1
|
Strunz F, Stähli C, Heverhagen JT, Hofstetter W, Egli RJ. Gadolinium-Based Contrast Agents and Free Gadolinium Inhibit Differentiation and Activity of Bone Cell Lineages. Invest Radiol 2024; 59:495-503. [PMID: 38117137 DOI: 10.1097/rli.0000000000001049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
OBJECTIVES Administration of gadolinium-based contrast agents (GBCA) in magnetic resonance imaging results in the long-term retention of gadolinium (Gd) in tissues and organs, including the bone, and may affect their function and metabolism. This study aims to investigate the effects of Gd and GBCA on the proliferation/survival, differentiation, and function of bone cell lineages. MATERIALS AND METHODS Primary murine osteoblasts (OB) and osteoclast progenitor cells (OPC) isolated from C57BL/6J mice were used to test the effects of Gd 3+ (12.5-100 μM) and GBCA (100-2000 μM). Cultures were supplemented with the nonionic linear Gd-DTPA-BMA (gadodiamide), ionic linear Gd-DTPA (gadopentetic acid), and macrocyclic Gd-DOTA (gadoteric acid). Cell viability and differentiation were analyzed on days 4-6 of the culture. To assess the resorptive activity of osteoclasts, the cells were grown in OPC cultures and were seeded onto layers of amorphous calcium phosphate with incorporated Gd. RESULTS Gd 3+ did not affect OB viability, but differentiation was reduced dose-dependently up to 72.4% ± 6.2%-73.0% ± 13.2% (average ± SD) at 100 μM Gd 3+ on days 4-6 of culture as compared with unexposed controls ( P < 0.001). Exposure to GBCA had minor effects on OB viability with a dose-dependent reduction up to 23.3% ± 10.2% for Gd-DTPA-BMA at 2000 μM on day 5 ( P < 0.001). In contrast, all 3 GBCA caused a dose-dependent reduction of differentiation up to 88.3% ± 5.2% for Gd-DTPA-BMA, 49.8% ± 16.0% for Gd-DTPA, and 23.1% ± 8.7% for Gd-DOTA at 2000 μM on day 5 ( P < 0.001). In cultures of OPC, cell viability was not affected by Gd 3+ , whereas differentiation was decreased by 45.3% ± 9.8%-48.5% ± 15.8% at 100 μM Gd 3+ on days 4-6 ( P < 0.05). Exposure of OPC to GBCA resulted in a dose-dependent increase in cell viability of up to 34.1% ± 11.4% at 2000 μM on day 5 of culture ( P < 0.001). However, differentiation of OPC cultures was reduced on day 5 by 24.2% ± 9.4% for Gd-DTPA-BMA, 47.1% ± 14.0% for Gd-DTPA, and 38.2% ± 10.0% for Gd-DOTA ( P < 0.001). The dissolution of amorphous calcium phosphate by mature osteoclasts was reduced by 36.3% ± 5.3% upon incorporation of 4.3% Gd/Ca wt/wt ( P < 0.001). CONCLUSIONS Gadolinium and GBCA inhibit differentiation and activity of bone cell lineages in vitro. Thus, Gd retention in bone tissue could potentially impair the physiological regulation of bone turnover on a cellular level, leading to pathological changes in bone metabolism.
Collapse
Affiliation(s)
- Franziska Strunz
- From the Bone and Joint Program, Department for BioMedical Research, University of Bern, Bern, Switzerland (F.S., W.H., R.J.E.); Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland (F.S.); RMS-Foundation, Bettlach, Switzerland (C.S.); Department of Diagnostic, Interventional, and Pediatric Radiology, University Hospital, Inselspital, University of Bern, Bern, Switzerland (J.T.H., R.J.E.); and Clinic for Cranio-Maxillofacial Surgery, Department for BioMedical Research, University of Bern, Bern, Switzerland (W.H.)
| | | | | | | | | |
Collapse
|
2
|
Chen P, Chakraborty S, Mukhopadhyay S, Lee E, Paoliello MMB, Bowman AB, Aschner M. Manganese homeostasis in the nervous system. J Neurochem 2015; 134:601-10. [PMID: 25982296 DOI: 10.1111/jnc.13170] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 04/30/2015] [Accepted: 05/04/2015] [Indexed: 12/31/2022]
Abstract
Manganese (Mn) is an essential heavy metal that is naturally found in the environment. Daily intake through dietary sources provides the necessary amount required for several key physiological processes, including antioxidant defense, energy metabolism, immune function and others. However, overexposure from environmental sources can result in a condition known as manganism that features symptomatology similar to Parkinson's disease (PD). This disorder presents with debilitating motor and cognitive deficits that arise from a neurodegenerative process. In order to maintain a balance between its essentiality and neurotoxicity, several mechanisms exist to properly buffer cellular Mn levels. These include transporters involved in Mn uptake, and newly discovered Mn efflux mechanisms. This review will focus on current studies related to mechanisms underlying Mn import and export, primarily the Mn transporters, and their function and roles in Mn-induced neurotoxicity. Though and essential metal, overexposure to manganese may result in neurodegenerative disease analogous to Parkinson's disease. Manganese homeostasis is tightly regulated by transporters, including transmembrane importers (divalent metal transporter 1, transferrin and its receptor, zinc transporters ZIP8 and Zip14, dopamine transporter, calcium channels, choline transporters and citrate transporters) and exporters (ferroportin and SLC30A10), as well as the intracellular trafficking proteins (SPCA1 and ATP12A2). A manganese-specific sensor, GPP130, has been identified, which affords means for monitoring intracellular levels of this metal.
Collapse
Affiliation(s)
- Pan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Sudipta Chakraborty
- Neuroscience Graduate Program, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology & Toxicology, College of Pharmacy; Institute for Cellular & Molecular Biology; and Institute for Neuroscience, The University of Texas at Austin, Austin, Texas, USA
| | - Eunsook Lee
- Department of Physiology, Meharry Medical College, Nashville, Tennessee, USA
| | - Monica M B Paoliello
- Graduate Program in Public Health, Department of Pathology, Clinical and Toxicological Analysis, Center of Health Science, State University of Londrina, Parana, Brazil
| | - Aaron B Bowman
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA.,Neuroscience Graduate Program, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
3
|
Hwang SY, Foley J, Numaga-Tomita T, Petranka JG, Bird GS, Putney JW. Deletion of Orai1 alters expression of multiple genes during osteoclast and osteoblast maturation. Cell Calcium 2012; 52:488-500. [PMID: 23122304 DOI: 10.1016/j.ceca.2012.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 09/28/2012] [Accepted: 10/01/2012] [Indexed: 01/08/2023]
Abstract
Store-operated Ca(2+) entry (SOCE) is a major Ca(2+) influx pathway in most non-excitable cell types and Orai1 was recently identified as an essential pore-subunit of SOCE channels. Here we investigate the physiological role of Orai1 in bone homeostasis using Orai1-deficient mice (Orai1(-/-)). Orai1(-/-) mice developed osteopenia with decreased bone mineral density and trabecular bone volume. To identify the nature and origin of the bone defect, bone-resorbing osteoclasts and bone-forming osteoblasts from Orai1(-/-) mice were examined. Orai1-mediated SOCE was completely abolished in Orai1(-/-) osteoclast precursor cells and osteoclastogenesis in vitro from Orai1(-/-) mice was impaired due to a defect in cell fusion of pre-osteoclasts. Also, resorption activity in vitro was comparable but the size of pits formed by Orai1(-/-) osteoclasts was smaller. We next assessed the role of Orai1 in osteoblast differentiation and function by using a pre-osteoblast cell line, as well as primary osteoblasts from wild-type and Orai1(-/-) mice. SOCE in MC3T3-E1 pre-osteoblastic cells was inactivated by lentiviral overexpression of a pore-dead Orai1 mutant. Lack of SOCE in MC3T3-E1 had no effect on alkaline phosphatase staining and expression but substantially inhibited mineralized nodule formation. Consistent with this finding, Orai1-mediated SOCE was markedly reduced in Orai1(-/-) osteoblast precursor cells and osteoblastogenesis in vitro from Orai1(-/-) stromal cells showed impaired mineral deposition but no change in differentiation. This indicates that Orai1 is involved in the function but not in the differentiation of osteoblasts. Together, these results suggest that Orai1 plays a critical role in bone homeostasis by regulating both osteoblasts and osteoclasts.
Collapse
Affiliation(s)
- Sung-Yong Hwang
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, NIH, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | |
Collapse
|
4
|
Yokel RA. Manganese Flux Across the Blood–Brain Barrier. Neuromolecular Med 2009; 11:297-310. [PMID: 19902387 DOI: 10.1007/s12017-009-8101-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 10/14/2009] [Indexed: 10/20/2022]
|
5
|
Labelle D, Jumarie C, Moreau R. Capacitative calcium entry and proliferation of human osteoblast-like MG-63 cells. Cell Prolif 2007; 40:866-84. [PMID: 18021176 DOI: 10.1111/j.1365-2184.2007.00477.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
UNLABELLED Adult bone tissue is continuously being remodelled and bone mass is maintained by a balance between osteoclastic bone resorption and osteoblastic bone formation. Alteration of osteoblastic cell proliferation may account in part for lack of balance between these two processes in bone loss of osteoporosis. There is calcium (Ca2+) control in numerous cellular functions; however, involvement of capacitative Ca2+ entry (CCE) in proliferation of bone cells is less well investigated. OBJECTIVES The study described here was aimed to investigate roles of CCE in the proliferation of osteoblast-like MG-63 cells. MATERIALS AND METHODS Pharmacological characterizations of CCE were undertaken in parallel, with evaluation of the expression of transient receptor potential canonical (TRPC) channels and of cell proliferation. RESULTS Intracellular Ca2+ store depletion by thapsigargin induced CCE in MG-63 cells; this was characterized by a rapid transient increase of intracellular Ca2+ followed by significant CCE, induced by conditions that stimulated cell proliferation, namely serum and platelet-derived growth factor. Inhibitors of store-operated Ca2+ channels (2-APB and SKF-96365) prevented CCE, while voltage-dependent Ca2+ channel blockers had no effect. Expression of various TRPC channels was shown in the cells, some having been shown to be responsible for CCE. Voltage-dependent Ca2+ channel blockers had no effect on osteoblast proliferation while thapsigargin, 2-APB and SKF-96395, inhibited it. Cell cycle analysis showed that 2-APB and SKF-96395 lengthen the S and G2/M phases, which would account for the reduction in cell proliferation. CONCLUSIONS Our results indicate that CCE, likely attributed to the activation of TRPCs, might be the main route for Ca2+ influx involved in osteoblast proliferation.
Collapse
Affiliation(s)
- D Labelle
- Laboratoire du métabolisme osseux, Centre BioMed, Université du Québec à Montréal, Québec, Canada
| | | | | |
Collapse
|
6
|
Geneau G, Defamie N, Mesnil M, Cronier L. Endothelin1-induced Ca(2+) mobilization is altered in calvarial osteoblastic cells of Cx43(+/- ) mice. J Membr Biol 2007; 217:71-81. [PMID: 17568972 DOI: 10.1007/s00232-007-9024-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Accepted: 04/04/2007] [Indexed: 10/23/2022]
Abstract
During bone remodeling, osteoblastic (OB) cells have a central role leading to the production of extracellular matrix and its subsequent mineralization. As revealed by human physiopathologies, the OB differentiation process is essential for the control of calcium metabolism and normal bone formation. Moreover, accumulating data in the field of bone development suggest that connexin 43 (Cx43)-mediated gap junctional communication plays an important role in OB differentiation and function. Since Ca(2+) has a central role in OB physiology, the aim of the present study was to investigate the hypothetical involvement of Cx43 in OB calcium homeostasis. We performed measurements of intracellular calcium activity ([Ca(2+)]( i )) by a cytofluorimetric method using Fluo-4 as a calcium indicator and endothelin-1 (ET-1) as a physiological calcium-mobilizing factor on cultured OB cells isolated from calvaria of Cx43(+/-) and Cx43(+/+) mice. Partial deletion of the Cx43 gene induced a significant decrease in the [Ca(2+)]( i ) rise elicited by ET-1. This reduction was not correlated to a decrease or a modification of ET receptor subtype expression as assessed by real-time reverse-transcription polymerase chain reaction. Pharmacological investigations led us to demonstrate that the significant difference in [Ca(2+)]( i ) peak amplitude during the ET-1 action was associated with decreased calcium influx involving L-type voltage-sensitive calcium channels, whereas calcium release from intracellular stores and implication of phospholipase C were not affected by the reduced expression of Cx43. In conclusion, our data demonstrate for the first time that the Cx43 level of expression and/or function is able to modulate the [Ca(2+)]( i ) mobilization in OB cells.
Collapse
Affiliation(s)
- Graziello Geneau
- Institut de Physiologie et de Biologie Cellulaires, CNRS UMR6187, Université de Poitiers, 40 avenue du recteur Pineau, 86022, Poitiers, France
| | | | | | | |
Collapse
|
7
|
Bravo S, Paredes R, Izaurieta P, Lian JB, Stein JL, Stein GS, Hinrichs MV, Olate J, Aguayo LG, Montecino M. The classic receptor for 1alpha,25-dihydroxy vitamin D3 is required for non-genomic actions of 1alpha,25-dihydroxy vitamin D3 in osteosarcoma cells. J Cell Biochem 2006; 99:995-1000. [PMID: 16927375 DOI: 10.1002/jcb.21031] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
1alpha,25-dihydroxy vitamin D3 has a major role in the regulation of the bone metabolism as it promotes the expression of key bone-related proteins in osteoblastic cells. In recent years it has become increasingly evident that in addition to its well-established genomic actions, 1alpha,25-dihydroxy vitamin D3 induces non-genomic responses by acting through a specific plasma membrane-associated receptor. Results from several groups suggest that the classical nuclear 1alpha,25-dihydroxy vitamin D3 receptor (VDR) is also responsible for these non-genomic actions of 1alpha,25-dihydroxy vitamin D3. Here, we have used siRNA to suppress the expression of VDR in osteoblastic cells and assessed the role of VDR in the non-genomic response to 1alpha,25-dihydroxy vitamin D3. We report that expression of the classic VDR in osteoblasts is required to generate a rapid 1alpha,25-dihydroxy vitamin D3-mediated increase in the intracellular Ca(2+) concentration, a hallmark of the non-genomic actions of 1alpha,25-dihydroxy vitamin D3 in these cells.
Collapse
Affiliation(s)
- Soraya Bravo
- Departamento de Bioquimica y Biologia Molecular, Facultad de Ciencias Biologicas, Universidad de Concepcion, Concepcion, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Santillán G, Baldi C, Katz S, Vazquez G, Boland R. Evidence that TRPC3 is a molecular component of the 1alpha,25(OH)2D3-activated capacitative calcium entry (CCE) in muscle and osteoblast cells. J Steroid Biochem Mol Biol 2004; 89-90:291-5. [PMID: 15225788 DOI: 10.1016/j.jsbmb.2004.03.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In chick skeletal muscle and in rat osteoblast-like cells (ROS 17/2.8), 1alpha,25-dihydroxy-Vitamin-D(3) [1alpha,25(OH)(2)D(3)] stimulates release of Ca(2+) from inner stores and extracellular cation influx through both voltage-dependent and capacitative Ca(2+) entry (CCE) channels. We investigated the involvement of TRPC proteins in CCE induced by 1alpha,25(OH)(2)D(3). Two fragments were amplified by RT-PCR, exhibiting >85% sequence homology with human TRPC3. Northern and Western blots employing TRPC3-probes and anti-TRPC3 antibodies, respectively, confirmed endogenous expression of a TRPC3-like protein. Both cell types transfected with anti-TRPC3 antisense oligodeoxynucleotides showed reduced CCE and Mn(2+) entry induced by either thapsigargin or 1alpha,25(OH)(2)D(3). In muscle cells, anti-VDR antisense inhibited steroid-induced Ca(2+) and Mn(2+) influx and co-immunoprecipitation of TRPC3 and VDR was observed, suggesting an association between both proteins and a functional role of the receptor in 1alpha,25(OH)(2)D(3) activation of CCE. In osteoblasts, two PCR fragments showing high homology with human INAD-like sequences were obtained. Northern blot and antisense functional assays suggested the involvement of the INAD-like protein in CCE regulation by the hormone. Therefore, we propose that an endogenous TRPC3 protein mediates 1alpha,25(OH)(2)D(3) modulation of CCE in muscle and osteoblastic cells, which seems to implicate VDR-TRPC3 association and the participation of a INAD-like scaffold protein.
Collapse
Affiliation(s)
- G Santillán
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, 8000 Bahía Blanca, Argentina
| | | | | | | | | |
Collapse
|
9
|
Baldi C, Vazquez G, Calvo JC, Boland R. TRPC3-like protein is involved in the capacitative cation entry induced by 1alpha,25-dihydroxy-vitamin D3 in ROS 17/2.8 osteoblastic cells. J Cell Biochem 2003; 90:197-205. [PMID: 12938168 DOI: 10.1002/jcb.10612] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In ROS 17/2.8 rat osteoblastic-like cells a capacitative Ca(2+) entry (CCE) pathway operates which is activated by either 1alpha,25-dihydroxy-vitamin D3 (1alpha,25(OH)(2)D3 or thapsigargin (Tpg)-induced depletion of Ca(2+) stores. In view of recent evidence favoring a role for transient receptor potential (TRP) proteins in mediating CCE, we investigated if channels involved in the 1alpha,25(OH)(2)D3-sensitive CCE in rat osteoblasts were related to an endogenous TRP-canonical (TRPC) isoform homologue. By reverse transcription (RT)-PCR using mRNA from ROS 17/2.8 cells and primers based on conserved regions within the mammalian TRPC3/6/7 subfamily, two fragments were amplified of 390 and 201 bp with 100 and 94% sequence identity, respectively, with human TRPC3. Northern blot analysis showed the presence of a 3.5 kb transcript and both immunobloting and immunocytochemistry using a specific anti-TRPC3 antibody confirmed endogenous expression of a TRPC3-like protein ( approximately 110 kDa) with membrane localization. In ROS 17/2.8 cells intranuclearly microinjected with anti-TRPC3 antisense oligodeoxynucleotides (ODN), both the initial rate and magnitude of CCE activated by either 1alpha,25(OH)(2)D3 or Tpg were markedly reduced, whereas no changes were detected in control-injected cells. The present findings constitute the first evidence to date suggesting that an endogenous TRPC3-like protein is functionally involved in the CCE route activated by 1alpha,25(OH)(2)D3 in a secosteroid target cell. We anticipate TRPC3 as a candidate for mediating store-operated non-selective cation entry into osteoblasts.
Collapse
Affiliation(s)
- Carolina Baldi
- Departamento de Biología, Bioquímica and Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | | | | | | |
Collapse
|
10
|
Baldi C, Vazquez G, Boland R. Capacitative calcium influx in human epithelial breast cancer and non-tumorigenic cells occurs through Ca2+ entry pathways with different permeabilities to divalent cations. J Cell Biochem 2003; 88:1265-72. [PMID: 12647308 DOI: 10.1002/jcb.10471] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The operation of capacitative Ca(2+) entry (CCE) in human breast cancer (SKBR3) and non-tumorigenic (HBL100) cell lines was investigated as an alternative Ca(2+) entry route in these cells. Ca(2+) readdition after thapsigargin-induced store depletion showed activation of CCE in both cell lines. SKBR3 cells exhibited retarded store depletion and CCE decay kinetics compared to the non-tumorigenic HBL100 cells, suggesting alterations in Ca(2+) homeostasis. CCE was also highly permeable to Mn(2+) and to a lesser extent to Sr(2+), but not to Ba(2+). In HBL100 cells, CCE is contributed (30%) by a Ca(2+)/Mn(2+) permeable route insensitive to low (1 microM) Gd(3+) and a Ca(2+)/Sr(2+)/Mn(2+) permeable non-selective pathway (70%) sensitive to 1 microM Gd(3+). In SKBR3 cells, the relative contribution to CCE of both routes was opposite to that in non-tumorigenic cells.
Collapse
Affiliation(s)
- Carolina Baldi
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur San Juan 670, (8000) Bahía Blanca, Argentina
| | | | | |
Collapse
|