. Finally, a novel V-ATPase inhibitor, FR167356, was obtained through chemical modification of a parental hit compound. 2 FR167356 inhibited not only H+ transport activity of osteoclast V-ATPase but also H+ extrusion from cytoplasm of osteoclasts, which depends on the V-ATPase activity. As expected, FR167356 remarkably inhibited bone resorption in vitro. 3 FR167356 also showed inhibitory effects on other V-ATPases, renal brush border V-ATPase, macrophage microsome V-ATPase and lysosomal V-ATPase. However, FR167356 was approximately seven-fold less potent in inhibiting lysosomal V-ATPase compared to osteoclast V-ATPase. Moreover, LDL metabolism in cells, which depends on acidification of lysosome, was blocked merely at higher concentration than bone resorption, suggesting that FR167356 inhibits V-ATPase of osteoclast ruffled border membrane still more selectively than lysosome at the cellular level. 4 These results from the experiments seem to indicate that osteoclast V-ATPase may be different from lysosomal V-ATPase in respect of their structure. 5 FR167356 had a novel chemical structural feature as well as inhibitory characteristics distinctly different from any previously known V-ATPase inhibitor family. Therefore, FR167356 is thought to be a useful tool for estimating the essential characteristics of V-ATPase inhibitors for drug development.
Collapse
Affiliation(s)
- Kazuaki Niikura
- Department of Biological Science, Exploratory Research Laboratories, Fujisawa Pharmaceutical Co., Ltd, Japan.
| | | | | |
Collapse
|
40
|
Nassar R, Beatty A, Henderson K. Sodiated β‐Diphosphonate Carbanions: Characterization of the Tetrameric Cubane and the Hexameric Ladder Complexes [{(
i
PrO)
2
P(O)}
2
CHNa]
4
and [{(EtO)
2
P(O)}
2
CHNa]
6. Eur J Inorg Chem 2003. [DOI: 10.1002/ejic.200300258] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Roger Nassar
- University of Notre Dame, Department of Chemistry and Biochemistry 251 Nieuwland Science Hall, Notre Dame, IN 46556‐5670, USA, Fax: (internat.) + 1‐574/631‐6652
| | - Alicia M. Beatty
- University of Notre Dame, Department of Chemistry and Biochemistry 251 Nieuwland Science Hall, Notre Dame, IN 46556‐5670, USA, Fax: (internat.) + 1‐574/631‐6652
| | - Kenneth W. Henderson
- University of Notre Dame, Department of Chemistry and Biochemistry 251 Nieuwland Science Hall, Notre Dame, IN 46556‐5670, USA, Fax: (internat.) + 1‐574/631‐6652
| |
Collapse
|
41
|
Zaidi M, Blair HC, Moonga BS, Abe E, Huang CLH. Osteoclastogenesis, bone resorption, and osteoclast-based therapeutics. J Bone Miner Res 2003; 18:599-609. [PMID: 12674320 DOI: 10.1359/jbmr.2003.18.4.599] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Over the past decade, advances in molecular tools, stem cell differentiation, osteoclast and osteoblast signaling mechanisms, and genetically manipulated mice models have resulted in major breakthroughs in understanding osteoclast biology. This review focuses on key advances in our understanding of molecular mechanisms underlying the formation, function, and survival of osteoclasts. These include key signals mediating osteoclast differentiation, including PU.1, RANK, CSF-1/c-fms, and src, and key specializations of the osteoclast including HCl secretion driven by H+-ATPase and the secretion of collagenolytic enzymes including cathepsin K and matrix metalloproteinases (MMPs). These pathways and highly expressed proteins provide targets for specific therapies to modify bone degradation. The main outstanding issues, basic and translational, will be considered in relation to the osteoclast as a target for antiresorptive therapies.
Collapse
Affiliation(s)
- Mone Zaidi
- Department of Medicine, Geriatrics and Physiology and The Mount Sinai Bone Program, Bronx VA Geriatrics Research Education and Clinical Center, New York, New York, USA.
| | | | | | | | | |
Collapse
|
42
|
Abstract
The nitrogen-containing bisphosphonates (N-BPs), alendronate and risedronate, are the only pharmacologic agents shown to prevent spine and nonvertebral fractures associated with postmenopausal and glucocorticoid-induced osteoporosis. At the tissue level, this is achieved through osteoclast inhibition, which leads to reduced bone turnover, increased bone mass, and improved mineralization. The molecular targets of bisphosphonates (BPs) have recently been identified. This review will discuss the mechanism of action of BPs, focusing on alendronate and risedronate, which are the two agents most widely studied. They act on the cholesterol biosynthesis pathway enzyme, farnesyl diphosphate synthase. By inhibiting this enzyme in the osteoclast, they interfere with geranylgeranylation (attachment of the lipid to regulatory proteins), which causes osteoclast inactivation. This mechanism is responsible for N-BP suppression of osteoclastic bone resorption and reduction of bone turnover, which leads to fracture prevention.
Collapse
Affiliation(s)
- Alfred A Reszka
- Department of Bone Biology and Osteoporosis Research, Merck Research Laboratories, West Point, PA 19486, USA
| | | |
Collapse
|
43
|
Whitfield JF, Morley P, Willick GE. Bone growth stimulators. New tools for treating bone loss and mending fractures. VITAMINS AND HORMONES 2003; 65:1-80. [PMID: 12481542 DOI: 10.1016/s0083-6729(02)65059-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In the new millennium, humans will be traveling to Mars and eventually beyond with skeletons that respond to microgravity by self-destructing. Meanwhile in Earth's aging populations growing numbers of men and many more women are suffering from crippling bone loss. During the first decade after menopause all women suffer an accelerating loss of bone, which in some of them is severe enough to result in "spontaneous" crushing of vertebrae and fracturing of hips by ordinary body movements. This is osteoporosis, which all too often requires prolonged and expensive care, the physical and mental stress of which may even kill the patient. Osteoporosis in postmenopausal women is caused by the loss of estrogen. The slower development of osteoporosis in aging men is also due at least in part to a loss of the estrogen made in ever smaller amounts in bone cells from the declining level of circulating testosterone and is needed for bone maintenance as it is in women. The loss of estrogen increases the generation, longevity, and activity of bone-resorbing osteoclasts. The destructive osteoclast surge can be blocked by estrogens and selective estrogen receptor modulators (SERMs) as well as antiosteoclast agents such as bisphosphonates and calcitonin. But these agents stimulate only a limited amount of bone growth as the unaffected osteoblasts fill in the holes that were dug by the now suppressed osteoclasts. They do not stimulate osteoblasts to make bone--they are antiresorptives not bone anabolic agents. (However, certain estrogen analogs and bisphosphates may stimulate bone growth to some extent by lengthening osteoblast working lives.) To grow new bone and restore bone strength lost in space and on Earth we must know what controls bone growth and destruction. Here we discuss the newest bone controllers and how they might operate. These include leptin from adipocytes and osteoblasts and the statins that are widely used to reduce blood cholesterol and cardiovascular damage. But the main focus of this article is necessarily the currently most promising of the anabolic agents, the potent parathyroid hormone (PTH) and certain of its 31- to 38-aminoacid fragments, which are either in or about to be in clinical trial or in the case of Lilly's Forteo [hPTH-(1-34)] tentatively approved by the Food and Drug Administration for treating osteoporosis and mending fractures.
Collapse
Affiliation(s)
- James F Whitfield
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6
| | | | | |
Collapse
|
44
|
Catterall JB, Cawston TE. Drugs in development: bisphosphonates and metalloproteinase inhibitors. Arthritis Res Ther 2003; 5:12-24. [PMID: 12716443 PMCID: PMC154424 DOI: 10.1186/ar604] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2002] [Revised: 09/13/2002] [Accepted: 09/23/2002] [Indexed: 01/23/2023] Open
Abstract
The destruction of bone and cartilage is characteristic of the progression of musculoskeletal diseases. The present review discusses the developments made with two different classes of drugs, the bisphosphonates and matrix metalloproteinase inhibitors. Bisphosphonates have proven to be an effective and safe treatment for the prevention of bone loss, especially in osteoporotic disease, and may have a role in the treatment of arthritic diseases. The development of matrix metalloproteinase inhibitors and their role as potential therapies are also discussed, especially in the light of the disappointing human trials data so far published.
Collapse
Affiliation(s)
- Jon B Catterall
- Department of Rheumatology, The Medical School, University of Newcastle upon Tyne, UK
| | - Tim E Cawston
- Department of Rheumatology, The Medical School, University of Newcastle upon Tyne, UK
| |
Collapse
|
45
|
Ohta T, Komatsu S, Tokutake N. [Pharmacological and clinical properties of alendronate sodium hydrate]. Nihon Yakurigaku Zasshi 2002; 120:409-19. [PMID: 12528472 DOI: 10.1254/fpj.120.409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Alendronate (alendronate sodium hydrate; Bonalon Tablet, 5 mg) is a nitrogen-containing bisphosphonate, which combines with the bone surface and reduces osteoclast-mediated bone resorption. It is a third-generation bisphosphonate compound, specifically distributed on the surface of bone resorption and taken into osteoclasts. Under the closed circumstances which is formed with osteoclast and the bone surface, alendronate becomes detached from the bone surface and taken into osteoclast since acid released from osteoclast leads to pH decrease (acidified). The uptaken alendronate blocks the pathway of mevalonic acid synthesis, which is cholesteric synthesis, inhibits the prenylation of GTP binding protein, and decreases the osteoclast's function by influencing the cytoskeleton. This restraint of alendronate in bone resorption against osteoclasts is reversible, showing no cytotoxicity at more than hundredfold concentration level at which action occurs. Alendronate is an agent for the treatment of osteoporosis that has established safety with regards to bone quality since it neither inhibits bone calcification nor influences fracture healing in chronic administration. The most serious morbidity in osteoporosis is developing fractures. The efficacy of alendronate on restraining fracture, as well as on increase in BMD, is evidenced in Japan. Recently, in addition to senile or postmenopausal osteoporosis, drug-induced osteoporosis, such as steroid-induced osteoporosis, has attracted attention. In this regard, alendronate has been found to be an effective agent for the treatment of osteoporosis overseas, being approved in over 90 countries and used by more than 4.5 million patients. This review will give an outline of alendronate, the preparation to have introduced a concept of Evidence Based Medicine earlier, from pharmacodynamic action to clinical efficacy.
Collapse
Affiliation(s)
- Tomohiro Ohta
- Department, Medical & Pharmaceutical Group, Teijin Ltd. 1-1, Uchisaiwai-Cho 2-Chome, Chiyoda-Ku, Tokyo 100-8585, Japan.
| | | | | |
Collapse
|
46
|
Dobrucali A, Tobey NA, Awayda MS, Argote C, Abdulnour-Nakhoul S, Shao W, Orlando RC. Physiological and morphological effects of alendronate on rabbit esophageal epithelium. Am J Physiol Gastrointest Liver Physiol 2002; 283:G576-86. [PMID: 12181170 DOI: 10.1152/ajpgi.00014.2002] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Alendronate, an aminobisphosphonate, produces as a side effect a topical (pill induced) esophagitis. To gain insight into this phenomenon, we assessed the effects of luminal alendronate on both esophageal epithelial structure and function. Sections of rabbit esophageal epithelium were exposed to luminal alendronate at neutral or acidic pH while mounted in Ussing chambers to monitor transmural electrical potential difference (PD), short-circuit current (I(sc)), and resistance (R). Morphological changes were sought by light microscopy in hematoxylin and eosin-stained sections. Impedance analysis was used for localization of alendronate-induced effects on ion transport. Luminal, but not serosal, alendronate (pH 6.9-7.2), increased PD and I(sc) in a dose- and time-dependent manner, with little change in R and mild edema of surface cell layers. The changes in I(sc) (and PD) were reversible with drug washout and could be prevented either by inhibition of Na,K-ATPase activity with serosal ouabain or by inhibition of apical Na channels with luminal acidification to pH 2.0 with HCl. An effect on apical Na channel activity was also supported by impedance analysis. Luminal alendronate at acidic pH was more damaging than either alendronate at neutral pH or acidic pH alone. These data suggest that alendronate stimulates net ion (Na) transport in esophageal epithelium by increasing apical membrane sodium channel activity and that this occurs with limited morphological change and no alteration in barrier function. Also alendronate is far more damaging at acidic than at neutral pH, suggesting its association with esophagitis requires gastric acid for expression. This expression may occur either by potentiation between the damaging effects of (refluxed) gastric acid and drug or by acid-induced conversion of the drug to a more toxic form.
Collapse
Affiliation(s)
- A Dobrucali
- Department of Medicine, Section of Gastroenterology and Hepatology, Tulane University School of Medicine and Veterans Affairs Medical Center, New Orleans, Louisiana 70112, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Mitsuta T, Horiuchi H, Shinoda H. Effects of topical administration of clodronate on alveolar bone resorption in rats with experimental periodontitis. J Periodontol 2002; 73:479-86. [PMID: 12027248 DOI: 10.1902/jop.2002.73.5.479] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND We examined whether topical administration of a bisphosphonate clodronate could prevent alveolar bone loss in rats with experimental periodontitis. METHODS On day 0, elastic rings were placed around the cervix of the right and left maxillary first molars (M1) to induce inflammatory periodontitis. Fifty microl of clodronate solution at a concentration of either 0 (0.9% NaCl), 20, 40, or 60 mM was injected into the subperiosteal palatal area adjacent to the interdental area between M1 and M2 on either the left or right (experimental) side on days 0, 2, 4, and 6. The contralateral side served as a control and received 0.9% NaCl solution without clodronate. The animals were sacrificed on day 7. RESULTS Histological examination and determination of bone mineral density in the interdental alveolar bone area between M1 and M2 revealed that placement of an elastic ring caused severe vertical and horizontal bone resorption on the control side, while the topical administration of clodronate significantly prevented such alveolar bone loss. The number of osteoclasts on the experimental side was decreased compared with the control side. Furthermore, many of the osteoclasts on the experimental side were detached from the surface of the alveolar bone and had degenerated appearances, such as rounded shapes and a loss of polarity. CONCLUSIONS These results suggest that topical administration of clodronate may be effective in preventing osteoclastic bone resorption in periodontitis.
Collapse
Affiliation(s)
- T Mitsuta
- Department of Oral Rehabilitation and Materials Science, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | | | | |
Collapse
|
48
|
Gray AW, Davies ME, Jeffcott LB. Generation and activity of equine osteoclasts in vitro: effects of the bisphosphonate pamidronate (APD). Res Vet Sci 2002; 72:105-13. [PMID: 12027590 DOI: 10.1053/rvsc.2001.0523] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Equine osteoclast-like cells (OCLs) were generated from the bone marrow (BM) of two ponies and one horse in the presence of RANKL, the receptor activator of NF kappa B ligand and macrophage colony-stimulating factor (M-CSF). The phenotype of these cells was confirmed by demonstration of characteristics typical of osteoclasts (OCs) including: the expression of tartrate-resistant acid phosphatase (TRAP), the vitronectin receptor (VNR) and the calcitonin receptor (CTR), the demonstration of responsiveness to calcitonin (CT) and the ability to form resorption lacunae on ivory slices and calcium phosphate films. The bisphosphonate pamidronate (APD) dose-dependently inhibited resorption of calcium phosphate films by equine OCLs with an IC(50) of 5.8 x 10(-7) M in one horse. APD also dose-dependently inhibited the number of OCLs present in BM cultures after 7 days. However, this effect is most likely attributable to increased OCL death rather than decreased OCL formation. Paradoxically, ADP appeared to cause an early, transient, increase in OCL formation in BM cultures, however, this effect was reversed after 7 days. These preliminary in vitro data support the potential use of APD in clinical conditions characterised by increased bone turnover such as osteomyelitis, osteitis, septic osteoarthritis, navicular disease, cystic bone lesions and immobilisation-induced osteoporosis and provide useful information for future pharmacokinetic studies and clinical trials in vivo.
Collapse
Affiliation(s)
- A W Gray
- Equine Orthopaedic Research Group, University of Cambridge, Department of Clinical Veterinary Medicine, Madingley Road, Cambridge, UK
| | | | | |
Collapse
|
49
|
Halasy-Nagy JM, Rodan GA, Reszka AA. Inhibition of bone resorption by alendronate and risedronate does not require osteoclast apoptosis. Bone 2001; 29:553-9. [PMID: 11728926 DOI: 10.1016/s8756-3282(01)00615-9] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Bisphosphonate inhibition of bone resorption was proposed to be due to osteoclast apoptosis. We tested this hypothesis for both the N-containing bisphosphonates alendronate and risedronate, which inhibit farnesyldiphosphate synthase and thus protein isoprenylation, and for clodronate and etidronate, which are metabolized to adenosine triphosphate (ATP) analogs. We found, in dose-response studies, that alendronate and risedronate inhibit bone resorption (in pit assays) at doses tenfold lower than those reducing osteoclast number. At an N-bisphosphonate dose that inhibited resorption and induced apoptosis, the antiapoptotic caspase inhibitor, Z-VAD-FMK, maintained osteoclast (Oc) number but did not prevent inhibition of resorption. Furthermore, when cells were treated with either alendronate alone or in combination with Z-VAD-FMK for 24 or 48 h, subsequent addition of geranylgeraniol, which restores geranylgeranylation, returned bone resorption to control levels. On the other hand, Z-VAD-FMK did block etidronate and clodronate inhibition of resorption. Moreover, in cells treated with etidronate, but not alendronate or risedronate, Z-VAD-FMK also prevented actin disruption, an early sign of osteoclast inhibition by bisphosphonates. These observations indicate that, whereas induction of apoptosis plays a major role in etidronate and clodronate inhibition of resorption, alendronate and risedronate suppression of bone resorption is independent of their effects on apoptosis.
Collapse
Affiliation(s)
- J M Halasy-Nagy
- Department of Bone Biology and Osteoporosis Research, Merck Research Laboratories, West Point, PA 19486, USA
| | | | | |
Collapse
|
50
|
Rodrigues CO, Scott DA, Bailey BN, De Souza W, Benchimol M, Moreno B, Urbina JA, Oldfield E, Moreno SN. Vacuolar proton pyrophosphatase activity and pyrophosphate (PPi) in Toxoplasma gondii as possible chemotherapeutic targets. Biochem J 2000; 349 Pt 3:737-45. [PMID: 10903134 PMCID: PMC1221200 DOI: 10.1042/bj3490737] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The addition of PP(i) promoted the acidification of a subcellular compartment in cell homogenates of Toxoplasma gondii tachyzoites, implying the presence of a proton-translocating pyrophosphatase. The proton gradient was collapsed by addition of the K(+)/H(+) antiporter nigericin, and was also inhibited by addition of the PP(i) analogue aminomethylenediphosphonate (AMDP). Both proton transport and PP(i) hydrolysis were dependent upon K(+), but Na(+) caused partial inhibition of these activities. PP(i) hydrolysis was sensitive in a dose-dependent manner to AMDP, imidodiphosphate, NaF and to the thiol reagent N-ethylmaleimide. This activity was unaffected by common inhibitors of phosphohydrolases, except that NaO(3)V (sodium orthovanadate) stimulated the activity by 87%. Immunofluorescence microscopy, using antisera raised against conserved peptide sequences of a plant vacuolar pyrophosphatase, suggested that the pyrophosphatase in T. gondii tachyzoites was located in the plasma membrane and intracellular vacuoles of the parasite. High-field (31)P-NMR spectroscopy showed that PP(i )was more abundant than ATP in tachyzoites. Bisphosphonates (PP(i) analogues), drugs that are used in the treatment of bone diseases, inhibited proton transport and PP(i) hydrolysis in tachyzoite homogenates, and also inhibited intracellular proliferation of tachyzoites in tissue culture cells.
Collapse
Affiliation(s)
- C O Rodrigues
- Laboratory of Molecular Parasitology, Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61802, USA
| | | | | | | | | | | | | | | | | |
Collapse
|