1
|
Yao X, Wang B, Su Y, Bing Z, Li Q, Dong Q, Yin H, Wang J, Pan Y, Yuan G. SOX9 Promotes Collagen VI Secretion by Upregulating PCOLCE in Neurofibroma. Mol Neurobiol 2024; 61:7862-7876. [PMID: 38436832 DOI: 10.1007/s12035-024-04036-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 02/09/2024] [Indexed: 03/05/2024]
Abstract
Neurofibromatosis type 1 (NF1) is caused by NF1 gene mutations. Patients with NF1 often have complications with tumors, such as neurofibroma. In order to investigate the pathogenesis of human neurofibroma, a systematic comparison of protein expression levels between Schwann cell-like sNF96.2 cells, which originated from malignant peripheral nerve sheath tumors (MPNST), and normal Schwann cells was performed using 4-D label-free proteomic analysis. In addition, the expression levels and localization of dysregulated proteins were confirmed using a Gene Expression Omnibus (GEO) transcriptomic dataset, Western blot analysis, and immunofluorescence labeling. The effects of SRY-box transcription factor 9 (SOX9) in the neurofibroma and surrounding microenvironment were evaluated in vivo using a tumor transplantation model. The present study observed that SOX9 and procollagen C-endopeptidase enhancer (PCOLCE) were significantly altered. NF1 mutation promoted the nuclear translocation and transcriptional activity of SOX9 in neurofibromas. SOX9 increased collagen VI secretions by enhancing the activation of PCOLCE in neurofibroma cells. These findings might provide new perspectives on the pathophysiological significance of SOX9 in neurofibromas and elucidate a novel molecular mechanism underlying neurofibromas.
Collapse
Affiliation(s)
- Xuan Yao
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou, 730030, Gansu, China
| | - Bo Wang
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou, 730030, Gansu, China
| | - Yuanping Su
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou, 730030, Gansu, China
| | - Zhitong Bing
- Institute of modern physics, Chinese Academy of Science, Lanzhou, 730000, Gansu, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China
| | - Qiao Li
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou, 730030, Gansu, China
| | - Qiang Dong
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Hang Yin
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Jianying Wang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, 730030, Gansu, China
| | - Yawen Pan
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
- The Second Clinical Medical School, Lanzhou University, Lanzhou, 730030, Gansu, China.
| | - Guoqiang Yuan
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
- The Second Clinical Medical School, Lanzhou University, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
2
|
Bottero M, Pessina G, Bason C, Vigo T, Uccelli A, Ferrara G. Nerve-Glial antigen 2: unmasking the enigmatic cellular identity in the central nervous system. Front Immunol 2024; 15:1393842. [PMID: 39136008 PMCID: PMC11317297 DOI: 10.3389/fimmu.2024.1393842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/05/2024] [Indexed: 08/15/2024] Open
Abstract
Chondroitin sulfate proteoglycans (CSPGs) are fundamental components of the extracellular matrix in the central nervous system (CNS). Among these, the Nerve-Glial antigen 2 (NG2) stands out as a transmembrane CSPG exclusively expressed in a different population of cells collectively termed NG2-expressing cells. These enigmatic cells, found throughout the developing and adult CNS, have been indicated with various names, including NG2 progenitor cells, polydendrocytes, synantocytes, NG2 cells, and NG2-Glia, but are more commonly referred to as oligodendrocyte progenitor cells. Characterized by high proliferation rates and unique morphology, NG2-expressing cells stand apart from neurons, astrocytes, and oligodendrocytes. Intriguingly, some NG2-expressing cells form functional glutamatergic synapses with neurons, challenging the long-held belief that only neurons possess the intricate machinery required for neurotransmission. In the CNS, the complexity surrounding NG2-expressing cells extends to their classification. Additionally, NG2 expression has been documented in pericytes and immune cells, suggesting a role in regulating brain innate immunity and neuro-immune crosstalk in homeostasis. Ongoing debates revolve around their heterogeneity, potential as progenitors for various cell types, responses to neuroinflammation, and the role of NG2. Therefore, this review aims to shed light on the enigma of NG2-expressing cells by delving into their structure, functions, and signaling pathways. We will critically evaluate the literature on NG2 expression across the CNS, and address the contentious issues surrounding their classification and roles in neuroinflammation and neurodegeneration. By unraveling the intricacies of NG2-expressing cells, we hope to pave the way for a more comprehensive understanding of their contributions to CNS health and during neurological disorders.
Collapse
Affiliation(s)
- Marta Bottero
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Giada Pessina
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | | | - Tiziana Vigo
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Antonio Uccelli
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | | |
Collapse
|
3
|
Ahn SY, Bagheri Varzaneh M, Zhao Y, Rozynek J, Ravindran S, Banks J, Chaudhry M, Reed DA. NG2/CSPG4 attenuates motility in mandibular fibrochondrocytes under serum starvation conditions. Front Cell Dev Biol 2023; 11:1240920. [PMID: 38020894 PMCID: PMC10662293 DOI: 10.3389/fcell.2023.1240920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
The migration of mandibular fibrochondrocytes is important for the development of the mandible, the homeostasis of the mandibular cartilage, and for the capacity of the tissue to respond to injury. Mandibular fibrochondrocytes have to overcome formidable obstacles during migration including a dense and heterogeneous three-dimensional matrix. Guiding the direction of cell migration and commitment to a migratory phenotype in this microenvironment necessitates a multivalent response to chemotactic and extracellular matrix-mediated stimuli. One of the key matrix components in the cartilage of the temporomandibular joint is type VI collagen. Neuron/glial antigen 2 (NG2/CSPG4) is a transmembrane proteoglycan that binds with collagen VI and has been implicated in a wide range of cell behaviors including cell migration, motility, adhesion, and proliferation. While NG2/CSPG4 has been shown to be a key regulator of mandibular cartilage homeostasis, its role in the migration of mandibular fibrochondrocytes during normal and cell stress conditions has yet to be resolved. Here, we address this gap in knowledge by characterizing NG2/CSPG4-dependent migration in mandibular fibrochondrocytes using primary mandibular fibrochondrocytes isolated from control and full length NG2/CSPG4 knockout mice, in primary mandibular fibrochondrocytes isolated from NG2|DsRed reporter mice and in an immortalized mandibular fibrochondrocyte cell line with a mutated NG2/CSPG4 ectodomain. All three cells demonstrate similar results, with loss of the full length or truncated NG2/CSPG4 increasing the rate of cell migration in serum starvation/cell stress conditions. These findings clearly implicate NG2/CSPG4 as a key molecule in the regulation of cell migration in mandibular fibrochondrocytes in normal and cell stress conditions, underscoring the role of NG2/CSPG4 as a mechanosensitive signaling hub in the mandibular cartilage.
Collapse
Affiliation(s)
- Shin Young Ahn
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, IL, United States
| | - Mina Bagheri Varzaneh
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, United States
| | - Yan Zhao
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, United States
| | - Jacob Rozynek
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, United States
| | - Sriram Ravindran
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, United States
| | - Jonathan Banks
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, United States
| | - Minahil Chaudhry
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, United States
| | - David A. Reed
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
4
|
Kapustin A, Tsakali SS, Whitehead M, Chennell G, Wu MY, Molenaar C, Kutikhin A, Bogdanov L, Sinitsky M, Rubina K, Clayton A, Verweij FJ, Pegtel DM, Zingaro S, Lobov A, Zainullina B, Owen D, Parsons M, Cheney RE, Warren D, Humphries MJ, Iskratsch T, Holt M, Shanahan CM. Extracellular vesicles stimulate smooth muscle cell migration by presenting collagen VI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.551257. [PMID: 37645762 PMCID: PMC10462164 DOI: 10.1101/2023.08.17.551257] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The extracellular matrix (ECM) supports blood vessel architecture and functionality and undergoes active remodelling during vascular repair and atherogenesis. Vascular smooth muscle cells (VSMCs) are essential for vessel repair and, via their secretome, are able to invade from the vessel media into the intima to mediate ECM remodelling. Accumulation of fibronectin (FN) is a hallmark of early vascular repair and atherosclerosis and here we show that FN stimulates VSMCs to secrete small extracellular vesicles (sEVs) by activating the β1 integrin/FAK/Src pathway as well as Arp2/3-dependent branching of the actin cytoskeleton. Spatially, sEV were secreted via filopodia-like cellular protrusions at the leading edge of migrating cells. We found that sEVs are trapped by the ECM in vitro and colocalise with FN in symptomatic atherosclerotic plaques in vivo. Functionally, ECM-trapped sEVs induced the formation of focal adhesions (FA) with enhanced pulling forces at the cellular periphery. Proteomic and GO pathway analysis revealed that VSMC-derived sEVs display a cell adhesion signature and are specifically enriched with collagen VI. In vitro assays identified collagen VI as playing the key role in cell adhesion and invasion. Taken together our data suggests that the accumulation of FN is a key early event in vessel repair acting to promote secretion of collage VI enriched sEVs by VSMCs. These sEVs stimulate migration and invasion by triggering peripheral focal adhesion formation and actomyosin contraction to exert sufficient traction forces to enable VSMC movement within the complex vascular ECM network.
Collapse
Affiliation(s)
- Alexander Kapustin
- School of Cardiovascular and Metabolic Medicine & Sciences, James Black Centre, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK, Tel. 020 7848 5221, FAX 020 7848 5193
| | - Sofia Serena Tsakali
- School of Cardiovascular and Metabolic Medicine & Sciences, James Black Centre, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK, Tel. 020 7848 5221, FAX 020 7848 5193
| | - Meredith Whitehead
- School of Cardiovascular and Metabolic Medicine & Sciences, James Black Centre, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK, Tel. 020 7848 5221, FAX 020 7848 5193
| | - George Chennell
- Wohl Cellular Imaging Centre, King’s College London, 5 Cutcombe Road, London, SE5 9NU
| | - Meng-Ying Wu
- School of Cardiovascular and Metabolic Medicine & Sciences, James Black Centre, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK, Tel. 020 7848 5221, FAX 020 7848 5193
| | - Chris Molenaar
- School of Cardiovascular and Metabolic Medicine & Sciences, James Black Centre, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK, Tel. 020 7848 5221, FAX 020 7848 5193
| | - Anton Kutikhin
- Laboratory for Molecular, Translational and Digital Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo, 650002, Russian Federation
| | - Leo Bogdanov
- Laboratory for Molecular, Translational and Digital Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo, 650002, Russian Federation
| | - Maxim Sinitsky
- Laboratory for Molecular, Translational and Digital Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo, 650002, Russian Federation
| | - Kseniya Rubina
- Laboratory of Morphogenesis and Tissue Reparation, Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky av. 27-1, Moscow, 119991, Russia, tel/fax +74959329904
| | - Aled Clayton
- Tissue Microenvironment Research Group, Division of Cancer & Genetics, School of Medicine, Cardiff University, Tenovus Building, Cardiff, UK, CF14 2XN
| | - Frederik J Verweij
- Division of Cell Biology, Neurobiology & Biophysics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Dirk Michiel Pegtel
- Amsterdam UMC, Location Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Simona Zingaro
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL UK
| | - Arseniy Lobov
- Laboratory of Regenerative Biomedicine, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretskiy Prospekt, 194064, St. Petersburg, Russia
| | - Bozhana Zainullina
- Centre for Molecular and Cell Technologies, Research Park, St. Petersburg State University, 7/9 Universitetskaya Embankment, 199034, St. Petersburg, Russia
| | - Dylan Owen
- Institute of Immunology and Immunotherapy, School of Mathematics and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, B15 2TT, UK
| | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL UK
| | - Richard E. Cheney
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Derek Warren
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk, UK, NR4 7TJ
| | - Martin James Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Thomas Iskratsch
- School of Engineering and Materials Science, Faculty of Science and Engineering, Queen Mary University of London, Engineering Building, Mile End Road, E1 4NS
| | - Mark Holt
- Amsterdam UMC, Location Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Catherine M Shanahan
- School of Cardiovascular and Metabolic Medicine & Sciences, James Black Centre, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK, Tel. 020 7848 5221, FAX 020 7848 5193
| |
Collapse
|
5
|
Chen K, Yong J, Zauner R, Wally V, Whitelock J, Sajinovic M, Kopecki Z, Liang K, Scott KF, Mellick AS. Chondroitin Sulfate Proteoglycan 4 as a Marker for Aggressive Squamous Cell Carcinoma. Cancers (Basel) 2022; 14:5564. [PMID: 36428658 PMCID: PMC9688099 DOI: 10.3390/cancers14225564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/27/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Chondroitin sulfate (CS) proteoglycan 4 (CSPG4) is a cell surface proteoglycan that is currently under investigation as a marker of cancer malignancy, and as a potential target of anticancer drug treatment. CSPG4 acts as a driver of tumourigenesis by regulating turnover of the extracellular matrix (ECM) to promote tumour cell invasion, migration as well as inflammation and angiogenesis. While CSPG4 has been widely studied in certain malignancies, such as melanoma, evidence is emerging from global gene expression studies, which suggests a role for CSPG4 in squamous cell carcinoma (SCC). While relatively treatable, lack of widely agreed upon diagnostic markers for SCCs is problematic, especially for clinicians managing certain patients, including those who are aged or infirm, as well as those with underlying conditions such as epidermolysis bullosa (EB), for which a delayed diagnosis is likely lethal. In this review, we have discussed the structure of CSPG4, and quantitatively analysed CSPG4 expression in the tissues and pathologies where it has been identified to determine the usefulness of CSPG4 expression as a diagnostic marker and therapeutic target in management of malignant SCC.
Collapse
Affiliation(s)
- Kathryn Chen
- Ingham Institute for Applied Medical Research, Medicine, University of New South Wales, Liverpool, NSW 2170, Australia
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Joel Yong
- Ingham Institute for Applied Medical Research, Medicine, University of New South Wales, Liverpool, NSW 2170, Australia
- School of Chemical Engineering, University of New South Wales, Kensington, NSW 2033, Australia
| | - Roland Zauner
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology & Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Verena Wally
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology & Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - John Whitelock
- Ingham Institute for Applied Medical Research, Medicine, University of New South Wales, Liverpool, NSW 2170, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Kensington, NSW 2033, Australia
| | - Mila Sajinovic
- Ingham Institute for Applied Medical Research, Medicine, University of New South Wales, Liverpool, NSW 2170, Australia
| | - Zlatko Kopecki
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Kang Liang
- Ingham Institute for Applied Medical Research, Medicine, University of New South Wales, Liverpool, NSW 2170, Australia
- School of Chemical Engineering, University of New South Wales, Kensington, NSW 2033, Australia
| | - Kieran Francis Scott
- Ingham Institute for Applied Medical Research, Medicine, University of New South Wales, Liverpool, NSW 2170, Australia
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Albert Sleiman Mellick
- Ingham Institute for Applied Medical Research, Medicine, University of New South Wales, Liverpool, NSW 2170, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Kensington, NSW 2033, Australia
| |
Collapse
|
6
|
Reed DA, Zhao Y, Bagheri Varzaneh M, Shin JS, Rozynek J, Miloro M, Han M. NG2/CSPG4 regulates cartilage degeneration during TMJ osteoarthritis. FRONTIERS IN DENTAL MEDICINE 2022; 3:1004942. [PMID: 36685663 PMCID: PMC9850834 DOI: 10.3389/fdmed.2022.1004942] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Changes in the mechanical homeostasis of the temporomandibular joint (TMJ) can lead to the initiation and progression of degenerative arthropathies such as osteoarthritis (OA). Cells sense and engage with their mechanical microenvironment through interactions with the extracellular matrix. In the mandibular condylar cartilage, the pericellular microenvironment is composed of type VI collagen. NG2/CSPG4 is a transmembrane proteoglycan that binds with type VI collagen, and has been implicated in the cell stress response through mechanical loading-sensitive signaling networks including ERK 1/2. The objective of this study is to define the role of NG2/CSPG4 in the initiation and progression of TMJ OA and to determine if NG2/CSPG4 engages ERK 1/2 in a mechanical loading dependent manner. In vivo, we induced TMJ OA in control and NG2/CSPG4 knockout mice using a surgical destabilization approach. In control mice, NG2/CSPG4 is depleted during the early stages of TMJ OA and NG2/CSPG4 knockout mice have more severe cartilage degeneration, elevated expression of key OA proteases, and suppression of OA matrix synthesis genes. In vitro, we characterized the transcriptome and protein from control and NG2/CSPG4 knockout cells and found significant dysregulation of the ERK 1/2 signaling axis. To characterize the mechanobiological response of NG2/CSPG4, we applied mechanical loads on cell-agarose-collagen scaffolds using a compression bioreactor and illustrate that NG2/CSPG4 knockout cells fail to mechanically activate ERK 1/2 and are associated with changes in the expression of the same key OA biomarkers measured in vivo. Together, these findings implicate NG2/CSPG4 in the mechanical homeostasis of TMJ cartilage and in the progression of degenerative arthropathies including OA.
Collapse
Affiliation(s)
- David A. Reed
- Department of Oral Biology, University of Illinois Chicago, Chicago, IL, United States,,CORRESPONDENCE: David A. Reed,
| | - Yan Zhao
- Department of Oral Biology, University of Illinois Chicago, Chicago, IL, United States
| | - Mina Bagheri Varzaneh
- Department of Oral Biology, University of Illinois Chicago, Chicago, IL, United States
| | - Jun Soo Shin
- Department of Oral Biology, University of Illinois Chicago, Chicago, IL, United States
| | - Jacob Rozynek
- Department of Oral Biology, University of Illinois Chicago, Chicago, IL, United States
| | - Michael Miloro
- Department of Oral and Maxillofacial Surgery, University of Illinois Chicago, Chicago, IL, United States
| | - Michael Han
- Department of Oral and Maxillofacial Surgery, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
7
|
Chondroitin sulfate proteoglycan 4, a targetable oncoantigen that promotes ovarian cancer growth, invasion, cisplatin resistance and spheroid formation. Transl Oncol 2021; 16:101318. [PMID: 34942534 PMCID: PMC8695353 DOI: 10.1016/j.tranon.2021.101318] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 01/17/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is a highly heterogeneous disease encompassing several distinct molecular subtypes and clinical entities. Despite the initial success of surgical debulking and adjuvant chemotherapy, recurrence with chemotherapy resistant tumors is common in patients with EOC and leads to poor overall survival. The extensive genetic and phenotypic heterogeneity associated with ovarian cancers has hindered the identification of effective prognostic and predictive biomarkers in EOC patients. In the current studies, we identify a tumor cell surface oncoantigen, chondroitin sulfate proteoglycan 4 (CSPG4), as an independent risk factor for decreased survival of patients with EOC. Our results show that CSPG4 promotes EOC cell invasion, cisplatin resistance and spheroid formation in vitro and tumor expansion in vivo. Mechanistically, spheroid formation and tumor cell invasion are due to CSPG4-stimulated expression of the mesenchymal transcription factor ZEB1. Furthermore, we have developed a novel monoclonal anti-CSGP4 antibody against the juxtamembrane domain of the core protein that limits CSPG4-stimulated ZEB1 expression, tumor cell invasion and promotes EOC apoptosis within spheroid cultures. We therefore propose that CSPG4 expression drives phenotypic heterogeneity and malignant progression in EOC tumors. These studies further demonstrate that CSPG4 expression levels are a potential diagnostic biomarker in EOC and indicate that targeting cells which express this oncoantigen could limit recurrence and improve outcomes in patients with EOC.
Collapse
|
8
|
Harada A, Goto M, Kato A, Takenaka-Ninagawa N, Tanaka A, Noguchi S, Ikeya M, Sakurai H. Systemic Supplementation of Collagen VI by Neonatal Transplantation of iPSC-Derived MSCs Improves Histological Phenotype and Function of Col6-Deficient Model Mice. Front Cell Dev Biol 2021; 9:790341. [PMID: 34888314 PMCID: PMC8649773 DOI: 10.3389/fcell.2021.790341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/25/2021] [Indexed: 11/25/2022] Open
Abstract
Collagen VI is distributed in the interstitium and is secreted mainly by mesenchymal stromal cells (MSCs) in skeletal muscle. Mutations in COL6A1-3 genes cause a spectrum of COL6-related myopathies. In this study, we performed a systemic transplantation study of human-induced pluripotent stem cell (iPSC)-derived MSCs (iMSCs) into neonatal immunodeficient COL6-related myopathy model (Col6a1KO/NSG) mice to validate the therapeutic potential. Engraftment of the donor cells and the resulting rescued collagen VI were observed at the quadriceps and diaphragm after intraperitoneal iMSC transplantation. Transplanted mice showed improvement in pathophysiological characteristics compared with untreated Col6a1KO/NSG mice. In detail, higher muscle regeneration in the transplanted mice resulted in increased muscle weight and enlarged myofibers. Eight-week-old mice showed increased muscle force and performed better in the grip and rotarod tests. Overall, these findings support the concept that systemic iMSC transplantation can be a therapeutic option for COL6-related myopathies.
Collapse
Affiliation(s)
- Aya Harada
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Megumi Goto
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Atsuya Kato
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Nana Takenaka-Ninagawa
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Akito Tanaka
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Satoru Noguchi
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Makoto Ikeya
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Hidetoshi Sakurai
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| |
Collapse
|
9
|
Gzielo K, Nikiforuk A. Astroglia in Autism Spectrum Disorder. Int J Mol Sci 2021; 22:11544. [PMID: 34768975 PMCID: PMC8583956 DOI: 10.3390/ijms222111544] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/13/2021] [Accepted: 10/21/2021] [Indexed: 01/12/2023] Open
Abstract
Autism spectrum disorder (ASD) is an umbrella term encompassing several neurodevelopmental disorders such as Asperger syndrome or autism. It is characterised by the occurrence of distinct deficits in social behaviour and communication and repetitive patterns of behaviour. The symptoms may be of different intensity and may vary in types. Risk factors for ASD include disturbed brain homeostasis, genetic predispositions, or inflammation during the prenatal period caused by viruses or bacteria. The number of diagnosed cases is growing, but the main cause and mechanism leading to ASD is still uncertain. Recent findings from animal models and human cases highlight the contribution of glia to the ASD pathophysiology. It is known that glia cells are not only "gluing" neurons together but are key players participating in different processes crucial for proper brain functioning, including neurogenesis, synaptogenesis, inflammation, myelination, proper glutamate processing and many others. Despite the prerequisites for the involvement of glia in the processes related to the onset of autism, there are far too little data regarding the engagement of these cells in the development of ASD.
Collapse
Affiliation(s)
- Kinga Gzielo
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Behavioral Neuroscience and Drug Development, 12 Smętna Street, 31-343 Kraków, Poland;
| | | |
Collapse
|
10
|
Reed DA, Zhao Y, Han M, Mercuri LG, Miloro M. Mechanical Loading Disrupts Focal Adhesion Kinase Activation in Mandibular Fibrochondrocytes During Murine Temporomandibular Joint Osteoarthritis. J Oral Maxillofac Surg 2021; 79:2058.e1-2058.e15. [PMID: 34153254 PMCID: PMC8500914 DOI: 10.1016/j.joms.2021.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE Mechanical overloading is a key initiating condition for temporomandibular joint (TMJ) osteoarthritis (OA). The integrin-focal adhesion kinase (FAK) signaling axis is implicated in the mechanobiological response of cells through phosphorylation at Tyr397 (pFAK) but poorly defined in TMJ health and disease. We hypothesize that mechanical overloading disrupts TMJ homeostasis through dysregulation of FAK signaling. MATERIALS AND METHODS To assess if FAK and pFAK are viable clinical targets for TMJ OA, peri-articular tissues were collected from patients with TMJ OA receiving a total TMJ replacement. To compare clinical samples with preclinical in vivo studies of TMJ OA, the joints of c57/bl6 mice were surgically destabilized and treated with and without inhibitor of pFAK (iFAK). FAK signaling and TMJ OA progression was evaluated and compared using RT-PCR, western blot, immunohistochemistry, and histomorphometry. To evaluate mechanical overloading in vitro, primary murine mandibular fibrochondrocytes were seeded in a 4% agarose-collagen scaffold and loaded in a compression bioreactor with and without iFAK. RESULTS FAK/pFAK was mostly absent from the articular cartilage layer in the clinical sample and suppressed on the central condyle and elevated on the lateral and medial condyle in murine TMJ OA. In vitro, compressive loading lowered FAK/pFAK levels and elevated the expression of TGFβ, NG2, and MMP-13. iFAK treatment suppressed MMP13 and Col6 and elevated TGFβ, NG2, and ACAN in a load independent manner. In vivo, iFAK treatment moderately attenuated OA progression and increased collagen maturation. CONCLUSION These data illustrate that FAK/pFAK is implicated in the signaled dysfunction of excessive mechanical loading during TMJ OA and that iFAK treatment can moderately attenuate the progression of cartilage degeneration in the mandibular condyle.
Collapse
Affiliation(s)
- David A. Reed
- Department of Oral Biology, University of Illinois at Chicago, Chicago IL,Corresponding author: David A. Reed,
| | - Yan Zhao
- Department of Oral Biology, University of Illinois at Chicago, Chicago IL
| | - Michael Han
- Department of Oral and Maxillofacial Surgery, University of Illinois at Chicago, Chicago IL
| | - Louis G. Mercuri
- Department of Orthopaedic Surgery, Rush University, Chicago IL, Adjunct Professor, Department of Bioengineering, University of Illinois at Chicago, Chicago, IL
| | - Michael Miloro
- Department of Oral and Maxillofacial Surgery, University of Illinois at Chicago, Chicago IL
| |
Collapse
|
11
|
The Potential Role of FREM1 and Its Isoform TILRR in HIV-1 Acquisition through Mediating Inflammation. Int J Mol Sci 2021; 22:ijms22157825. [PMID: 34360591 PMCID: PMC8346017 DOI: 10.3390/ijms22157825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023] Open
Abstract
FREM1 (Fras-related extracellular matrix 1) and its splice variant TILRR (Toll-like interleukin-1 receptor regulator) have been identified as integral components of innate immune systems. The potential involvement of FREM1 in HIV-1 (human immunodeficiency virus 1) acquisition was suggested by a genome-wide SNP (single nucleotide polymorphism) analysis of HIV-1 resistant and susceptible sex workers enrolled in the Pumwani sex worker cohort (PSWC) in Nairobi, Kenya. The studies showed that the minor allele of a FREM1 SNP rs1552896 is highly enriched in the HIV-1 resistant female sex workers. Subsequent studies showed that FREM1 mRNA is highly expressed in tissues relevant to mucosal HIV-1 infection, including cervical epithelial tissues, and TILRR is a major modulator of many genes in the NF-κB signal transduction pathway. In this article, we review the role of FREM1 and TILRR in modulating inflammatory responses and inflammation, and how their influence on inflammatory responses of cervicovaginal tissue could enhance the risk of vaginal HIV-1 acquisition.
Collapse
|
12
|
Mereness JA, Mariani TJ. The critical role of collagen VI in lung development and chronic lung disease. Matrix Biol Plus 2021; 10:100058. [PMID: 34195595 PMCID: PMC8233475 DOI: 10.1016/j.mbplus.2021.100058] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 01/20/2023] Open
Abstract
Type VI collagen (collagen VI) is an obligate extracellular matrix component found mainly in the basement membrane region of many mammalian tissues and organs, including skeletal muscle and throughout the respiratory system. Collagen VI is probably most recognized in medicine as the genetic cause of a spectrum of muscular dystrophies, including Ullrich Congenital Myopathy and Bethlem Myopathy. Collagen VI is thought to contribute to myopathy, at least in part, by mediating muscle fiber integrity by anchoring myoblasts to the muscle basement membrane. Interestingly, collagen VI myopathies present with restrictive respiratory insufficiency, thought to be due primarily to thoracic muscular weakening. Although it was recently recognized as one of the (if not the) most abundant collagens in the mammalian lung, there is a substantive knowledge gap concerning its role in respiratory system development and function. A few studies have suggested that collagen VI insufficiency is associated with airway epithelial cell survival and altered lung function. Our recent work suggested collagen VI may be a genomic risk factor for chronic lung disease in premature infants. Using this as motivation, we thoroughly assessed the role of collagen VI in lung development and in lung epithelial cell biology. Here, we describe the state-of-the-art for collagen VI cell and developmental biology within the respiratory system, and reveal its essential roles in normal developmental processes and airway epithelial cell phenotype and intracellular signaling.
Collapse
Affiliation(s)
- Jared A. Mereness
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, Department of Pediatrics, University of Rochester, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA
| | - Thomas J. Mariani
- Corresponding author. Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, University of Rochester Medical Center, 601 Elmwood Ave, Box 850, Rochester, NY 14642, USA.
| |
Collapse
|
13
|
Shaw IW, O'Sullivan ED, Pisco AO, Borthwick G, Gallagher KM, Péault B, Hughes J, Ferenbach DA. Aging modulates the effects of ischemic injury upon mesenchymal cells within the renal interstitium and microvasculature. Stem Cells Transl Med 2021; 10:1232-1248. [PMID: 33951342 PMCID: PMC8284778 DOI: 10.1002/sctm.20-0392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 02/05/2021] [Accepted: 03/04/2021] [Indexed: 12/18/2022] Open
Abstract
The renal mesenchyme contains heterogeneous cells, including interstitial fibroblasts and pericytes, with key roles in wound healing. Although healing is impaired in aged kidneys, the effect of age and injury on the mesenchyme remains poorly understood. We characterized renal mesenchymal cell heterogeneity in young vs old animals and after ischemia‐reperfusion‐injury (IRI) using multiplex immunolabeling and single cell transcriptomics. Expression patterns of perivascular cell markers (α‐SMA, CD146, NG2, PDGFR‐α, and PDGFR‐β) correlated with their interstitial location. PDGFR‐α and PDGFR‐β co‐expression labeled renal myofibroblasts more efficiently than the current standard marker α‐SMA, and CD146 was a superior murine renal pericyte marker. Three renal mesenchymal subtypes; pericytes, fibroblasts, and myofibroblasts, were recapitulated with data from two independently performed single cell transcriptomic analyzes of murine kidneys, the first dataset an aging cohort and the second dataset injured kidneys following IRI. Mesenchymal cells segregated into subtypes with distinct patterns of expression with aging and following injury. Baseline uninjured old kidneys resembled post‐ischemic young kidneys, with this phenotype further exaggerated following IRI. These studies demonstrate that age modulates renal perivascular/interstitial cell marker expression and transcriptome at baseline and in response to injury and provide tools for the histological and transcriptomic analysis of renal mesenchymal cells, paving the way for more accurate classification of renal mesenchymal cell heterogeneity and identification of age‐specific pathways and targets.
Collapse
Affiliation(s)
- Isaac W Shaw
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.,Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Eoin D O'Sullivan
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.,Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | | | - Gary Borthwick
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Kevin M Gallagher
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.,Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Bruno Péault
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK.,Orthopaedic Hospital Research Center and Broad Stem Cell Research Center, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Jeremy Hughes
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.,Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - David A Ferenbach
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.,Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| |
Collapse
|
14
|
Schmitt BM, Boewe AS, Becker V, Nalbach L, Gu Y, Götz C, Menger MD, Laschke MW, Ampofo E. Protein Kinase CK2 Regulates Nerve/Glial Antigen (NG)2-Mediated Angiogenic Activity of Human Pericytes. Cells 2020; 9:cells9061546. [PMID: 32630438 PMCID: PMC7348826 DOI: 10.3390/cells9061546] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/15/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
Protein kinase CK2 is a crucial regulator of endothelial cell proliferation, migration and sprouting during angiogenesis. However, it is still unknown whether this kinase additionally affects the angiogenic activity of other vessel-associated cells. In this study, we investigated the effect of CK2 inhibition on primary human pericytes. We found that CK2 inhibition reduces the expression of nerve/glial antigen (NG)2, a crucial factor which is involved in angiogenic processes. Reporter gene assays revealed a 114 bp transcriptional active region of the human NG2 promoter, whose activity was decreased after CK2 inhibition. Functional analyses demonstrated that the pharmacological inhibition of CK2 by CX-4945 suppresses pericyte proliferation, migration, spheroid sprouting and the stabilization of endothelial tubes. Moreover, aortic rings of NG2−/− mice showed a significantly reduced vascular sprouting when compared to rings of NG2+/+ mice, indicating that NG2 is an important regulator of the angiogenic activity of pericytes. In vivo, implanted Matrigel plugs containing CX-4945-treated pericytes exhibited a lower microvessel density when compared to controls. These findings demonstrate that CK2 regulates the angiogenic activity of pericytes through NG2 gene expression. Hence, the inhibition of CK2 represents a promising anti-angiogenic strategy, because it does not only target endothelial cells, but also vessel-associated pericytes.
Collapse
Affiliation(s)
- Beate M. Schmitt
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (B.M.S.); (A.S.B.); (V.B.); (L.N.); (Y.G.); (M.D.M.); (M.W.L.)
| | - Anne S. Boewe
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (B.M.S.); (A.S.B.); (V.B.); (L.N.); (Y.G.); (M.D.M.); (M.W.L.)
| | - Vivien Becker
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (B.M.S.); (A.S.B.); (V.B.); (L.N.); (Y.G.); (M.D.M.); (M.W.L.)
| | - Lisa Nalbach
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (B.M.S.); (A.S.B.); (V.B.); (L.N.); (Y.G.); (M.D.M.); (M.W.L.)
| | - Yuan Gu
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (B.M.S.); (A.S.B.); (V.B.); (L.N.); (Y.G.); (M.D.M.); (M.W.L.)
| | - Claudia Götz
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany;
| | - Michael D. Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (B.M.S.); (A.S.B.); (V.B.); (L.N.); (Y.G.); (M.D.M.); (M.W.L.)
| | - Matthias W. Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (B.M.S.); (A.S.B.); (V.B.); (L.N.); (Y.G.); (M.D.M.); (M.W.L.)
| | - Emmanuel Ampofo
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (B.M.S.); (A.S.B.); (V.B.); (L.N.); (Y.G.); (M.D.M.); (M.W.L.)
- Correspondence: ; Tel.: +49-6841-16-26561; Fax: +49-6841-16-26553
| |
Collapse
|
15
|
Duan Y, Liu G, Sun Y, Wu J, Xiong Z, Jin T, Chen M. Collagen type VI α5 gene variations may predict the risk of lung cancer development in Chinese Han population. Sci Rep 2020; 10:5010. [PMID: 32193401 PMCID: PMC7081318 DOI: 10.1038/s41598-020-61614-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 02/17/2020] [Indexed: 12/24/2022] Open
Abstract
The abundant expression of collagen type VI α5 (COL6A5) exists in lung tissue, and its role in lung cancer is still unknown. We performed a genetic association study with an attempt to detect the relationships between single nucleotide polymorphisms (SNPs) in COL6A5 and lung cancer predisposition in Chinese Han population. We finally selected six tag-SNPs to determine their genotypes among 510 lung cancer patients and 495 healthy controls with the MassARRAY platform. The associations of SNPs and lung cancer risk were estimated by logistic regression method with adjustment for confounding factors. Two available databases were used for gene expression and prognosis analysis. COL6A5 rs13062453, rs1497305, and rs77123808 were significantly associated with the risk of lung cancer in the whole population or stratified subgroups (p < 0.05). Among them, COL6A5 rs13062453 and rs1497305 were also linked to the susceptibility of lung adenocarcinoma. Additionally, rs1497305 was found to be strongly related to the TNM staging under five genetic models (p < 0.05). Results from databases suggested the important role of COL6A5 in lung cancer development. COL6A5 polymorphisms rs13062453, rs1497305 and rs77123808 were associated with lung cancer risk in Chinese Han population. These findings first yield new insight of COL6A5 in lung cancer.
Collapse
Affiliation(s)
- Ying Duan
- Department of Respiratory Medicine, The First Affiliated Hospital of School of Medicine of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Gaowen Liu
- Xianyang Central hospital, Xianyang, Shaanxi, 712000, China
| | - Yao Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Jiamin Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Zichao Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Tianbo Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Mingwei Chen
- Department of Respiratory Medicine, The First Affiliated Hospital of School of Medicine of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
16
|
Chondroitin Sulphate Proteoglycans in the Tumour Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1272:73-92. [PMID: 32845503 DOI: 10.1007/978-3-030-48457-6_5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Proteoglycans are macromolecules that are essential for the development of cells, human diseases and malignancies. In particular, chondroitin sulphate proteoglycans (CSPGs) accumulate in tumour stroma and play a key role in tumour growth and invasion by driving multiple oncogenic pathways in tumour cells and promoting crucial interactions in the tumour microenvironment (TME). These pathways involve receptor tyrosine kinase (RTK) signalling via the mitogen-activated protein kinase (MAPK) cascade and integrin signalling via the activation of focal adhesion kinase (FAK), which sustains the activation of extracellular signal-regulated kinases 1/2 (ERK1/2).Human CSPG4 is a type I transmembrane protein that is associated with the growth and progression of human brain tumours. It regulates cell signalling and migration by interacting with components of the extracellular matrix, extracellular ligands, growth factor receptors, intracellular enzymes and structural proteins. Its overexpression by tumour cells, perivascular cells and precursor/progenitor cells in gliomas suggests that it plays a role in their origin, progression and neo-angiogenesis and its aberrant expression in tumour cells may be a promising biomarker to monitor malignant progression and patient survival.The aim of this chapter is to review and discuss the role of CSPG4 in the TME of human gliomas, including its potential as a druggable therapeutic target.
Collapse
|
17
|
Nalbach L, Schmitt BM, Becker V, Scheller A, Laschke MW, Menger MD, Ampofo E. Nerve/glial antigen 2 is crucially involved in the revascularization of freely transplanted pancreatic islets. Cell Tissue Res 2019; 378:195-205. [DOI: 10.1007/s00441-019-03048-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/10/2019] [Indexed: 01/09/2023]
|
18
|
de Vrij FM, Bouwkamp CG, Gunhanlar N, Shpak G, Lendemeijer B, Baghdadi M, Gopalakrishna S, Ghazvini M, Li TM, Quadri M, Olgiati S, Breedveld GJ, Coesmans M, Mientjes E, de Wit T, Verheijen FW, Beverloo HB, Cohen D, Kok RM, Bakker PR, Nijburg A, Spijker AT, Haffmans PMJ, Hoencamp E, Bergink V, Vorstman JA, Wu T, Olde Loohuis LM, Amin N, Langen CD, Hofman A, Hoogendijk WJ, van Duijn CM, Ikram MA, Vernooij MW, Tiemeier H, Uitterlinden AG, Elgersma Y, Distel B, Gribnau J, White T, Bonifati V, Kushner SA. Candidate CSPG4 mutations and induced pluripotent stem cell modeling implicate oligodendrocyte progenitor cell dysfunction in familial schizophrenia. Mol Psychiatry 2019; 24:757-771. [PMID: 29302076 PMCID: PMC6755981 DOI: 10.1038/s41380-017-0004-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 09/24/2017] [Accepted: 11/01/2017] [Indexed: 01/09/2023]
Abstract
Schizophrenia is highly heritable, yet its underlying pathophysiology remains largely unknown. Among the most well-replicated findings in neurobiological studies of schizophrenia are deficits in myelination and white matter integrity; however, direct etiological genetic and cellular evidence has thus far been lacking. Here, we implement a family-based approach for genetic discovery in schizophrenia combined with functional analysis using induced pluripotent stem cells (iPSCs). We observed familial segregation of two rare missense mutations in Chondroitin Sulfate Proteoglycan 4 (CSPG4) (c.391G > A [p.A131T], MAF 7.79 × 10-5 and c.2702T > G [p.V901G], MAF 2.51 × 10-3). The CSPG4A131T mutation was absent from the Swedish Schizophrenia Exome Sequencing Study (2536 cases, 2543 controls), while the CSPG4V901G mutation was nominally enriched in cases (11 cases vs. 3 controls, P = 0.026, OR 3.77, 95% CI 1.05-13.52). CSPG4/NG2 is a hallmark protein of oligodendrocyte progenitor cells (OPCs). iPSC-derived OPCs from CSPG4A131T mutation carriers exhibited abnormal post-translational processing (P = 0.029), subcellular localization of mutant NG2 (P = 0.007), as well as aberrant cellular morphology (P = 3.0 × 10-8), viability (P = 8.9 × 10-7), and myelination potential (P = 0.038). Moreover, transfection of healthy non-carrier sibling OPCs confirmed a pathogenic effect on cell survival of both the CSPG4A131T (P = 0.006) and CSPG4V901G (P = 3.4 × 10-4) mutations. Finally, in vivo diffusion tensor imaging of CSPG4A131T mutation carriers demonstrated a reduction of brain white matter integrity compared to unaffected sibling and matched general population controls (P = 2.2 × 10-5). Together, our findings provide a convergence of genetic and functional evidence to implicate OPC dysfunction as a candidate pathophysiological mechanism of familial schizophrenia.
Collapse
Affiliation(s)
- Femke M de Vrij
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Christian G Bouwkamp
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Nilhan Gunhanlar
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Guy Shpak
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Bas Lendemeijer
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Maarouf Baghdadi
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Mehrnaz Ghazvini
- Department of Developmental Biology, and Erasmus MC iPS Facility, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Tracy M Li
- Department of Developmental Biology, and Erasmus MC iPS Facility, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marialuisa Quadri
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Simone Olgiati
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Guido J Breedveld
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Michiel Coesmans
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands
- Delta Psychiatric Center, Poortugaal, The Netherlands
| | - Edwin Mientjes
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ton de Wit
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Frans W Verheijen
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - H Berna Beverloo
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Dan Cohen
- Mental Health Care Organization North-Holland North, Heerhugowaard, The Netherlands
| | - Rob M Kok
- Parnassia Psychiatric Institute, The Hague, The Netherlands
| | - P Roberto Bakker
- Department of Psychiatry and Psychology, School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
- Psychiatric Center GGZ Centraal, Amersfoort, The Netherlands
| | - Aviva Nijburg
- Parnassia Psychiatric Institute, The Hague, The Netherlands
| | | | - P M Judith Haffmans
- Faculty of Social and Behavioral Sciences Clinical, Health and Neuro Psychology, Department of Affective Disorders, PsyQ, Leiden University, Leiden, The Netherlands
| | - Erik Hoencamp
- Parnassia Psychiatric Institute, The Hague, The Netherlands
- Institute of Psychology, Leiden University, Leiden, The Netherlands
| | - Veerle Bergink
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jacob A Vorstman
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Psychiatry, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Timothy Wu
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Loes M Olde Loohuis
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Najaf Amin
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Carolyn D Langen
- Department of Radiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Medical Informatics, Erasmus Medical Center, Rotterdam, The Netherlands
- Biomedical Imaging Group Rotterdam, Departments of Radiology & Medical Informatics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Witte J Hoogendijk
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - M Arfan Ikram
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Radiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Radiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Henning Tiemeier
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Medical Informatics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ype Elgersma
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ben Distel
- Department of Medical Biochemistry, Academic Medical Centre, Amsterdam, The Netherlands
| | - Joost Gribnau
- Department of Developmental Biology, and Erasmus MC iPS Facility, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Tonya White
- Department of Medical Informatics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Vincenzo Bonifati
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Steven A Kushner
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
19
|
Neuron/Glial Antigen 2-Type VI Collagen Interactions During Murine Temporomandibular Joint Osteoarthritis. Sci Rep 2019; 9:56. [PMID: 30635602 PMCID: PMC6329769 DOI: 10.1038/s41598-018-37028-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 11/25/2018] [Indexed: 12/28/2022] Open
Abstract
The degeneration of articular cartilage underscores the clinical pathology of temporomandibular joint osteoarthritis (TMJ-OA) and is promoted through dysfunctional biochemical or biophysical signaling. Transduction of these signals has a multifaceted regulation that includes important cell-matrix derived interactions. The matrix encapsulating the cells of the mandibular condylar cartilage (MCC) is rich in type VI collagen. Neuron/glia antigen 2 (NG2) is a type I transmembrane proteoglycan that binds with type VI collagen. This study defines the temporospatial dynamics of NG2-type VI collagen interactions during the progression of TMJ-OA. Membrane-bound NG2 is found to colocalize with pericellular type VI collagen in superficial layer cells in the MCC perichondrium but is present at high levels in the cytosol of chondroblastic and hypertrophic cells. When TMJ -OA is induced using a surgical instability model, localized disruptions of pericellular type VI collagen are observed on the central and medial MCC and are associated with significantly higher levels of cytosolic NG2. NG2 localized within the cytosol is found to be transported through clathrin and dynamin mediated endocytic pathways. These findings are consistent with NG2 behavior in other injury models and underscore the potential of NG2 as an entirely novel molecular mechanism of chondrocyte function contextually linked with TMJ-OA.
Collapse
|
20
|
Type VI collagen promotes lung epithelial cell spreading and wound-closure. PLoS One 2018; 13:e0209095. [PMID: 30550606 PMCID: PMC6294368 DOI: 10.1371/journal.pone.0209095] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/29/2018] [Indexed: 11/25/2022] Open
Abstract
Basement membrane (BM) is an essential part of the extracellular matrix (ECM) that plays a crucial role in mechanical support and signaling to epithelial cells during lung development, homeostasis and repair. Abnormal composition and remodeling of the lung ECM have been associated with developmental abnormalities observed in multiple pediatric and adult respiratory diseases. Collagen VI (COL6) is a well-studied muscle BM component, but its role in the lung and its effect on pulmonary epithelium is largely undetermined. We report the presence of COLVI immediately subjacent to human airway and alveolar epithelium in the pediatric lung, in a location where it is likely to interact with epithelial cells. In vitro, both primary human lung epithelial cells and human lung epithelial cell lines displayed an increased rate of “wound healing” in response to a scratch injury when plated on COL6 as compared to other matrices. For the 16HBE cell line, wounds remained >5-fold larger for cells on COL1 (p<0.001) and >6-fold larger on matrigel (p<0.001), a prototypical basement membrane, when compared to COL6 (>96% closure at 10 hr). The effect of COL6 upon lung epithelial cell phenotype was associated with an increase in cell spreading. Three hours after initial plating, 16HBE cells showed >7-fold less spreading on matrigel (p<0.01), and >4-fold less spreading on COL1 (p<0.01) when compared to COL6. Importantly, the addition of COL6 to other matrices also enhanced cell spreading. Similar responses were observed for primary cells. Inhibitor studies indicated both integrin β1 activity and activation of multiple signaling pathways was required for enhanced spreading on all matrices, with the PI3K/AKT pathway (PI3K, CDC42, RAC1) showing both significant and specific effects for spreading on COL6. Genetic gain-of-function experiments demonstrated enhanced PI3K/AKT pathway activity was sufficient to confer equivalent cell spreading on other matrices as compared to COL6. We conclude that COL6 has significant and specific effects upon human lung epithelial cell-autonomous functions.
Collapse
|
21
|
Tamburini E, Dallatomasina A, Quartararo J, Cortelazzi B, Mangieri D, Lazzaretti M, Perris R. Structural deciphering of the NG2/CSPG4 proteoglycan multifunctionality. FASEB J 2018; 33:3112-3128. [PMID: 30550356 DOI: 10.1096/fj.201801670r] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The chondroitin sulfate proteoglycan 4 ( CSPG4) gene encodes a transmembrane proteoglycan (PG) constituting the largest and most structurally complex macromolecule of the human surfaceome. Its transcript shows an extensive evolutionary conservation and, due to the elaborated intracellular processing of the translated protein, it generates an array of glycoforms with the potential to exert variant-specific functions. CSPG4-mediated molecular events are articulated through the interaction with more than 40 putative ligands and the concurrent involvement of the ectodomain and cytoplasmic tail. Alternating inside-out and outside-in signal transductions may thereby be elicited through a tight functional connection of the PG with the cytoskeleton and its regulators. The potential of CSPG4 to influence both types of signaling mechanisms is also asserted by its lateral mobility along the plasma membrane and its intersection with microdomain-restricted internalization and endocytic trafficking. Owing to the multitude of molecular interplays that CSPG4 may engage, and thanks to a differential phosphorylation of its intracellular domain accounted by crosstalking signaling pathways, the PG stands out for its unique capability to affect numerous cellular phenomena, including those purporting pathologic conditions. We discuss here the progresses made in advancing our understanding about the structural-functional bases for the ability of CSPG4 to widely impact on cell behavior, such as to highlight how its multivalency may be exploited to interfere with disease progression.-Tamburini, E., Dallatomasina, A., Quartararo, J., Cortelazzi, B., Mangieri, D., Lazzaretti, M., Perris, R. Structural deciphering of the NG2/CSPG4 proteoglycan multifunctionality.
Collapse
Affiliation(s)
- Elisa Tamburini
- Centre for Molecular and Translational Oncology (COMT), University of Parma, Parma, Italy
| | - Alice Dallatomasina
- Division of Experimental Oncology, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy; and
| | - Jade Quartararo
- Centre for Molecular and Translational Oncology (COMT), University of Parma, Parma, Italy
| | - Barbara Cortelazzi
- Centre for Molecular and Translational Oncology (COMT), University of Parma, Parma, Italy
| | | | - Mirca Lazzaretti
- Centre for Molecular and Translational Oncology (COMT), University of Parma, Parma, Italy
| | - Roberto Perris
- Centre for Molecular and Translational Oncology (COMT), University of Parma, Parma, Italy
| |
Collapse
|
22
|
Sato T, Takano R, Tokunaka K, Saiga K, Tomura A, Sugihara H, Hayashi T, Imamura Y, Morita M. Type VI collagen α1 chain polypeptide in non-triple helical form is an alternative gene product of COL6A1. J Biochem 2018; 164:173-181. [PMID: 29659864 DOI: 10.1093/jb/mvy040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/31/2018] [Indexed: 01/08/2023] Open
Abstract
Expression of type IV collagen α1 chain in non-triple helical form, NTH α1(IV), is observed in cultured human cells, human placenta and rabbit tissues. Biological functions of NTH α1(IV) are most likely to be distinct from type IV collagen, since their biochemical characteristics are quite different. To explore the biological functions of NTH α1(IV), we prepared some anti-NTH α1(IV) antibodies. In the course of characterization of these antibodies, one antibody, #141, bound to a polypeptide of 140 kDa in size in addition to NTH α1(IV). In this study, we show evidence that the 140 kDa polypeptide is a novel non-triple helical polypeptide of type VI collagen α1 chain encoded by COL6A1, or NTH α1(VI). Expression of NTH α1(VI) is observed in supernatants of several human cancer cell lines, suggesting that the NTH α1(VI) might be involved in tumourigenesis. Reactivity with lectins indicates that sugar chains of NTH α1(VI) are different from those of the α1(VI) chain in triple helical form of type VI collagen, suggesting a synthetic mechanism and a mode of action of NTH α1(VI) is different from type VI collagen.
Collapse
Affiliation(s)
- Takamichi Sato
- Pharmaceutical Research Laboratories, Nippon Kayaku Co., Ltd, 3-31-12, Shimo, Kita-ku, Tokyo 115-0042, Japan
| | - Ryo Takano
- Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2655-1, Nakanomachi, Hachioji city, Tokyo 192-0015, Japan
| | - Kazuhiro Tokunaka
- Pharmaceutical Research Laboratories, Nippon Kayaku Co., Ltd, 3-31-12, Shimo, Kita-ku, Tokyo 115-0042, Japan
| | - Kan Saiga
- Pharmaceutical Research Laboratories, Nippon Kayaku Co., Ltd, 3-31-12, Shimo, Kita-ku, Tokyo 115-0042, Japan
| | - Arihiro Tomura
- Pharmaceutical Research Laboratories, Nippon Kayaku Co., Ltd, 3-31-12, Shimo, Kita-ku, Tokyo 115-0042, Japan
| | - Hidemitsu Sugihara
- Pharmaceutical Research Laboratories, Nippon Kayaku Co., Ltd, 3-31-12, Shimo, Kita-ku, Tokyo 115-0042, Japan
| | - Toshihiko Hayashi
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, Liaoning, China
| | - Yasutada Imamura
- Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2655-1, Nakanomachi, Hachioji city, Tokyo 192-0015, Japan
| | - Makoto Morita
- Pharmaceutical Research Laboratories, Nippon Kayaku Co., Ltd, 3-31-12, Shimo, Kita-ku, Tokyo 115-0042, Japan
| |
Collapse
|
23
|
Angenendt L, Mikesch JH, Görlich D, Busch A, Arnhold I, Rudack C, Hartmann W, Wardelmann E, Berdel WE, Stenner M, Schliemann C, Grünewald I. Stromal collagen type VI associates with features of malignancy and predicts poor prognosis in salivary gland cancer. Cell Oncol (Dordr) 2018; 41:517-525. [PMID: 29949051 DOI: 10.1007/s13402-018-0389-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2018] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Collagen Type VI (COLVI) is an extracellular matrix protein that is upregulated in various solid tumours during tumour progression and has been shown to stimulate proliferation, suppress apoptosis and promote invasion and metastasis. It has also been described as a mediator of chemotherapy resistance and as a therapeutic target in preclinical cancer models. Here, we aimed to analyse the prognostic role of COLVI in salivary gland cancer (SGC). METHODS Stromal COLVI protein expression was assessed in primary SGC specimens of 91 patients using immunohistochemistry (IHC). The IHC expression patterns obtained were subsequently correlated with various survival and clinicopathological features, including Ki-67 and p53 expression. RESULTS We found that COLVI was expressed in all SGC specimens. High expression was found to be associated with features of malignancy such as high histologic grades, advanced and invasive T stages and metastatic lymph node involvement (p < 0.05 for all variables). COLVI expression was also found to correlate with both Ki-67 and p53 expression (p < 0.01). We found that high COLVI expression predicted a significantly inferior 5-year overall survival (38.3%, 55.1% and 93.8%; p = 0.002) and remained a significant predictor of prognosis in a multivariate Cox regression analysis (hazard ratio, 2.62; 95% confidence interval, 1.22-5.61; p = 0.013). In all low-risk subgroups COLVI expression identified patients with an adverse outcome. Patients receiving adjuvant radiotherapy had a poor survival when expressing high levels of COLVI. CONCLUSIONS Our data indicate that stromal COLVI expression associates with key features of malignancy, represents a novel independent prognostic factor and may affect response to radiotherapy in SGC. Although our results warrant validation in an independent cohort, assessing stromal COLVI expression may be suitable for future diagnostic and therapeutic decision making in patients with SGC.
Collapse
Affiliation(s)
- Linus Angenendt
- Department of Medicine A, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.
| | - Jan-Henrik Mikesch
- Department of Medicine A, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Dennis Görlich
- Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
| | - Alina Busch
- Department of Internal Medicine II, University Hospital Eppendorf, Hamburg, Germany
| | - Irina Arnhold
- Department of Medicine A, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Claudia Rudack
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital of Münster, Münster, Germany
| | - Wolfgang Hartmann
- Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Albert Schweitzer Campus 1, 48149, Münster, Germany
| | - Eva Wardelmann
- Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Albert Schweitzer Campus 1, 48149, Münster, Germany
| | - Wolfgang E Berdel
- Department of Medicine A, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Markus Stenner
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital of Münster, Münster, Germany
| | - Christoph Schliemann
- Department of Medicine A, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Inga Grünewald
- Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Albert Schweitzer Campus 1, 48149, Münster, Germany.
| |
Collapse
|
24
|
Tang F, Lord MS, Stallcup WB, Whitelock JM. Cell surface chondroitin sulphate proteoglycan 4 (CSPG4) binds to the basement membrane heparan sulphate proteoglycan, perlecan, and is involved in cell adhesion. J Biochem 2018; 163:399-412. [PMID: 29462330 DOI: 10.1093/jb/mvy008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/08/2017] [Indexed: 12/25/2022] Open
Abstract
Chondroitin sulphate proteoglycan 4 (CSPG4) is a cell surface proteoglycan highly expressed by tumour, perivascular and oligodendrocyte cells and known to be involved cell adhesion and migration. This study showed that CSPG4 was present as a proteoglycan on the cell surface of two melanoma cell lines, MM200 and Me1007, as well as shed into the conditioned medium. CSPG4 from the two melanoma cell lines differed in the amount of chondroitin sulphate (CS) decoration, as well as the way the protein core was fragmented. In contrast, the CSPG4 expressed by a colon carcinoma cell line, WiDr, was predominantly as a protein core on the cell surface lacking glycosaminoglycan (GAG) chains. This study demonstrated that CSPG4 immunopurified from the melanoma cell lines formed a complex with perlecan synthesized by the same cultured cells. Mechanistic studies showed that CSPG4 bound to perlecan via hydrophobic protein-protein interactions involving multiple sites on perlecan including the C-terminal region. Furthermore, this study revealed that CSPG4 interacted with perlecan to support cell adhesion and actin polymerization. Together these data suggest a novel mechanism by which CSPG4 expressing cells might attach to perlecan-rich matrices so as those found in connective tissues and basement membranes.
Collapse
Affiliation(s)
- Fengying Tang
- Graduate School of Biomedical Engineering, Level 5 Samuels Building, University of New South Wales, Sydney, NSW 2052, Australia
| | - Megan S Lord
- Graduate School of Biomedical Engineering, Level 5 Samuels Building, University of New South Wales, Sydney, NSW 2052, Australia
| | - William B Stallcup
- Tumour Microenvironment and Cancer Immunology Program, Cancer Centre, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - John M Whitelock
- Graduate School of Biomedical Engineering, Level 5 Samuels Building, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
25
|
Ilieva KM, Cheung A, Mele S, Chiaruttini G, Crescioli S, Griffin M, Nakamura M, Spicer JF, Tsoka S, Lacy KE, Tutt ANJ, Karagiannis SN. Chondroitin Sulfate Proteoglycan 4 and Its Potential As an Antibody Immunotherapy Target across Different Tumor Types. Front Immunol 2018; 8:1911. [PMID: 29375561 PMCID: PMC5767725 DOI: 10.3389/fimmu.2017.01911] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/14/2017] [Indexed: 12/18/2022] Open
Abstract
Overexpression of the chondroitin sulfate proteoglycan 4 (CSPG4) has been associated with the pathology of multiple types of such as melanoma, breast cancer, squamous cell carcinoma, mesothelioma, neuroblastoma, adult and pediatric sarcomas, and some hematological cancers. CSPG4 has been reported to exhibit a role in the growth and survival as well as in the spreading and metastasis of tumor cells. CSPG4 is overexpressed in several malignant diseases, while it is thought to have restricted and low expression in normal tissues. Thus, CSPG4 has become the target of numerous anticancer treatment approaches, including monoclonal antibody-based therapies. This study reviews key potential anti-CSPG4 antibody and immune-based therapies and examines their direct antiproliferative/metastatic and immune activating mechanisms of action.
Collapse
Affiliation(s)
- Kristina M Ilieva
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London & NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, Guy's Hospital, London, United Kingdom.,Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
| | - Anthony Cheung
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London & NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, Guy's Hospital, London, United Kingdom.,Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
| | - Silvia Mele
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London & NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, Guy's Hospital, London, United Kingdom
| | - Giulia Chiaruttini
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London & NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, Guy's Hospital, London, United Kingdom
| | - Silvia Crescioli
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London & NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, Guy's Hospital, London, United Kingdom
| | - Merope Griffin
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London & NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, Guy's Hospital, London, United Kingdom
| | - Mano Nakamura
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London & NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, Guy's Hospital, London, United Kingdom.,Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London, United Kingdom
| | - James F Spicer
- School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
| | - Sophia Tsoka
- Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London, United Kingdom
| | - Katie E Lacy
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London & NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, Guy's Hospital, London, United Kingdom
| | - Andrew N J Tutt
- Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom.,Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, United Kingdom
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London & NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, Guy's Hospital, London, United Kingdom.,Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
| |
Collapse
|
26
|
Abstract
During the process of neurogenesis, the stem cell committed to the neuronal cell fate starts a series of molecular and morphological changes. The understanding of the physio-pathology of mechanisms controlling the molecular and morphological changes occurring during neuronal differentiation is fundamental to the development of effective therapies for many neurologic diseases. Unfortunately, our knowledge of the biological events occurring in the cell during neuronal differentiation is still poor. In this study, we focus preliminarily on the relevance of the cytoskeletal rearrangements, which earlier drive the morphology of the neuronal precursors, and later the migrating/mature neurons. In fact, neuritogenesis, neurite branching, outgrowth and retraction are seminal to the development of a fully functional nervous system. With this in mind, we highlight the importance of iPSC technology to study the processes of cytoskeletal-driven morphological changes during neuronal differentiation.
Collapse
|
27
|
Kohara Y, Soeta S, Izu Y, Arai K, Amasaki H. Distribution of type VI collagen in association with osteoblast lineages in the groove of Ranvier during rat postnatal development. Ann Anat 2016; 208:58-68. [DOI: 10.1016/j.aanat.2016.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 06/18/2016] [Accepted: 07/06/2016] [Indexed: 01/29/2023]
|
28
|
Serwanski DR, Jukkola P, Nishiyama A. Heterogeneity of astrocyte and NG2 cell insertion at the node of ranvier. J Comp Neurol 2016; 525:535-552. [PMID: 27448245 DOI: 10.1002/cne.24083] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 07/12/2016] [Accepted: 07/12/2016] [Indexed: 01/06/2023]
Abstract
The node of Ranvier is a functionally important site on the myelinated axon where sodium channels are clustered and regeneration of action potentials occurs, allowing fast saltatory conduction of action potentials. Early ultrastructural studies have revealed the presence of "glia" or "astrocytes" at the nodes. NG2 cells, also known as oligodendrocyte precursor cells or polydendrocytes, which are a resident glial cell population in the mature mammalian central nervous system that is distinct from astrocytes, have also been shown to extend processes that contact the nodes. However, the prevalence of the two types of glia at the node has remained unknown. We have used specific cell surface markers to examine the association of NG2 cells and astrocytes with the nodes of Ranvier in the optic nerve, corpus callosum, and spinal cord of young adult mice or rats. We show that more than 95% of the nodes in all three regions contained astrocyte processes, while 33-49% of nodes contained NG2 cell processes. NG2 cell processes were associated more frequently with larger nodes. A few nodes were devoid of glial apposition. Electron microscopy and stimulated emission depletion (STED) super-resolution microscopy confirmed the presence of dual glial insertion at some nodes and further revealed that NG2 cell processes contacted the nodal membrane at discrete points, while astrocytes had broader processes that surrounded the nodes. The study provides the first systematic quantitative analysis of glial cell insertions at central nodes of Ranvier. J. Comp. Neurol. 525:535-552, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David R Serwanski
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269
| | - Peter Jukkola
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269
| |
Collapse
|
29
|
She ZG, Chang Y, Pang HB, Han W, Chen HZ, Smith JW, Stallcup WB. NG2 Proteoglycan Ablation Reduces Foam Cell Formation and Atherogenesis via Decreased Low-Density Lipoprotein Retention by Synthetic Smooth Muscle Cells. Arterioscler Thromb Vasc Biol 2015; 36:49-59. [PMID: 26543095 DOI: 10.1161/atvbaha.115.306074] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/24/2015] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Obesity and hyperlipidemia are critical risk factors for atherosclerosis. Because ablation of NG2 proteoglycan in mice leads to hyperlipidemia and obesity, we investigated the impact of NG2 ablation on atherosclerosis in apoE null mice. APPROACH AND RESULTS Immunostaining indicates that NG2 expression in plaque, primarily by synthetic smooth muscle cells, increases during atherogenesis. NG2 ablation unexpectedly results in decreased (30%) plaque development, despite aggravated obesity and hyperlipidemia. Mechanistic studies reveal that NG2-positive plaque synthetic smooth muscle cells in culture can sequester low-density lipoprotein to enhance foam-cell formation, processes in which NG2 itself plays direct roles. In agreement with these observations, low-density lipoprotein retention and lipid accumulation in the NG2/ApoE knockout aorta is 30% less than that seen in the control aorta. CONCLUSIONS These results indicate that synthetic smooth muscle cell-dependent low-density lipoprotein retention and foam cell formation outweigh obesity and hyperlipidemia in promoting mouse atherogenesis. Our study sheds new light on the role of synthetic smooth muscle cells during atherogenesis. Blocking plaque NG2 or altering synthetic smooth muscle cells function may be promising therapeutic strategies for atherosclerosis.
Collapse
Affiliation(s)
- Zhi-Gang She
- From the Tumor Microenvironment and Cancer Immunology Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA (Z.-G.S., Y.C., H.-B.P., W.H., J.W.S., W.B.S.); and Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Beijing, Republic of China (H.-Z.C.).
| | - Yunchao Chang
- From the Tumor Microenvironment and Cancer Immunology Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA (Z.-G.S., Y.C., H.-B.P., W.H., J.W.S., W.B.S.); and Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Beijing, Republic of China (H.-Z.C.)
| | - Hong-Bo Pang
- From the Tumor Microenvironment and Cancer Immunology Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA (Z.-G.S., Y.C., H.-B.P., W.H., J.W.S., W.B.S.); and Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Beijing, Republic of China (H.-Z.C.)
| | - Wenlong Han
- From the Tumor Microenvironment and Cancer Immunology Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA (Z.-G.S., Y.C., H.-B.P., W.H., J.W.S., W.B.S.); and Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Beijing, Republic of China (H.-Z.C.)
| | - Hou-Zao Chen
- From the Tumor Microenvironment and Cancer Immunology Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA (Z.-G.S., Y.C., H.-B.P., W.H., J.W.S., W.B.S.); and Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Beijing, Republic of China (H.-Z.C.)
| | - Jeffrey W Smith
- From the Tumor Microenvironment and Cancer Immunology Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA (Z.-G.S., Y.C., H.-B.P., W.H., J.W.S., W.B.S.); and Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Beijing, Republic of China (H.-Z.C.)
| | - William B Stallcup
- From the Tumor Microenvironment and Cancer Immunology Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA (Z.-G.S., Y.C., H.-B.P., W.H., J.W.S., W.B.S.); and Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Beijing, Republic of China (H.-Z.C.)
| |
Collapse
|
30
|
Kohara Y, Soeta S, Izu Y, Amasaki H. Accumulation of type VI collagen in the primary osteon of the rat femur during postnatal development. J Anat 2015; 226:478-88. [PMID: 25943007 DOI: 10.1111/joa.12296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2015] [Indexed: 12/17/2022] Open
Abstract
In rodents, the long bone diaphysis is expanded by forming primary osteons at the periosteal surface of the cortical bone. This ossification process is thought to be regulated by the microenvironment in the periosteum. Type VI collagen (Col VI), a component of the extracellular matrix (ECM) in the periosteum, is involved in osteoblast differentiation at early stages. In several cell types, Col VI interacts with NG2 on the cytoplasmic membrane to promote cell proliferation, spreading and motility. However, the detailed functions of Col VI and NG2 in the ossification process in the periosteum are still under investigation. In this study, to clarify the relationship between localization of Col VI and formation of the primary osteon, we examined the distribution of Col VI and osteoblast lineages expressing NG2 in the periosteum of rat femoral diaphysis during postnatal growing periods by immunohistochemistry. Primary osteons enclosing the osteonal cavity were clearly identified in the cortical bone from 2 weeks old. The size of the osteonal cavities decreased from the outer to the inner region of the cortical bone. In addition, the osteonal cavities of newly formed primary osteons at the outermost region started to decrease in size after rats reached the age of 4 weeks. Immunohistochemistry revealed concentrated localization of Col VI in the ECM in the osteonal cavity. Col VI-immunoreactive areas were reduced and they disappeared as the osteonal cavities became smaller from the outer to the inner region. In the osteonal cavities of the outer cortical regions, Runx2-immunoreactive spindle-shaped cells and mature osteoblasts were detected in Col VI-immunoreactive areas. The numbers of Runx2-immunoreactive cells were significantly higher in the osteonal cavities than in the osteogenic layers from 2 to 4 weeks. Most of these Runx2-immunoreactive cells showed NG2-immunoreactivity. Furthermore, PCNA-immunoreactivity was detected in the Runx2-immunoreactive spindle cells in the osteonal cavities. These results indicate that Col VI provides a characteristic microenvironment in the osteonal cavity of the primary osteon, and that differentiation and proliferation of the osteoblast lineage occur in the Col VI-immunoreactive area. Interaction of Col VI and NG2 may be involved in the structural organization of the primary osteon by regulating osteoblast lineages.
Collapse
Affiliation(s)
- Yukihiro Kohara
- Laboratory of Veterinary Anatomy, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Satoshi Soeta
- Laboratory of Veterinary Anatomy, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Yayoi Izu
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hajime Amasaki
- Laboratory of Veterinary Anatomy, Nippon Veterinary and Life Science University, Tokyo, Japan
| |
Collapse
|
31
|
Voiles L, Lewis DE, Han L, Lupov IP, Lin TL, Robertson MJ, Petrache I, Chang HC. Overexpression of type VI collagen in neoplastic lung tissues. Oncol Rep 2014; 32:1897-904. [PMID: 25176343 PMCID: PMC4203334 DOI: 10.3892/or.2014.3438] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 07/18/2014] [Indexed: 01/19/2023] Open
Abstract
Type VI collagen (COL6), an extracellular matrix protein, is important in maintaining the integrity of lung tissue. An increase in COL6 mRNA and protein deposition was found in the lungs of patients with pulmonary fibrosis, a chronic inflammatory condition with a strong association with lung cancer. In the present study, we demonstrated overexpression of COL6 in the lungs of non-small cell lung cancers. We hypothesized that excessive COL6 in the lung interstitium may exert stimulatory effects on the adjacent cells. In vitro stimulation of monocytes with COL6 resulted in the production of IL-23, which may promote tumor development in an environment of IL-23-mediated lung inflammation, where tissue modeling occurs concurrently with excessive COL6 production. In addition, COL6 was capable of stimulating signaling pathways that activate focal adhesion kinase and extracellular signal-regulated kinase 1/2 in lung epithelial cells, which may also facilitate the development of lung neoplasms. Taken together, our data suggest the potential role of COL6 in promoting lung neoplasia in diseased lungs where COL6 is overexpressed.
Collapse
Affiliation(s)
- Larry Voiles
- Department of Biology, Indiana University-Purdue University Indianapolis School of Science, Indianapolis, IN, USA
| | - David E Lewis
- Department of Biology, Indiana University-Purdue University Indianapolis School of Science, Indianapolis, IN, USA
| | - Ling Han
- Department of Biology, Indiana University-Purdue University Indianapolis School of Science, Indianapolis, IN, USA
| | - Ivan P Lupov
- Department of Biology, Indiana University-Purdue University Indianapolis School of Science, Indianapolis, IN, USA
| | - Tsang-Long Lin
- Department of Comparative Pathobiology, Animal Disease Diagnostic Laboratory, Purdue University College of Veterinary Medicine, West Lafayette, IN, USA
| | - Michael J Robertson
- The Bone Marrow and Stem Cell Transplantation Program, Lymphoma Program and the Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Irina Petrache
- Division of Pulmonary, Allergy, Critical Care, Occupational and Sleep Medicine, Department of Medicine, Indiana University School of Medicine and the ̔Richard L. Roudebush' VA Medical Center, Indianapolis, IN, USA
| | - Hua-Chen Chang
- Department of Biology, Indiana University-Purdue University Indianapolis School of Science, Indianapolis, IN, USA
| |
Collapse
|
32
|
Lin L, Sun W, Throesch B, Kung F, Decoster JT, Berner CJ, Cheney RE, Rudy B, Hoffman DA. DPP6 regulation of dendritic morphogenesis impacts hippocampal synaptic development. Nat Commun 2014; 4:2270. [PMID: 23912628 PMCID: PMC3775611 DOI: 10.1038/ncomms3270] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/08/2013] [Indexed: 12/14/2022] Open
Abstract
Dipeptidyl-peptidase 6 (DPP6) is an auxiliary subunit of Kv4-mediated A-type K+ channels that, in addition to enhancing channel surface expression, potently accelerates their kinetics. The DPP6 gene has been associated with a number of human CNS disorders including ASDs and schizophrenia. Here we employ knockdown and genetic deletion of DPP6 to reveal its importance for the formation and stability of dendritic filopodia during early neuronal development. We find that hippocampal neurons lacking DPP6 show a sparser dendritic branching pattern along with fewer spines throughout development and into adulthood. In electrophysiological and imaging experiments we show that these deficits lead to fewer functional synapses and occur independently of the potassium channel subunit Kv4.2. We report that the extracellular domain of DPP6 interacts with a filopodia-associated myosin as well as with fibronectin in the extracellular matrix. DPP6 therefore plays an unexpected but important role in cell-adhesion and motility, impacting hippocampal synaptic development and function.
Collapse
Affiliation(s)
- Lin Lin
- Molecular Neurophysiology and Biophysics Section, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Sugimoto K, Nishioka R, Ikeda A, Mise A, Takahashi H, Yano H, Kumon Y, Ohnishi T, Tanaka J. Activated microglia in a rat stroke model express NG2 proteoglycan in peri-infarct tissue through the involvement of TGF-β1. Glia 2013; 62:185-98. [PMID: 24311432 DOI: 10.1002/glia.22598] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/20/2013] [Accepted: 10/22/2013] [Indexed: 12/12/2022]
Abstract
We investigated activated microglia in ischemic brain lesions from rats that had been subjected to transient middle cerebral artery occlusion. Activated microglia expressing NG2 chondroitin sulfate proteoglycan (NG2) were found only in the narrow zone (demarcation zone) that demarcated the peri-infarct tissue and ischemic core. NG2(-) activated microglia were abundantly distributed in the peri-infarct tissue outside the demarcation zone. NG2(+) microglia but not NG2(-) microglia expressed both CD68 and a triggering receptor expressed on myeloid cells 2 (TREM-2), suggesting that NG2(+) microglia eliminated apoptotic neurons. In fact, NG2(+) microglia often attached to degenerating neurons and sometimes internalized NeuN(+) or neurofilament protein(+) material. Kinetic studies using quantitative real-time RT-PCR revealed that expression of transforming growth factor-β1 (TGF-β1) was most evident in the ischemic core; with this marker produced mainly by macrophages located in this region. TGF-β receptor mRNA expression peaked at 3 days post reperfusion (dpr) in the peri-infarct tissue, including the demarcation zone. Primary cultured rat microglia also expressed the receptor mRNA. In response to TGF-β1, primary microglia enhanced the expression of NG2 protein and TREM-2 mRNA as well as migratory activity. A TGF-β1 inhibitor, SB525334, abolished these effects. The present results suggest that TGF-β1 produced in the ischemic core diffused toward the peri-infarct tissue, driving activated microglial cells to eliminate degenerating neurons. Appropriate control of NG2(+) microglia in the demarcation zone might be a novel target for the suppression of secondary neurodegeneration in the peri-infarct tissue.
Collapse
Affiliation(s)
- Kana Sugimoto
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
de Castro F, Bribián A, Ortega MC. Regulation of oligodendrocyte precursor migration during development, in adulthood and in pathology. Cell Mol Life Sci 2013; 70:4355-68. [PMID: 23689590 PMCID: PMC11113994 DOI: 10.1007/s00018-013-1365-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 05/03/2013] [Accepted: 05/07/2013] [Indexed: 12/25/2022]
Abstract
Oligodendrocytes are the myelin-forming cells in the central nervous system (CNS). These cells originate from oligodendrocyte precursor cells (OPCs) during development, and they migrate extensively from oligodendrogliogenic niches along the neural tube to colonise the entire CNS. Like many other such events, this migratory process is precisely regulated by a battery of positional and signalling cues that act via their corresponding receptors and that are expressed dynamically by OPCs. Here, we will review the cellular and molecular basis of this important event during embryonic and postnatal development, and we will discuss the relevance of the substantial number of OPCs existing in the adult CNS. Similarly, we will consider the behaviour of OPCs in normal and pathological conditions, especially in animal models of demyelination and of the demyelinating disease, multiple sclerosis. The spontaneous remyelination observed after damage in demyelinating pathologies has a limited effect. Understanding the cellular and molecular mechanisms underlying the biology of OPCs, particularly adult OPCs, should help in the design of neuroregenerative strategies to combat multiple sclerosis and other demyelinating diseases.
Collapse
Affiliation(s)
- Fernando de Castro
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos-SESCAM, Finca "La Peraleda" s/n, 45071, Toledo, Spain,
| | | | | |
Collapse
|
35
|
Collagen VI in cancer and its biological mechanisms. Trends Mol Med 2013; 19:410-7. [PMID: 23639582 DOI: 10.1016/j.molmed.2013.04.001] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/26/2013] [Accepted: 04/02/2013] [Indexed: 12/21/2022]
Abstract
Collagen VI is a widely distributed extracellular matrix protein highly expressed in a variety of cancers that favors tumor growth and progression. A growing number of studies indicate that collagen VI directly affects malignant cells by acting on the Akt-GSK-3β-β-catenin-TCF/LEF axis, enhancing the production of protumorigenic factors and inducing epithelial-mesenchymal transition. Moreover, it affects the tumor microenvironment by increasing the recruitment of macrophages and endothelial cells, thus promoting tumor inflammation and angiogenesis. Furthermore, collagen VI promotes chemotherapy resistance and can be regarded as a potential biomarker for cancer diagnosis. Collectively, these findings strongly support a role for collagen VI as an important regulator in tumors and provide new targets for cancer therapies.
Collapse
|
36
|
Cattaruzza S, Nicolosi PA, Braghetta P, Pazzaglia L, Benassi MS, Picci P, Lacrima K, Zanocco D, Rizzo E, Stallcup WB, Colombatti A, Perris R. NG2/CSPG4-collagen type VI interplays putatively involved in the microenvironmental control of tumour engraftment and local expansion. J Mol Cell Biol 2013; 5:176-93. [PMID: 23559515 DOI: 10.1093/jmcb/mjt010] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In soft-tissue sarcoma patients, enhanced expression of NG2/CSPG4 proteoglycan in pre-surgical primary tumours predicts post-surgical metastasis formation and thereby stratifies patients into disease-free survivors and patients destined to succumb to the disease. Both primary and secondary sarcoma lesions also up-regulate collagen type VI, a putative extracellular matrix ligand of NG2, and this matrix alteration potentiates the prognostic impact of NG2. Enhanced constitutive levels of the proteoglycan in isolated sarcoma cells closely correlate with a superior engraftment capability and local growth in xenogenic settings. This apparent NG2-associated malignancy was also corroborated by the diverse tumorigenic behaviour in vitro and in vivo of immunoselected NG2-expressing and NG2-deficient cell subsets, by RNAi-mediated knock down of endogenous NG2, and by ectopic transduction of full-length or deletion constructs of NG2. Cells with modified expression of NG2 diverged in their interaction with purified Col VI, matrices supplemented with Col VI, and cell-free matrices isolated from wild-type and Col VI null fibroblasts. The combined use of dominant-negative NG2 mutant cells and purified domain fragments of the collagen allowed us to pinpoint the reciprocal binding sites within the two molecules and to assert the importance of this molecular interaction in the control of sarcoma cell adhesion and motility. The NG2-mediated binding to Col VI triggered activation of convergent cell survival- and cell adhesion/migration-promoting signal transduction pathways, implicating PI-3K as a common denominator. Thus, the findings point to an NG2-Col VI interplay as putatively involved in the regulation of the cancer cell-host microenvironment interactions sustaining sarcoma progression.
Collapse
Affiliation(s)
- Sabrina Cattaruzza
- SOS for Experimental Oncology 2, The National Tumour Institute Aviano-CRO-IRCCS, Aviano (PN), Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Lord MS, Whitelock JM. Recombinant production of proteoglycans and their bioactive domains. FEBS J 2013; 280:2490-510. [DOI: 10.1111/febs.12197] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/04/2013] [Accepted: 02/15/2013] [Indexed: 12/11/2022]
Affiliation(s)
- Megan S. Lord
- Graduate School of Biomedical Engineering; The University of New South Wales; Sydney; NSW; Australia
| | - John M. Whitelock
- Graduate School of Biomedical Engineering; The University of New South Wales; Sydney; NSW; Australia
| |
Collapse
|
38
|
Blood-brain barrier alterations in the cerebral cortex in experimental autoimmune encephalomyelitis. J Neuropathol Exp Neurol 2012; 71:840-54. [PMID: 23001217 DOI: 10.1097/nen.0b013e31826ac110] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The pathophysiology of cerebral cortical lesions in multiple sclerosis (MS) is not understood. We investigated cerebral cortex microvessels during immune-mediated demyelination in the MS model chronic murine experimental autoimmune encephalomyelitis (EAE) by immunolocalization of the endothelial cell tight junction (TJ) integral proteins claudin-5 and occludin, a structural protein of caveolae, caveolin-1, and the blood-brain barrier-specific endothelial transporter, Glut 1. In EAE-affected mice, there were areas of extensive subpial demyelination and well-demarcated lesions that extended to deeper cortical layers. Activation of microglia and absence of perivascular inflammatory infiltrates were common in these areas. Microvascular endothelial cells showed increased expression of caveolin-1 and a coincident loss of both claudin-5 and occludin normal junctional staining patterns. At a very early disease stage, claudin-5 molecules tended to cluster and form vacuoles that were also Glut 1 positive; the initially preserved occludin pattern became diffusely cytoplasmic at more advanced stages. Possible internalization of claudin-5 on TJ dismantling was suggested by its coexpression with the autophagosomal marker MAP1LC3A. Loss of TJ integrity was confirmed by fluorescein isothiocyanate-dextran experiments that showed leakage of the tracer into the perivascular neuropil. These observations indicate that, in the cerebral cortex of EAE-affected mice, there is a microvascular disease that differentially targets claudin-5 and occludin during ongoing demyelination despite only minimal inflammation.
Collapse
|
39
|
Muscle fiber atrophy and regeneration coexist in collagen VI-deficient human muscle: role of calpain-3 and nuclear factor-κB signaling. J Neuropathol Exp Neurol 2012; 71:894-906. [PMID: 22975586 DOI: 10.1097/nen.0b013e31826c6f7b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Ullrich congenital muscular dystrophy (UCMD) is a common form of muscular dystrophy associated with defects in collagen VI. It is characterized by loss of individual muscle fibers and muscle mass and proliferation of connective and adipose tissues. We sought to investigate the mechanisms by which collagen VI regulates muscle cell survival, size, and regeneration and, in particular, the potential role of the ubiquitin-proteasome and calpain-proteolytic systems. We studied muscle biopsies of UCMD (n = 6), other myopathy (n = 12), and control patients (n = 10) and found reduced expression of atrogin-1, MURF1, and calpain-3 mRNAs in UCMD cases. Downregulation of calpain-3 was associated with changes in the nuclear immunolocalization of nuclear factor-κB. We also observed increased expression versus controls of regeneration markers at the protein and RNA levels. Satellite cell numbers did not differ in collagen VI-deficient muscle versus normal nonregenerating muscle, indicating that collagen VI does not play a key role in the maintenance of the satellite cell pool. Our results indicate that alterations in calpain-3 and nuclear factor-κB signaling pathways may contribute to muscle mass loss in UCMD muscle, whereas atrogin-1 and MURF1 are not likely to play a major role.
Collapse
|
40
|
Rivera Z, Ferrone S, Wang X, Jube S, Yang H, Pass HI, Kanodia S, Gaudino G, Carbone M. CSPG4 as a target of antibody-based immunotherapy for malignant mesothelioma. Clin Cancer Res 2012; 18:5352-63. [PMID: 22893632 DOI: 10.1158/1078-0432.ccr-12-0628] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Malignant mesothelioma (MM) is an aggressive cancer, resistant to current therapies. Membrane chondroitin sulphate proteoglycan 4 (CSPG4), which has been successfully targeted in melanoma and breast cancer, was found highly expressed in MM, but not in normal mesothelium. Therefore, we explored CSPG4 as a suitable target for monoclonal antibody (mAb)-based immunotherapy for MM. EXPERIMENTAL DESIGN We assayed adhesion, motility, invasiveness, wound-healing, apoptosis, and anchorage-independent growth of MM cells on cell cultures. CSPG4 expression and signaling was studied by immunoblotting. The growth of MM severe combined immunodeficient (SCID) mice xenografts induced by PPM-Mill cells, engineered to express the luciferase reporter gene, was monitored by imaging, upon treatment with CSPG4 mAb TP41.2. Animal toxicity and survival were assayed in both tumor inhibition and therapeutic experiments. RESULTS CSPG4 was expressed on 6 out of 8 MM cell lines and in 25 out of 41 MM biopsies, with minimal expression in surrounding healthy cells. MM cell adhesion was mediated by CSPG4-dependent engagement of ECM. Cell adhesion was inhibited by mAb TP41.2 resulting in decreased phosphorylation of focal adhesion kinase (FAK) and AKT, reduced expression of cyclin D1 and apoptosis. Moreover, mAb TP41.2 significantly reduced MM cell motility, migration, and invasiveness, and inhibited MM growth in soft agar. In vivo, treatment with mAb TP41.2 prevented or inhibited the growth of MM xenografts in SCID mice, with a significant increase in animal survival. CONCLUSION These results establish the safety of CSPG4 mAb-based immunotherapy and suggest that CSPG4 mAb-based immunotherapy may represent a novel approach for the treatment of MM.
Collapse
|
41
|
Paňková D, Jobe N, Kratochvílová M, Buccione R, Brábek J, Rösel D. NG2-mediated Rho activation promotes amoeboid invasiveness of cancer cells. Eur J Cell Biol 2012; 91:969-77. [PMID: 22699001 DOI: 10.1016/j.ejcb.2012.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 05/02/2012] [Accepted: 05/03/2012] [Indexed: 10/28/2022] Open
Abstract
The aim of this study was to analyze the potential role of NG2 chondroitin sulfate proteoglycan in amoeboid morphology and invasiveness of cancer cells. In the highly metastatic amoeboid cell lines A3 and A375M2, siRNA-mediated down-regulation of NG2 induced an amoeboid-mesenchymal transition associated with decreased invasiveness in 3D collagen and inactivation of the GTPase Rho. Conversely, the expression of NG2 in mesenchymal sarcoma K2 cells as well as in A375M2 cells resulted in an enhanced amoeboid phenotype associated with increased invasiveness and elevated Rho-GTP levels. Remarkably, the amoeboid-mesenchymal transition in A375M2 cells triggered by NG2 down-regulation was associated with increased extracellular matrix-degrading ability, although this was not sufficient to compensate for the decreased invasive capability caused by down-regulated Rho/ROCK signaling. Conversely, in K2 cells with overexpression of NG2, the ability to degrade the extracellular matrix was greatly reduced. Taken together, we suggest that NG2-mediated activation of Rho leading to effective amoeboid invasiveness is a possible mechanism through which NG2 could contribute to tumor cell invasion and metastasis.
Collapse
Affiliation(s)
- Daniela Paňková
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
42
|
Garusi E, Rossi S, Perris R. Antithetic roles of proteoglycans in cancer. Cell Mol Life Sci 2012; 69:553-79. [PMID: 21964924 PMCID: PMC11114698 DOI: 10.1007/s00018-011-0816-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 09/01/2011] [Accepted: 09/05/2011] [Indexed: 12/15/2022]
Abstract
Proteoglycans (PGs), a family of complex post-translationally sculptured macromolecules, are fundamental regulators of most normal and aberrant cellular functions. The unparalleled structural-functional diversity of PGs endows them with the ability to serve as critical mediators of the tumor cells' interaction with the host microenvironment, while directly contributing to the organization and dynamic remodeling of this milieu. Despite their indisputable importance during embryonic development and in the adult organism, and their frequent dysregulation in tumor lesions, their precise involvement in tumorigenesis awaits a more decisive demonstration. Particularly challenging is to ascertain to what extent selected PGs may catalyze tumor progression and to what extent they may inhibit it, implying antithetic functions of individual PGs. Integrated efforts are needed to consolidate the routine use of PGs in the clinical monitoring of cancer patients and to broaden the exploitation of these macromolecules as therapeutic targets. Several PGs have the required attributes to be contemplated as effective antigens for immunotherapeutic approaches, while the tangible results obtained in recent clinical trials targeting the NG2/CSPG4 transmembrane PG urge further development of PG-based cancer treatment modalities.
Collapse
Affiliation(s)
- Elena Garusi
- COMT, Centre for Molecular and Translational Oncology, University of Parma, Via G.P. Usberti 11/A, 43100 Parma, Italy
| | - Silvia Rossi
- COMT, Centre for Molecular and Translational Oncology, University of Parma, Via G.P. Usberti 11/A, 43100 Parma, Italy
- Department of Genetic, Biology of Microorganism, Anthropology and Evolution, University of Parma, Via G.P. Usberti 11/A, 43100 Parma, Italy
| | - Roberto Perris
- COMT, Centre for Molecular and Translational Oncology, University of Parma, Via G.P. Usberti 11/A, 43100 Parma, Italy
- Department of Genetic, Biology of Microorganism, Anthropology and Evolution, University of Parma, Via G.P. Usberti 11/A, 43100 Parma, Italy
- S.O.C. of Experimental Oncology 2, The National Cancer Institute Aviano, CRO-IRCCS, Via Franco Gallini, 2, 33081 Aviano, PN Italy
| |
Collapse
|
43
|
Abstract
The extracellular matrix (ECM) provides a solid scaffold and signals to cells through ECM receptors. The cell-matrix interactions are crucial for normal biological processes and when disrupted they may lead to pathological processes. In particular, the biological importance of ECM-cell membrane-cytoskeleton interactions in skeletal muscle is accentuated by the number of inherited muscle diseases caused by mutations in proteins conferring these interactions. In this review we introduce laminins, collagens, dystroglycan, integrins, dystrophin and sarcoglycans. Mutations in corresponding genes cause various forms of muscular dystrophy. The muscle disorders are presented as well as advances toward the development of treatment.
Collapse
Affiliation(s)
- Virginie Carmignac
- Muscle Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | |
Collapse
|
44
|
Wolfstetter G, Holz A. The role of LamininB2 (LanB2) during mesoderm differentiation in Drosophila. Cell Mol Life Sci 2012; 69:267-82. [PMID: 21387145 PMCID: PMC11114671 DOI: 10.1007/s00018-011-0652-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 02/02/2011] [Accepted: 02/15/2011] [Indexed: 12/31/2022]
Abstract
In Drosophila, four genes encode for laminin subunits and the formation of two laminin heterotrimers has been postulated. We report the identification of mutations in the Drosophila LamininB2 (LanB2) gene that encodes for the only laminin γ subunit and is found in both heterotrimers. We describe their effects on embryogenesis, in particular the differentiation of visceral tissues with respect to the ECM. Analysis of mesoderm endoderm interaction indicates disrupted basement membranes and defective endoderm migration, which finally interferes with visceral myotube stretching. Extracellular deposition of laminin is blocked due to the loss of the LanB2 subunit, resulting in an abnormal distribution of ECM components. Our data, concerning the different function of both trimers during organogenesis, suggest that these trimers might act in a cumulative way and probably at multiple steps during ECM assembly. We also observed genetic interactions with kon-tiki and thrombospondin, indicating a role for laminin during muscle attachment.
Collapse
Affiliation(s)
- Georg Wolfstetter
- Institut für Allgemeine und Spezielle Zoologie, Justus-Liebig-Universität Giessen, Stephanstrasse 24, 35390 Giessen, Germany
| | - Anne Holz
- Institut für Allgemeine und Spezielle Zoologie, Justus-Liebig-Universität Giessen, Stephanstrasse 24, 35390 Giessen, Germany
| |
Collapse
|
45
|
Huang FJ, You WK, Bonaldo P, Seyfried TN, Pasquale EB, Stallcup WB. Pericyte deficiencies lead to aberrant tumor vascularizaton in the brain of the NG2 null mouse. Dev Biol 2010; 344:1035-46. [PMID: 20599895 DOI: 10.1016/j.ydbio.2010.06.023] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 06/16/2010] [Accepted: 06/21/2010] [Indexed: 01/12/2023]
Abstract
Tightly regulated crosstalk between endothelial cells and pericytes is required for formation and maintenance of functional blood vessels. When the NG2 proteoglycan is absent from pericyte surfaces, vascularization of syngeneic tumors growing in the C57Bl/6 mouse brain is aberrant in several respects, resulting in retardation of tumor progression. In the NG2 null mouse brain, pericyte investment of the tumor vascular endothelium is reduced, causing deficiencies in both pericyte and endothelial cell maturation, as well as reduced basal lamina assembly. While part of this deficit may be due to the previously-identified role of NG2 in beta1 integrin-dependent periyte/endothelial cell crosstalk, the ablation of NG2 also appears responsible for loss of collagen VI anchorage, in turn leading to reduced collagen IV deposition. Poor functionality of tumor vessels in NG2 null brain is reflected by reduced vessel patency and increased vessel leakiness, resulting in large increases in tumor hypoxia. These findings demonstrate the importance of NG2-dependent pericyte/endothelial cell interaction in the development and maturation of tumor blood vessels, identifying NG2 as a potential target for anti-angiogenic cancer therapy.
Collapse
Affiliation(s)
- Feng-Ju Huang
- Sanford-Burnham Medical Research Institute, Cancer Center, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
46
|
Induction of filopodia-like protrusions by transmembrane agrin: role of agrin glycosaminoglycan chains and Rho-family GTPases. Exp Cell Res 2010; 316:2260-77. [PMID: 20471381 DOI: 10.1016/j.yexcr.2010.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 05/05/2010] [Accepted: 05/06/2010] [Indexed: 01/16/2023]
Abstract
Filopodia sense the extracellular environment and direct movement in many cell types, including neurons. Recent reports suggest that the transmembrane form of the widely expressed proteoglycan agrin (TM-agrin) regulates formation and stability of neuronal filopodia. In order to elucidate the mechanism by which TM-agrin regulates filopodia, we investigated the role of agrin's glycosaminoglycan (GAG) chains in the induction of filopodia formation by TM-agrin over-expression in hippocampal neurons, and in the induction of filopodia-like processes in COS7 cells. Deletion of the GAG chains of TM-agrin sharply reduced formation of filopodia-like branched retraction fibers (BRFs) in COS7 cells, with deletion of the heparan sulfate GAG chains being most effective, and eliminated filopodia induction in hippocampal neurons. GAG chain deletion also reduced the activation of Cdc42 and Rac1 resulting from TM-agrin over-expression. Moreover, dominant-negative Cdc42 and Rac1 inhibited BRF formation. Lastly, over-expression of TM-agrin increased the adhesiveness of COS7 cells and this increase was reduced by deletion of the GAG chains. Our results suggest that TM-agrin regulates actin-based protrusions in large part through interaction of its GAG chains with extracellular or transmembrane proteins, leading to the activation of Cdc42 and Rac1.
Collapse
|
47
|
Trotter J, Karram K, Nishiyama A. NG2 cells: Properties, progeny and origin. BRAIN RESEARCH REVIEWS 2010; 63:72-82. [PMID: 20043946 PMCID: PMC2862831 DOI: 10.1016/j.brainresrev.2009.12.006] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 12/18/2009] [Accepted: 12/21/2009] [Indexed: 12/31/2022]
Abstract
The NG2 proteoglycan is a type 1-transmembrane protein expressed by a range of cell types within and outside the mammalian nervous system. NG2-expressing (NG2) cells are found in grey and white matter tracts of the developing and adult CNS and have previously been assumed to represent oligodendrocyte precursor cells: new work using transgenic mice has shown that NG2 cells generate oligodendrocytes, protoplasmic astrocytes and in some instances neurons in vivo. NG2 cells express GABAA receptors and the AMPA subtype of glutamate receptors. They make intimate contact to neurons prior to myelinating axons and also form electron-dense synaptic specialisations with axons in the cerebellum, cortex and hippocampus and with non-myelinated axons in the corpus callosum. These synaptic NG2 cells respond to neuronal release of glutamate and GABA. This neuron-glia interaction may thus regulate the differentiation and proliferation of NG2 cells. The C-terminal PDZ-binding motif of the NG2 protein binds several PDZ proteins including Mupp1, Syntenin and the Glutamate Receptor Interacting Protein (GRIP). Since GRIP can bind subunits of the AMPA receptors expressed by NG2 cells, the interaction between GRIP and NG2 may orientate the glial AMPA receptors towards sites of neuronal glutamate release. The origin, heterogeneity and function of NG2 cells as modulators of the neuronal network are important incompletely resolved questions.
Collapse
Affiliation(s)
- Jacqueline Trotter
- Molecular Cell Biology, Dept. of Biology, Johannes Gutenberg University of Mainz, Bentzelweg 3, 55128 Mainz
| | - Khalad Karram
- Molecular Cell Biology, Dept. of Biology, Johannes Gutenberg University of Mainz, Bentzelweg 3, 55128 Mainz
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, 75 North Eagleville Road, Storrs, Connecticut 06269-3156, USA
- University of Connecticut Stem Cell Institute, University of Connecticut, 75 North Eagleville Road, Storrs, Connecticut 06269-3156, USA
| |
Collapse
|
48
|
Wen Y, Makagiansar IT, Fukushi JI, Liu FT, Fukuda MN, Stallcup WB. Molecular basis of interaction between NG2 proteoglycan and galectin-3. J Cell Biochem 2009; 98:115-27. [PMID: 16365873 DOI: 10.1002/jcb.20768] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Previous work has demonstrated the ability of the NG2 proteoglycan, a component of microvascular pericytes, to stimulate endothelial cell motility and morphogenesis. This function of NG2 depends on formation of a complex with galectin-3 and alpha3beta1 integrin to stimulate integrin-mediated transmembrane signaling. In addition, the co-expression of galectin-3 and NG2 in A375 melanoma cells suggests that the malignant properties of these cells may be affected by interaction between the two molecules. Here, we extend the theme of co-expression and interaction of NG2 and galectin-3 to human glioma cells. We also establish a molecular basis for the NG2/galectin-3 interaction. The C-terminal carbohydrate recognition domain of galectin-3 is responsible for binding to the NG2 core protein. Within the NG2 extracellular domain, the membrane-proximal D3 segment of the proteoglycan contains the primary binding site for interaction with galectin-3. The interaction between galectin-3 and NG2 is a carbohydrate-dependent one mediated by N-linked rather than O-linked oligosaccharides within the D3 domain of the NG2 core protein. These studies establish a foundation for attempts to reduce the aggressive properties of tumor cells by disrupting the NG2/galectin-3 interaction.
Collapse
Affiliation(s)
- Yunfei Wen
- Burnham Institute, Developmental Neurobiology Program, La Jolla, California 92037, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Murasawa Y, Hayashi T, Wang PC. The role of type V collagen fibril as an ECM that induces the motility of glomerular endothelial cells. Exp Cell Res 2008; 314:3638-53. [DOI: 10.1016/j.yexcr.2008.08.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2008] [Revised: 08/18/2008] [Accepted: 08/30/2008] [Indexed: 11/29/2022]
|
50
|
Schessl J, Goemans NM, Magold AI, Zou Y, Hu Y, Kirschner J, Sciot R, Bönnemann CG. Predominant fiber atrophy and fiber type disproportion in early ullrich disease. Muscle Nerve 2008; 38:1184-91. [PMID: 18720506 DOI: 10.1002/mus.21088] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ullrich disease (congenital muscular dystrophy type Ullrich, UCMD) is a severe congenital disorder of muscle caused by recessive and dominant mutations in the three genes that encode the alpha-chains of collagen type VI. Little is known about the early pathogenesis of this myopathy. The aim of this study was to investigate early histological changes in muscle of patients with molecularly confirmed UCMD. Muscle biopsies were analyzed from 8 UCMD patients ranging in age from 6 to 30 months. Type I fiber atrophy and predominance were seen early, together with a widening of the fiber diameter spectrum, whereas no dystrophic features were apparent. A subpopulation of more severely atrophic type I fibers was apparent subsequently, including one biopsy that fulfilled the formal diagnostic criteria of histopathological fiber type disproportion (FTD). Thus, early in the disease, UCMD presents as a non-dystrophic myopathy with predominant fiber atrophy. Collagen VI mutations also qualify as a cause of fiber type disproportion.
Collapse
Affiliation(s)
- Joachim Schessl
- Division of Neurology, The Children's Hospital of Philadelphia, Pennsylvania Muscle Institute, University of Pennsylvania School of Medicine, Abramson Research Center, 516F, 34th Street and Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|