1
|
Wang Q, Chen Q, Lin H, Ding J, Sha T, Han Y. Investigation of the Mechanism of Oxidative Potential Increase in Atmospheric Particulate Matter during Photoaging: Important Role of Aromatic Nitrogenous Compounds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19818-19831. [PMID: 39436324 DOI: 10.1021/acs.est.4c03199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Particulate matter (PM) undergoing various aging processes in the atmosphere changes its toxicity. However, the mechanism of toxicity evolution is not fully clarified currently. This study demonstrates that photoaging promotes an increase in the oxidative potential (OP) of atmospheric PM by about 30%, and the increased OP is mainly attributed to the production of secondary organic compounds, while water-soluble metal ions contribute only 11%. The OP of nonextractable matters (NEMs) of atmospheric PM was mostly increased after photoaging, followed by water-soluble matters (WSMs). NEM can produce quinone-like functional groups and secondary persistent free radicals during photoaging, which are most likely to produce reactive oxygen species (ROS). For WSM, the conversion of low-oxidation humic-like substances (HULIS) to high-oxidation HULIS is the main reason for the increase in OP. Quinones, nitrophenols, and N-containing heterocycles are the OP contributors produced during the conversion process. Among them, quinones are the main secondary oxidizing active compounds, while nitro-phenolic compounds and N-containing heterocyclic compounds may play a catalyst-like role, facilitating the production of oxidizing active compounds and ROS in the newly converted high-oxidation HULIS. This study clarifies the secondary OP generation mechanism and provides new insights into the uncertainty of PM toxicity during atmospheric aging.
Collapse
Affiliation(s)
- Qingwen Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qingcai Chen
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Hao Lin
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiale Ding
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Tong Sha
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yuemei Han
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| |
Collapse
|
2
|
Alam M, Sitter JD, Vannucci AK, Webster JP, Matiasek SJ, Alpers CN, Baalousha M. Environmentally persistent free radicals and other paramagnetic species in wildland-urban interface fire ashes. CHEMOSPHERE 2024; 363:142950. [PMID: 39069099 DOI: 10.1016/j.chemosphere.2024.142950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Wildland-urban interface (WUI) fires consume fuels, such as vegetation and structural materials, leaving behind ash composed primarily of pyrogenic carbon and metal oxides. However, there is currently limited understanding of the role of WUI fire ash from different sources as a source of paramagnetic species such as environmentally persistent free radicals (EPFRs) and transition metals in the environment. Electron paramagnetic resonance (EPR) was used to detect and quantify paramagnetic species, including organic persistent free radicals and transition metal spins, in fifty-three fire ash and soil samples collected following the North Complex Fire and the Sonoma-Lake-Napa Unit (LNU) Lightning Complex Fire, California, 2020. High concentrations of organic EPFRs (e.g., 1.4 × 1014 to 1.9 × 1017 spins g-1) were detected in the studied WUI fire ash along with other paramagnetic species such as iron and manganese oxides, as well as Fe3+ and Mn2+ ions. The mean concentrations of EPFRs in various ash types decreased following the order: vegetation ash (1.1 × 1017 ± 1.1 × 1017 spins g-1) > structural ash (1.6 × 1016 ± 3.7 × 1016 spins g-1) > vehicle ash (6.4 × 1015 ± 8.6 × 1015 spins g-1) > soil (3.2 × 1015 ± 3.7 × 1015 spins g-1). The mean concentrations of EPFRs decreased with increased combustion completeness indicated by ash color; black (1.1 × 1017 ± 1.1 × 1017 spins g-1) > white (2.5 × 1016 ± 4.4 × 1016 spins g-1) > gray (1.8 × 1016 ± 2.4 × 1016 spins g-1). In contrast, the relative amounts of reduced Mn2+ ions increased with increased combustion completeness. Thus, WUI fire ash is an important global source of EPFRs and reduced metal species (e.g., Mn2+). Further research is needed to underpin the formation, transformation, and environmental and human health impacts of these paramagnetic species in light of the projected increased frequency, size, and severity of WUI fires.
Collapse
Affiliation(s)
- Mahbub Alam
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | - James D Sitter
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, United States
| | - Aaron K Vannucci
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, United States
| | - Jackson P Webster
- Department of Civil Engineering, California State University Chico, 400 W 1st St, Chico, CA, 95929, United States
| | - Sandrine J Matiasek
- Department of Earth and Environmental Sciences, California State University Chico, 400 W 1st St, Chico, CA, 95929, United States
| | - Charles N Alpers
- U.S. Geological Survey, California Water Science Center, 6000 J Street, Sacramento, CA, United States
| | - Mohammed Baalousha
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States.
| |
Collapse
|
3
|
Kono M, Su TY, Chang YY, Chou CCK, Lee CT, Chen PC, Wu WT. Assessing the impact of specific PM 2.5-Bound metallic elements on asthma emergency department visits: A case-crossover study in Taiwan. ENVIRONMENTAL RESEARCH 2024; 255:119130. [PMID: 38735375 DOI: 10.1016/j.envres.2024.119130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
OBJECTIVES This study aims to assess the specific PM2.5-bound metallic elements that contribute to asthma emergency department visits by using a case-crossover study design. METHODS This study analyzed data from 11,410 asthma emergency department visits as case group and 22,820 non-asthma onset dates occurring one week and two weeks preceding the case day as controls from 2017 to 2020. PM2.5 monitoring data and 35 PM.2.5-bound metallic elements from six different regions in Taiwan were collected. Conditional logistic regression models were used to assess the relationship between asthma and PM2.5-bound metallic elements. RESULTS Our investigation revealed a statistically significant risk of asthma emergency department visits associated with PM2.5 exposure at lag 0, 1, 2, and 3 during autumn. Additionally, PM2.5-bound hafnium (Hf), thallium (Tl), rubidium (Rb), and aluminum (Al) exhibited a consistently significant positive correlation with asthma emergency department visits at lags 1, 2, and 3. In stratified analyses by area, age, and sex, PM2.5-bound Hf showed a significant and consistent correlation. CONCLUSIONS This study provides evidence of PM2.5-bound metallic elements effects in asthma exacerbations, particularly for Hf. It emphasizes the importance of understanding the origins of these metallic elements and pursuing emission reductions to mitigate regional health risks.
Collapse
Affiliation(s)
- Miku Kono
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County, Taiwan
| | - Ting-Yao Su
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County, Taiwan; School of Public Health, National Defense Medical Center, Taipei City, Taiwan
| | - Yu-Yin Chang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County, Taiwan
| | | | - Chung-Te Lee
- Graduate Institute of Environmental Engineering, National Central University, Taoyuan City, Taiwan
| | - Pau-Chung Chen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County, Taiwan; Institute of Environmental and Occupational Health Sciences, National Taiwan University, Taipei, Taiwan; Department of Public Health, National Taiwan University College of Public Health, Taipei, Taiwan; Department of Environmental and Occupational Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wei-Te Wu
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County, Taiwan; Institute of Environmental and Occupational Health Sciences, National Yang-Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
4
|
Pan W, He S, Xue Q, Liu X, Fu J, Xiao K, Zhang A. First-principles study on the heterogeneous formation of environmentally persistent free radicals (EPFRs) over α-Fe 2O 3(0001) surface: Effect of oxygen vacancy. J Environ Sci (China) 2024; 142:279-289. [PMID: 38527893 DOI: 10.1016/j.jes.2023.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 03/27/2024]
Abstract
Metal oxides with oxygen vacancies have a significant impact on catalytic activity for the transformation of organic pollutants in waste-to-energy (WtE) incineration processes. This study aims to investigate the influence of hematite surface oxygen point defects on the formation of environmentally persistent free radicals (EPFRs) from phenolic compounds based on the first-principles calculations. Two oxygen-deficient conditions were considered: oxygen vacancies at the top surface and on the subsurface. Our simulations indicate that the adsorption strength of phenol on the α-Fe2O3(0001) surface is enhanced by the presence of oxygen vacancies. However, the presence of oxygen vacancies has a negative impact on the dissociation of the phenol molecule, particularly for the surface with a defective point at the top layer. Thermo-kinetic parameters were established over a temperature range of 300-1000 K, and lower reaction rate constants were observed for the scission of phenolic O-H bonds over the oxygen-deficient surfaces compared to the pristine surface. The negative effects caused by the oxygen-deficient conditions could be attributed to the local reduction of FeIII to FeII, which lower the oxidizing ability of surface reaction sites. The findings of this study provide us a promising approach to regulate the formation of EPFRs.
Collapse
Affiliation(s)
- Wenxiao Pan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shuming He
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310012, China
| | - Qiao Xue
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Xian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310012, China
| | - Kang Xiao
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310012, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Alfei S, Schito GC, Schito AM, Zuccari G. Reactive Oxygen Species (ROS)-Mediated Antibacterial Oxidative Therapies: Available Methods to Generate ROS and a Novel Option Proposal. Int J Mol Sci 2024; 25:7182. [PMID: 39000290 PMCID: PMC11241369 DOI: 10.3390/ijms25137182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
The increasing emergence of multidrug-resistant (MDR) pathogens causes difficult-to-treat infections with long-term hospitalizations and a high incidence of death, thus representing a global public health problem. To manage MDR bacteria bugs, new antimicrobial strategies are necessary, and their introduction in practice is a daily challenge for scientists in the field. An extensively studied approach to treating MDR infections consists of inducing high levels of reactive oxygen species (ROS) by several methods. Although further clinical investigations are mandatory on the possible toxic effects of ROS on mammalian cells, clinical evaluations are extremely promising, and their topical use to treat infected wounds and ulcers, also in presence of biofilm, is already clinically approved. Biochar (BC) is a carbonaceous material obtained by pyrolysis of different vegetable and animal biomass feedstocks at 200-1000 °C in the limited presence of O2. Recently, it has been demonstrated that BC's capability of removing organic and inorganic xenobiotics is mainly due to the presence of persistent free radicals (PFRs), which can activate oxygen, H2O2, or persulfate in the presence or absence of transition metals by electron transfer, thus generating ROS, which in turn degrade pollutants by advanced oxidation processes (AOPs). In this context, the antibacterial effects of BC-containing PFRs have been demonstrated by some authors against Escherichia coli and Staphylococcus aureus, thus giving birth to our idea of the possible use of BC-derived PFRs as a novel method capable of inducing ROS generation for antimicrobial oxidative therapy. Here, the general aspects concerning ROS physiological and pathological production and regulation and the mechanism by which they could exert antimicrobial effects have been reviewed. The methods currently adopted to induce ROS production for antimicrobial oxidative therapy have been discussed. Finally, for the first time, BC-related PFRs have been proposed as a new source of ROS for antimicrobial therapy via AOPs.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy
| | - Gian Carlo Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy
| | - Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy
| | - Guendalina Zuccari
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy
| |
Collapse
|
6
|
Zhang J, Liu K, Tang X, Wang XJ. Dysfunction of Nrf2-regulated cellular defence system and JNK activation induced by high dose of fly Ash particles are associated with pulmonary injury in mouse lungs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116239. [PMID: 38518612 DOI: 10.1016/j.ecoenv.2024.116239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 03/24/2024]
Abstract
The mechanisms of the exposure to fine particulate matter (PM) as a risk factor for pulmonary injury are not fully understood. The transcription factor, NF-E2-related factor 2 (Nrf2), plays a key role in protection lung against PM insult and cancer chemoprevention. In this study, F3-S fly ash particles from a municipal waste incinerator were evaluated as a PM model. We found that F3-S triggered hierarchical oxidative stress responses involving the prolonged activation of the cytoprotective Nrf2 transcriptional program via Keap1 Cys151 modification, and c-Jun NH2-terminal kinase (JNK) phosphorylation at higher doses. In mouse lungs exposed to fly ash particles at a low dose (10-20 mg/kg), Nrf2 signalling was upregulated, while in those exposed to a high fly ash particle dose (40 mg/kg), there was significant activation of JNK, and this correlated with Nrf2 phosphorylation and the downregulation of antioxidant response element (ARE)-driven genes. The JNK inhibitor, SP600125, reversed Nrf2 phosphorylation, and downregulation of detoxifying enzymes. Silencing JNK expression in mouse lungs using adenoviral shRNA inhibited JNK activation and Nrf2 phosphorylation, promoted ARE-driven gene expression, and reduced pulmonary injury. Furthermore, we found that the 452-515 amino acid region within the Neh1 domain of Nrf2 was required for its interaction with P-JNK. We demonstrated that Nrf2 was an important P-JNK target in fly ash-induced pulmonary toxicity. JNK phosphorylated Nrf2, leading to a dysfunction of the Nrf2-mediated defence system.
Collapse
Affiliation(s)
- Jingwen Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention of the Ministry of Education), and Department of Pharmacology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, PR China
| | - Kaihua Liu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention of the Ministry of Education), and Department of Pharmacology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, PR China
| | - Xiuwen Tang
- Department of Biochemistry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, PR China.
| | - Xiu Jun Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention of the Ministry of Education), and Department of Pharmacology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, PR China.
| |
Collapse
|
7
|
Zhao X, Tang L, Zhang S, Wang J, Czech B, Oleszczuk P, Minkina T, Gao Y. Formation and biotoxicity of environmentally persistent free radicals in steelworks soil under thermal treatment. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133697. [PMID: 38325092 DOI: 10.1016/j.jhazmat.2024.133697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/08/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Thermal treatment are commonly used to address organic contaminated soils. In particular, the pyrolysis of organic substances can result in the creation of environmentally persistent free radicals (EPFRs). We investigated a steelworks site in Chongqing (China) to observe changes in EPFRs before and after thermal treatment. Our findings revealed that the EPFRs were carbon-centered radicals with a g-factor < 2.0030 and a spin density ranging from n.d.-5.23 × 1015 spins/mg. The formation of EPFRs was driving by polycyclic aromatic hydrocarbons (PAHs), Mn, Cu, and total organic carbon (TOC). Following the thermal treatment, the spin densities of EPFRs increased by a factor of 0.25 to 1.81, with maximum levels reached at 300 °C. High molecular weight PAHs exhibited high heat capacity, enabling the generation of more EPFRs. The thermal decay of EPFRs occurred in two stages, with the shortest 1/e lifetime lasting up to 16.8 h. Raising the temperature or prolonging time can significantly reduce EPFRs levels. Thermal treatment increased the generation of EPFRs, hydroxyl radicals (•OH) and superoxide radical (•O2-), leading to a decrease in bacterial luminescence. Specifically, •OH contributed to approximately 73% of the B. brilliantus inhibition. Our results highlight that the thermal treatment significantly enhance EPFRs concentrations, and the treated soil remained ecologically risky. The knowledge of the formation of EPFRs and their biotoxicity is shedding new light on the thermal treatment risk management.
Collapse
Affiliation(s)
- Xuqiang Zhao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Lei Tang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shuai Zhang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jian Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Bożena Czech
- Department of Radiochemistry and Environmental Chemistry, Maria Curie-Skłodowska University, Lublin 20-031, Poland
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Maria Curie-Skłodowska University, Lublin 20-031, Poland
| | - Tatiana Minkina
- Department of Soil Science, Southern Federal University, Rostov-on-Don, Russia
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
8
|
Ahmed SM, Oumnov RA, Kizilkaya O, Hall RW, Sprunger PT, Cook RL. Role of Electronegativity in Environmentally Persistent Free Radicals (EPFRs) Formation on ZnO. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:5179-5188. [PMID: 38567373 PMCID: PMC10983065 DOI: 10.1021/acs.jpcc.3c08231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Environmentally persistent free radicals (EPFRs), a group of emerging pollutants, have significantly longer lifetimes than typical free radicals. EPFRs form by the adsorption of organic precursors on a transition metal oxide (TMO) surface involving electron charge transfer between the organic and TMO. In this paper, dihalogenated benzenes were incorporated to study the role of electronegativity in the electron transfer process to obtain a fundamental knowledge of EPFR formation mechanism on ZnO. Upon chemisorption on ZnO nanoparticles at 250 °C, electron paramagnetic resonance (EPR) confirms the formation of oxygen adjacent carbon-centered organic free radicals with concentrations between 1016 and 1017 spins/g. The radical concentrations show a trend of 1,2-dibromobenzene (DBB) > 1,2-dichlorobenzene (DCB) > 1,2-difluorobenzene (DFB) illustrating the role of electronegativity on the amount of radical formation. X-ray absorption spectroscopy (XAS) confirms the reduction of the Zn2+ metal center, contrasting previous experimental evidence of an oxidative mechanism for ZnO single crystal EPFR formation. The extent of Zn reduction for the different organics (DBB > DCB > DFB) also correlates to their polarity. DFT calculations provide theoretical evidence of ZnO surface reduction and exhibit a similar trend of degree of reduction for different organics, further building on the experimental findings. The lifetimes of the EPFRs formed confirm a noteworthy persistency.
Collapse
Affiliation(s)
- Syed Monjur Ahmed
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Reuben A. Oumnov
- Department
of Natural Sciences and Mathematics, Dominican
University of California, San Rafael, California 94901, United States
| | - Orhan Kizilkaya
- Center for
Advanced Microstructures and Devices, Louisiana
State University, 6980
Jefferson Highway, Baton Rouge, Louisiana 70806, United States
| | - Randall W. Hall
- Department
of Natural Sciences and Mathematics, Dominican
University of California, San Rafael, California 94901, United States
| | - Phillip T. Sprunger
- Center for
Advanced Microstructures and Devices, Louisiana
State University, 6980
Jefferson Highway, Baton Rouge, Louisiana 70806, United States
- Department
of Physics and Astronomy, Louisiana State
University, Baton Rouge, Louisiana 70803, United States
| | - Robert L. Cook
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
9
|
Wang L, Zhao W, Luo P, He Q, Zhang W, Dong C, Zhang Y. Environmentally persistent free radicals in PM 2.5 from a typical Chinese industrial city during COVID-19 lockdown: The unexpected contamination level variation. J Environ Sci (China) 2024; 135:424-432. [PMID: 37778816 PMCID: PMC9418963 DOI: 10.1016/j.jes.2022.08.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 05/16/2023]
Abstract
The outbreak of COVID-19 has caused concerns globally. To reduce the rapid transmission of the virus, strict city lockdown measures were conducted in different regions. China is the country that takes the earliest home-based quarantine for people. Although normal industrial and social activities were suspended, the spread of virus was efficiently controlled. Simultaneously, another merit of the city lockdown measure was noticed, which is the improvement of the air quality. Contamination levels of multiple atmospheric pollutants were decreased. However, in this work, 24 and 14 air fine particulate matter (PM2.5) samples were continuously collected before and during COVID-19 city lockdown in Linfen (a typical heavy industrial city in China), and intriguingly, the unreduced concentration was found for environmentally persistent free radicals (EPFRs) in PM2.5 after normal life suspension. The primary non-stopped coal combustion source and secondary Cu-related atmospheric reaction may have impacts on this phenomenon. The cigarette-based assessment model also indicated possible exposure risks of PM2.5-bound EPFRs during lockdown of Linfen. This study revealed not all the contaminants in the atmosphere had an apparent concentration decrease during city lockdown, suggesting the pollutants with complicated sources and formation mechanisms, like EPFRs in PM2.5, still should not be ignored.
Collapse
Affiliation(s)
- Lingyun Wang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China; Center of Advanced Analysis and Gene Sequencing, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Wuduo Zhao
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China; Center of Advanced Analysis and Gene Sequencing, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Peiru Luo
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China; Center of Advanced Analysis and Gene Sequencing, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Qingyun He
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China; Center of Advanced Analysis and Gene Sequencing, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Wenfen Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China; Center of Advanced Analysis and Gene Sequencing, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Yanhao Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China.
| |
Collapse
|
10
|
Vejerano EP, Ahn J. Leaves are a Source of Biogenic Persistent Free Radicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2023; 10:662-667. [PMID: 37577362 PMCID: PMC10413942 DOI: 10.1021/acs.estlett.3c00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 08/15/2023]
Abstract
Nonsenescent and senescent leaves of selected coniferous and broadleaf plants contained substantial levels of naturally occurring persistent free radicals (PFRs). These biogenic PFRs (BPFRs) were stable and persistent despite multiple wetting and drying cycles, implying that BPFRs can leach and sorb on soil particles. Results suggest that endogenous chemicals in plants and their transformation byproducts can stabilize unpaired electrons in leaves under ambient conditions. Thus, the vast amount and perpetual supply of leaf litter is an unaccounted natural source of BPFRs. If toxic, inhaling and accidentally ingesting fine soil dust and powder from degraded leaf litter may increase our environmental and health burdens to PFRs. We expect that this finding will generate more studies on natural sources of PFRs, establish their properties, and distinguish them from those formed from combustion and thermal processes.
Collapse
Affiliation(s)
- Eric P. Vejerano
- Center for Environmental
Nanoscience and Risk, Department of Environmental Health Sciences,
Arnold School of Public Health, University
of South Carolina, Columbia, South Carolina 29208, United States
| | - Jeonghyeon Ahn
- Center for Environmental
Nanoscience and Risk, Department of Environmental Health Sciences,
Arnold School of Public Health, University
of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
11
|
Azam S, Kurashov V, Golbeck JH, Bhattacharyya S, Zheng S, Liu S. Comparative 6+studies of environmentally persistent free radicals on nano-sized coal dusts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163163. [PMID: 37003338 DOI: 10.1016/j.scitotenv.2023.163163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 05/13/2023]
Abstract
Coal dust is the major hazardous pollutant in the coal mining environment. Recently environmentally persistent free radicals (EPFRs) were identified as one of the key characteristics which could impart toxicity to the particulates released into the environment. The present study used Electron Paramagnetic Resonance (EPR) spectroscopy to analyze the characteristics of EPFRs present in different types of nano-size coal dust. Further, it analyzed the stability of the free radicals in the respirable nano-size coal dust and compared their characteristics in terms of EPR parameters (spin counts and g-values). It was found that free radicals in coal are remarkably stable (can remain intact for several months). Also, Most of the EPFRs in the coal dust particles are either oxygenated carbon centered or a mixture of carbon and oxygen-centered free radicals. EPFRs concentration in the coal dust was found to be proportional to the carbon content of coal. The characteristic g-values were found to be inversely related to the carbon content of coal dust. The spin concentrations in the lignite coal dust were between 3.819 and 7.089 μmol/g, whereas the g-values ranged from 2.00352 to 2.00363. The spin concentrations in the bituminous coal dust were between 11.614 and 25.562 μmol/g, whereas the g-values ranged from 2.00295 to 2.00319. The characteristics of EPFRs present in coal dust identified by this study are similar to the EPFRs, which were found in other environmental pollutants such as combustion-generated particulates, PM2.5, indoor dust, wildfires, biochar, haze etc., in some of the previous studies. Considering the toxicity analysis of environmental particulates containing EPFRs similar to those identified in the present study, it can be confidently hypothesized that the EPFRs in the coal dust might play a major role in modulating the coal dust toxicity. Hence, it is recommended that future studies should analyze the role of EPFR-loaded coal dust in mediating the inhalation toxicity of coal dust.
Collapse
Affiliation(s)
- Sikandar Azam
- Department of Energy and Mineral Engineering, G(3) Center and Energy Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Vasily Kurashov
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - John H Golbeck
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Sekhar Bhattacharyya
- Department of Energy and Mineral Engineering, G(3) Center and Energy Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Siyang Zheng
- Department of Biomedical Engineering, College of Engineering, Carnegie Mellon University, 15213, USA
| | - Shimin Liu
- Department of Energy and Mineral Engineering, G(3) Center and Energy Institute, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
12
|
Jia SM, Wang DQ, Liu LY, Zhang ZF, Ma WL. Size-resolved environmentally persistent free radicals in cold region atmosphere: Implications for inhalation exposure risk. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130263. [PMID: 36332281 DOI: 10.1016/j.jhazmat.2022.130263] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Environmental persistent free radicals (EPFRs) have attracted more attentions recently due to their potential adverse effects to human. EPFRs in full-size range particles were comprehensively investigated in this study. The average EPFRs concentration during heating season was 3.01 × 1014 spins/m3, which was much higher than that in non-heating season (4.30 × 1013 spins/m3). The highest concentration of EPFRs presented in 0.56-1.0 µm particles during heating season, while it shifted to 5.6-10 µm particles during non-heating season. Besides, the contributions of EPFRs on PM>10 to the total concentration of EPFRs cannot be neglected, especially in the non-heating season. The International Commission on Radiological Protection model and the specific factors of the Chinese population were applied to evaluate the inhalation exposure risk of EPFRs. The results indicated that the exposure levels of EPFRs to the upper respiratory tract were much higher. The daily exposure dose of EPFRs suggested the inhalation exposure risk of 3-4 years old was higher than other age groups. In summary, these finding provided new insights for the full range particle size distribution and the inhalation exposure risk of EPFRs, which improved our understanding on the environmental fate and the health risk of EPFRs in atmosphere.
Collapse
Affiliation(s)
- Shi-Ming Jia
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| | - De-Qi Wang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China.
| |
Collapse
|
13
|
Li H, Chen Q, Wang C, Wang R, Sha T, Yang X, Ainur D. Pollution characteristics of environmental persistent free radicals (EPFRs) and their contribution to oxidation potential in road dust in a large city in northwest China. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130087. [PMID: 36206715 DOI: 10.1016/j.jhazmat.2022.130087] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Environmental persistent free radicals (EPFRs) are new environmental health risk substances in the atmosphere, and their oxidative toxicity (OT) has not been strongly confirmed. In this study, the fugitive characteristics of EPFRs in road dust in a metropolitan city located in northwest China, and their potential oxidative toxicity were investigated. The results showed that the road dust contains Carbon-centered EPFRs with the mean mass concentration of (6.6 ± 5.0) × 1017 spins/g. EPFRs in road dust are degradable and have a half-life of 4.5 years. The water insoluble (WIS) components contribute 71% to the oxidative toxicity of road dust and show a rapid toxicity generation process, while the oxidative toxicity generation rate of water-soluble dust is more stable. Based on the positive matrix factorization (PMF) model, the contribution of EPFRs-dominated factors to Total-OT and WIS-OT is 17.3% and 33.3%, respectively. The PMF model results indicated that different types of EPFRs contributed differently to the oxidative toxicity of road dust and Carbon-centered EPFRs are more likely to participate in reactive oxygen species generation. Our results highlight that the EPFRs are an important contributor to the oxidative toxicity of atmospheric particulate matter, and their oxidative toxicity is dependent on the types of free radicals. It also provides an important insight into the influence of other potentially toxic substances on the oxidative toxicity of atmospheric PM.
Collapse
Affiliation(s)
- Hao Li
- School of Environmental Science and Engineering., Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qingcai Chen
- School of Environmental Science and Engineering., Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Chao Wang
- Beijing China Railway Construction Technology Co., LTD, Beijing 100040, China
| | - Ruihe Wang
- Beijing China Railway Construction Technology Co., LTD, Beijing 100040, China
| | - Tong Sha
- School of Environmental Science and Engineering., Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiqi Yang
- School of Environmental Science and Engineering., Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Dyussenova Ainur
- School of Environmental Science and Engineering., Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
14
|
Cormier SA, Yamamoto A, Short KR, Vu L, Suk WA. Environmental Impacts on COVID-19: Mechanisms of Increased Susceptibility. Ann Glob Health 2022; 88:94. [PMID: 36348703 PMCID: PMC9585976 DOI: 10.5334/aogh.3907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/28/2022] [Indexed: 11/20/2022] Open
Abstract
Background Since 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in >554M cases and >6.3M deaths worldwide. The disease caused by SARS-CoV-2, COVID-19, has resulted in a broad range of clinical symptoms differing in severity. Initially, the elderly were identified as particularly susceptible to severe COVID-19, with children experiencing less severe disease. However, as new variants arise, the epidemiology of SARS-CoV-2 infection is changing, and the disease severity in children is increasing. While environmental impacts on COVID-19 have been described, the underlying mechanisms are poorly described. Objective The Pacific Basin Consortium for Environment and Health (PBC) held meeting on September 16, 2021, to explore environmental impacts on infectious diseases, including COVID-19. Methods The PBC is an international group of environmental scientists and those interested in health outcomes. The PBC met to present preliminary data and discuss the role of exposures to airborne pollutants in enhancing susceptibility to and severity of respiratory tract viral infections, including COVID-19. Findings Analysis of the literature and data presented identified age as an important factor in vulnerability to air pollution and enhanced COVID-19 susceptibility and severity. Mechanisms involved in increasing severity of COVID-19 were discussed, and gaps in knowledge were identified. Conclusions Exposure to particulate matter (PM) pollution enhanced morbidity and mortality to COVID-19 in a pediatric population associated with induction of oxidative stress. In addition, free radicals present on PM can induce rapid changes in the viral genome that can lead to vaccine escape, altered host susceptibility, and viral pathogenicity. Nutritional antioxidant supplements have been shown to reduce the severity of viral infections, inhibit the inflammatory cytokine storm, and boost host immunity and may be of benefit in combating COVID-19.
Collapse
Affiliation(s)
- Stephania A. Cormier
- Louisiana State University, Department of Biological Sciences, and Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Ayaho Yamamoto
- The University of Queensland, Child Health Research Centre, South Brisbane, QLD, Australia
| | - Kirsty R. Short
- The University of Queensland, School of Chemistry and Molecular Biosciences, Brisbane, QLD, Australia
| | - Luan Vu
- Louisiana State University, Department of Biological Sciences, and Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - William A. Suk
- National Institute of Environmental Health Sciences, Superfund Research Program, 530 Davis Drive, Durham, NC, USA
| |
Collapse
|
15
|
Popek R, Mahawar L, Shekhawat GS, Przybysz A. Phyto-cleaning of particulate matter from polluted air by woody plant species in the near-desert city of Jodhpur (India) and the role of heme oxygenase in their response to PM stress conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:70228-70241. [PMID: 35585451 DOI: 10.1007/s11356-022-20769-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Particulate matter (PM) is one of the most dangerous pollutants in the air. Urban vegetation, especially trees and shrubs, accumulates PM and reduces its concentration in ambient air. The aim of this study was to examine 10 tree and shrub species common for the Indian city of Jodhpur (Rajasthan) located on the edge of the Thar Desert and determine (1) the accumulation of surface and in-wax PM (both in three different size fractions), (2) the amount of epicuticular waxes on foliage, (3) the concentrations of heavy metals (Cd and Cu) on/in the leaves of the examined species, and (4) the level of heme oxygenase enzyme in leaves that accumulate PM and heavy metals. Among the investigated species, Ficus religiosa L. and Cordia myxa L. accumulated the greatest amount of total PM. F. religiosa is a tall tree with a lush, large crown and leaves with wavy edge, convex veins, and long petioles, while C. myxa have hairy leaves with convex veins. The lowest PM accumulation was recorded for drought-resistant Salvadora persica L. and Azadirachta indica A. Juss., which is probably due to their adaptation to growing conditions. Heavy metals (Cu and Cd) were found in the leaves of almost every examined species. The accumulation of heavy metals (especially Cu) was positively correlated with the amount of PM deposited on the foliage. A new finding of this study indicated a potentially important role of HO in the plants' response to PM-induced stress. The correlation between HO and PM was stronger than that between HO and HMs. The results obtained in this study emphasise the role of plants in cleaning polluted air in conditions where there are very high concentrations of PM.
Collapse
Affiliation(s)
- Robert Popek
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences - SGGW (WULS-SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland.
| | - Lovely Mahawar
- Plant Biotechnology and Molecular Biology Laboratory, Department of Botany, Jai Narain Vyas University, Jodhpur, 342001, India
| | - Gyan Singh Shekhawat
- Plant Biotechnology and Molecular Biology Laboratory, Department of Botany, Jai Narain Vyas University, Jodhpur, 342001, India
| | - Arkadiusz Przybysz
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences - SGGW (WULS-SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| |
Collapse
|
16
|
Wang L, Liang D, Liu J, Du L, Vejerano E, Zhang X. Unexpected catalytic influence of atmospheric pollutants on the formation of environmentally persistent free radicals. CHEMOSPHERE 2022; 303:134854. [PMID: 35533943 DOI: 10.1016/j.chemosphere.2022.134854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 06/14/2023]
Abstract
Environmentally persistent free radicals (EPFRs) have been recognized as harmful and persistent environmental pollutants. In polluted regions, many acidic and basic atmospheric pollutants, which are present at high concentrations, may influence the extent of the formation of EPFRs. In the present paper, density functional theory (DFT) and ab-initio molecular dynamics (AIMD) calculations were performed to investigate the formation mechanisms of EPFRs with the influence of the acidic pollutants sulfuric acid (SA), nitric acid (NA), organic acid (OA), and the basic pollutants, ammonia (A), dimethylamine (DMA) on α-Al2O3 (0001) surface. Results indicate that both acidic and basic pollutants can enhance the formation of EPFRs by acting as "bridge" or "semi-bridge" roles by proceeding via a barrierless process. Acidic pollutants enhance the formation of EPFRs by first transferring its hydrogen atom to the α-Al2O3 surface and subsequently reacting with phenol to form an EPFR. In contrast, basic pollutants enhance the formation of EPFRs by first abstracting a hydrogen atom from phenol to form a phenoxy EPFR and eventually interacting with the α-Al2O3 surface. These new mechanistic insights will inform in understanding the abundant EPFRs in polluted regions with high mass concentrations of acidic and basic pollutants.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Danli Liang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiarong Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China; Key Laboratory of National Land Space Planning and Disaster Emergency Management of Inner Mongolia, School of Resources, Environment and Architectural Engineering, Chifeng University, Chifeng, 024000, China
| | - Lin Du
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Eric Vejerano
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, 29208, United States
| | - Xiuhui Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
17
|
Khachatryan L, Barekati-Goudarzi M, Asatryan R, Ozarowski A, Boldor D, Lomnicki SM, Cormier SA. Metal-Free Biomass-Derived Environmentally Persistent Free Radicals (Bio-EPFRs) from Lignin Pyrolysis. ACS OMEGA 2022; 7:30241-30249. [PMID: 36061701 PMCID: PMC9434622 DOI: 10.1021/acsomega.2c03381] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
To assess contribution of the radicals formed from biomass burning, our recent findings toward the formation of resonantly stabilized persistent radicals from hydrolytic lignin pyrolysis in a metal-free environment are presented in detail. Such radicals have particularly been identified during fast pyrolysis of lignin dispersed into the gas phase in a flow reactor. The trapped radicals were analyzed by X-band electron paramagnetic resonance (EPR) and high-frequency (HF) EPR spectroscopy. To conceptualize available data, the metal-free biogenic bulky stable radicals with extended conjugated backbones are suggested to categorize as a new type of metal-free environmentally persistent free radicals (EPFRs) (bio-EPFRs). They can be originated not only from lignin/biomass pyrolysis but also during various thermal processes in combustion reactors and media, including tobacco smoke, anthropogenic sources and wildfires (forest/bushfires), and so on. The persistency of bio-EPFRs from lignin gas-phase pyrolysis was outlined with the evaluated lifetime of two groups of radicals being 33 and 143 h, respectively. The experimental results from pyrolysis of coniferyl alcohol as a model compound of lignin in the same fast flow reactor, along with our detailed potential energy surface analyses using high-level DFT and ab initio methods toward decomposition of a few other model compounds reported earlier, provide a mechanistic view on the formation of C- and O-centered radicals during lignin gas-phase pyrolysis. The preliminary measurements using HF-EPR spectroscopy also support the existence of O-centered radicals in the radical mixtures from pyrolysis of lignin possessing a high g value (2.0048).
Collapse
Affiliation(s)
- Lavrent Khachatryan
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | | | - Rubik Asatryan
- Department
of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Andrew Ozarowski
- National
High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Florida, Tallahassee 32310, United States
| | - Dorin Boldor
- Department
of Biological and Agricultural Engineering, LSU AgCenter and LSU A&M College, Baton Rouge, Louisiana 70803, United States
| | - Slawomir M. Lomnicki
- Department
of Environmental Sciences, Louisiana State
University, Baton Rouge, Louisiana 70803, United States
| | - Stephania A. Cormier
- Department
of Biological Sciences, LSU Superfund Research
Program and Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808, United States
| |
Collapse
|
18
|
Characteristics of Environmentally Persistent Free Radicals in PM2.5 and the Influence of Air Pollutants in Shihezi, Northwestern China. TOXICS 2022; 10:toxics10070341. [PMID: 35878247 PMCID: PMC9321939 DOI: 10.3390/toxics10070341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 11/17/2022]
Abstract
Environmentally persistent free radicals (EPFRs) are a kind of hazardous substance that exist stably in the atmosphere for a long time. EPFRs combined with fine particulate matter (PM2.5) can enter the human respiratory tract through respiration, causing oxidative stress and DNA damage, and they are also closely related to lung cancer. In this study, the inhalation risk for EPFRs in PM2.5 and factors influencing this risk were assessed using the equivalent number of cigarette tar EPFRs. The daily inhalation exposure for EPFRs in PM2.5 was estimated to be equivalent to 0.66–8.40 cigarette tar EPFRs per day. The concentration level and species characteristics were investigated using electron paramagnetic resonance spectroscopy. The concentration of EPFRs in the study ranged from 1.353–4.653 × 1013 spins/g, and the types of EPFRs were mainly oxygen- or carbon-centered semiquinone-type radicals. Our study showed that there is a strong correlation between the concentrations of EPFRs and conventional pollutants, except for sulfur dioxide. The major factors influencing EPFR concentration in the atmosphere were temperature and wind speed; the higher the temperature and wind speed, the lower the concentration of EPFRs. The findings of this study provide an important basis for further research on the formation mechanism and health effects of EPFRs.
Collapse
|
19
|
Zhu Y, Wei J, Li J. Decontamination of Cr(VI) from water using sewage sludge-derived biochar: Role of environmentally persistent free radicals. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Han C, Xu R, Wei X, Zhang Y, Liu J, Zhang Y, Ye T, Wang S, Yu W, Guo S, Han K, Ding Y, Wang J, Guo Y, Li S. Surrounding road density of child care centers in Australia. Sci Data 2022; 9:140. [PMID: 35361783 PMCID: PMC8971508 DOI: 10.1038/s41597-022-01172-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 01/27/2022] [Indexed: 11/08/2022] Open
Abstract
High surrounding road density could increase traffic-related air pollution, noise and the risk of traffic injuries, which are major public health concerns for children. We collected geographical data for all childcare centers (16,146) in Australia and provided the data on the road density surrounding them. The road density was represented by the child care center's nearest distance to main road and motorway, and the length of main road/motor way within 100~1000-meter buffer zone surrounding the child care center. We also got the data of PM2.5 concentration from 2013 to 2018 and standard Normalized Difference Vegetation Index (NDVI) data from 2013 to 2019 according to the longitude and latitude of the child care centers. This data might help researchers to evaluate the health impacts of road density on child health, and help policy makers to make transportation, educational and environmental planning decisions to protect children from exposure to traffic-related hazards in Australia.
Collapse
Affiliation(s)
- Chunlei Han
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Rongbin Xu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Xiaoyan Wei
- Yunnan Provincial Archives of Surveying and Mapping, Kunming, Yunnan, 650034, P.R. China
- Yunnan Provincial Geomatics Center, Kunming, Yunnan, 650034, P.R. China
| | - Yajuan Zhang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, P.R. China
| | - Jiahui Liu
- School of Geography and Ecotourism, Southwest Forestry University, Kunming, Yunnan, 650051, P.R. China
| | - Yuguo Zhang
- School of Geography and Ecotourism, Southwest Forestry University, Kunming, Yunnan, 650051, P.R. China
| | - Tingting Ye
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Siwei Wang
- Tangshan Gangxin Technology Development Co., Ltd, Tangshan, Hebei, 063611, P.R. China
| | - Wenhua Yu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Suying Guo
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Kun Han
- Guotai Junan Securities, Shanghai, 200030, P.R. China
- School of Economics, Fudan University, Shanghai, 200433, P.R. China
| | - Yimin Ding
- School of software, Tongji University, Shanghai, 200092, P.R. China
| | - Jinfeng Wang
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Yuming Guo
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China.
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia.
| | - Shanshan Li
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
21
|
Gupta NK, López-Olvera A, González-Zamora E, Martínez-Ahumada E, Ibarra I. Sulfur Dioxide Capture in Metal‐Organic Frameworks, Metal‐Organic Cages, and Porous Organic Cages. Chempluschem 2022; 87:e202200006. [DOI: 10.1002/cplu.202200006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/11/2022] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | | | - Ilich Ibarra
- Universidad Nacional Autonoma de Mexico Instituto de Investigaciones en Materiales Circuito Exterior s/nCU, Del. Coyoacan 04510 Mexico City MEXICO
| |
Collapse
|
22
|
Kumar A, Patel VS, Harding JN, You D, Cormier SA. Exposure to combustion derived particulate matter exacerbates influenza infection in neonatal mice by inhibiting IL22 production. Part Fibre Toxicol 2021; 18:43. [PMID: 34906172 PMCID: PMC8670221 DOI: 10.1186/s12989-021-00438-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/29/2021] [Indexed: 01/05/2023] Open
Abstract
Background Particulate matter (PM) containing environmentally persistent free radicals (EPFRs) are formed during various combustion processes, including the thermal remediation of hazardous wastes. Exposure to PM adversely affects respiratory health in infants and is associated with increased morbidity and mortality due to acute lower respiratory tract infections. We previously reported that early-life exposure to PM damages the lung epithelium and suppresses immune responses to influenza virus (Flu) infection, thereby enhancing Flu severity. Interleukin 22 (IL22) is important in resolving lung injury following Flu infection. In the current study, we determined the effects of PM exposure on pulmonary IL22 responses using our neonatal mouse model of Flu infection. Results Exposure to PM resulted in an immediate (0.5–1-day post-exposure; dpe) increase in IL22 expression in the lungs of C57BL/6 neonatal mice; however, this IL22 expression was not maintained and failed to increase with either continued exposure to PM or subsequent Flu infection of PM-exposed mice. This contrasts with increased IL22 expression in age-matched mice exposed to vehicle and Flu infected. Activation of the aryl hydrocarbon receptor (AhR), which mediates the induction and release of IL22 from immune cells, was also transiently increased with PM exposure. The microbiome plays a major role in maintaining epithelial integrity and immune responses by producing various metabolites that act as ligands for AhR. Exposure to PM induced lung microbiota dysbiosis and altered the levels of indole, a microbial metabolite. Treatment with recombinant IL22 or indole-3-carboxaldehyde (I3A) prevented PM associated lung injury. In addition, I3A treatment also protected against increased mortality in Flu-infected mice exposed to PMs. Conclusions Together, these data suggest that exposure to PMs results in failure to sustain IL22 levels and an inability to induce IL22 upon Flu infection. Insufficient levels of IL22 may be responsible for aberrant epithelial repair and immune responses, leading to increased Flu severity in areas of high PM.
Collapse
Affiliation(s)
- Avinash Kumar
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.,Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, USA
| | - Vivek S Patel
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Jeffrey N Harding
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Dahui You
- Department of Pediatrics, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Stephania A Cormier
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA. .,Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, USA.
| |
Collapse
|
23
|
Sherris AR, Begum BA, Baiocchi M, Goswami D, Hopke PK, Brooks WA, Luby SP. Associations between ambient fine particulate matter and child respiratory infection: The role of particulate matter source composition in Dhaka, Bangladesh. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118073. [PMID: 34496331 DOI: 10.1016/j.envpol.2021.118073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
Air pollution in the form of fine particulate matter (PM2.5) has been linked to adverse respiratory outcomes in children. However, the magnitude of this association in South Asia and sources of PM2.5 that drive adverse health effects are largely unknown. This study evaluates associations between short-term variation in ambient PM2.5 and incidence of pneumonia and upper respiratory infections among children in Dhaka, Bangladesh. We also perform an exploratory analysis of the PM2.5 source composition that is most strongly associated with health endpoints. We leveraged data from health surveillance of children less than five years of age between 2005 and 2014 in Kamalapur, Bangladesh, including daily physician-confirmed diagnoses of pneumonia and upper respiratory infection. Twice-weekly source-apportioned ambient PM2.5 measurements were obtained for the same period, and Poisson regression adjusted for time-varying covariates was used to estimate lagged associations between ambient PM2.5 and respiratory infection. We use complementary matching and stratification approaches to evaluate whether these associations vary across PM2.5 source composition. Total PM2.5 mass was associated with a modest increase in incidence of pneumonia, with a peak effect size two days after exposure (rate ratio = 1.032; 95% confidence interval = 1.008-1.056). We did not identify a significant association between PM2.5 and upper respiratory infection. Stratified and matching analyses suggested this association was stronger among days when ambient PM2.5 had a higher mass percent associated with brick kiln and fugitive lead emissions.: This study suggests that elevated ambient PM2.5 contributes to increased incidence of child pneumonia in urban Dhaka, and that this relationship varies among days with different source composition of PM2.5.
Collapse
Affiliation(s)
- Allison R Sherris
- Emmett Interdisciplinary Program in Environment and Resources, Stanford University, USA.
| | - Bilkis A Begum
- Chemistry Division, Atomic Energy Centre, Dhaka, Bangladesh
| | - Michael Baiocchi
- Department of Epidemiology and Population Health, Stanford University, USA
| | - Doli Goswami
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, USA
| | | | - Stephen P Luby
- Center for Innovation in Global Health, Stanford University, USA
| |
Collapse
|
24
|
Guo C, Richmond-Bryant J. A critical review of environmentally persistent free radical (EPFR) solvent extraction methodology and retrieval efficiency. CHEMOSPHERE 2021; 284:131353. [PMID: 34225117 PMCID: PMC8487994 DOI: 10.1016/j.chemosphere.2021.131353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/14/2021] [Accepted: 06/26/2021] [Indexed: 05/16/2023]
Abstract
Long-lived environmentally persistent free radical (EPFR) exposures have been shown in toxicology studies to lead to respiratory and cardiovascular effects, which were thought to be due to the persistence of EPFR and their ability to produce reactive oxygen species. To characterize EPFR exposure and resulting health impacts, it is necessary to identify and systematize analysis protocols. Both direct measurement and solvent extraction methods have been applied to analyze environmental samples containing EPFR. The use of different protocols and solvents in EPFR analyses makes it difficult to compare results among studies. In this work, we reviewed EPFR studies that involved solvent extraction and carefully reported the details of the extraction methodology and retrieval recovery. EPFR recovery depends on the structure of the radical species and the solvent. For the limited number of studies available for review, the polar solvents had superior recovery in more studies. Radicals appeared to be more oxygen-centered following extraction for fly ash and particulate matter (PM) samples. Different solvent extraction methods to retrieve EPFR may produce molecular products during the extraction, thus potentially changing the sample toxicity. The number of studies reporting detailed methodologies is limited, and data in these studies were not consistently reported. Thus, inference about the solvent and protocol that leads to the highest EPFR extraction efficiency for certain types of radicals is not currently possible. Based on our review, we proposed reporting criteria to be included for future EPFR studies.
Collapse
Affiliation(s)
- Chuqi Guo
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Jennifer Richmond-Bryant
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
25
|
Sakr NI, Kizilkaya O, Carlson SF, Chan S, Oumnov RA, Catano J, Kurtz RL, Hall RW, Poliakoff ED, Sprunger PT. Formation of Environmentally Persistent Free Radicals (EPFRs) on the Phenol-Dosed α-Fe 2O 3(0001) Surface. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:21882-21890. [PMID: 34992708 PMCID: PMC8725784 DOI: 10.1021/acs.jpcc.1c04298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Environmentally persistent free radicals (EPFRs) are a class of toxic air pollutants that are found to form by the chemisorption of substituted aromatic molecules on the surface of metal oxides. In this study, we employ X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS) to perform a temperature-dependent study of phenol adsorption on α-Fe2O3(0001) to probe the radical formation mechanism by monitoring changes in the electronic structure of both the adsorbed phenol and metal oxide substrate. Upon dosing at room temperature, new phenol-derived electronic states have been clearly observed in the UPS spectrum at saturation coverage. However, upon dosing at high temperature (>200 °C), both photoemission techniques have shown distinctive features that strongly suggest electron transfer from adsorbed phenol to Fe2O3 surface atoms and consequent formation of a surface radical. Consistent with the experiment, DFT calculations show that phenoxyl adsorption on the iron oxide surface at RT leads to a minor charge transfer to the adsorbed molecule. The experimental findings at high temperatures agree well with the EPFRs' proposed formation mechanism and can guide future experimental and computational studies.
Collapse
Affiliation(s)
- N I Sakr
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Orhan Kizilkaya
- Center for Advanced Microstructures and Devices, Louisiana State University, Baton Rouge, Louisiana 70806, United States
| | - Sierra F Carlson
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, California 94901, United States
| | - Simon Chan
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, California 94901, United States
| | - Reuben A Oumnov
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, California 94901, United States
| | - Jaqueline Catano
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, California 94901, United States
| | - Richard L Kurtz
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, United States; Center for Advanced Microstructures and Devices, Louisiana State University, Baton Rouge, Louisiana 70806, United States
| | - Randall W Hall
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, California 94901, United States; Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - E D Poliakoff
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Phillip T Sprunger
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, United States; Center for Advanced Microstructures and Devices, Louisiana State University, Baton Rouge, Louisiana 70806, United States
| |
Collapse
|
26
|
Zhao Z, Wu M, Zhou D, Chen Q, Li H, Lang D, Pan B, Xing B. CuO and TiO 2 particles generated more stable and stronger EPFRs in dark than under UV-irradiation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145555. [PMID: 33631563 DOI: 10.1016/j.scitotenv.2021.145555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/23/2021] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
Environmentally persistent free radicals (EFPRs) have recently attracted a great deal of research attention because of their significant toxicity and ubiquitous occurrence in the environment. The information is still very limited on how to estimate the intensity of EPFRs under ambient circumstances. This study is designed to specifically compare EPFRs generation during catechol degradation in dark and UV light irradiation. CuO and TiO2 were selected as model metal oxides to coat on silica at 1% CuO has a large electron exchange capacity, which may mediate catechol degradation in dark, while TiO2 possesses strong photocatalytic property and could accelerate catechol degradation under UV light. Under UV light irradiation, EPFRs were generated very quickly and reached the maximum value in 4 d, which was related to the photocatalytic property of the particle. However, these EPFRs dissipated quickly in 14 d. On the contrary, the intensities of EPFRs generated in dark were 2 times higher, and stabled for over 2 months. Therefore, the environmental impacts of EPFRs in dark may be widespread and long-lasting, which should be monitored more carefully. It should be noted that for CuO-coated silica, a significant amount of EPFRs (20% of the maximum) survived the UV-light irradiation and stabled during the experimental period (45 d). Stronger EPFRs were associated with more abundant dimer structures, suggesting the dimer structures were related to EPFRs formation during catechol degradation. Monitoring the generation of dimer structures in the degradation of organic chemicals may provide useful information to estimate EPFRs generation and risks.
Collapse
Affiliation(s)
- Ziyu Zhao
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Meixuan Wu
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Dandan Zhou
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Quan Chen
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Hao Li
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Di Lang
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Bo Pan
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
27
|
Liu X, Yang L, Liu G, Zheng M. Formation of Environmentally Persistent Free Radicals during Thermochemical Processes and their Correlations with Unintentional Persistent Organic Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6529-6541. [PMID: 33956443 DOI: 10.1021/acs.est.0c08762] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Attention is increasingly being paid to environmentally persistent free radicals (EPFRs), which are organic pollutants with the activities of free radicals and stabilities of organic pollutants. EPFRs readily form during thermal processes through the decomposition of organic precursors such as phenols, halogenated phenols, and quinone-type molecules, which are also important precursors of toxic unintentionally produced persistent organic pollutants (UPOPs). We have found that EPFRs are important intermediates for UPOP formation during thermal-related processes. However, interest in EPFRs is currently mostly focused on the toxicities and formation mechanisms of EPFRs themselves. Little information is available on the important roles EPFRs play in toxic UPOP formation during thermal processes. Here, we review the mechanisms involved in EPFR formation and transformation into UPOPs during thermal processes. The review is focused on typical EPFRs, including cyclopentadiene, phenoxy, and semiquinone radicals. The reaction temperature, metal species present, and oxygen concentration strongly affect EPFR and UPOP formation during thermal-related processes. Gaps in current knowledge and future directions for research into EPFR and UPOP formation, transformation, and control are presented. Understanding the relationships between EPFRs and UPOPs will allow synergistic control strategies to be developed for thermal-related industrial sources of EPFRs and UPOPs.
Collapse
Affiliation(s)
- Xiaoyun Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| |
Collapse
|
28
|
Zhao Z, Luo XS, Jing Y, Li H, Pang Y, Wu L, Chen Q, Jin L. In vitro assessments of bioaccessibility and bioavailability of PM 2.5 trace metals in respiratory and digestive systems and their oxidative potential. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124638. [PMID: 33308920 DOI: 10.1016/j.jhazmat.2020.124638] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/24/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Air pollution is a serious environmental issue. As a key aerosol component, PM2.5 associated toxic trace metals pose significant health risks by inhalation and ingestion, but the evidences and mechanisms were insufficient and not well understood just by their total environmental concentrations. To accurately assess the potential risks of airborne metals, a series of in vitro physiologically based tests with synthetic human lung and gastrointestinal fluids were conducted to assess both the bioaccessibility and bioavailability of various PM2.5 bound metals in the respiratory and digestive systems from both urban and industrial areas of Nanjing city. Moreover, the chemical acellular toxicity test [dithiothreitol (DTT) assay] and source analysis were performed. Generally, the bioaccessibility and bioavailability of investigated metals were element and body fluid dependent. Source oriented metals in PM2.5 showed diverse bioaccessibility in different human organs. The PM2.5 induced oxidative potential was mainly contributed by the bioaccessible/bioavailable transition metals such as Fe, Ni and Co from metallurgic dust and traffic emission. Future researches on the toxicological mechanisms of airborne metals incorporating the bioaccessibility, bioavailability and toxicity tests are directions.
Collapse
Affiliation(s)
- Zhen Zhao
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xiao-San Luo
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Yuanshu Jing
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Hongbo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yuting Pang
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Lichun Wu
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Qi Chen
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Ling Jin
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
29
|
Xu Y, Qin L, Liu G, Zheng M, Li D, Yang L. Assessment of personal exposure to environmentally persistent free radicals in airborne particulate matter. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:125014. [PMID: 33444952 DOI: 10.1016/j.jhazmat.2020.125014] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/10/2020] [Accepted: 12/29/2020] [Indexed: 05/28/2023]
Abstract
Environmentally persistent free radicals (EPFRs) are a type of emerging contaminants. The EPFR species in airborne particulate matter are similar to carcinogenic tar paramagnetic species in cigarettes that can cause DNA damage. However, understanding on daily EPFR exposure levels and risks are lacking currently. We used personal aerosol exposure monitors worn by volunteers to assess EPFR exposure in a spatio-temporal, non-static manner. Daily individual exposure to EPFRs for urban residents in Beijing, China ranged from 1.11 × 1017 to 7.42 × 1017 spins/m3 during the heating period (winter) and from 4.79 × 1014 to 7.76 × 1016 spins/m3 during the non-heating period (summer). Carbon-centered radicals were dominant in winter, while oxygen-centered radicals were dominant in summer because of higher atmospheric oxidizing capacity contributing to oxidation reactions. Coal combustion in winter is a key influencing factor in EPFR exposure levels. An intuitional assessment was used to evaluate the inhalation risks of EPFRs by converting their concentrations in inhaled particulate matter to equivalents in cigarettes smoked. The assessment concluded that one urban resident may, on average, inhale the equivalent of 46 cigarettes per day in EPFRs. The health risks of these free radicals, especially during winter, should be researched in depth.
Collapse
Affiliation(s)
- Yang Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Linjun Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou 310000, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou 310000, China
| | - Da Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
30
|
Guan X, Truong L, M. Lomnicki S, L. Tanguay R, A. Cormier S. Developmental Hazard of Environmentally Persistent Free Radicals and Protective Effect of TEMPOL in Zebrafish Model. TOXICS 2021; 9:toxics9010012. [PMID: 33467068 PMCID: PMC7829864 DOI: 10.3390/toxics9010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 11/29/2022]
Abstract
Environmentally persistent free radicals (EPFRs) can be detected in ambient PM2.5, cigarette smoke, and soils and are formed through combustion and thermal processing of organic materials. The hazards of EPFRs are largely unknown. In this study, we assess the developmental toxicity of EPFRs and the ability of TEMPOL (4-Hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl) to protect against such hazards using zebrafish embryos. Particles containing EPFRs were acquired by dosing dichlorobenzene (DCB) vapor on the Cab-o-sil/5% CuO particles at 230 °C in vacuo (referred to as DCB-230). The particles were suspended in ultrapure water to make 1 mg/mL of stock solution from which series dilution was undertaken to obtain 10, 20, 30, 40, 50, 60, 80, and 100 µg/mL final test solutions, which were then placed in individual wells with a 4 h postfertilization (hpf) zebrafish embryo. Plates were run in duplicate to obtain a sample size of 24 animals per concentration; 12 embryos were exposed per concentration per plate. Statistical analysis of the morphology endpoints was performed. We investigated overt toxicity responses to DCB-230 in a 22-endpoint battery that included developing zebrafish from 24–120 hpf. Exposure to concentrations greater than 60 µg/mL of DCB-230 induced high mortality in the developmental zebrafish model. Exposure to EPFRs induced developmental hazards that were closely related to the concentrations of free radicals and EPFRs. The potential protective effects of TEMPOL against EPFRs’ toxicity in zebrafish were investigated. Exposure to EPFRs plus TEMPOL shifted the concentration to an induced 50% adverse effect (EC50), from 23.6 to 30.8 µg/mL, which verifies TEMPOL’s protective effect against EPFRs in the early phase of zebrafish development.
Collapse
Affiliation(s)
- Xia Guan
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; (X.G.); (S.M.L.)
| | - Lisa Truong
- Sinnhuber Aquatic Research Laboratory, Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97333, USA; (L.T.); (R.L.T.)
| | - Slawomir M. Lomnicki
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; (X.G.); (S.M.L.)
| | - Robyn L. Tanguay
- Sinnhuber Aquatic Research Laboratory, Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97333, USA; (L.T.); (R.L.T.)
| | - Stephania A. Cormier
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
- Pennington Biomedical Research Center, Baton Rouge, LA 70803, USA
- Correspondence:
| |
Collapse
|
31
|
Li M, Nabi G, Sun Y, Wang Y, Wang L, Jiang C, Cao P, Wu Y, Li D. The effect of air pollution on immunological, antioxidative and hematological parameters, and body condition of Eurasian tree sparrows. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111755. [PMID: 33396078 DOI: 10.1016/j.ecoenv.2020.111755] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 05/04/2023]
Abstract
Air pollution constitutes potential threats to wildlife and human health; therefore, it must be monitored accurately. However, little attention has been given to understanding the toxicological effects induced by air pollution and the suitability of bird species as bioindicators. The Eurasian tree sparrow (Passer montanus), a human commensal species, was used as a study model to examine toxic metal accumulation, retention of particulate matter (PM), immunological and antioxidant capacities, and hematological parameters in birds inhabiting those areas with relatively higher (Shijiazhuang city) or lower (Chengde city) levels of PM2.5 and PM10 in China. Our results showed that Shijiazhuang birds had significantly more particle retention in the lungs and toxic metal (including aluminum, arsenic, cadmium, iron, manganese, and lead) accumulation in the feathers relative to Chengde birds. They also had lower superoxide dismutase, albumin, immunoglobulin M concentrations in the lung lavage fluid, and total antioxidant capacity (T-AOC) in the lungs and hearts. Furthermore, although they had higher proportions of microcytes, hypochromia, and polychromatic erythrocytes in the peripheral blood (a symptom of anemia), both populations exhibited comparable body conditions, white cell counts, heterophil and lymphocyte ratios, and plasma T-AOC and corticosterone levels. Therefore, our results not only confirmed that Shijiazhuang birds experienced a greater burden from environmental PM and toxic metals but also identified a suite of adverse effects of environmental pollution on immunological, antioxidative, and hematological parameters in multiple tissues. These findings contribute to our understanding of the physiological health consequences induced by PM exposure in wild animals. They suggest that free-living birds inhabiting urban areas could be used as bioindicators for evaluating the adverse effects induced by environmental pollution.
Collapse
Affiliation(s)
- Mo Li
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China; Life Sciences College of Cangzhou Normal University, Cangzhou, China
| | - Ghulam Nabi
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yanfeng Sun
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China; Ocean College of Hebei Agricultural University, Qinhuangdao, China
| | - Yang Wang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Limin Wang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Chuan Jiang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Pengxiu Cao
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yuefeng Wu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China.
| | - Dongming Li
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China.
| |
Collapse
|
32
|
Smyth T, Veazey J, Eliseeva S, Chalupa D, Elder A, Georas SN. Diesel exhaust particle exposure reduces expression of the epithelial tight junction protein Tricellulin. Part Fibre Toxicol 2020; 17:52. [PMID: 33059747 PMCID: PMC7560077 DOI: 10.1186/s12989-020-00383-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND While exposure to diesel exhaust particles has been linked to aberrant immune responses in allergic diseases such as asthma, little attention has been paid to their effects on the airway epithelial barrier. In this study, we sought to determine the effect of diesel exhaust exposure on airway epithelial barrier function and composition using in vitro and in vivo model systems. METHODS 16HBE14o- human bronchial epithelial cells were grown on collagen coated Transwell inserts and exposed to 5 to 50 μg/cm2 SRM 2975 diesel particulate matter (DEP) suspended in cell culture medium or vehicle controls. Changes in barrier function were assessed by measuring transepithelial electrical resistance (TEER) and permeability to 4 kDa FITC Dextran. Neonatal BALB/c mice were exposed to aerosolized DEP (255 ± 89 μg/m3; 2 h per day for 5 days) and changes in the tight junction protein Tricellulin were assessed 2 weeks post exposure. RESULTS A six-hour incubation of epithelial cells with diesel exhaust particles caused a significant concentration-dependent reduction in epithelial barrier integrity as measured by decreased TEER and increased permeability to 4 kDa FITC-Dextran. This reduction in epithelial barrier integrity corresponded to a significant reduction in expression of the tight junction protein Tricellulin. siRNA mediated knockdown of Tricellulin recapitulated changes in barrier function caused by DEP exposure. Neonatal exposure to aerosolized DEP caused a significant reduction in lung Tricellulin 2 weeks post exposure at both the protein and mRNA level. CONCLUSION Short term exposure to DEP causes a significant reduction in epithelial barrier integrity through a reduction in the tight junction protein Tricellulin. Neonatal exposure to aerosolized DEP caused a significant and sustained reduction in Tricellulin protein and mRNA in the lung, suggesting that early life exposure to inhaled DEP may cause lasting changes in airway epithelial barrier function.
Collapse
Affiliation(s)
- Timothy Smyth
- Department of Environmental Medicine, University of Rochester, Rochester, NY, USA
| | - Janelle Veazey
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | - Sophia Eliseeva
- Department of Medicine, Pulmonary and Critical Care, University of Rochester, Box 692, 601 Elmwood Ave, University of Rochester, Rochester, NY, 14627, USA
| | - David Chalupa
- Department of Environmental Medicine, University of Rochester, Rochester, NY, USA
| | - Alison Elder
- Department of Environmental Medicine, University of Rochester, Rochester, NY, USA
| | - Steve N Georas
- Department of Environmental Medicine, University of Rochester, Rochester, NY, USA.
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA.
- Department of Medicine, Pulmonary and Critical Care, University of Rochester, Box 692, 601 Elmwood Ave, University of Rochester, Rochester, NY, 14627, USA.
| |
Collapse
|
33
|
Xu Y, Yang L, Wang X, Zheng M, Li C, Zhang A, Fu J, Yang Y, Qin L, Liu X, Liu G. Risk evaluation of environmentally persistent free radicals in airborne particulate matter and influence of atmospheric factors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 196:110571. [PMID: 32276159 DOI: 10.1016/j.ecoenv.2020.110571] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 05/23/2023]
Abstract
Environmentally persistent free radicals (EPFRs) was considered unrecognized composition of air pollutants and might help explain the long-standing medical mystery of why non-smokers develop tobacco-related diseases like lung cancer. EPFRs in airborne fine particulate matter (PM2.5) can induce oxidative and DNA damage when inhaled. We assessed the inhalation risk of EPFRs in PM2.5 and factors influencing this risk in Beijing as a large city with frequent haze events. The average concentration of EPFRs in PM2.5 was 6.00 × 1017 spins/m3 in spring, autumn, and winter; lower concentrations were recorded in the summer. To estimate the daily inhalation risk of EPFRs in PM2.5, we used the equivalent EPFRs in cigarette tar. The average daily inhalation exposure of EPFRs in PM2.5 was estimated to be the equivalent of 33.1 cigarette tar EPFRs per day (range: 0.53-226.9) during both haze and non-haze days. The major factors influencing EPFR concentrations in the atmosphere were precipitation and humidity, which reduced airborne concentrations. Levels of PM2.5 and carbon monoxide were positively correlated with EPFR concentrations. The health risks of inhaling airborne EPFRs could be significant and should be recognized and quantified.
Collapse
Affiliation(s)
- Yang Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; College of Resource and Environment, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; College of Resource and Environment, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoping Wang
- Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; College of Resource and Environment, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Cui Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; College of Resource and Environment, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; College of Resource and Environment, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; College of Resource and Environment, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanping Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; College of Resource and Environment, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Linjun Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; College of Resource and Environment, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyun Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; College of Resource and Environment, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; College of Resource and Environment, University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
34
|
Hasan F, Khachatryan L, Lomnicki S. Comparative Studies of Environmentally Persistent Free Radicals on Total Particulate Matter Collected from Electronic and Tobacco Cigarettes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5710-5718. [PMID: 32267684 DOI: 10.1021/acs.est.0c00351] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the current study, electron paramagnetic resonance (EPR) spectroscopy was employed to measure environmentally persistent free radicals (EPFRs) in the total particulate matter (TPM) of mainstream and sidestream TPM of conventional cigarettes and the TPM of e-cigarettes. Comparable concentrations of EPFRs were detected in both sidestream (8.05 ± 1.32) × 104 pmol/g and mainstream TPM (7.41 ± 0.85) × 104 pmol/g of conventional cigarettes. TPM exposure to air resulted in long-lived oxygen centered, secondary radicals with EPR g values of 2.0041 for mainstream and 2.0044 for sidestream. Surprisingly, despite no combustion process, the TPM from e-cigarettes (menthol flavor of NJOY and V2 brands) also contain EPFRs with g values of 2.0031-2.0033, characteristic of carbon centered radicals, while the radical signal in the vanilla flavor of V2 brand was remarkably similar to semiquinones in cigarette smoke with a higher g value (2.0063). The radical concentration in e-cigarettes was much lower as compared to tobacco TPM. Although the production of ROS generated by e-cigarettes is comparatively lower than ROS generated by conventional cigarettes, EPFRs in e-cigarettes appear to be more potent than those in tobacco TPM with respect to hydroxyl radical generation yield per unit EPFR. EPFRs in e-cigarette TPM may be a potential source of health impacts.
Collapse
Affiliation(s)
- Farhana Hasan
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Lavrent Khachatryan
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Slawo Lomnicki
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
35
|
Sly PD, Cormier SA, Lomnicki S, Harding JN, Grimwood K. Environmentally Persistent Free Radicals: Linking Air Pollution and Poor Respiratory Health? Am J Respir Crit Care Med 2020; 200:1062-1063. [PMID: 31237999 DOI: 10.1164/rccm.201903-0675le] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
| | - Stephania A Cormier
- University of QueenslandBrisbane, Australia.,Louisiana State UniversityBaton Rouge, Louisianaand
| | | | | | | |
Collapse
|
36
|
Sakr NI, Patterson MC, Daemen L, Poliakoff ED, Sprunger PT. Vibrational and Structural Studies of Environmentally Persistent Free Radicals Formed by Phenol-Dosed Metal Oxide Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:16726-16733. [PMID: 31786916 DOI: 10.1021/acs.langmuir.9b02948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Environmentally persistent free radicals (EPFRs) are formed by the adsorption of substituted aromatic precursors on the surface of metal oxides and are known to have significant health and environmental impact due to their unique stability. In this article, the formation of EPFRs is studied by adsorption of phenol on ZnO, CuO, Fe2O3, and TiO2 nanoparticles (∼10-50 nm) at high temperatures. Electron paramagnetic resonance indicates the formation of phenoxyl-type radicals. Fourier transform infrared spectroscopy provides further evidence of EPFR formation by the disappearance of -OH groups, indicating the chemisorption of the organic precursor on the metal oxide surface. These results are further confirmed by inelastic neutron scattering, which shows both ring out-of-plane bend and C-H in-plane bend motions characteristic of phenol adsorption on the studied systems. Also, the changes in the oxidation state of the metal cations are investigated by X-ray photoelectron spectroscopy, which shows that the direction of electron transfer (redox) during phenol chemisorption is strongly dependent on surface properties as well as surface defects of the metal oxide surface.
Collapse
Affiliation(s)
- Nadra I Sakr
- Department of Physics and Astronomy , Louisiana State University , 202 Nicholson Hall , Baton Rouge , Louisiana 70803 , United States
| | - Matthew C Patterson
- Department of Chemistry , Louisiana State University , 232 Choppin Hall , Baton Rouge , Louisiana 70803 , United States
| | - Luke Daemen
- Spallation Neutron Source , Oak Ridge National Laboratory , MS-6473 , Oak Ridge , Tennessee 37831 , United States
| | - Erwin D Poliakoff
- Department of Chemistry , Louisiana State University , 232 Choppin Hall , Baton Rouge , Louisiana 70803 , United States
| | - Phillip T Sprunger
- Department of Physics and Astronomy , Louisiana State University , 202 Nicholson Hall , Baton Rouge , Louisiana 70803 , United States
| |
Collapse
|
37
|
Xu M, Wu T, Tang YT, Chen T, Khachatryan L, Iyer PR, Guo D, Chen A, Lyu M, Li J, Liu J, Li D, Zuo Y, Zhang S, Wang Y, Meng Y, Qi F. Environmentally persistent free radicals in PM 2.5: a review. ACTA ACUST UNITED AC 2019; 1:177-197. [PMID: 34308260 DOI: 10.1007/s42768-019-00021-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Environmentally persistent free radicals (EPFRs) are a new class of pollutants that are long-lived in fine particles (PM2.5), i.e., their 1/e lifetime ranges from days to months (or even infinite). They are capable of producing harmful reactive oxygen species such as hydroxyl radicals. The redox cycling of EPFRs is considered as an important pathway for PM2.5 to induce oxidative stress inside the humans, causing adverse health effects such as respiratory and cardiovascular diseases. Consequently, research regarding their toxicity, formation and environmental occurrences in PM2.5 has attracted increasing attentions globally during the past two decades. However, literature data in this field remain quite limited and discrete. Hence, an extensive review is urgently needed to summarize the current understanding of this topic. In this work, we systematically reviewed the analytical methods and environmental occurrences, e.g., types, concentrations, and decay behaviors, as well as possible sources of EPFRs in PM2.5. The types of pretreatment methods, g-values of common EPFRs and categories of decay processes were discussed in detail. Moreover, great efforts were made to revisit the original data of the published works of EPFRs in airborne particulate matter and provided additional useful information for comparison where possible, e.g., their mean and standard deviation of g-values, line widths (ΔH p-p), and concentrations. Finally, possible research opportunities were highlighted to further advance our knowledge of this emerging issue.
Collapse
Affiliation(s)
- Mengxia Xu
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China.,New Materials Institute, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Tao Wu
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China.,New Materials Institute, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Yu-Ting Tang
- School of Geographical Sciences, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Tong Chen
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lavrent Khachatryan
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Poornima Ramesh Iyer
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Dengting Guo
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Anran Chen
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Miao Lyu
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Jinhu Li
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Jiaqi Liu
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Dan Li
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Yuxin Zuo
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Shihan Zhang
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Yiran Wang
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Yining Meng
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Fei Qi
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| |
Collapse
|
38
|
Assessing the effect on the generation of environmentally persistent free radicals in hydrothermal carbonization of sewage sludge. Sci Rep 2019; 9:17092. [PMID: 31745230 PMCID: PMC6863856 DOI: 10.1038/s41598-019-53781-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/30/2019] [Indexed: 02/05/2023] Open
Abstract
Environmentally persistent free radicals (EPFRs) have attracted increasing research interest in recent years. Herein, the generation of EPFRs during the hydrothermal carbonization of sewage sludge (SS) was studied. First, the surface morphology, functional groups, constituent elements and free radicals were characterized for a holistic description of the raw SS and the selected hydrochar obtained from hydrothermal carbonization of SS (SHC). Then, the impact of hydrothermal temperature, residence time and initial pH on the formation of EPFRs was explored in detail through the investigation of g-factors and intensities of EPFRs identified in SHC. The results have shown that the formation of EPFRs was affected by the factors mentioned above, in which the impact of temperature is the greatest. Two types of EPFRs were spotted in the hydrochar, oxygen-centered (O-centered) and carbon-centered (C-centered) EPFRs, which were caught in 120-150 °C and 260-280 °C, respectively. Moreover, the intensities of Electron Paramagnetic Resonance (EPR) signals enhanced with increasing hydrothermal temperature. Whereas, residence time and initial pH only affected the amount of EPFRs in a manner. Additionally, the half-life of the O-centered EPFRs and the C-centered EPFRs was determined as long as 160.45 days and 401.10 days, respectively, indicating that EPFRs are stable in a long time.
Collapse
|
39
|
Wang Y, Li S, Wang M, Sun H, Mu Z, Zhang L, Li Y, Chen Q. Source apportionment of environmentally persistent free radicals (EPFRs) in PM 2.5 over Xi'an, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:193-202. [PMID: 31271986 DOI: 10.1016/j.scitotenv.2019.06.424] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/23/2019] [Accepted: 06/25/2019] [Indexed: 06/09/2023]
Abstract
Environmentally persistent free radicals (EPFRs) have recently attracted considerable attention as a new type of environmental risk substance due to their potential health effects. However, the sources and contributions of EPFRs in PM2.5 are not yet clear. Therefore, this study reports the sources of EPFRs in PM2.5 based on chemical analysis and positive matrix factorization (PMF). Daily PM2.5 samples (116) were collected in Xi'an city from April 4 to December 29, 2017, and were quantitatively analyzed for EPFRs and other chemical constituents. The PMF model revealed contributions from five main sources of EPFRs in PM2.5 (dust sources, coal combustion, secondary nitrates, industrial emissions and motor vehicle emissions). Coal combustion, motor vehicle emissions and dust sources are the top three contributors to EPFRs (76.12% in total). Coal combustion is highly important for PM2.5 (35.10%) and EPFRs (16.75%). A high dust source contribution to EPFRs in spring may be due to dust storm events. Motor vehicle emissions are the top contributor to EPFRs, with a mean percentage of 32.13%. Secondary nitrates barely contributes to EPFRs (3.42%), indicating an EPFR origin from primary emissions rather than secondary inorganic reactions. Industrial emissions contribute less to PM2.5 (4.31%) than to EPFRs (11.71%), which implies that fossil fuels contains many high-molecular-weight organics that could emit EPFRs. Integrating the PMF results with meteorological data revealed that atmospheric pollutants emitted in Xi'an city center could be transported to the sampling site by southern winds. These results suggest the need for further studies on the public health effects of EPFRs and can be used to help formulate source control measures to reduce the potential health risks posed by EPFRs in PM2.5.
Collapse
Affiliation(s)
- Yuqin Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Department of Earth and Atmospheric Sciences, Saint Louis University, St. Louis, MO 63108, USA
| | - Shengping Li
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Mamin Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Haoyao Sun
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhen Mu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Lixin Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yanguang Li
- Key Laboratory for the Study of Focused Magmatism and Giant Ore Deposits, MLR, Xi'an 710054, China; Xi'an Center of Geological Survey, China Geological Survey, Xi'an 710054, China
| | - Qingcai Chen
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
40
|
Sun C, Ding D, Chen T, Huang Q, Lu S, Yan J. Ecological risk analysis of the solid residues collected from the thermal disposal process of hyperaccumulator Pteris vittata including heavy metals and environmentally persistent free radicals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:29234-29245. [PMID: 31396866 DOI: 10.1007/s11356-019-06115-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 07/29/2019] [Indexed: 05/28/2023]
Abstract
To conduct a comprehensive ecological analysis on the solid residues derived from the thermal disposal of hyperaccumulator Pteris vittata, this study focused on the behaviors of As and Pb and the characteristics of environmentally persistent free radicals (EPFRs) in the solid residues under different thermal treatment conditions. The analysis results revealed that the concentrations of As in the biochars and bio-slag were approximately 350 and 1100 mg/kg, respectively. Moreover, the concentrations of Pb in the solid residues varied from 34 to 1050 mg/kg. According to the results of the modified BCR sequential extractions, As is more stable in the biochar while Pb is more stable in the combustion slags. In addition, As showed a higher volatilization temperature compared with Pb. The ecological risk assessment indicated that the correlation index between the contamination factor (Cf) of As and the risk index (R2 = 0.995) is considerably larger than the correlation index between the contamination factor of Pb and the risk index (R2 = 0.117), which implies that the pyrolysis method should be selected at priority. Moreover, the EPFR concentrations of the biochar declined by approximately 75 times when the pyrolysis temperature increased from 500 to 600 °C. This behavior indicated that high-temperature pyrolysis (> 600 °C) could simultaneously control both the heavy metal behavior and EPFR concentrations.
Collapse
Affiliation(s)
- Chen Sun
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| | - Dongdong Ding
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| | - Tong Chen
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China.
| | - Qunxing Huang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| | - Shengyong Lu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| | - Jianhua Yan
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
41
|
Geng X, Wang X, Luo M, Xing M, Wu Y, Li W, Chen Z, Shen H, Ying S. Induction of neutrophil apoptosis by a Bcl-2 inhibitor reduces particulate matter-induced lung inflammation. Aging (Albany NY) 2019; 10:1415-1423. [PMID: 29944468 PMCID: PMC6046239 DOI: 10.18632/aging.101477] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/10/2018] [Indexed: 01/03/2023]
Abstract
Background. Environmental particulate matter exposure can cause various respiratory problems including aggravated asthma, decreased lung function and increased respiratory symptoms. However, the molecular mechanisms underlying PM-induced lung inflammation are incompletely understood. Effective therapeutic strategies are required. Results. A mouse model of particulate matter-induced lung inflammation was used to identify the pathology and the molecular mechanisms for particulate matter-induced lung inflammation. The mouse model revealed that particulate matter induced neutrophil-dominated lung inflammation. Neutrophils derived from particulate matter-instilled mice showed decreased apoptosis and elevated Bcl-2 expression. Further studies in vav-Bcl-2 transgenic mice made it clear that Bcl-2 overexpression caused a marked increase in neutrophils in bronchoalveolar lavage fluid. Furthermore, we found that the Bcl-2 inhibitor ABT-199 reduced particulate matter-induced lung inflammation, and induced apoptosis of neutrophils in particulate matter-induced lung inflammation mice model. Conclusions. Particulate matter-induced lung inflammation is mediated in part by inhibition of apoptosis of inflammatory cells. Bcl-2 is responsible for the reduced apoptosis of inflammatory cells in particulate matter-induced lung inflammation. The Bcl-2 selective inhibitor ABT-199 reduces particulate matter-induced lung inflammation by inducing the apoptosis of neutrophils and might be a promising drug for the treatment of particulate matter-induced lung inflammation.
Collapse
Affiliation(s)
- Xinwei Geng
- Department of Pharmacology and Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xiaohui Wang
- Department of Pharmacology and Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Man Luo
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Meichun Xing
- Department of Pharmacology and Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yinfang Wu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhihua Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Huahao Shen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou 310009, China.,State Key Laboratory of Respiratory Diseases, Guangzhou, Guangdong 510120, China
| | - Songmin Ying
- Department of Pharmacology and Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
42
|
Zhang Y, Demokritou P, Ryan DK, Bello D. Comprehensive Assessment of Short-Lived ROS and H 2O 2 in Laser Printer Emissions: Assessing the Relative Contribution of Metal Oxides and Organic Constituents. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7574-7583. [PMID: 31120250 DOI: 10.1021/acs.est.8b05677] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Inhalation exposure to nanoparticles from toner-based laser printer and photocopier emissions (LPEs) induces airway inflammation and systemic oxidative stress, cytotoxicity, and genotoxicity (such as DNA damage). Recent evidence from human and in vitro studies suggests a strong role for oxidative stress caused by free radicals, such as reactive oxygen species (ROS), in the toxicity of laser printer emissions. However, the amount of ROS generated from laser printer nanoparticle emissions and the relative contribution of various fractions (vapors, organics, metals, and metal oxides) have not been investigated to-date. In this study, we aim to quantify short-lived ROS and H2O2 laser printer emissions, as well as the relative contribution of various fractions of LPEs in ROS generation. An aerosol chamber with HEPA filtered air was used to generate LPE emissions from one representative printer. In separate experiments, size fractionated LPEs were collected on filters (particles) or impingers (particles and vapors). The nanoscale fraction of LPEs (PM0.1) was further separated into the organic fraction and inorganic (transition metals/metal oxides) following a sequence of extraction with solvents and centrifugation. The short-lived ROS and H2O2 generated from each fraction were quantified with an acellular Trolox-based liquid chromatography-electrospray-tandem mass spectrometry (LC-ESI-MS/MS) method recently developed in our lab. The particulate fraction of LPEs PM0.1 generated 2.68 times more total ROS (sum of short-lived ROS and H2O2) than the vapor fraction. In tested LPEs, transition metal oxides, which constituted 3% by mass, produced 69× and 202× times more short-lived ROS and H2O2, respectively, on a mass basis, than the organic fraction. Furthermore, fresh PM0.1 generated 282× and 32× times more short-lived ROS and H2O2, respectively, than aged and processed PM0.1. We conclude that transition metal oxides, albeit a minor constituent of the LPE PM0.1 emissions, are the species responsible for the majority of acellular ROS in this printer. A larger range of printers should be tested in the future. Because transition metal oxides in toners originate primarily from engineering nanomaterials (ENMs) in printer toner powder, reformulation of toner powders to contain less of these ROS active metals is recommended.
Collapse
Affiliation(s)
- Yipei Zhang
- Department of Chemistry, Kennedy College of Sciences , University of Massachusetts Lowell , Lowell , Massachusetts 01854 , United States
| | - Philip Demokritou
- Department of Environmental Health and Harvard Center for Nanotechnology and Nanotoxicology , Harvard T. H. Chan School of Public Health , Boston , Massachusetts 02115 , United States
| | - David K Ryan
- Department of Chemistry, Kennedy College of Sciences , University of Massachusetts Lowell , Lowell , Massachusetts 01854 , United States
| | - Dhimiter Bello
- Department of Environmental Health and Harvard Center for Nanotechnology and Nanotoxicology , Harvard T. H. Chan School of Public Health , Boston , Massachusetts 02115 , United States
- Department of Biomedical and Nutritional Sciences, Zuckerberg College of Health Sciences , University of Massachusetts Lowell , Lowell , Massachusetts 01854 , United States
| |
Collapse
|
43
|
Ruan X, Sun Y, Du W, Tang Y, Liu Q, Zhang Z, Doherty W, Frost RL, Qian G, Tsang DCW. Formation, characteristics, and applications of environmentally persistent free radicals in biochars: A review. BIORESOURCE TECHNOLOGY 2019; 281:457-468. [PMID: 30827730 DOI: 10.1016/j.biortech.2019.02.105] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 05/22/2023]
Abstract
Due to abundant biomass and eco-friendliness, biochar is exemplified as one of the most promising candidates to mediate the degradation of environmental contaminants. Recently, environmentally persistent free radicals (EPFRs) have been detected in biochars, which can activate S2O82- or H2O2 to generate reactive oxygen species for effective degradation of organic and inorganic contaminants. Comprehending the formation mechanisms of EPFRs in biochars and their interactions with contaminants is indispensable to further develop their environmental applications, e.g., direct and indirect EPFR-mediated removal of organics/inorganics by biochars. With reference to the information of EPFRs in environmental matrices, this article critically reviews the formation mechanisms, characteristics, interactions, and environmental applications of EPFRs in biochars. Synthesis conditions and loading of metals/organics are considered as key parameters controlling their concentrations, types, and activities. This review provides new and important insights into the fate and emerging applications of surface-bound EPFRs in biochars.
Collapse
Affiliation(s)
- Xiuxiu Ruan
- School of Environmental and Chemical Engineering, Shanghai University, No.99 Shangda Road, Shanghai 200444, China; Center of Green Urban Mining & Industry Ecology, Shanghai University, No.99 Shangda Road, Shanghai 200444, China
| | - Yuqing Sun
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Weimeng Du
- School of Environmental and Chemical Engineering, Shanghai University, No.99 Shangda Road, Shanghai 200444, China; Center of Green Urban Mining & Industry Ecology, Shanghai University, No.99 Shangda Road, Shanghai 200444, China
| | - Yuyuan Tang
- School of Environmental and Chemical Engineering, Shanghai University, No.99 Shangda Road, Shanghai 200444, China; Center of Green Urban Mining & Industry Ecology, Shanghai University, No.99 Shangda Road, Shanghai 200444, China
| | - Qiang Liu
- School of Environmental and Chemical Engineering, Shanghai University, No.99 Shangda Road, Shanghai 200444, China; Center of Green Urban Mining & Industry Ecology, Shanghai University, No.99 Shangda Road, Shanghai 200444, China
| | - Zhanying Zhang
- Centre of Tropical Crops and Biocommodities, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
| | - William Doherty
- Centre of Tropical Crops and Biocommodities, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
| | - Ray L Frost
- Centre of Tropical Crops and Biocommodities, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
| | - Guangren Qian
- School of Environmental and Chemical Engineering, Shanghai University, No.99 Shangda Road, Shanghai 200444, China; Center of Green Urban Mining & Industry Ecology, Shanghai University, No.99 Shangda Road, Shanghai 200444, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
44
|
Pan B, Li H, Lang D, Xing B. Environmentally persistent free radicals: Occurrence, formation mechanisms and implications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:320-331. [PMID: 30802746 DOI: 10.1016/j.envpol.2019.02.032] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 05/23/2023]
Abstract
Environmentally persistent free radicals (EPFRs) are defined as organic free radicals stabilized on or inside particles. They are persistent because of the protection by the particles and show significant toxicity to organisms. Increasing research interests have been attracted to study the potential environmental implications of EPFRs. Because of their different physical forms from conventional contaminants, it is not applicable to use the commonly used technique and strategy to predict and assess the behavior and risks of EPFRs. Current studies on EPFRs are scattered and not systematic enough to draw clear conclusions. Therefore, this review is organized to critically discuss the current research progress on EPFRs, highlighting their occurrence and transport, generation mechanisms, as well as their environmental implications (including both toxicity and reactivity). EPFR formation and stabilization as affected by the precursors and environmental factors are useful breakthrough to understand their formation mechanisms. To better understand the major differences between EPFRs and common contaminants, we identified the unique processes and/or mechanisms related to EPFRs. The knowledge gaps will be also addressed to highlight the future research while summarizing the research progress. Quantitative analysis of the interactions between organic contaminants and EPFRs will greatly improve the predictive accuracy of the multimedia environmental fate models. In addition, the health risks will be better evaluated when considering the toxicity contributed by EFPRs.
Collapse
Affiliation(s)
- Bo Pan
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China; Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control in Soils, Kunming, 650500, Yunnan, China
| | - Hao Li
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China; Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control in Soils, Kunming, 650500, Yunnan, China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, United States
| | - Di Lang
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China; Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control in Soils, Kunming, 650500, Yunnan, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, United States.
| |
Collapse
|
45
|
Wang H, Chen Y, Zhang J, Tang X, Wang XJ. Using Nrf2/antioxidant response element-dependent signaling to assess the toxicity potential of fly ash particles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:172-179. [PMID: 30529616 DOI: 10.1016/j.ecoenv.2018.11.093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/15/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
Epidemiological studies have demonstrated an association between ambient particulate pollution and adverse health effects in humans. The antioxidant-responsive element (ARE) cytoprotective system mediated by the transcription factor NF-E2 p45-related factor 2 (Nrf2) serves as a primary defense against the oxidative stress triggered by particulate matter. In this study, using a cell-based ARE-reporter assay, the fine fractions of the fly ash collected from the municipal solid waste incinerators at four cities in China were examined for their ability to activate Nrf2/ARE signaling. We found that, at a non-lethal dose, all the fly ash samples were able to activate the ARE-reporter gene in a dose- and redox-dependent manner, and this was correlated with their cytotoxicity and their ability to induce DNA damage. Study of the kinetics revealed that fly ash particles elicited a prolonged activation of the ARE-reporter activity. Upon exposure to the particles, the ARE-luciferase activity significantly increased in 2 h, reached a peak at 24 h, and remained high level at 72 h. This was in contrast to the transient activation of the ARE-reporter gene triggered by the Nrf2 activators tert-butylhydroquinone and sulforaphane, while ARE-luciferase activity dropped to the basal level at 72 h from the peak at 24 h. These results demonstrate the robustness of using cell-based ARE-reporter assays to evaluate the oxidative potential of fly ash. Our novel findings suggest that the sustained activation of the Nrf2/ARE signaling pathway induced by fly ash particles perturbs cellular redox homeostasis, which in turn contributes to toxicity.
Collapse
Affiliation(s)
- Hongyan Wang
- Department of Pharmacology and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, PR China; Department of Biochemistry and Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, PR China
| | - Yiping Chen
- Department of Pharmacology and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, PR China
| | - Jingwen Zhang
- Department of Pharmacology and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, PR China
| | - Xiuwen Tang
- Department of Biochemistry and Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, PR China
| | - Xiu Jun Wang
- Department of Pharmacology and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, PR China.
| |
Collapse
|
46
|
Chen Q, Wang M, Sun H, Wang X, Wang Y, Li Y, Zhang L, Mu Z. Enhanced health risks from exposure to environmentally persistent free radicals and the oxidative stress of PM 2.5 from Asian dust storms in Erenhot, Zhangbei and Jinan, China. ENVIRONMENT INTERNATIONAL 2018; 121:260-268. [PMID: 30223202 DOI: 10.1016/j.envint.2018.09.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/22/2018] [Accepted: 09/06/2018] [Indexed: 05/19/2023]
Abstract
Asian dust storms can increase the level of atmospheric pollution over regions downwind of dust storms and may have adverse health effects on residents along the sandstorm transmission route. This study was the first to report the concentration levels, properties and possible sources of environmentally persistent free radicals (EPFRs) and oxidative potential in atmospheric PM2.5 at the three sites of Erenhot, Zhangbei, and Jinan along the transport route of Asian dust storms during the occurrence of Asian dust storms in the spring of 2016. Under non-sandstorm weather conditions, the average EPFR concentrations at the three sites were Zhangbei>Jinan>Erenhot, while the PM-induced oxidative potential levels were Erenhot>Jinan>Zhangbei. The PM2.5 concentration increased significantly during dust storm events, and the total atmospheric concentration of EPFRs (spins/m3) and total oxidation potential (a.u./m3) of PM2.5 simultaneously increased. However, the EPFR concentration in PM2.5 (spins/g) and the unit mass of the PM oxidation potential (a.u./g) were significantly reduced. Electron paramagnetic resonance analysis combined with backward trajectory analysis and MODIS products showed that Asian dust storms can carry EPFRs over long distances. Correlation analysis showed that the atmospheric concentrations of EPFRs were positively correlated with elemental carbon (EC) for the Zhangbei and Jinan samples but were not significantly correlated with EC for the Erenhot samples, indicating that combustion may be an important source of EPFRs for the Zhangbei and Jinan samples. In contrast, the EPFRs in the Erenhot samples were more affected by dust/sand. The EPFR concentration levels showed a significant positive correlation with the oxidation potentials for the Erenhot and Zhangbei samples and showed negative correlations for the Jinan samples, suggesting that the EPFRs in the Erenhot and Zhangbei samples may provide an important contribution to the oxidative stress in PM2.5. In contrast, the oxidation potential for the Jinan samples was mainly caused by substances other than EPFRs. This study presents a basic understanding of the potential health effects of Asian dust storms, and this information can be used to assess the health risks of Asian dust storms in future studies.
Collapse
Affiliation(s)
- Qingcai Chen
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Mamin Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Haoyao Sun
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xin Wang
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Yuqin Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Department of Earth and Atmospheric Sciences, Saint Louis University, St. Louis, MO 63108, USA
| | - Yanguang Li
- Key Laboratory for the Study of Focused Magmatism and Giant Ore Deposits, MLR, Xi'an 710054, China; Xi'an Center of Geological Survey, China Geological Survey, Xi'an 710054, China
| | - Lixin Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhen Mu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
47
|
Chen Q, Sun H, Wang M, Mu Z, Wang Y, Li Y, Wang Y, Zhang L, Zhang Z. Dominant Fraction of EPFRs from Nonsolvent-Extractable Organic Matter in Fine Particulates over Xi'an, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:9646-9655. [PMID: 30071162 DOI: 10.1021/acs.est.8b01980] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
To understand the nature and possible sources of environmentally persistent free radicals (EPFRs) in atmospheric aerosols, the present study used a solvent extraction method to fractionate aerosol components with different polarities and solvent resistance in fine particulate matter (PM2.5) from Xi'an, China. The characteristics of EPFRs, that is., their concentration, type and lifetime, were obtained based on their electron paramagnetic resonance spectra. The results showed that the EPFRs in the PM2.5 samples were carbon-centered with a nearby heteroatom ( g = 2.0031) and had a long half-life of more than 3 years. Nearly all of the extractable EPFRs were detected in the water-insoluble organic fraction and showed characteristics indicating that may contain oxygen-centered radical ( g = 2.0038). Most of the total EPFRs in the PM2.5 were derived from solvent-resistant organic matter (88%), which likely consisted of graphene oxide analogues. The results suggest that previous studies may have missed the major proportion of EPFRs in atmospheric particulates if they only focused on solvent-extractable or metallic oxide-formed EPFRs. Our results showed that the EPFR concentration was significantly and positively correlated with the elemental carbon and NO2 concentrations, suggesting that traffic emissions may be an important source of EPFRs in PM2.5 over Xi'an.
Collapse
Affiliation(s)
- Qingcai Chen
- School of Environmental Science and Engineering , Shaanxi University of Science and Technology , Xi'an 710021 , China
- Graduate School of Environmental Studies , Nagoya University , Nagoya 464-8601 , Japan
| | - Haoyao Sun
- School of Environmental Science and Engineering , Shaanxi University of Science and Technology , Xi'an 710021 , China
| | - Mamin Wang
- School of Environmental Science and Engineering , Shaanxi University of Science and Technology , Xi'an 710021 , China
| | - Zhen Mu
- School of Environmental Science and Engineering , Shaanxi University of Science and Technology , Xi'an 710021 , China
| | - Yuqin Wang
- School of Environmental Science and Engineering , Shaanxi University of Science and Technology , Xi'an 710021 , China
- Department of Earth and Atmospheric Sciences , Saint Louis University , St. Louis , Missouri 63108 , United States
| | - Yanguang Li
- Key Laboratory for the Study of Focused Magmatism and Giant Ore Deposits , MLR , Xi'an 710054 , China
- Xi'an Center of Geological Survey , China Geological Survey , Xi'an 710054 , China
| | - Yansong Wang
- College of Chemistry and Chemical Engineering , Shaanxi University of Science and Technology , Xi'an 710021 , China
| | - Lixin Zhang
- School of Environmental Science and Engineering , Shaanxi University of Science and Technology , Xi'an 710021 , China
| | - Zimeng Zhang
- School of Environmental Science and Engineering , Shaanxi University of Science and Technology , Xi'an 710021 , China
| |
Collapse
|
48
|
Wang P, Pan B, Li H, Huang Y, Dong X, Ai F, Liu L, Wu M, Xing B. The Overlooked Occurrence of Environmentally Persistent Free Radicals in an Area with Low-Rank Coal Burning, Xuanwei, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1054-1061. [PMID: 29316392 DOI: 10.1021/acs.est.7b05453] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The mining and burning of low-rank coal in Xuanwei, China have attracted a great deal of research attention because of the generated polyaromatic hydrocarbons (PAHs) and the high incidence of lung cancer in this region. Given the abundant transition metals in the allitic soil, we hypothesized that environmentally persistent free radicals (EPFRs) are formed in this region and the potential risk had not been addressed. Strong electron paramagnetic resonance (EPR) signals of 3.20 × 1017 - 3.10 × 1019 spins/g were detected in environmental samples, including chimney soot, coal, soil and total suspended particles (TSP). These EPR signals did not significantly change after 18-months storage and had g-values in the range of 2.0039-2.0046, suggesting typical organic free radicals. Similar strong EPR signals were observed in PAH (anthracene and pyrene as model compounds) degradation on simulated soil particles and lasted over one month even when the applied PAHs were 100% degraded. Based on g-value and bond width, we propose that EPR signals detected in TSP and soot originated from both coal combustion and PAH photodegradation. Further research is thus urgently required to investigate EPFR generation, exposure and risk in Xuanwei to better understand the cause of high lung cancer incidence.
Collapse
Affiliation(s)
- Peng Wang
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology , Kunming 650500, P. R. China
| | - Bo Pan
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology , Kunming 650500, P. R. China
| | - Hao Li
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology , Kunming 650500, P. R. China
| | - Yu Huang
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology , Kunming 650500, P. R. China
| | - Xudong Dong
- The affiliated Hospital of Kunming University of Science and Technology , Kunming, 650500, China
| | - Fang Ai
- The affiliated Hospital of Kunming University of Science and Technology , Kunming, 650500, China
| | - Lingyan Liu
- The affiliated Hospital of Kunming University of Science and Technology , Kunming, 650500, China
| | - Min Wu
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology , Kunming 650500, P. R. China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts , Amherst, Massachusetts 01003, United States
| |
Collapse
|
49
|
Yang L, Liu G, Zheng M, Jin R, Zhao Y, Wu X, Xu Y. Pivotal Roles of Metal Oxides in the Formation of Environmentally Persistent Free Radicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:12329-12336. [PMID: 29027793 DOI: 10.1021/acs.est.7b03583] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Environmentally persistent free radicals (EPFRs) are emerging pollutants that can adversely affect human health. Although the pivotal roles of metal oxides in EPFR formation have been identified, few studies have investigated the influence of the metal oxide species, size, or concentration on the formation of EPFRs. In this study, EPFR formation from a polyaromatic hydrocarbon with chlorine and hydroxyl substituents (2,4-dichloro-1-naphthol) was investigated using electron paramagnetic resonance spectroscopy. The effect of the metal oxide on the EPFR species and its lifetime and yield were evaluated. The spectra obtained with catalysis by CuO, Al2O3, ZnO, and NiO were obviously different, indicating that different EPFRs formed. The abilities of the metal oxides to promote EPFR formation were in the order Al2O3 > ZnO > CuO > NiO, which were in accordance with the oxidizing strengths of the metal cations. A decay study showed that the generated radicals were persistent, with a maximum 1/e lifetime of 108 days on the surface of Al2O3. The radical yields were dependent on the concentration and particle size of the metal oxide. Metal oxide nanoparticles increased the EPFR concentrations more than micrometer-sized particles.
Collapse
Affiliation(s)
- Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Rong Jin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Yuyang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Xiaolin Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Yang Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| |
Collapse
|
50
|
Feld-Cook EE, Bovenkamp-Langlois L, Lomnicki SM. Effect of Particulate Matter Mineral Composition on Environmentally Persistent Free Radical (EPFR) Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:10396-10402. [PMID: 28817261 PMCID: PMC5778880 DOI: 10.1021/acs.est.7b01521] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Environmentally Persistent Free Radicals (EPFRs) are newly discovered, long-lived surface bound radicals that form on particulate matter and combustion borne particulates, such as fly ash. Human exposure to such particulates lead to translocation into the lungs and heart resulting in cardio-vascular and respiratory disease through the production of reactive oxygen species. Analysis of some waste incinerator fly ashes revealed a significant difference between their EPFR contents. Although EPFR formation occurs on the metal domains, these differences were correlated with the altering concentration of calcium and sulfur. To analyze these phenomena, surrogate fly ashes were synthesized to mimic the presence of their major mineral components, including metal oxides, calcium, and sulfur. The results of this study led to the conclusion that the presence of sulfates limits formation of EPFRs due to inhibition or poisoning of the transition metal active sites necessary for their formation. These findings provide a pathway toward understanding differences in EPFR presence on particulate matter and uncover the possibility of remediating EPFRs from incineration and hazardous waste sites.
Collapse
Affiliation(s)
- Elisabeth E. Feld-Cook
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Lisa Bovenkamp-Langlois
- Center for Advanced Microstructures & Devices (CAMD), Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Slawo M. Lomnicki
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|