1
|
Ayeldeen G, Badr BM, Herzalla MR, Amer E, Elsabahy M, Shaker OG, Hasona NA. Integrated Analysis of Noncoding RNAs (PVT-1 and miR-200c) and Their Correlation with STAT4/IL-6 Axis as Reliable Biomarkers for COVID-19 Severity. J Interferon Cytokine Res 2024; 44:510-517. [PMID: 39304186 DOI: 10.1089/jir.2024.0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Inefficient control of elevated inflammatory mediators in coronavirus disease 2019 (COVID-19) has led to health complications, prompting the exploration of efficient biomarkers for monitoring this condition. We herein sought to investigate the implications of plasmacytoma variant translocation 1 (PVT-1), microRNA-200c (miR-200c), signal transducer and activator of transcription 4 (STAT-4), and interleukin-6 (IL-6), as well as how they correlated with creatinine, C-reactive protein (CRP), and lactate dehydrogenase (LDH) activity to identify biomarkers able to the early prognosis and diagnosis of COVID-19. Our study included a total of 105 infected COVID-19 patients and 35 healthy subjects as controls. Individuals with COVID-19 showed a significant increase in CRP, creatinine, and LDH activity. In addition, COVID-19 patients exhibited significantly higher levels of IL-6. These patients also demonstrated notably elevated expressions of miR-200c and PVT-1. The expression level of STAT4 decreased in the COVID-19 patients, and this decrease was negatively correlated with creatinine and LDH activity. The levels of miR-200c and PVT-1 expressions, and their connections with IL-6 and STAT4 levels, increased significantly with the severity of COVID-19 cases. In addition, receiver operating characteristic analysis showed that PVT-1 and miR-200c could be reliable biomarkers for determining the severity of COVID-19.
Collapse
Affiliation(s)
- Ghada Ayeldeen
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Bahaa Mohammed Badr
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Al-Azhar University (Assiut branch), Assiut, Egypt
| | - Mohamed R Herzalla
- Department of Internal Medicine, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Eman Amer
- Medical Biochemistry Department, Faculty of Pharmacy, AUC, Cairo, Egypt
| | | | - Olfat G Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nabil A Hasona
- Biochemistry Department, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| |
Collapse
|
2
|
ElMonier AA, Shaker OG, Ali SO. Regulatory role of the lncRNAs MIAT and PVT1 in Behçet's disease through targeting miR-93-5p and miR-124-3p. Mol Med 2024; 30:157. [PMID: 39317938 PMCID: PMC11423507 DOI: 10.1186/s10020-024-00914-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND Noncoding RNAs play pivotal roles in the process of autoimmune diseases. However, the definite contributions of these molecules to Behçet's disease (BD) are still unknown. This study aimed to explore the clinical value of a novel competing endogenous (ce) RNA network in the pathogenesis of BD and to assess its use in primary diagnosis. METHODS Bioinformatic analysis was applied to construct a BD-related ceRNA network: lncRNA (MIAT and PVT1)-miRNA (miR-93-5p and miR-124-3p)-mRNA (SOD-2 and MICA). Blood was obtained from 70 BD patients and 30 healthy subjects, and the serum expression of the tested RNAs was estimated via quantitative real-time PCR (qPCR). Serum tumor necrosis factor-alpha (TNF-α) levels were also determined. The associations between these RNAs were further analyzed, and receiver operating characteristic (ROC) curve and logistic regression analyses were employed to validate their diagnostic and prognostic values. RESULTS The expression levels of the lncRNAs PVT1 and miR-93-5p were significantly increased, whereas those of the lncRNAs MIAT and miR-124-3p, as well as those of the SOD-2 and MICA mRNAs, were significantly decreased in BD patients compared with controls. BD patients had significantly higher serum TNF-α levels than controls did. ROC curve analysis indicated that the selected RNAs could be candidate diagnostic biomarkers for BD. Moreover, the highest diagnostic efficiency was achieved with the combination of MIAT and miR-93-5p or PVT1 and miR-124-3p with either SOD-2 or MICA. Logistic regression analysis revealed that all RNA expression levels could be predictors for BD. CONCLUSION Mechanistically, our research revealed a novel ceRNA network that is significantly disrupted in BD. The findings reported herein, highlight the noncoding RNA-molecular pathways underlying BD and identify potential targets for therapeutic intervention. These insights will likely be applicable for developing new strategies for the early diagnosis, management and risk assessment of BD as well as the design of novel preventive measures. Trial registration The protocol for the clinical studies was approved by Cairo University's Faculty of Pharmacy's Research Ethics Committee (approval number: BC 3590).
Collapse
Affiliation(s)
- Asmaa A ElMonier
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Olfat G Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Shimaa O Ali
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Gu J, Zhou D. Long non-coding RNA MEG3 knockdown represses airway smooth muscle cells proliferation and migration via sponging miR-143-3p/FGF9 in asthma. J Cardiothorac Surg 2024; 19:314. [PMID: 38824534 PMCID: PMC11143653 DOI: 10.1186/s13019-024-02798-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 05/25/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Asthma is a respiratory disease characterized by airway remodeling. We aimed to find out the role and mechanism of lncRNA MEG3 in asthma. METHODS We established a cellular model of asthma by inducing human airway smooth muscle cells (HASMCs) with PDGF-BB, and detected levels of lncRNA MEG3, miR-143-3p and FGF9 in HASMCs through qRT-PCR. The functions of lncRNA MEG3 or miR-143-3p on HASMCs were explored by cell transfection. The binding sites of miR-143-3p and FGF9 were subsequently analyzed with bioinformatics software, and validated with dual-luciferase reporter assay. MTT, 5-Ethynyl-2'-deoxyuridine (EdU) assay, and Transwell were used to detect the effects of lncRNA MEG3 or miR-143-3p on proliferation and migration of HASMCs. QRT-PCR and western blot assay were used to evaluate the level of proliferation-related marker PCNA in HASMCs. RESULTS The study found that lncRNA MEG3 negatively correlated with miR-143-3p, and miR-143-3p could directly target with FGF9. Silence of lncRNA MEG3 can suppress migration and proliferation of PDGF-BB-induced HASMCs via increasing miR-143-3p. Further mechanistic studies revealed that miR-143-3p negatively regulated FGF9 expression in HASMCs. MiR-143-3p could inhibit PDGF-BB-induced HASMCs migration and proliferation through downregulating FGF9. CONCLUSION LncRNA MEG3 silencing could inhibit the migration and proliferation of HASMCs through regulating miR-143-3p/FGF9 signaling axis. These results imply that lncRNA MEG3 plays a protective role against asthma.
Collapse
Affiliation(s)
- Jiaying Gu
- Department of Pulmonary and Critical Care Medicine, Wuhan Fourth Hospital, No. 76 Jiefang Avenue, Qiaokou District, Wuhan, 430000, China
| | - Dengfeng Zhou
- Department of Pulmonary and Critical Care Medicine, Wuhan Fourth Hospital, No. 76 Jiefang Avenue, Qiaokou District, Wuhan, 430000, China.
| |
Collapse
|
4
|
Bao T, Liu X, Hu J, Ma M, Li J, Cao L, Yu B, Cheng H, Zhao S, Tian Z. Recruitment of PVT1 Enhances YTHDC1-Mediated m6A Modification of IL-33 in Hyperoxia-Induced Lung Injury During Bronchopulmonary Dysplasia. Inflammation 2024; 47:469-482. [PMID: 37917328 PMCID: PMC11074042 DOI: 10.1007/s10753-023-01923-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/26/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease that specifically affects preterm infants. Oxygen therapy administered to treat BPD can lead to hyperoxia-induced lung injury, characterized by apoptosis of lung alveolar epithelial cells. Our epitranscriptomic microarray analysis of normal mice lungs and hyperoxia-stimulated mice lungs revealed elevated RNA expression levels of IL-33, as well as increased m6A RNA methylation levels of IL-33 and PVT1 in the hyperoxia-stimulated lungs. This study aimed to investigate the role of the PVT1/IL-33 axis in BPD. A mouse model of BPD was established through hyperoxia induction, and lung histological changes were assessed by hematoxylin-eosin staining. Parameters such as radial alveolar count and mean chord length were measured to assess lung function. Mouse and human lung alveolar epithelial cells (MLE12 and A549, respectively) were stimulated with hyperoxia to create an in vitro BPD model. Cell apoptosis was detected using Western blotting and flow cytometry analysis. Our results demonstrated that silencing PVT1 suppressed apoptosis in MLE12 and A549 cells and improved lung function in hyperoxia-stimulated lungs. Additionally, IL-33 reversed the effects of PVT1 both in vivo and in vitro. Through online bioinformatics analysis and RNA-binding protein immunoprecipitation assays, YTHDC1 was identified as a RNA-binding protein (RBP) for both PVT1 and IL-33. We found that PVT1 positively regulated IL-33 expression by recruiting YTHDC1 to mediate m6A modification of IL-33. In conclusion, silencing PVT1 demonstrated beneficial effects in alleviating BPD by facilitating YTHDC1-mediated m6A modification of IL-33. Inhibition of the PVT1/IL-33 axis to suppress apoptosis in lung alveolar epithelial cells may hold promise as a therapeutic approach for managing hyperoxia-induced lung injury in BPD.
Collapse
Affiliation(s)
- Tianping Bao
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China
| | - Xiangye Liu
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China
| | - Jian Hu
- Department of Pediatrics, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Mengmeng Ma
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China
| | - Jingyan Li
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China
| | - Linxia Cao
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China
| | - Bingrui Yu
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China
| | - Huaiping Cheng
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China
| | - Sai Zhao
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China.
| | - Zhaofang Tian
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China.
| |
Collapse
|
5
|
Khanaliha K, Sadri Nahand J, Khatami A, Mirzaei H, Chavoshpour S, Taghizadieh M, Karimzadeh M, Donyavi T, Bokharaei‐Salim F. Analyzing the expression pattern of the noncoding RNAs (HOTAIR, PVT-1, XIST, H19, and miRNA-34a) in PBMC samples of patients with COVID-19, according to the disease severity in Iran during 2022-2023: A cross-sectional study. Health Sci Rep 2024; 7:e1861. [PMID: 38332929 PMCID: PMC10850438 DOI: 10.1002/hsr2.1861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
Background and aims MicroRNAs (miRNAs) and long noncoding RNAs (lncRNAs) are well-known types of noncoding RNAs (ncRNAs), which have been known as the key regulators of gene expression. They can play critical roles in viral infection by regulating the host immune response and interacting with genes in the viral genome. In this regard, ncRNAs can be employed as biomarkers for viral diseases. The current study aimed to evaluate peripheral blood mononuclear cell (PBMC) ncRNAs (lncRNAs-homeobox C antisense intergenic RNA [HOTAIR], -H19, X-inactive-specific transcript [XIST], plasmacytoma variant translocation 1 [PVT-1], and miR-34a) as diagnostic biomarkers to differentiate severe COVID-19 cases from mild ones. Methods Candidate ncRNAs were selected according to previous studies and assessed by real-time polymerase chain reaction in the PBMC samples of patients with severe coronavirus disease 2019 (COVID-19) (n = 40), healthy subjects (n = 40), and mild COVID-19 cases (n = 40). Furthermore, the diagnostic value of the selected ncRNAs was assessed by analyzing the receiver-operating characteristic (ROC). Results The results demonstrated that the expression pattern of the selected ncRNAs was significantly different between the studied groups. The levels of HOTAIR, XIST, and miR-34a were remarkably overexpressed in the severe COVID-19 group in comparison with the mild COVID-19 group, and in return, the PVT-1 levels were lower than in the mild COVID-19 group. Interestingly, the XIST expression level in men with severe COVID-19 was higher compared to women with mild COVID-19. ROC results suggested that HOTAIR and PVT-1 could serve as useful biomarkers for screening mild COVID-19 from severe COVID-19. Conclusions Overall, different expression patterns of the selected ncRNAs and ROC curve results revealed that these factors can contribute to COVID-19 pathogenicity and can be considered diagnostic markers of COVID-19 severe outcomes.
Collapse
Affiliation(s)
- Khadijeh Khanaliha
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious DiseasesIran University of Medical SciencesTehranIran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - AliReza Khatami
- Department of VirologyIran University of Medical SciencesTehranIran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic DiseasesKashan University of Medical SciencesKashanIran
| | - Sara Chavoshpour
- Department of VirologyTehran University of Medical SciencesTehranIran
| | - Mohammad Taghizadieh
- Department of Pathology, Faculty of MedicineTabriz University of Medical SciencesTabrizIran
| | - Mohammad Karimzadeh
- Core Research Facilities (CRF)Isfahan University of Medical ScienceIsfahanIran
| | - Tahereh Donyavi
- Department of Medical Biotechnology, Faculty of Allied MedicineIran University of Medical SciencesTehranIran
| | | |
Collapse
|
6
|
Li J, Huang S, Shi L, Chen G, Liu X, Liu M, Guo G. Interaction between long noncoding RNA and microRNA in lung inflammatory diseases. Immun Inflamm Dis 2024; 12:e1129. [PMID: 38270295 PMCID: PMC10777888 DOI: 10.1002/iid3.1129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Non-coding RNAs (ncRNAs) are a group of RNAs that cannot synthesize proteins, but are critical in gene expression regulation. Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), the two major family members, are intimately involved in controlling immune response, cell proliferation, apoptosis, differentiation and polarization, and cytokine secretion. Their interactions significantly influence lung inflammatory diseases and could be potential therapeutic targets. OBJECTIVES The review aims to elucidate the role of ncRNAs, especially the interactions between lncRNA and miRNA in lung diseases, including acute and chronic lung inflammatory diseases, as well as lung cancer. And provide novel insights into disease mechanisms and potential therapeutic methods. METHODS We conducted a comprehensive review of the latest studies on lncRNA and miRNA in lung inflammatory diseases. Our research involved searching through electronic databases like PubMed, Web of Science, and Scopus. RESULTS We explain the fundamental characteristics and functions of miRNA and lncRNA, their potential interaction mechanisms, and summarize the newly explorations on the role of lncRNA and miRNA interactions in lung inflammatory diseases. CONCLUSIONS Numerous lncRNAs and miRNAs have been found to partipicate in all stages of lung inflammatory diseases. While ncRNA-based therapies have been validated and developed, there remain challenges in developing more stable and effective drugs for clinical use.
Collapse
Affiliation(s)
- Jiaqi Li
- Medical Center of Burn Plastic and Wound RepairThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Shengyu Huang
- Medical Center of Burn Plastic and Wound RepairThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Liangliang Shi
- Medical Center of Burn Plastic and Wound RepairThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Guochang Chen
- Medical Center of Burn Plastic and Wound RepairThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Xiaoxiao Liu
- Medical Center of Burn Plastic and Wound RepairThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Mingzhuo Liu
- Medical Center of Burn Plastic and Wound RepairThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Guanghua Guo
- Medical Center of Burn Plastic and Wound RepairThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| |
Collapse
|
7
|
Fu T, Tian H, Rong H, Ai P, Li X. LncRNA PVT1 induces apoptosis and inflammatory response of bronchial epithelial cells by regulating miR-30b-5p/BCL2L11 axis in COPD. Genes Environ 2023; 45:24. [PMID: 37817266 PMCID: PMC10566077 DOI: 10.1186/s41021-023-00283-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/01/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a serious health burden worldwide with high mortality. LncRNA plasmacytoma variant translocation 1 (PVT1) has been illustrated to serve as a biomarker for COPD progression. Nonetheless, its specific functions and mechanisms in COPD are unclarified. METHODS Cigarette smoke extract (CSE) was utilized to stimulate 16HBE cells, and cigarette smoke combining with lipopolysaccharide (LPS) was employed to induce COPD in rats. Western blotting and RT-qPCR were utilized for measuring protein and RNA levels. Flow cytometry was implemented for detecting cell apoptosis. Concentrations of inflammatory factors TNF-α and IFN-γ were examined using ELISA. Luciferase reporter assay was utilized for verifying the interaction between molecules. Hematoxylin-eosin staining was performed for histological analysis of rat lung tissues. RESULTS PVT1 was highly expressed in CSE-stimulated 16HBE cells and the lungs of COPD rats. PVT1 depletion restored the viability, restrained apoptosis and hindered inflammatory cytokine production in 16HBE cells under CSE treatment and alleviated pathological damages in COPD rats. PVT1 bound to miR-30b-5p and miR-30b-5p targeted BCL2 like 11 (BCL2L11). Overexpressing BCL2L11 offset the above effects mediated by PVT1 in CSE-triggered 16HBE cells. CONCLUSION PVT1 enhances apoptosis and inflammation of 16HBE cells under CSE stimulation by modulating miR-30b-5p/BCL2L11 axis.
Collapse
Affiliation(s)
- Taoli Fu
- Department of Geriatrics, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, 430016, Hubei, China
| | - Hui Tian
- Department of Pulmonology, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, 430016, Hubei, China
| | - Hui Rong
- Department of Geriatrics, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, 430016, Hubei, China
| | - Ping Ai
- Department of Surgery, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, 430016, Hubei, China
| | - Xiaoping Li
- Department of Orthopaedics, Wuhan Hospital of Traditional Chinese Medicine, No.49, Lihuangpi Road, Jiang'an District, Wuhan, Hubei, China.
| |
Collapse
|
8
|
Fan M, Song W, Hao Z, Zhang J, Li Y, Fu J. Construction of lncRNA-miRNA-mRNA regulatory network in severe asthmatic bronchial epithelial cells: A bioinformatics study. Medicine (Baltimore) 2023; 102:e34749. [PMID: 37657025 PMCID: PMC10476739 DOI: 10.1097/md.0000000000034749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/24/2023] [Indexed: 09/03/2023] Open
Abstract
Asthma is a chronic respiratory disease caused by environment-host interactions. Bronchial epithelial cells (BECs) are the first line of defense against environmental toxins. However, the mechanisms underlying the role of BECs in severe asthma (SA) are not yet fully understood. Long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) have been shown to play important roles in the regulation of gene expression in the pathogenesis of SA. In this study, bioinformatics was used for the first time to reveal the lncRNA-miRNA-mRNA regulatory network of BECs in SA. Five mRNA datasets of bronchial brushing samples from patients with SA and healthy controls (HC) were downloaded from the Gene Expression Omnibus (GEO) database. A combination of the Venn diagram and robust rank aggregation (RRA) method was used to identify core differentially expressed genes (DEGs). Protein-protein interaction (PPI) analysis of core DEGs was performed to screen hub genes. The miRDB, miRWalk, and ENCORI databases were used to predict the miRNA-mRNA relationships, and the ENCORI and starBase v2.0 databases were used to predict the upstream lncRNAs of the miRNA-mRNA relationships. Four core DEGs were identified: carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5), interleukin-1 receptor type 2 (IL1R2), trefoil factor 3 (TFF3), and vascular endothelial growth factor A (VEGFA). These 4 core DEGs indicated that SA was not significantly associated with sex. Enrichment analysis showed that the MAPK, Rap1, Ras, PI3K-Akt and Calcium signaling pathways may serve as the principal pathways of BECs in SA. A lncRNA-miRNA-mRNA regulatory network of the severe asthmatic bronchial epithelium was constructed. The top 10 competing endogenous RNAs (ceRNAs) were FGD5 antisense RNA 1 (FGD5-AS1), metastasis associated lung adenocarcinoma transcript 1 (MALAT1), X inactive specific transcript (XIST), HLA complex group 18 (HCG18), small nucleolar RNA host gene 16 (SNHG16), has-miR-20b-5p, has-miR-106a-5p, hsa-miR-106b-5p, has-miR-519d-3p and Fms related receptor tyrosine kinase 1 (FLT1). Our study revealed a potential mechanism for the lncRNA-miRNA-mRNA regulatory network in BECs in SA.
Collapse
Affiliation(s)
- Mengzhen Fan
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenjie Song
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory Innovation and Transformation, Tianjin, China
| | - Zheng Hao
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory Innovation and Transformation, Tianjin, China
- Medical History Documentation Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Zhang
- Department of General Surgery, Henan University of Science and Technology Affiliated First Hospital, Luoyang, China
| | - Yang Li
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jinjie Fu
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
9
|
D’Amico G, Santonocito R, Vitale AM, Scalia F, Marino Gammazza A, Campanella C, Bucchieri F, Cappello F, Caruso Bavisotto C. Air Pollution: Role of Extracellular Vesicles-Derived Non-Coding RNAs in Environmental Stress Response. Cells 2023; 12:1498. [PMID: 37296619 PMCID: PMC10252408 DOI: 10.3390/cells12111498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/17/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Air pollution has increased over the years, causing a negative impact on society due to the many health-related problems it can contribute to. Although the type and extent of air pollutants are known, the molecular mechanisms underlying the induction of negative effects on the human body remain unclear. Emerging evidence suggests the crucial involvement of different molecular mediators in inflammation and oxidative stress in air pollution-induced disorders. Among these, non-coding RNAs (ncRNAs) carried by extracellular vesicles (EVs) may play an essential role in gene regulation of the cell stress response in pollutant-induced multiorgan disorders. This review highlights EV-transported ncRNAs' roles in physiological and pathological conditions, such as the development of cancer and respiratory, neurodegenerative, and cardiovascular diseases following exposure to various environmental stressors.
Collapse
Affiliation(s)
- Giuseppa D’Amico
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
| | - Radha Santonocito
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
| | - Alessandra Maria Vitale
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Federica Scalia
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Antonella Marino Gammazza
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
| | - Claudia Campanella
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
| | - Fabio Bucchieri
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
| | - Francesco Cappello
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Celeste Caruso Bavisotto
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| |
Collapse
|
10
|
Wang Y, Xie Q, Yu H, Zhou B, Guo X, Wu B, Hu J. Establishment and validation of the autophagy-related ceRNA network in irreversible pulpitis. BMC Genomics 2023; 24:268. [PMID: 37208635 DOI: 10.1186/s12864-023-09363-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/06/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND The molecular mechanisms underlying the onset and progression of irreversible pulpitis have been studied for decades. Many studies have indicated a potential correlation between autophagy and this disease. Against the background of the competing endogenous RNA (ceRNA) theory, protein-coding RNA functions are linked with long noncoding RNAs (lncRNAs) and microRNAs (miRNAs). This mechanism has been widely studied in various fields but has rarely been reported in the context of irreversible pulpitis. The hub genes selected under this theory may represent the key to the interaction between autophagy and irreversible pulpitis. RESULTS Filtering and differential expression analyses of the GSE92681 dataset, which contains data from 7 inflamed and 5 healthy pulp tissue samples, were conducted. The results were intersected with autophagy-related genes (ARGs), and 36 differentially expressed ARGs (DE-ARGs) were identified. Functional enrichment analysis and construction of the protein‒protein interaction (PPI) network of DE-ARGs were performed. Coexpression analysis was conducted between differentially expressed lncRNAs (DElncRNAs) and DE-ARGs, and 151 downregulated and 59 upregulated autophagy-related DElncRNAs (AR-DElncRNAs) were identified. StarBase and multiMiR were then used to predict related microRNAs of AR-DElncRNAs and DE-ARGs, respectively. We established ceRNA networks including 9 hub lncRNAs (HCP5 and AC112496.1 ↑; FENDRR, AC099850.1, ZSWIM8-AS1, DLX6-AS1, LAMTOR5-AS1, TMEM161B-AS1 and AC145207.5 ↓), which were validated by a qRT‒PCR analysis of pulp tissue from patients with irreversible pulpitis. CONCLUSION We constructed two networks consisting of 9 hub lncRNAs based on the comprehensive identification of autophagy-related ceRNAs. This study may provide novel insights into the interactive relationship between autophagy and irreversible pulpitis and identifies several lncRNAs that may serve as potential biological markers.
Collapse
Affiliation(s)
- Ye Wang
- Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Shenzhen, 518118, China
| | - Qiuyan Xie
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hongwen Yu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Bangyi Zhou
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaolan Guo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Buling Wu
- Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Shenzhen, 518118, China
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiao Hu
- Changsha Stomatological Hospital, Changsha, 410000, China.
| |
Collapse
|
11
|
Wang L, Liu X. Long noncoding RNA antisense noncoding RNA in the INK4 locus inhibition alleviates airway remodeling in asthma through the regulation of the microRNA-7-5p/early growth response factor 3 axis. Immun Inflamm Dis 2023; 11:e823. [PMID: 37102654 PMCID: PMC10091379 DOI: 10.1002/iid3.823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/07/2023] [Accepted: 03/10/2023] [Indexed: 04/28/2023] Open
Abstract
Asthma, a chronic inflammatory disease of the airways, clinically manifests as airway remodeling. The purpose of this study was to probe the potential role of long noncoding RNA (lncRNA) antisense noncoding RNA in the INK4 locus (lncRNA ANRIL) in the proliferation and migration of airway smooth muscle cell (ASMC) and to explore its potential mechanisms in asthma. Serum samples were obtained from 30 healthy volunteers and 30 patients with asthma. Additionally, platelet-derived growth factor-BB (PDGF-BB) was used to induce airway remodeling in ASMCs. The level of lncRNA ANRIL and microRNA (miR)-7-5p in serum samples were measured by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). TargetScan predicted the binding site of miR-7-5p to early growth response factor 3 (EGR3) and validated the results using a dual-luciferase reporter assay. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and Transwell assays were used to detect cellular proliferation and migration, respectively. Subsequently, changes in proliferation- and migration-related genes were verified using western blot analysis and qRT-PCR. These results indicate that lncRNA ANRIL was upregulated in the serum and PDGF-BB-induced ASMCs of patients with asthma, whereas miR-7-5p expression was reduced. EGR3 was a direct target of miR-7-5p. LncRNA ANRIL silencing inhibited the proliferation or migration of ASMCs induced by PDGF-BB through miR-7-5p upregulation. Mechanistic studies indicated that miR-7-5p inhibits the proliferation or migration of PDGF-BB-induced ASMCs by decreasing EGR3 expression. EGR3 upregulation reverses the role of miR-7-5p in airway remodeling. Thus, downregulation of lncRNA ANRIL inhibits airway remodeling through inhibiting the proliferation and migration of PDGF-BB-induced ASMCs by regulating miR-7-5p/EGR3 signaling.
Collapse
Affiliation(s)
- Liyan Wang
- Department of PediatricsWuhan Third HospitalWuhanChina
| | - Xueru Liu
- Department of Respiratory Medicine, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science & TechnologyWuhanChina
| |
Collapse
|
12
|
She W, Sun T, Long C, Chen M, Chen X, Liao Q, Wang M. Linc00511 Knockdown Inhibited TGF-β1-Induced Epithelial-Mesenchymal Transition of Bronchial Epithelial Cells by Targeting miR-16-5p/Smad3. Am J Rhinol Allergy 2023; 37:313-323. [PMID: 36594176 DOI: 10.1177/19458924221144853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Airway remodeling in patients with asthma was correlated with induced epithelial-mesenchymal transition (EMT) of bronchial epithelial cells. OBJECTIVE This study examined the mechanism of Linc00511 on induced EMT of bronchial epithelial cells after transforming growth factor-β1 (TGF-β1) induction. METHODS The human bronchial epithelial cell 16HBE was treated with 10 ng/mL TGF-β1 for 12 h, 24 h, or 48 h to induce EMT. Cell proliferation and migration rate were detected using CCK8 and wound healing assays, respectively. The expression of key markers of EMT (E-cadherin, N-cadherin, Small mothers against decapentaplegic family member 3 [Smad3], and slug) was tested by Western blot. RESULTS We found that Linc00511 was time dependently increased in TGF-β-treated 16HBE cells. Silencing Linc00511 reduced 16HBE cell proliferation, migration, and EMT progress. In addition, the dual-luciferase reporter assay showed Linc00511 was a molecular sponge for miR-16-5p. MiR-16-5p decreased the expression of Smad3 by targeting its 3'-untranslated region (3'UTR). After TGF-β1 exposure, miR-16-5p silencing counteracted the decreases of 16HBE cell proliferation, migration, and EMT induced by Linc00511 knockdown. And Smad3 overexpression also reversed the inhibitory effect of Linc00511 knockdown on proliferation, migration, and EMT progression in TGF-β1-induced human bronchial epithelial cells. CONCLUSION Linc00511 may be a valuable biomarker for asthma therapy.
Collapse
Affiliation(s)
- Weiwei She
- Department of Respiratory and Critical Care Medicine, 477248Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China.,Department of Respiratory and Critical Care Medicine, Nanxishan Hospital affiliated to Guilin Medical College, Guilin, China
| | - Tianshou Sun
- Department of Respiratory and Critical Care Medicine, 477248Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Chengfeng Long
- Department of Respiratory and Critical Care Medicine, 477248Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Meiyu Chen
- Department of Respiratory and Critical Care Medicine, 477248Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Xu Chen
- Department of Respiratory and Critical Care Medicine, 477248Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Qinxue Liao
- Department of Respiratory and Critical Care Medicine, 477248Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Mingdong Wang
- Department of Respiratory and Critical Care Medicine, 477248Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW The study of microRNA in asthma has revealed a vibrant new level of gene regulation underlying asthma pathology. Several miRNAs have been shown to be important in asthma, influencing various biological mechanisms which lead to asthma pathology and symptoms. In addition, miRNAs have been proposed as biomarkers of asthma affection status, asthma severity, and asthma treatment response. We review all recent asthma-miRNA work, while also presenting comprehensive tables of all miRNA results related to asthma. RECENT FINDINGS We here reviewed 63 recent studies published reporting asthma and miRNA research, and an additional 14 reviews of the same. We summarized the information for both adult and childhood asthma, as well as research on miRNAs in asthma-COPD overlap syndrome (ACOs), and virus-induced asthma exacerbations. We attempted to present a comprehensive collection of recently published asthma-associated miRNAs as well as tables of all published asthma-related miRNA results.
Collapse
Affiliation(s)
- Rinku Sharma
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anshul Tiwari
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael J McGeachie
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
The Role of Noncoding RNA in Airway Allergic Diseases through Regulation of T Cell Subsets. Mediators Inflamm 2022; 2022:6125698. [PMID: 36248190 PMCID: PMC9553461 DOI: 10.1155/2022/6125698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/31/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
Allergic rhinitis and asthma are common airway allergic diseases, the incidence of which has increased annually in recent years. The human body is frequently exposed to allergens and environmental irritants that trigger immune and inflammatory responses, resulting in altered gene expression. Mounting evidence suggested that epigenetic alterations were strongly associated with the progression and severity of allergic diseases. Noncoding RNAs (ncRNAs) are a class of transcribed RNA molecules that cannot be translated into polypeptides and consist of three major categories, microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs). Previous studies showed that ncRNAs were involved in the physiopathological mechanisms of airway allergic diseases and contributed to their occurrence and development. This article reviews the current state of understanding of the role of noncoding RNAs in airway allergic diseases, highlights the limitations of recent studies, and outlines the prospects for further research to facilitate the clinical translation of noncoding RNAs as therapeutic targets and biomarkers.
Collapse
|
15
|
Liu X, Lin Y. Long non-coding RNA plasmacytoma variant translocation 1 correlates with higher inflammation, multiple organ injury and mortality risk in acute pancreatitis, especially in severe acute pancreatitis. Clin Res Hepatol Gastroenterol 2022; 46:101870. [PMID: 35108655 DOI: 10.1016/j.clinre.2022.101870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/06/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Long non-coding RNA plasmacytoma variant translocation 1 (lnc-PVT1) possesses a good ability to regulate inflammation as well as multiple organ injury via multiple pathways, and clinically exacerbates severe acute pancreatitis (SAP) via autophagy. This study aimed to further assess the correlation of lnc-PVT1 with inflammation, multiple disease assessment scales, and prognostication in acute pancreatitis (AP) patients. METHODS Peripheral blood mononuclear cell (PBMC) samples were collected from 98 AP patients (within 24 h after admission) and 50 healthy controls (HCs). lnc-PVT1 in PBMC samples was examined by reverse transcription-quantitive polymerase chain reaction. Multiple AP assessments, C-reactive protein (CRP) level, and in-hospital deaths were evaluated or recorded. RESULTS lnc-PVT1 was overexpressed in AP patients compared with HCs; it was also positively correlated with Ranson's score, acute pathologic and chronic health evaluation II (APACHE II) score, sequential organ failure assessment (SOFA) score, and CRP level in AP patients. Besides, lnc-PVT1 disclosed a good predictive value for higher in-hospital mortality in AP patients (the area under the curve: 0.838, 95% confidence interval: 0.708-0.968). Lastly, lnc-PVT1 was generally correlated with CRP level as well as SOFA score among mild AP, moderate-severe AP, and SAP subgroups, especially in SAP subgroup; it was also correlated with higher mortality risk in SAP subgroup, but not in mild AP or moderate-severe AP subgroup. CONCLUSION lnc-PVT1 is associated with CRP level, SOFA score, and higher mortality risk in AP patients, especially in SAP patients, indicating its potential as a biomarker for AP.
Collapse
Affiliation(s)
- Xue Liu
- Department of Gastroenterology, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou 341000, Jiangxi, China
| | - Ye Lin
- Department of Gastroenterology, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou 341000, Jiangxi, China.
| |
Collapse
|
16
|
Xia SB, Tian ZB, Zhang W, Zhang H. NORAD Promotes the Viability, Migration, and Phenotypic Switch of Human Vascular Smooth Muscle Cells during Aortic Dissection via LIN28B-Mediated TGF- β Promotion and Subsequent Enhanced Glycolysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5333928. [PMID: 35971448 PMCID: PMC9375693 DOI: 10.1155/2022/5333928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/23/2022] [Accepted: 07/13/2022] [Indexed: 12/01/2022]
Abstract
Glucose metabolism reprogramming is an important reason for the functional remodeling, growth, and migration of vascular smooth muscle cells (VSMCs). It is also an important basis for the occurrence and development of aortic dissection (AD), but the specific regulatory factors are not clear. Noncoding RNA activated by DNA damage (NORAD) is dysfunctional in many diseases, but the role of NORAD in AD etiology is unclear. We first established a vascular remodeling cell model of AD, and the expression of NORAD in VSMCs was significantly increased. Functional experiments showed that inhibition of NORAD could downregulate the proliferation and migration of VSMCs. Meanwhile, silencing NORAD could also inhibit the flux of glycolysis, suggesting that NORAD may aggravate AD by promoting glycolysis. In addition, mechanism studies have shown that NORAD can exert VSMCs-regulating function by recruiting LIN28B to bind to TGF-β mRNA, which subsequently facilitates the expression of TGF-β1 (transforming growth factor β1). The recovery experiment also showed that overexpression of TGF-β could reverse the inhibitory effect of NORAD knockdown on VSMCs in terms of proliferation, migration, and glycolysis. Collectively, these results indicated that the NORAD/LIN28B/TGF-β axis promoted cell proliferation and migration through regulating aerobic glycolysis in VSMCs. Therefore, NORAD may regulate the occurrence of AD by affecting the reprogramming of glucose metabolism, and NORAD can be recognized as a good target for VSMC phenotypic intervention and AD treatment.
Collapse
Affiliation(s)
- Shi-bo Xia
- Department of Vascular Surgery, Changhai Hospital, Second (Navy) Military Medical University, Shanghai 200433, China
| | - Zhuang-bo Tian
- Department of Interventional Vascular Surgery, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, China
| | - Wenbo Zhang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Hao Zhang
- Department of Vascular Surgery, Changhai Hospital, Second (Navy) Military Medical University, Shanghai 200433, China
| |
Collapse
|
17
|
Sun Y, Han J, Ma H, Ma J, Ren Z. Aberrant expression of long non-coding RNA PVT1 in allergic rhinitis children: Correlation with disease risk, symptoms, and Th1/Th2 imbalance. J Clin Lab Anal 2022; 36:e24281. [PMID: 35274773 PMCID: PMC8993613 DOI: 10.1002/jcla.24281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Long non-coding RNA plasmacytoma variant translocation 1 (lnc-PVT1) exacerbates inflammation and induces T helper (Th) 1/Th2 imbalance in allergic diseases, but its clinical role in allergic rhinitis (AR) remains unclear. Hence, we conducted this study to compare lnc-PVT1 expression among AR children, disease controls (DCs), and health controls (HCs), aiming to investigate its clinical application in AR children. METHODS Sixty AR children, 30 DCs, and 30 HCs were enrolled in the study, and then, their lnc-PVT1 expression in peripheral blood mononuclear cell was detected. Serum interferon-gamma (IFN-γ), interleukin 10 (IL-10), Th1, and Th2 cells in AR children were also analyzed. Besides, lnc-PVT1 was also detected at Week (W)4 after treatment in AR patients. RESULTS Lnc-PVT1 was upregulated in AR children compared with DCs and HCs (both p < 0.001). Lnc-PVT1 was positively related to nasal rhinorrhea score, itching score, congestion score, and total nasal symptom score (TNSS) in AR children (all p < 0.050), instead of sneezing score (p = 0.115). Lnc-PVT1 negatively associated with Th1 cells in AR children (p = 0.028) also exhibited a negative correlation trend with IFN-γ (but without statistical significance) (p = 0.065). Differently, lnc-PVT1 was positively related to Th2 cells (p = 0.012) and IL-10 (p = 0.021) in AR children. Besides, lnc-PVT1 and TNSS were reduced at W4 after treatment in AR children (both p < 0.001); notably, lnc-PVT1 expression decline was correlated with TNSS decline during treatment (p = 0.013). CONCLUSION Lnc-PVT1 works as a biomarker, whose aberrant expression is related to disease severity, Th1/Th2 imbalance, and its decrement can reflect treatment outcome in AR children.
Collapse
Affiliation(s)
- Yujun Sun
- Department of PediatricsThe Second People’s Hospital of LiaochengThe Second Hospital of Liaocheng Affiliated to Shandong First Medical UniversityLinqingChina
| | - Jingjing Han
- Department of Cardiac UltrasoundThe Second People’s Hospital of LiaochengThe Second Hospital of Liaocheng Affiliated to Shandong First Medical UniversityLinqingChina
| | - Haifeng Ma
- Department of PediatricsThe Second People’s Hospital of LiaochengThe Second Hospital of Liaocheng Affiliated to Shandong First Medical UniversityLinqingChina
| | - Jingbin Ma
- Department of PediatricsThe Second People’s Hospital of LiaochengThe Second Hospital of Liaocheng Affiliated to Shandong First Medical UniversityLinqingChina
| | - Zengzhi Ren
- Department of PediatricsThe Second People’s Hospital of LiaochengThe Second Hospital of Liaocheng Affiliated to Shandong First Medical UniversityLinqingChina
| |
Collapse
|
18
|
Gysens F, Mestdagh P, de Bony de Lavergne E, Maes T. Unlocking the secrets of long non-coding RNAs in asthma. Thorax 2022; 77:514-522. [PMID: 35246486 PMCID: PMC9016255 DOI: 10.1136/thoraxjnl-2021-218359] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/21/2022] [Indexed: 12/15/2022]
Abstract
Asthma is a very heterozygous disease, divided in subtypes, such as eosinophilic and neutrophilic asthma. Phenotyping and endotyping of patients, especially patients with severe asthma who are refractory to standard treatment, are crucial in asthma management and are based on a combination of clinical and biological features. Nevertheless, the quest remains to find better biomarkers that distinguish asthma subtypes in a more clear and objective manner and to find new therapeutic targets to treat people with therapy-resistant asthma. In the past, research to identify asthma subtypes mainly focused on expression profiles of protein-coding genes. However, advances in RNA-sequencing technologies and the discovery of non-coding RNAs as important post-transcriptional regulators have provided an entire new field of research opportunities in asthma. This review focusses on long non-coding RNAs (lncRNAs) in asthma; these are non-coding RNAs with a length of more than 200 nucleotides. Many lncRNAs are differentially expressed in asthma, and several have been associated with asthma severity or inflammatory phenotype. Moreover, in vivo and in vitro functional studies have identified the mechanisms of action of specific lncRNAs. Although lncRNAs remain not widely studied in asthma, the current studies show the potential of lncRNAs as biomarkers and therapeutic targets as well as the need for further research.
Collapse
Affiliation(s)
- Fien Gysens
- OncoRNALab, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Pieter Mestdagh
- OncoRNALab, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | | | - Tania Maes
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
19
|
Yang K, Cao F, Xue Y, Tao L, Zhu Y. Three Classes of Antioxidant Defense Systems and the Development of Postmenopausal Osteoporosis. Front Physiol 2022; 13:840293. [PMID: 35309045 PMCID: PMC8927967 DOI: 10.3389/fphys.2022.840293] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/25/2022] [Indexed: 01/04/2023] Open
Abstract
Osteoporosis is a common bone imbalance disease that threatens the health of postmenopausal women. Estrogen deficiency accelerates the aging of women. Oxidative stress damage is regarded as the main pathogenesis of postmenopausal osteoporosis. The accumulation of reactive oxygen species in the bone microenvironment plays a role in osteoblast and osteoclast apoptosis. Improving the oxidative state is essential for the prevention and treatment of postmenopausal osteoporosis. There are three classes of antioxidant defense systems in the body to eliminate free radicals and peroxides including antioxidant substances, antioxidant enzymes, and repair enzymes. In our review, we demonstrated the mechanism of antioxidants and their effect on bone metabolism in detail. We concluded that glutathione/oxidized glutathione (GSH/GSSG) conversion involved the PI3K/Akt-Nrf2/HO-1 signaling pathway and that the antioxidant enzyme-mediated mitochondrial apoptosis pathway of osteoblasts was necessary for the development of postmenopausal osteoporosis. Since the current therapeutic effects of targeting bone cells are not significant, improving the systemic peroxidation state and then regulating bone homeostasis will be a new method for the treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Keda Yang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Fangming Cao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Yuchuan Xue
- The First Department of Clinical Medicine, China Medical University, Shenyang, China
| | - Lin Tao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
- *Correspondence: Lin Tao,
| | - Yue Zhu
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
- Yue Zhu,
| |
Collapse
|
20
|
Chen J, Ren H, Liu B. Evaluating the potency of blood long noncoding RNA PVT1 as candidate biomarker reflecting inflammation, multiple organ dysfunction, and mortality risk in sepsis patients. J Clin Lab Anal 2022; 36:e24268. [PMID: 35119126 PMCID: PMC8906045 DOI: 10.1002/jcla.24268] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Long noncoding RNA plasmacytoma variant translocation 1 (lnc-PVT1) promotes septic inflammation and organ injuries via multiple ways, while its clinical engagement in sepsis management is indistinct. This study aimed to investigate its relationship with inflammation, multiple organ dysfunction, and mortality risk in sepsis patients. METHODS Sepsis patients and age-/gender-matched healthy controls were enrolled; their lnc-PVT1 expression in plasma were detected by RT-qPCR. For sepsis patients only, the inflammatory cytokine levels (tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-17A) in plasma were detected by ELISA. According to the survival data during 28-day follow-up, sepsis patients were divided into sepsis survivors and sepsis deaths. RESULTS Lnc-PVT1 expression was increased in sepsis patients (N = 157) compared with healthy controls (N = 80) (p < 0.001). In sepsis patients, lnc-PVT1 was linked with higher acute physiology and chronic health evaluation II (APACHEII) score (p = 0.001), total sequential organ failure assessment (SOFA) score, and its most subitems (SOFA-respiratory system, SOFA-coagulation, SOFA-liver, SOFA-cardiovascular system, and SOFA-renal system scores) (all p < 0.01), but not SOFA-nervous system score (p = 0.091); it did not relate to primary infection sites either (p = 0.204). Furthermore, lnc-PVT1 correlated with increased C-reactive protein, TNF-α, IL-1β, and IL-17 in sepsis patients (all p < 0.01). Additionally, lnc-PVT1 expression was higher in sepsis deaths than that in sepsis survivors (p < 0.001), following receiver-operating characteristic curve disclosed that lnc-PVT1 predicted 28-day septic mortality risk (area under the curve: 0.789, 95% confidence interval: 0.702-0.875). CONCLUSION Circulating lnc-PVT1 exhibits the potential as a biomarker in sepsis patients to inform inflammation, multiple organ dysfunction, and mortality risk.
Collapse
Affiliation(s)
- Jing Chen
- Department of Critical Care Medicine, Wuhan Asia General Hospital, Wuhan, China
| | - Haibo Ren
- Department of Critical Care Medicine, Wuhan Asia General Hospital, Wuhan, China
| | - Bo Liu
- Department of Critical Care Medicine, Wuhan Asia General Hospital, Wuhan, China
| |
Collapse
|
21
|
Dai B, Sun F, Cai X, Li C, Liu F, Shang Y. Long noncoding RNA PTTG3P/miR-192-3p/CCNB1 axis is a potential biomarker of childhood asthma. Int Immunopharmacol 2021; 101:108229. [PMID: 34717195 DOI: 10.1016/j.intimp.2021.108229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/25/2021] [Accepted: 10/03/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Increasing evidence suggests that long non-coding RNAs (lncRNAs) affect the regulation of immune responses, airway inflammation, and other pathological processes involved in asthma. LncRNA PTTG3P is associated with the development of various tumors, but its role in childhood asthma remains unknown. In this study, we investigated the functions of the lncRNA PTTG3P in the progression of childhood asthma. METHODS Twenty-six healthy children and 26 asthmatic children were monitored for disease progression for 2 years. We obtained blood samples during the chronic phase of disease for lncRNA/mRNA expression microarray analysis. A competitive endogenous RNA network (PTTG3P/miR-192-3p/CCNB1) was identified using bioinformatics analyses. Real-time qPCR and western blot were used to quantify gene and protein expression levels, respectively. Cell counting kit‑8 and transwell assays were used to evaluate the proliferation and migration of bronchial epithelial (16HBE) cells. Double luciferase reporter gene assay was used to validate the predictive targets in PTTG3P, miR-192-3p, and CCNB1. RESULTS PTTG3P was highly expressed in the peripheral blood of asthmatic children. Knocking down PTTG3P inhibited epithelial-mesenchymal transition, proliferation, and migration of 16HBE cells. PTTG3P promoted progression of childhood asthma by targeting the miR-192-3p/CCNB1 axis. CONCLUSIONS Childhood asthma was associated with the PTTG3P/miR-192-3p/CCNB1 axis. This study provides potential diagnostic and treatment biomarkers for childhood asthma.
Collapse
Affiliation(s)
- Bing Dai
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Feifei Sun
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xuxu Cai
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chunlu Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fen Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yunxiao Shang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
22
|
Duan XJ, Zhang X, Ding N, Zhang JY, Chen YP. LncRNA NEAT1 regulates MMP-16 by targeting miR-200a/b to aggravate inflammation in asthma. Autoimmunity 2021; 54:439-449. [PMID: 34448644 DOI: 10.1080/08916934.2021.1966769] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Asthma is a common respiratory disease which is characterized by persistent airway inflammation. Abnormal expression of long non-coding RNAs (lncRNAs) is observed in asthma. However, whether lncRNA nuclear-enriched abundant transcript 1 (NEAT1) regulates asthmatic inflammation and its mechanism still needs to be further investigated. The expression levels of inflammatory factors (tumour necrosis factor (TNF)-α, interleukin (IL)-4, IL-13, and IL-10) were detected using reverse transcription quantitative real-time PCR (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA). MTT and flow cytometry assays were employed to determine cell proliferation and apoptosis, respectively. Dual luciferase reporter assay was performed to verify the relationship between miR-200a/b and MMP-16 or NEAT1. NEAT1 silencing markedly reduced TNF-α, IL-4, and IL-13 levels, while elevated IL-10 expression, suppressed cell proliferation, and promoted cell apoptosis. However, NEAT1 overexpression elicited the opposite effects on cell proliferation and inflammation cytokines secretion. What is more, NEAT1 negatively regulated miR-200a/b expression, and MMP16 was a target gene of miR-200a/b. miR-200a/b overexpression suppressed inflammation, cell proliferation, and enhanced cell apoptosis through regulation of MMP16. Moreover, MMP-16 overexpression or miR-200a/b inhibition abolished the regulatory effect of sh-NEAT1 on cell inflammation and apoptosis in BEAS-2B cells. NEAT1 acted as the role of sponge for miR-200a/b to regulate MMP-16 expression, thereby promoting asthma progression, suggesting that NEAT1 might have great potential as therapeutic target for asthma.
Collapse
Affiliation(s)
- Xiao-Jun Duan
- Respiratory Department, Hunan Children's Hospital, Changsha, PR China
| | - Xi Zhang
- Respiratory Department, Hunan Children's Hospital, Changsha, PR China
| | - Niu Ding
- Respiratory Department, Hunan Children's Hospital, Changsha, PR China
| | - Ji-Yan Zhang
- Respiratory Department, Hunan Children's Hospital, Changsha, PR China
| | - Yan-Ping Chen
- Respiratory Department, Hunan Children's Hospital, Changsha, PR China
| |
Collapse
|
23
|
Wang WL, Luo XM, Zhang Q, Zhu HQ, Chen GQ, Zhou Q. The lncRNA PVT1/miR-590-5p/FSTL1 axis modulates the proliferation and migration of airway smooth muscle cells in asthma. Autoimmunity 2021; 54:138-147. [PMID: 33825599 DOI: 10.1080/08916934.2021.1897977] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Asthma is a prevalent chronic inflammatory airway disease that is characterised by airway remodelling and airway hyperresponsiveness. Abnormal proliferation and migration of airway smooth muscle cells (ASMCs) contribute to airway remodelling in asthma. However, the molecular mechanism underlying an increased ASMC mass in asthma remains elusive. Herein, we aimed at investigating the regulation of lncRNA PVT1 on ASMCs and focussing on the mechanism in the proliferation and migration. METHODS Expression levels of lncRNA PVT1 and miR-590-5p in the serum collected from 24 children with asthma and 10 control children were determined by qRT-PCR. ASMCs proliferation and migration prior to and post platelet-derived growth factor subunit B (PDGF-BB) stimulation were examined by CCK-8 test and transwell assay. Dual-luciferase reporter assay was performed to determine miR-590-5p interaction with lncRNA PVT1 and follistatin-like 1 (FSTL1). Expression of lncRNA PVT1, miR-590-5p, FSTL1, C-Myc, cyclin D1, and cyclin-dependent kinase 1 (CDK1) was tested by quantitative real-time PCR (qRT-PCR) and immunoblotting analysis. RESULTS The expression level of lncRNA PVT1 was higher but the expression level of miR-590-5p was lower in the serum of children with asthma than in control children. The expression level of lncRNA PVT1 was negatively correlated with the expression level of miR-590-5p in asthma. LncRNA PVT1 was upregulated upon PDGF-BB stimulation. LncRNA PVT1 knockdown by its specific shRNA repressed PDGF-BB-induced promotion of proliferation and migration in ASMCs and triggered an elevated miR-590-5p along with declined C-Myc, cyclin D1, and CDK1. The effects of lncRNA PVT1 knockdown on PDGF-BB-induced ASMCs were lost upon miR-590-5p inhibition. MiR-590-5p targeted FSTL1 gene and declined its expression, thus suppressing ASMC proliferation and migration following PDGF-BB stimulation and downregulating C-Myc, cyclin D1, and CDK1 expressions. The effects of miR-590-5p on PDGF-BB-induced ASMCs were lost upon FSTL1 overexpression. CONCLUSION These results support the notion that the lncRNA PVT1/miR-590-5p/FSTL1 axis modulates ASMCs proliferation and migration following PDGF-BB stimulation, providing a potential therapeutic target to attenuate airway remodelling in asthma.
Collapse
Affiliation(s)
- Wen-Lan Wang
- Department of Pediatrics, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, P.R. China
| | - Xiao-Ming Luo
- Department of Pediatrics, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, P.R. China
| | - Qin Zhang
- Department of Pediatrics, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, P.R. China
| | - Hai-Qiao Zhu
- Department of Pediatrics, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, P.R. China
| | - Guo-Qing Chen
- Department of Pediatrics, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, P.R. China
| | - Qin Zhou
- Department of Pediatrics, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, P.R. China
| |
Collapse
|
24
|
Comprehensive Analysis of the Profiles of Differentially Expressed mRNAs, lncRNAs, and circRNAs in Phosgene-Induced Acute Lung Injury. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6278526. [PMID: 33506021 PMCID: PMC7811572 DOI: 10.1155/2021/6278526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/26/2020] [Accepted: 12/24/2020] [Indexed: 12/21/2022]
Abstract
Phosgene exposure can cause acute lung injury (ALI), for which there is no currently available effective treatment. Mesenchymal stem cells (MSCs) which have been proven to have therapeutic potential and be helpful in the treatment of various diseases, but the mechanisms underlying the function of MSCs against phosgene-induced ALI are still poorly explored. In this study, we compared the expression profiles of mRNAs, lncRNAs, and circRNAs in the lung tissues from rats of three groups—air control (group A), phosgene-exposed (group B), and phosgene + MSCs (group C). The results showed that 389 mRNAs, 198 lncRNAs, and 56 circRNAs were differently expressed between groups A and B; 130 mRNAs, 107 lncRNAs, and 35 circRNAs between groups A and C; and 41 mRNAs, 88 lncRNAs, and 18 circRNAs between groups B and C. GO and KEGG analyses indicated that the differentially expressed RNAs were mainly involved in signal transduction, immune system processes, and cancers. In addition, we used a database to predict target microRNAs (miRNAs) interacting with circRNAs and the R network software package to construct a circRNA-targeted miRNA gene network map. Our study showed new insights into changes in the RNA expression in ALI, contributing to explore the mechanisms underlying the therapeutic potential of MSCs in phosgene-induced ALI.
Collapse
|
25
|
Atractylodis macrocephalae polysaccharides protect against DSS-induced intestinal injury through a novel lncRNA ITSN1-OT1. Int J Biol Macromol 2020; 167:76-84. [PMID: 33248053 DOI: 10.1016/j.ijbiomac.2020.11.144] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 01/03/2023]
Abstract
Many dietary polysaccharides have been shown to protect the intestinal barrier integrity against several noxious stimuli. Previously, we have isolated a polysaccharide RAMPtp from Atractylodis macrocephalae Koidz, and analyzed its structure. However, the effects of RAMPtp on intestinal barrier function have not been investigated. Here, we evaluated the protective effects of RAMPtp on Dextran sulfate sodium (DSS)-induced intestinal epithelial cells (IECs) injury. The findings showed that RAMPtp boosted the proliferation and survival of IECs during DSS stimulation. Furthermore, we found that RAMPtp protected the IECs from injury induced by DSS through maintaining the barrier function and inflammation response. Mechanistically, we identified a novel lncRNA ITSN1-OT1, which was induced by RAMPtp during DSS stimulation. It blocked the nuclear import of phosphorylated STAT2 to prevent the DSS induced decreased expression and structural destroy of tight junction proteins. Hence, the study clarified the protective effects and mechanism of polysaccharides RAMPtp on DSS-induced intestinal barrier dysfunction.
Collapse
|