1
|
Liu J, Wang Z, Chen B, Wang G, Ke H, Zhang J, Jiao M, Wang Y, Xie M, Gu Q, Sun Z, Wu L, Wang X, Ma Z, Zhang Y. Genome-Wide Identification of the Alfin-like Gene Family in Cotton ( Gossypium hirsutum) and the GhAL19 Gene Negatively Regulated Drought and Salt Tolerance. PLANTS (BASEL, SWITZERLAND) 2024; 13:1831. [PMID: 38999670 PMCID: PMC11243875 DOI: 10.3390/plants13131831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/29/2024] [Accepted: 06/30/2024] [Indexed: 07/14/2024]
Abstract
Alfin-like (AL) is a small plant-specific gene family characterized by a PHD-finger-like structural domain at the C-terminus and a DUF3594 structural domain at the N-terminus, and these genes play prominent roles in plant development and abiotic stress response. In this study, we conducted genome-wide identification and analyzed the AL protein family in Gossypium hirsutum cv. NDM8 to assess their response to various abiotic stresses for the first time. A total of 26 AL genes were identified in NDM8 and classified into four groups based on a phylogenetic tree. Moreover, cis-acting element analysis revealed that multiple phytohormone response and abiotic stress response elements were highly prevalent in AL gene promoters. Further, we discovered that the GhAL19 gene could negatively regulate drought and salt stresses via physiological and biochemical changes, gene expression, and the VIGS assay. The study found there was a significant increase in POD and SOD activity, as well as a significant change in MDA in VIGS-NaCl and VIGS-PEG plants. Transcriptome analysis demonstrated that the expression levels of the ABA biosynthesis gene (GhNCED1), signaling genes (GhABI1, GhABI2, and GhABI5), responsive genes (GhCOR47, GhRD22, and GhERFs), and the stress-related marker gene GhLEA14 were regulated in VIGS lines under drought and NaCl treatment. In summary, GhAL19 as an AL TF may negatively regulate tolerance to drought and salt by regulating the antioxidant capacity and ABA-mediated pathway.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Zhicheng Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Bin Chen
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Guoning Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Huifeng Ke
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Jin Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Mengjia Jiao
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Yan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Meixia Xie
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Qishen Gu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Zhengwen Sun
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Liqiang Wu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Xingfen Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Zhiying Ma
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Yan Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
2
|
Xu L, Liu Y, Zhang J, Wu W, Hao Z, He S, Li Y, Shi J, Chen J. Genomic survey and expression analysis of LcARFs reveal multiple functions to somatic embryogenesis in Liriodendron. BMC PLANT BIOLOGY 2024; 24:94. [PMID: 38326748 PMCID: PMC10848544 DOI: 10.1186/s12870-024-04765-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Auxin response factors (ARFs) are critical transcription factors that mediate the auxin signaling pathway and are essential for regulating plant growth. However, there is a lack of understanding regarding the ARF gene family in Liriodendron chinense, a vital species in landscaping and economics. Thus, further research is needed to explore the roles of ARFs in L. chinense and their potential applications in plant development. RESULT In this study, we have identified 20 LcARF genes that belong to three subfamilies in the genome of L. chinense. The analysis of their conserved domains, gene structure, and phylogeny suggests that LcARFs may be evolutionarily conserved and functionally similar to other plant ARFs. The expression of LcARFs varies in different tissues. Additionally, they are also involved in different developmental stages of somatic embryogenesis. Overexpression of LcARF1, LcARF2a, and LcARF5 led to increased activity within callus. Additionally, our promoter-GFP fusion study indicated that LcARF1 may play a role in embryogenesis. Overall, this study provides insights into the functions of LcARFs in plant development and embryogenesis, which could facilitate the improvement of somatic embryogenesis in L. chinense. CONCLUSION The research findings presented in this study shed light on the regulatory roles of LcARFs in somatic embryogenesis in L. chinense and may aid in accelerating the breeding process of this tree species. By identifying the specific LcARFs involved in different stages of somatic embryogenesis, this study provides a basis for developing targeted breeding strategies aimed at optimizing somatic embryogenesis in L. chinense, which holds great potential for improving the growth and productivity of this economically important species.
Collapse
Affiliation(s)
- Lin Xu
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China
| | - Ye Liu
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China
| | - Jiaji Zhang
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China
| | - Weihuang Wu
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China
| | - Zhaodong Hao
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China
| | - Shichan He
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China
| | - Yiran Li
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China
| | - Jisen Shi
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China.
| | - Jinhui Chen
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China.
| |
Collapse
|
3
|
Zhang S, Wang W, Chang R, Yu J, Yan J, Yu W, Li C, Xu Z. Structure and Expression Analysis of PtrSUS, PtrINV, PtrHXK, PtrPGM, and PtrUGP Gene Families in Populus trichocarpa Torr. and Gray. Int J Mol Sci 2023; 24:17277. [PMID: 38139109 PMCID: PMC10743687 DOI: 10.3390/ijms242417277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Exogenous nitrogen and carbon can affect plant cell walls, which are composed of structural carbon. Sucrose synthase (SUS), invertase (INV), hexokinase (HXK), phosphoglucomutase (PGM), and UDP-glucose pyrophosphorylase (UGP) are the key enzymes of sucrose metabolism involved in cell wall synthesis. To understand whether these genes are regulated by carbon and nitrogen to participate in structural carbon biosynthesis, we performed genome-wide identification, analyzed their expression patterns under different carbon and nitrogen treatments, and conducted preliminary functional verification. Different concentrations of nitrogen and carbon were applied to poplar (Populus trichocarpa Torr. and Gray), which caused changes in cellulose, lignin, and hemicellulose contents. In poplar, 6 SUSs, 20 INVs, 6 HXKs, 4 PGMs, and 2 UGPs were identified. Moreover, the physicochemical properties, collinearity, and tissue specificity were analyzed. The correlation analysis showed that the expression levels of PtrSUS3/5, PtrNINV1/2/3/5/12, PtrCWINV3, PtrVINV2, PtrHXK5/6, PtrPGM1/2, and PtrUGP1 were positively correlated with the cellulose content. Meanwhile, the knockout of PtrNINV12 significantly reduced the cellulose content. This study could lay the foundation for revealing the functions of SUSs, INVs, HXKs, PGMs, and UGPs, which affected structural carbon synthesis regulated by nitrogen and carbon, proving that PtrNINV12 is involved in cell wall synthesis.
Collapse
Affiliation(s)
- Shuang Zhang
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (S.Z.); (W.W.); (R.C.)
| | - Wenjie Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (S.Z.); (W.W.); (R.C.)
| | - Ruhui Chang
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (S.Z.); (W.W.); (R.C.)
| | - Jiajie Yu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China;
| | - Junxin Yan
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China;
| | - Wenxi Yu
- Heilongjiang Forestry Academy of Science, Harbin 150081, China;
| | - Chunming Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China;
| | - Zhiru Xu
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (S.Z.); (W.W.); (R.C.)
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China;
| |
Collapse
|
4
|
Zhang ZA, Liu MY, Ren SN, Liu X, Gao YH, Zhu CY, Niu HQ, Chen BW, Liu C, Yin W, Wang HL, Xia X. Identification of WUSCHEL-related homeobox gene and truncated small peptides in transformation efficiency improvement in Eucalyptus. BMC PLANT BIOLOGY 2023; 23:604. [PMID: 38030990 PMCID: PMC10688041 DOI: 10.1186/s12870-023-04617-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND The WUSCHEL-related Homeobox (WOX) genes, which encode plant-specific homeobox (HB) transcription factors, play crucial roles in regulating plant growth and development. However, the functions of WOX genes are little known in Eucalyptus, one of the fastest-growing tree resources with considerable widespread cultivation worldwide. RESULTS A total of nine WOX genes named EgWOX1-EgWOX9 were retrieved and designated from Eucalyptus grandis. From the three divided clades marked as Modern/WUS, Intermediate and Ancient, the largest group Modern/WUS (6 EgWOXs) contains a specific domain with 8 amino acids: TLQLFPLR. The collinearity, cis-regulatory elements, protein-protein interaction network and gene expression analysis reveal that the WUS proteins in E. grandis involve in regulating meristems development and regeneration. Furthermore, by externally adding of truncated peptides isolated from WUS specific domain, the transformation efficiency in E. urophylla × E. grandis DH32-29 was significant enhanced. The transcriptomics data further reveals that the use of small peptides activates metabolism pathways such as starch and sucrose metabolism, phenylpropanoid biosynthesis and flavonoid biosynthesis. CONCLUSIONS Peptides isolated from WUS protein can be utilized to enhance the transformation efficiency in Eucalyptus, thereby contributing to the high-efficiency breeding of Eucalyptus.
Collapse
Affiliation(s)
- Zhuo-Ao Zhang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Mei-Ying Liu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Shu-Ning Ren
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xiao Liu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yue-Hao Gao
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Chen-Yu Zhu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Hao-Qiang Niu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Bo-Wen Chen
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, Guangxi, 530002, China
| | - Chao Liu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Weilun Yin
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Hou-Ling Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| | - Xinli Xia
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
5
|
Li D, Gu B, Huang C, Shen J, Wang X, Guo J, Yu R, Mou S, Guan Q. Functional Study of Amorpha fruticosa WRKY20 Gene in Response to Drought Stress. Int J Mol Sci 2023; 24:12231. [PMID: 37569607 PMCID: PMC10418629 DOI: 10.3390/ijms241512231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
The WRKY gene family in plants regulates the plant's response to drought through regulatory networks and hormone signaling. AfWRKY20 (MT859405) was cloned from Amorpha fruticosa (A. fruticosa) seedlings using RT-PCR. The binding properties of the AfWRKY20 protein and the W-box (a DNA cis-acting element) were verified both in vivo and in vitro using EMSA and Dual-Luciferase activity assays. RT-qPCR detected that the total expression level of AfWRKY20 in leaves and roots was 22 times higher in the 30% PEG6000 simulated drought treatment compared to the untreated group. Under the simulated drought stress treatments of sorbitol and abscisic acid (ABA), the transgenic tobacco with the AfWRKY20 gene showed enhanced drought resistance at the germination stage, with significantly increased germination rate, green leaf rate, fresh weight, and root length compared to the wild-type (WT) tobacco. In addition, the superoxide dismutase (SOD) activity, chlorophyll content, and Fv/Fm ratio of AfWRKY20 transgenic tobacco were significantly higher than those of the WT tobacco under natural drought stress, while the malondialdehyde (MDA) content and 3,3'-diaminobenzidine (DAB) and nitroblue tetrazolium (NBT) staining levels were lower. The expression levels of oxidation kinase genes (NbSOD, NbPOD, and NbCAT) in transgenic tobacco under drought stress were significantly higher than those in WT tobacco. This enhancement in gene expression improved the ability of transgenic tobacco to detoxify reactive oxygen species (ROS). The survival rate of transgenic tobacco after natural drought rehydration was four times higher than that of WT tobacco. In summary, this study revealed the regulatory mechanism of AfWRKY20 in response to drought stress-induced ABA signaling, particularly in relation to ROS. This finding provides a theoretical basis for understanding the pathways of WRKY20 involved in drought stress, and offers genetic resources for molecular plant breeding aimed at enhancing drought resistance.
Collapse
Affiliation(s)
- Danni Li
- Key Laboratory of the Ministry of Education for Ecological Restoration of Saline Vegetation, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (D.L.)
| | - Baoxiang Gu
- Key Laboratory of the Ministry of Education for Ecological Restoration of Saline Vegetation, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (D.L.)
| | - Chunxi Huang
- Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin 150040, China
| | - Jiayi Shen
- Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin 150040, China
| | - Xin Wang
- Key Laboratory of the Ministry of Education for Ecological Restoration of Saline Vegetation, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (D.L.)
| | - Jianan Guo
- Key Laboratory of the Ministry of Education for Ecological Restoration of Saline Vegetation, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (D.L.)
| | - Ruiqiang Yu
- Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin 150040, China
| | - Sirui Mou
- Key Laboratory of the Ministry of Education for Ecological Restoration of Saline Vegetation, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (D.L.)
| | - Qingjie Guan
- Key Laboratory of the Ministry of Education for Ecological Restoration of Saline Vegetation, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (D.L.)
| |
Collapse
|
6
|
Li Y, Qin J, Chen M, Sun N, Tan F, Zhang H, Zou Y, Uversky VN, Liu Y. The Moonlighting Function of Soybean Disordered Methyl-CpG-Binding Domain 10c Protein. Int J Mol Sci 2023; 24:ijms24108677. [PMID: 37240035 DOI: 10.3390/ijms24108677] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Intrinsically disordered proteins (IDPs) are multifunctional due to their ability to adopt different structures depending on the local conditions. The intrinsically disordered regions of methyl-CpG-binding domain (MBD) proteins play important roles in regulating growth and development by interpreting DNA methylation patterns. However, whether MBDs have a stress-protective function is far from clear. In this paper, soybean GmMBD10c protein, which contains an MBD and is conserved in Leguminosae, was predicted to be located in the nucleus. It was found to be partially disordered by bioinformatic prediction, circular dichroism and a nuclear magnetic resonance spectral analysis. The enzyme activity assay and SDS-PAGE results showed that GmMBD10c can protect lactate dehydrogenase and a broad range of other proteins from misfolding and aggregation induced by the freeze-thaw process and heat stress, respectively. Furthermore, overexpression of GmMBD10c enhanced the salt tolerance of Escherichia coli. These data validate that GmMBD10c is a moonlighting protein with multiple functions.
Collapse
Affiliation(s)
- Yanling Li
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Jiawei Qin
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Menglu Chen
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Nan Sun
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Fangmei Tan
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Hua Zhang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Yongdong Zou
- The Instrumental Analysis Center of Shenzhen University, Shenzhen University, Shenzhen 518060, China
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Yun Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
7
|
Karan B, Mahapatra S, Sahu SS, Pandey DM, Chakravarty S. Computational models for prediction of protein-protein interaction in rice and Magnaporthe grisea. FRONTIERS IN PLANT SCIENCE 2023; 13:1046209. [PMID: 36816487 PMCID: PMC9929577 DOI: 10.3389/fpls.2022.1046209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Plant-microbe interactions play a vital role in the development of strategies to manage pathogen-induced destructive diseases that cause enormous crop losses every year. Rice blast is one of the severe diseases to rice Oryza sativa (O. sativa) due to Magnaporthe grisea (M. grisea) fungus. Protein-protein interaction (PPI) between rice and fungus plays a key role in causing rice blast disease. METHODS In this paper, four genomic information-based models such as (i) the interolog, (ii) the domain, (iii) the gene ontology, and (iv) the phylogenetic-based model are developed for predicting the interaction between O. sativa and M. grisea in a whole-genome scale. RESULTS AND DISCUSSION A total of 59,430 interacting pairs between 1,801 rice proteins and 135 blast fungus proteins are obtained from the four models. Furthermore, a machine learning model is developed to assess the predicted interactions. Using composition-based amino acid composition (AAC) and conjoint triad (CT) features, an accuracy of 88% and 89% is achieved, respectively. When tested on the experimental dataset, the CT feature provides the highest accuracy of 95%. Furthermore, the specificity of the model is verified with other pathogen-host datasets where less accuracy is obtained, which confirmed that the model is specific to O. sativa and M. grisea. Understanding the molecular processes behind rice resistance to blast fungus begins with the identification of PPIs, and these predicted PPIs will be useful for drug design in the plant science community.
Collapse
Affiliation(s)
- Biswajit Karan
- Department of Electronics and Communication Engineering, Birla Institute of Technology, Ranchi, India
| | - Satyajit Mahapatra
- Department of Electronics and Communication Engineering, Birla Institute of Technology, Ranchi, India
| | - Sitanshu Sekhar Sahu
- Department of Electronics and Communication Engineering, Birla Institute of Technology, Ranchi, India
| | - Dev Mani Pandey
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, India
| | - Sumit Chakravarty
- Department of Electrical and Computer Engineering, Kennesaw State University, Kennesaw, GA, United States
| |
Collapse
|
8
|
Bhattacharjee B, Hallan V. NF-YB family transcription factors in Arabidopsis: Structure, phylogeny, and expression analysis in biotic and abiotic stresses. Front Microbiol 2023; 13:1067427. [PMID: 36733773 PMCID: PMC9887194 DOI: 10.3389/fmicb.2022.1067427] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/22/2022] [Indexed: 01/18/2023] Open
Abstract
Nuclear factor-Y (NF-Y) transcription factors (TFs) are conserved heterotrimeric complexes present and widespread across eukaryotes. Three main subunits make up the structural and functional aspect of the NF-Y TFs: NF-YA, NF-YB and NF-YC, which bind to the conserved CCAAT- box of the promoter region of specific genes, while also interacting with each other, thereby forming myriad combinations. The NF-YBs are expressed differentially in various tissues and plant development stages, likely impacting many of the cellular processes constitutively and under stress conditions. In this study, ten members of NF-YB family from Arabidopsis thaliana were identified and expression profiles were mined from microarray data under different biotic and abiotic conditions, revealing key insights into the involvement of this class of proteins in the cellular and biological processes in Arabidopsis. Analysis of cis-acting regulatory elements (CAREs) indicated the presence of abiotic and biotic stress-related transcription factor binding sites (TFBs), shedding light on the multifaceted roles of these TFs. Microarray data analysis inferred distinct patterns of expression in various tissues under differing treatments such as drought, cold and heat stress as well as bacterial, fungal, and viral stress, indicating their likelihood of having an expansive range of regulatory functions under native and stressed conditions; while quantitative real-time PCR (qRT-PCR) based expression analysis revealed that these TFs get real-time-modulated in a stress dependent manner. This study, overall, provides an understanding of the AtNF-YB family of TFs in their regulation and participation in various morphogenetic and defense- related pathways and can provide insights for development of transgenic plants for trait dependent studies.
Collapse
Affiliation(s)
- Bipasha Bhattacharjee
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India,Plant Virology Laboratory, Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| | - Vipin Hallan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India,Plant Virology Laboratory, Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, India,*Correspondence: Vipin Hallan, ✉
| |
Collapse
|
9
|
Sun C, Yu L, Zhang S, Gu Q, Wang M. Genome-wide characterization of the SHORT INTER-NODES/STYLISH and Shi-Related Sequence family in Gossypium hirsutum and functional identification of GhSRS21 under salt stress. FRONTIERS IN PLANT SCIENCE 2023; 13:1078083. [PMID: 36684735 PMCID: PMC9846857 DOI: 10.3389/fpls.2022.1078083] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Saline stress is a significant factor that caused crop growth inhibition and yield decline. SHORT INTERNODES/STYLISH (SHI/STY) and SHI-RELATED SEQUENCE (SRS) transcription factors are specific to plants and share a conserved RING-like zinc-finger domain (CX2CX7CX4CX2C2X6C). However, the functions of SHI/STY and SRS genes in cotton responses to salt stress remain unclear. In this study, 26 GhSRSs were identified in Gossypium hirsutum, which further divided into three subgroups. Phylogenetic analysis of 88 SRSs from8 plant species revealed independent evolutionary pattern in some of SRSs derived from monocots. Conserved domain and subcellular location predication of GhSRSs suggested all of them only contained the conserved RING-like zinc-finger domain (DUF702) domain and belonged to nucleus-localized transcription factors except for the GhSRS22. Furthermore, synteny analysis showed structural variation on chromosomes during the process of cotton polyploidization. Subsequently, expression patterns of GhSRS family members in response to salt and drought stress were analyzed in G. hirsutum and identified a salt stress-inducible gene GhSRS21. The GhSRS21 was proved to localize in the nuclear and silencing it in G. hirsutum increased the cotton resistance to salt using the virus-induced gene silencing (VIGS) system. Finally, our transcriptomic data revealed that GhSRS21 negatively controlled cotton salt tolerance by regulating the balance between ROS production and scavenging. These results will increase our understanding of the SRS gene family in cotton and provide the candidate resistant gene for cotton breeding.
Collapse
Affiliation(s)
- Chendong Sun
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Li Yu
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Shuojun Zhang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qijuan Gu
- Key Laboratory of Microbiol Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, China
| | - Mei Wang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
10
|
Muthusamy M, Kim JA, Lee SI. Phylogenomics-Based Reconstruction and Molecular Evolutionary Histories of Brassica Photoreceptor Gene Families. Int J Mol Sci 2022; 23:ijms23158695. [PMID: 35955826 PMCID: PMC9369451 DOI: 10.3390/ijms23158695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Photosensory proteins known as photoreceptors (PHRs) are crucial for delineating light environments in synchronization with other environmental cues and regulating their physiological variables in plants. However, this has not been well studied in the Brassica genus, which includes several important agricultural and horticultural crops. Herein, we identified five major PHR gene families—phytochrome (PHY), cryptochrome (CRY), phototropin (PHOT), F-box containing flavin binding proteins (ZTL/FKF1/LKP2), and UV RESISTANCE LOCUS 8 (UVR8)—genomic scales and classified them into subfamilies based on their phylogenetic clustering with Arabidopsis homologues. The molecular evolution characteristics of Brassica PHR members indicated indirect expansion and lost one to six gene copies at subfamily levels. The segmental duplication was possibly the driving force of the evolution and amplification of Brassica PHRs. Gene replication retention and gene loss events of CRY, PHY, and PHOT members found in diploid progenitors were highly conserved in their tetraploid hybrids. However, hybridization events were attributed to quantitative changes in UVR8 and ZTL/FKF1/LKP2 members. All PHR members underwent purifying selection. In addition, the transcript expression profiles of PHR genes in different tissue and in response to exogenous ABA, and abiotic stress conditions suggested their multiple biological significance. This study is helpful in understanding the molecular evolution characteristics of Brassica PHRs and lays the foundation for their functional characterization.
Collapse
|
11
|
Pu T, Mo Z, Su L, Yang J, Wan K, Wang L, Liu R, Liu Y. Genome-wide identification and expression analysis of the ftsH protein family and its response to abiotic stress in Nicotiana tabacum L. BMC Genomics 2022; 23:503. [PMID: 35831784 PMCID: PMC9281163 DOI: 10.1186/s12864-022-08719-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/23/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The filamentous temperature-sensitive H protease (ftsH) gene family plays an important role in plant growth and development. FtsH proteins belong to the AAA protease family. Studies have shown that it is a key gene for plant chloroplast development and photosynthesis regulation. In addition, the ftsH gene is also involved in plant response to stress. At present, the research and analysis of the ftsH gene family are conducted in microorganisms such as Escherichia coli and Oenococcus and various plants such as Arabidopsis, pear, rice, and corn. However, analysis reports on ftsH genes from tobacco (Nicotiana tabacum L.), an important model plant, are still lacking. Since ftsH genes regulate plant growth and development, it has become necessary to systematically study this gene in an economically important plant like tobacco. RESULTS This is the first study to analyze the ftsH gene from Nicotiana tabacum L. K326 (NtftsH). We identified 20 ftsH genes from the whole genome sequence, renamed them according to their chromosomal locations, and divided them into eight subfamilies. These 20 NtftsH genes were unevenly distributed across the 24 chromosomes. We found four pairs of fragment duplications. We further investigated the collinearity between these genes and related genes in five other species. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis identified differential expression patterns of NtftsH in different tissues and under various abiotic stress conditions. CONCLUSIONS This study provides a comprehensive analysis of the NtftsH gene family. The exon-intron structure and motif composition are highly similar in NtftsH genes that belong to the same evolutionary tree branch. Homology analysis and phylogenetic comparison of ftsH genes from several different plants provide valuable clues for studying the evolutionary characteristics of NtftsH genes. The NtftsH genes play important roles in plant growth and development, revealed by their expression levels in different tissues as well as under different stress conditions. Gene expression and phylogenetic analyses will provide the basis for the functional analysis of NtftsH genes. These results provide a valuable resource for a better understanding of the biological role of the ftsH genes in the tobacco plant.
Collapse
Affiliation(s)
- Tianxiunan Pu
- Guizhou Province, College of Tobacco Science of Guizhou University/ Guizhou Key Laboratory for Tobacco Quality, Huaxi District, Guiyang City, 550025, People's Republic of China
| | - Zejun Mo
- Guizhou Province, College of Tobacco Science of Guizhou University/ Guizhou Key Laboratory for Tobacco Quality, Huaxi District, Guiyang City, 550025, People's Republic of China
| | - Long Su
- Guizhou Province, College of Tobacco Science of Guizhou University/ Guizhou Key Laboratory for Tobacco Quality, Huaxi District, Guiyang City, 550025, People's Republic of China
| | - Jing Yang
- Guizhou Province, College of Tobacco Science of Guizhou University/ Guizhou Key Laboratory for Tobacco Quality, Huaxi District, Guiyang City, 550025, People's Republic of China
| | - Ke Wan
- Guizhou Province, College of Tobacco Science of Guizhou University/ Guizhou Key Laboratory for Tobacco Quality, Huaxi District, Guiyang City, 550025, People's Republic of China
| | - Linqi Wang
- Guizhou Province, College of Tobacco Science of Guizhou University/ Guizhou Key Laboratory for Tobacco Quality, Huaxi District, Guiyang City, 550025, People's Republic of China
| | - Renxiang Liu
- Guizhou Province, College of Tobacco Science of Guizhou University/ Guizhou Key Laboratory for Tobacco Quality, Huaxi District, Guiyang City, 550025, People's Republic of China
| | - Yang Liu
- Guizhou Province, College of Tobacco Science of Guizhou University/ Guizhou Key Laboratory for Tobacco Quality, Huaxi District, Guiyang City, 550025, People's Republic of China.
| |
Collapse
|
12
|
Chen L, Jameson GB, Guo Y, Song J, Jameson PE. The LONELY GUY gene family: from mosses to wheat, the key to the formation of active cytokinins in plants. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:625-645. [PMID: 35108444 PMCID: PMC8989509 DOI: 10.1111/pbi.13783] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/06/2022] [Accepted: 01/13/2022] [Indexed: 05/19/2023]
Abstract
LONELY GUY (LOG) was first identified in a screen of rice mutants with defects in meristem maintenance. In plants, LOG codes for cytokinin riboside 5'-monophosphate phosphoribohydrolase, which converts inactive cytokinin nucleotides directly to the active free bases. Many enzymes with the PGGxGTxxE motif have been misannotated as lysine decarboxylases; conversely not all enzymes containing this motif are cytokinin-specific LOGs. As LOG mutants clearly impact yield in rice, we investigated the LOG gene family in bread wheat. By interrogating the wheat (Triticum aestivum) genome database, we show that wheat has multiple LOGs. The close alignment of TaLOG1, TaLOG2 and TaLOG6 with the X-ray structures of two functional Arabidopsis thaliana LOGs allows us to infer that the wheat LOGs 1-11 are functional LOGs. Using RNA-seq data sets, we assessed TaLOG expression across 70 tissue types, their responses to various stressors, the pattern of cis-regulatory elements (CREs) and intron/exon patterns. TaLOG gene family members are expressed variously across tissue types. When the TaLOG CREs are compared with those of the cytokinin dehydrogenases (CKX) and glucosyltransferases (CGT), there is close alignment of CREs between TaLOGs and TaCKXs reflecting the key role of CKX in maintaining cytokinin homeostasis. However, we suggest that the main homeostatic mechanism controlling cytokinin levels in response to biotic and abiotic challenge resides in the CGTs, rather than LOG or CKX. However, LOG transgenics and identified mutants in rice variously impact yield, providing interesting avenues for investigation in wheat.
Collapse
Affiliation(s)
- Lei Chen
- School of Life SciencesYantai UniversityYantaiChina
| | | | - Yichu Guo
- School of Life SciencesYantai UniversityYantaiChina
| | - Jiancheng Song
- School of Life SciencesYantai UniversityYantaiChina
- Yantai Jien Biological Science & Technology LtdYEDAYantaiChina
| | - Paula E. Jameson
- School of Life SciencesYantai UniversityYantaiChina
- School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| |
Collapse
|
13
|
Li Z, Wang C, Wang K, Zhao J, Shao J, Chen H, Zhou M, Zhu X. Metal Tolerance Protein Encoding Gene Family in Fagopyrum tartaricum: Genome-Wide Identification, Characterization and Expression under Multiple Metal Stresses. PLANTS 2022; 11:plants11070850. [PMID: 35406830 PMCID: PMC9003181 DOI: 10.3390/plants11070850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/13/2022] [Accepted: 03/18/2022] [Indexed: 12/26/2022]
Abstract
Metal tolerance proteins (MTP) as divalent cation transporters are essential for plant metal tolerance and homeostasis. However, the characterization and the definitive phylogeny of the MTP gene family in Fagopyrum tartaricum, and their roles in response to metal stress are still unknown. In the present study, MTP genes in Fagopyrum tartaricum were identified, and their phylogenetic relationships, structural characteristics, physicochemical parameters, as well as expression profiles under five metal stresses including Fe, Mn, Cu, Zn, and Cd were also investigated. Phylogenetic relationship analysis showed that 12 Fagopyrum tartaricum MTP genes were classified into three major clusters and seven groups. All FtMTPs had typical structural features of the MTP gene family and were predicted to be located in the cell vacuole. The upstream region of FtMTPs contained abundant cis-acting elements, implying their functions in development progress and stress response. Tissue-specific expression analysis results indicated the regulation of FtMTPs in the growth and development of Fagopyrum tataricum. Besides, the expression of most FtMTP genes could be induced by multiple metals and showed different expression patterns under at least two metal stresses. These findings provide useful information for the research of the metal tolerance mechanism and genetic improvement of Fagopyrum tataricum.
Collapse
Affiliation(s)
- Zhiqiang Li
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China; (Z.L.); (K.W.); (J.Z.)
| | - Chenglong Wang
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China;
- Post-Doctoral Research Station, Beijing Forestry University Forest Science Co., Ltd., Beijing 100083, China
| | - Kaiyi Wang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China; (Z.L.); (K.W.); (J.Z.)
| | - Jiayu Zhao
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China; (Z.L.); (K.W.); (J.Z.)
| | - Jirong Shao
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (J.S.); (H.C.)
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (J.S.); (H.C.)
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (M.Z.); (X.Z.)
| | - Xuemei Zhu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China; (Z.L.); (K.W.); (J.Z.)
- Correspondence: (M.Z.); (X.Z.)
| |
Collapse
|
14
|
Duan Q, Li GR, Qu YP, Yin DX, Zhang CL, Chen YS. Genome-Wide Identification, Evolution and Expression Analysis of the Glutathione S-Transferase Supergene Family in Euphorbiaceae. FRONTIERS IN PLANT SCIENCE 2022; 13:808279. [PMID: 35360301 PMCID: PMC8963715 DOI: 10.3389/fpls.2022.808279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Euphorbiaceae, a family of plants mainly grown in the tropics and subtropics, is also widely distributed all over the world and is well known for being rich in rubber, oil, medicinal materials, starch, wood and other economically important plant products. Glutathione S-transferases (GSTs) constitute a family of proteins encoded by a large supergene family and are widely expressed in animals, bacteria, fungi and plants, but with few reports of them in Euphorbiaceae plants. These proteins participate in and regulate the detoxification and oxidative stress response of heterogeneous organisms, resistance to stress, growth and development, signal transduction and other related processes. In this study, we identified and analyzed the whole genomes of four species of Euphorbiaceae, namely Ricinus communis, Jatropha curcas, Hevea brasiliensis, and Manihot esculenta, which have high economic and practical value. A total of 244 GST genes were identified. Based on their sequence characteristics and conserved domain types, the GST supergene family in Euphorbiaceae was classified into 10 subfamilies. The GST supergene families of Euphorbiaceae and Arabidopsis have been found to be highly conserved in evolution, and tandem repeats and translocations in these genes have made the greatest contributions to gene amplification here and have experienced strong purification selection. An evolutionary analysis showed that Euphorbiaceae GST genes have also evolved into new subtribes (GSTO, EF1BG, MAPEG), which may play a specific role in Euphorbiaceae. An analysis of expression patterns of the GST supergene family in Euphorbiaceae revealed the functions of these GSTs in different tissues, including resistance to stress and participation in herbicide detoxification. In addition, an interaction analysis was performed to determine the GST gene regulatory mechanism. The results of this study have laid a foundation for further analysis of the functions of the GST supergene family in Euphorbiaceae, especially in stress and herbicide detoxification. The results have also provided new ideas for the study of the regulatory mechanism of the GST supergene family, and have provided a reference for follow-up genetics and breeding work.
Collapse
Affiliation(s)
- Qiang Duan
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
- Key Laboratory of Castor Breeding of the State Ethnic Affairs Commission, Tongliao, China
- Inner Mongolia Industrial Engineering Research Center of Universities for Castor, Tongliao, China
- Inner Mongolia Key Laboratory of Castor Breeding, Tongliao, China
- Inner Mongolia Collaborative Innovation Center for Castor Industry, Tongliao, China
- Inner Mongolia Engineering Research Center of Industrial Technology Innovation of Castor, Tongliao, China
| | - Guo-Rui Li
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
- Key Laboratory of Castor Breeding of the State Ethnic Affairs Commission, Tongliao, China
- Inner Mongolia Industrial Engineering Research Center of Universities for Castor, Tongliao, China
- Inner Mongolia Key Laboratory of Castor Breeding, Tongliao, China
- Inner Mongolia Collaborative Innovation Center for Castor Industry, Tongliao, China
- Inner Mongolia Engineering Research Center of Industrial Technology Innovation of Castor, Tongliao, China
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China
| | - Yi-Peng Qu
- Key Laboratory of Castor Breeding of the State Ethnic Affairs Commission, Tongliao, China
- Inner Mongolia Industrial Engineering Research Center of Universities for Castor, Tongliao, China
- Inner Mongolia Key Laboratory of Castor Breeding, Tongliao, China
- Inner Mongolia Collaborative Innovation Center for Castor Industry, Tongliao, China
- Inner Mongolia Engineering Research Center of Industrial Technology Innovation of Castor, Tongliao, China
| | - Dong-Xue Yin
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
- Key Laboratory of Castor Breeding of the State Ethnic Affairs Commission, Tongliao, China
- Inner Mongolia Industrial Engineering Research Center of Universities for Castor, Tongliao, China
- Inner Mongolia Key Laboratory of Castor Breeding, Tongliao, China
- Inner Mongolia Collaborative Innovation Center for Castor Industry, Tongliao, China
- Inner Mongolia Engineering Research Center of Industrial Technology Innovation of Castor, Tongliao, China
| | - Chun-Ling Zhang
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
- Key Laboratory of Castor Breeding of the State Ethnic Affairs Commission, Tongliao, China
- Inner Mongolia Industrial Engineering Research Center of Universities for Castor, Tongliao, China
- Inner Mongolia Key Laboratory of Castor Breeding, Tongliao, China
- Inner Mongolia Collaborative Innovation Center for Castor Industry, Tongliao, China
- Inner Mongolia Engineering Research Center of Industrial Technology Innovation of Castor, Tongliao, China
| | - Yong-Sheng Chen
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
- Key Laboratory of Castor Breeding of the State Ethnic Affairs Commission, Tongliao, China
- Inner Mongolia Industrial Engineering Research Center of Universities for Castor, Tongliao, China
- Inner Mongolia Key Laboratory of Castor Breeding, Tongliao, China
- Inner Mongolia Collaborative Innovation Center for Castor Industry, Tongliao, China
- Inner Mongolia Engineering Research Center of Industrial Technology Innovation of Castor, Tongliao, China
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
15
|
Genome-Wide Identification and Expression Analysis of Pseudouridine Synthase Family in Arabidopsis and Maize. Int J Mol Sci 2022; 23:ijms23052680. [PMID: 35269820 PMCID: PMC8910892 DOI: 10.3390/ijms23052680] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
Pseudouridine (Ψ), the isomer of uridine (U), is the most abundant type of RNA modification, which is crucial for gene regulation in various cellular processes. Pseudouridine synthases (PUSs) are the key enzymes for the U-to-Ψ conversion. However, little is known about the genome-wide features and biological function of plant PUSs. In this study, we identified 20 AtPUSs and 22 ZmPUSs from Arabidopsis and maize (Zea mays), respectively. Our phylogenetic analysis indicated that both AtPUSs and ZmPUSs could be clustered into six known subfamilies: RluA, RsuA, TruA, TruB, PUS10, and TruD. RluA subfamily is the largest subfamily in both Arabidopsis and maize. It's noteworthy that except the canonical XXHRLD-type RluAs, another three conserved RluA variants, including XXNRLD-, XXHQID-, and XXHRLG-type were also identified in those key nodes of vascular plants. Subcellular localization analysis of representative AtPUSs and ZmPUSs in each subfamily revealed that PUS proteins were localized in different organelles including nucleus, cytoplasm and chloroplasts. Transcriptional expression analysis indicated that AtPUSs and ZmPUSs were differentially expressed in various tissues and diversely responsive to abiotic stresses, especially suggesting their potential roles in response to heat and salt stresses. All these results would facilitate the functional identification of these pseudouridylation in the future.
Collapse
|
16
|
Wu W, Zhu S, Xu L, Zhu L, Wang D, Liu Y, Liu S, Hao Z, Lu Y, Yang L, Shi J, Chen J. Genome-wide identification of the Liriodendron chinense WRKY gene family and its diverse roles in response to multiple abiotic stress. BMC PLANT BIOLOGY 2022; 22:25. [PMID: 35012508 PMCID: PMC8744262 DOI: 10.1186/s12870-021-03371-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/29/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND Liriodendron chinense (Lchi) is a tree species within the Magnoliaceae family and is considered a basal angiosperm. The too low or high temperature or soil drought will restrict its growth as the adverse environmental conditions, thus improving L. chinense abiotic tolerance was the key issues to study. WRKYs are a major family of plant transcription factors known to often be involved in biotic and abiotic stress responses. So far, it is still largely unknown if and how the LchiWRKY gene family is tied to regulating L. chinense stress responses. Therefore, studying the involvement of the WRKY gene family in abiotic stress regulation in L. chinense could be very informative in showing how this tree deals with such stressful conditions. RESULTS In this research, we performed a genome-wide analysis of the Liriodendron chinense (Lchi) WRKY gene family, studying their classification relationships, gene structure, chromosomal locations, gene duplication, cis-element, and response to abiotic stress. The 44 members of the LchiWRKY gene family contain a significant amount of sequence diversity, with their lengths ranging from 525 bp to 40,981 bp. Using classification analysis, we divided the 44 LchiWRKY genes into three phylogenetic groups (I, II, II), with group II then being further divided into five subgroups (IIa, IIb, IIc, IId, IIe). Comparative phylogenetic analysis including the WRKY families from 17 plant species suggested that LchiWRKYs are closely related to the Magnolia Cinnamomum kanehirae WRKY family, and has fewer family members than higher plants. We found the LchiWRKYs to be evenly distributed across 15 chromosomes, with their duplication events suggesting that tandem duplication may have played a major role in LchiWRKY gene expansion model. A Ka/Ks analysis indicated that they mainly underwent purifying selection and distributed in the group IId. Motif analysis showed that LchiWRKYs contained 20 motifs, and different phylogenetic groups contained conserved motif. Gene ontology (GO) analysis showed that LchiWRKYs were mainly enriched in two categories, i.e., biological process and molecular function. Two group IIc members (LchiWRKY10 and LchiWRKY37) contain unique WRKY element sequence variants (WRKYGKK and WRKYGKS). Gene structure analysis showed that most LchiWRKYs possess 3 exons and two different types of introns: the R- and V-type which are both contained within the WRKY domain (WD). Additional promoter cis-element analysis indicated that 12 cis-elements that play different functions in environmental adaptability occur across all LchiWRKY groups. Heat, cold, and drought stress mainly induced the expression of group II and I LchiWRKYs, some of which had undergone gene duplication during evolution, and more than half of which had three exons. LchiWRKY33 mainly responded to cold stress and LchiWRKY25 mainly responded to heat stress, and LchiWRKY18 mainly responded to drought stress, which was almost 4-fold highly expressed, while 5 LchiWRKYs (LchiWRKY5, LchiWRKY23, LchiWRKY14, LchiWRKY27, and LchiWRKY36) responded equally three stresses with more than 6-fold expression. Subcellular localization analysis showed that all LchiWRKYs were localized in the nucleus, and subcellular localization experiments of LchiWRKY18 and 36 also showed that these two transcription factors were expressed in the nucleus. CONCLUSIONS This study shows that in Liriodendron chinense, several WRKY genes like LchiWRKY33, LchiWRKY25, and LchiWRKY18, respond to cold or heat or drought stress, suggesting that they may indeed play a role in regulating the tree's response to such conditions. This information will prove a pivotal role in directing further studies on the function of the LchiWRKY gene family in abiotic stress response and provides a theoretical basis for popularizing afforestation in different regions of China.
Collapse
Affiliation(s)
- Weihuang Wu
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Sheng Zhu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Lin Xu
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Liming Zhu
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Dandan Wang
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yang Liu
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Siqin Liu
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Zhaodong Hao
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Ye Lu
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Liming Yang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Jisen Shi
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Jinhui Chen
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China.
| |
Collapse
|
17
|
Denne NL, Hiles RR, Kyrysyuk O, Iyer-Pascuzzi AS, Mitra RM. Ralstonia solanacearum Effectors Localize to Diverse Organelles in Solanum Hosts. PHYTOPATHOLOGY 2021; 111:2213-2226. [PMID: 33720750 DOI: 10.1094/phyto-10-20-0483-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Phytopathogenic bacteria secrete type III effector (T3E) proteins directly into host plant cells. T3Es can interact with plant proteins and frequently manipulate plant host physiological or developmental processes. The proper subcellular localization of T3Es is critical for their ability to interact with plant targets, and knowledge of T3E localization can be informative for studies of effector function. Here we investigated the subcellular localization of 19 T3Es from the phytopathogenic bacteria Ralstonia pseudosolanacearum and Ralstonia solanacearum. Approximately 45% of effectors in our library localize to both the plant cell periphery and the nucleus, 15% exclusively to the cell periphery, 15% exclusively to the nucleus, and 25% to other organelles, including tonoplasts and peroxisomes. Using tomato hairy roots, we show that T3E localization is similar in both leaves and roots and is not impacted by Solanum species. We find that in silico prediction programs are frequently inaccurate, highlighting the value of in planta localization experiments. Our data suggest that Ralstonia targets a wide diversity of cellular organelles and provides a foundation for developing testable hypotheses about Ralstonia effector function.
Collapse
Affiliation(s)
- Nina L Denne
- Department of Biology, Carleton College, Northfield, MN 55057
| | - Rachel R Hiles
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, IN 47907
| | | | - Anjali S Iyer-Pascuzzi
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, IN 47907
| | - Raka M Mitra
- Department of Biology, Carleton College, Northfield, MN 55057
| |
Collapse
|
18
|
Yu L, Zhang S, Liu H, Wang Y, Wei Y, Ren X, Zhang Q, Rong J, Sun C. Genome-Wide Analysis of SRNF Genes in Gossypium hirsutum Reveals the Role of GhSRNF18 in Primary Root Growth. FRONTIERS IN PLANT SCIENCE 2021; 12:731834. [PMID: 34630480 PMCID: PMC8494181 DOI: 10.3389/fpls.2021.731834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Root systems are instrumental for water and nutrient uptake and the anchorage of plants in the soil. Root regulating GL2-interacting repressors (GIRs) contain a Short RING-like Zinc-Finger (SRNF) domain, but there has been no comprehensive characterization about this gene family in any plant species. Here, we renamed the GIR-like proteins as SRNF proteins due to their conserved domain and identified 140 SRNF genes from 16 plant species including 24 GhSRNF genes in Gossypium hirsutum. Phylogenetic analysis of the SRNFs revealed both similarities and divergences between five subfamilies. Notably, synteny analysis revealed that polyploidization and whole-genome duplication contribute to the expansion of the GhSRNF gene family. Various cis-acting regulatory elements were shown to be pertinent to light, phytohormone, defense responsive, and meristem regulation. Furthermore, GhSRNF2/15 were predominantly expressed in root, whereas the expression of GhSRNF18 is positively correlated with the primary root (PR) length in G. hirsutum, quantified by quantitative real-time PCR (qRT-PCR). Over-expression of GhSRNF18 in Arabidopsis and virus-induced gene silencing (VIGS) of GhSRNF18 in G. hirsutum has revealed the role of GhSRNF18 in PR growth. The over-expression of GhSRNF18 in Arabidopsis resulted in an increase of meristematic activities and auxin accumulations in PRs, which were consistent with the transcriptomic data. Our results suggested that GhSRNF18 positively regulates PR growth. This study increased our understanding of the SRNF gene family in plants and provided a novel rationale for the further investigation of cotton root morphogenesis regulated by the GhSRNFs.
Collapse
Affiliation(s)
- Li Yu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Shuojun Zhang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Hailun Liu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Yufei Wang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Yiting Wei
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Xujiao Ren
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Qian Zhang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Junkang Rong
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, China
- The State Key Laboratory of Subtropical Silviculture, College of Forest and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Chendong Sun
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, China
| |
Collapse
|
19
|
Chen L, Zhao J, Song J, Jameson PE. Cytokinin glucosyl transferases, key regulators of cytokinin homeostasis, have potential value for wheat improvement. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:878-896. [PMID: 33811433 PMCID: PMC8131048 DOI: 10.1111/pbi.13595] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/28/2021] [Indexed: 05/05/2023]
Abstract
The cytokinins, which are N6 -substituted adenine derivatives, control key aspects of crop productivity. Cytokinin levels are controlled via biosynthesis by isopentenyl transferase (IPT), destruction by cytokinin oxidase/dehydrogenase (CKX), and inactivation via glucosylation by cytokinin glucosyl transferases (CGTs). While both yield components and tolerance to drought and related abiotic stressors have been positively addressed via manipulation of IPT and/or CKX expression, much less attention has been paid to the CGTs. As naming of the CGTs has been unclear, we suggest COGT, CNGT, CONGT and CNOGT to describe the O-, N- and dual function CGTs. As specific CGT mutants of both rice and arabidopsis showed impacts on yield components, we interrogated the wheat genome database, IWGSC RefSeq v1.0 & v2.0, to investigate wheat CGTs. Besides providing unambiguous names for the 53 wheat CGTs, we show their expression patterns in 70 developmental tissues and their response characteristics to various stress conditions by reviewing more than 1000 RNA-seq data sets. These revealed various patterns of responses and showed expression generally being more limited in reproductive tissues than in vegetative tissues. Multiple cis-regulatory elements are present in the 3 kb upstream of the start codons of the 53 CGTs. Elements associated with abscisic acid, light and methyl jasmonate are particularly over-represented, indicative of the responsiveness of CGTs to the environment. These data sets indicate that CGTs have potential value for wheat improvement and that these could be targeted in TILLING or gene editing wheat breeding programmes.
Collapse
Affiliation(s)
- Lei Chen
- School of Life SciencesYantai UniversityYantaiChina
| | - Jing Zhao
- School of Life SciencesYantai UniversityYantaiChina
| | | | - Paula E. Jameson
- School of Life SciencesYantai UniversityYantaiChina
- School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| |
Collapse
|
20
|
Structure and Expression Analysis of Sucrose Phosphate Synthase, Sucrose Synthase and Invertase Gene Families in Solanum lycopersicum. Int J Mol Sci 2021; 22:ijms22094698. [PMID: 33946733 PMCID: PMC8124378 DOI: 10.3390/ijms22094698] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022] Open
Abstract
Sucrose phosphate synthase (SPS), sucrose synthase (SUS) and invertase (INV) are all encoded by multigene families. In tomato (Solanum lycopersicum), a comprehensive analysis of structure characteristics of these family genes is still lacking, and the functions of individual isoforms of these families are mostly unclear under stress. Here, the structure characteristics of the three families in tomato were analyzed; moreover, as a first step toward understanding the functions of isoforms of these proteins under stress, the tissue expression pattern and stress response of these genes were also investigated. The results showed that four SPS genes, six SUS genes and nineteen INV genes were identified in tomato. The subfamily differentiation of SlSPS and SlSUS might have completed before the split of monocotyledons and dicotyledons. The conserved motifs were mostly consistent within each protein family/subfamily. These genes demonstrated differential expressions among family members and tissues, and in response to polyethylene glycerol, NaCl, H2O2, abscisic acid or salicylic acid treatment. Our results suggest that each isoform of these families may have different functions in different tissues and under environmental stimuli. SlSPS1, SlSPS3, SlSUS1, SlSUS3, SlSUS4, SlINVAN5 and SlINVAN7 demonstrated consistent expression responses and may be the major genes responding to exogenous stimuli.
Collapse
|
21
|
Recent Advances in the Prediction of Protein Structural Classes: Feature Descriptors and Machine Learning Algorithms. CRYSTALS 2021. [DOI: 10.3390/cryst11040324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In the postgenomic age, rapid growth in the number of sequence-known proteins has been accompanied by much slower growth in the number of structure-known proteins (as a result of experimental limitations), and a widening gap between the two is evident. Because protein function is linked to protein structure, successful prediction of protein structure is of significant importance in protein function identification. Foreknowledge of protein structural class can help improve protein structure prediction with significant medical and pharmaceutical implications. Thus, a fast, suitable, reliable, and reasonable computational method for protein structural class prediction has become pivotal in bioinformatics. Here, we review recent efforts in protein structural class prediction from protein sequence, with particular attention paid to new feature descriptors, which extract information from protein sequence, and the use of machine learning algorithms in both feature selection and the construction of new classification models. These new feature descriptors include amino acid composition, sequence order, physicochemical properties, multiprofile Bayes, and secondary structure-based features. Machine learning methods, such as artificial neural networks (ANNs), support vector machine (SVM), K-nearest neighbor (KNN), random forest, deep learning, and examples of their application are discussed in detail. We also present our view on possible future directions, challenges, and opportunities for the applications of machine learning algorithms for prediction of protein structural classes.
Collapse
|
22
|
Wang H, Ding Y, Tang J, Zou Q, Guo F. Identify RNA-associated subcellular localizations based on multi-label learning using Chou's 5-steps rule. BMC Genomics 2021; 22:56. [PMID: 33451286 PMCID: PMC7811227 DOI: 10.1186/s12864-020-07347-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/22/2020] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Biological functions of biomolecules rely on the cellular compartments where they are located in cells. Importantly, RNAs are assigned in specific locations of a cell, enabling the cell to implement diverse biochemical processes in the way of concurrency. However, lots of existing RNA subcellular localization classifiers only solve the problem of single-label classification. It is of great practical significance to expand RNA subcellular localization into multi-label classification problem. RESULTS In this study, we extract multi-label classification datasets about RNA-associated subcellular localizations on various types of RNAs, and then construct subcellular localization datasets on four RNA categories. In order to study Homo sapiens, we further establish human RNA subcellular localization datasets. Furthermore, we utilize different nucleotide property composition models to extract effective features to adequately represent the important information of nucleotide sequences. In the most critical part, we achieve a major challenge that is to fuse the multivariate information through multiple kernel learning based on Hilbert-Schmidt independence criterion. The optimal combined kernel can be put into an integration support vector machine model for identifying multi-label RNA subcellular localizations. Our method obtained excellent results of 0.703, 0.757, 0.787, and 0.800, respectively on four RNA data sets on average precision. CONCLUSION To be specific, our novel method performs outstanding rather than other prediction tools on novel benchmark datasets. Moreover, we establish user-friendly web server with the implementation of our method.
Collapse
Affiliation(s)
- Hao Wang
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Yijie Ding
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Jijun Tang
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin, China
- School of Computational Science and Engineering, University of South Carolina, Columbia, 29208, SC, US
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Fei Guo
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin, China.
| |
Collapse
|
23
|
Genome-wide identification and abiotic stress-responsive expression of MLP family genes in Brassica rapa. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Wu C, Li Q, Xing R, Fan GL. Using the Chou’s Pseudo Component to Predict the ncRNA Locations Based on the Improved K-Nearest Neighbor (iKNN) Classifier. Curr Bioinform 2020. [DOI: 10.2174/1574893614666191003142406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The non-coding RNA identification at the organelle genome level is a
challenging task. In our previous work, an ncRNA dataset with less than 80% sequence identity
was built, and a method incorporating an increment of diversity combining with support vector
machine method was proposed.
Objective:
Based on the ncRNA_361 dataset, a novel decision-making method-an improved
KNN (iKNN) classifier was proposed.
Methods:
In this paper, based on the iKNN algorithm, the physicochemical features of nucleotides,
the degeneracy of genetic codons, and topological secondary structure were selected to represent
the effective ncRNA characters. Then, the incremental feature selection method was utilized to optimize
the feature set.
Results:
The results of iKNN indicated that the decision-making method of mean value is distinctly
superior to the traditional decision-making method of majority vote the Increment of Diversity
Combining Support Vector Machine (ID-SVM). The iKNN algorithm achieved an overall accuracy
of 97.368% in the jackknife test, when k=3.
Conclusion:
It should be noted that the triplets of the structure-sequence mode under reading
frames not only contains the entire sequence information but also reflects whether the base was
paired or not, and the secondary structural topological parameters further describe the ncRNA secondary
structure on the spatial level. The ncRNA dataset and the iKNN classifier are freely available
at http://202.207.14.87:8032/fuwu/iKNN/index.asp.
Collapse
Affiliation(s)
- Chengyan Wu
- Baotou Teacher’s College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Qianzhong Li
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, China
| | - Ru Xing
- Baotou Teacher’s College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Guo-Liang Fan
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, China
| |
Collapse
|
25
|
Chen X, Huang S, Jiang M, Chen Y, XuHan X, Zhang Z, Lin Y, Lai Z. Genome-wide identification and expression analysis of the SR gene family in longan (Dimocarpus longan Lour.). PLoS One 2020; 15:e0238032. [PMID: 32841304 PMCID: PMC7447046 DOI: 10.1371/journal.pone.0238032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 08/07/2020] [Indexed: 12/05/2022] Open
Abstract
Longan (Dimocarpus longan Lour.) is an important commercial fruit tree in southern China. The embryogenesis of longan affects the quality and yield of fruit. A large number of alternative splicing events occurs during somatic embryogenesis (SE), which is regulated by serine/arginine-rich (SR) proteins. However, the functions of SR proteins in longan are poorly understood. In this study, 21 Dlo-SR gene family members belonging to six subfamilies were identified, among which Dlo-RSZ20a, Dlo-SR30, Dlo-SR17, Dlo-SR53 and Dlo-SR32 were localized in the nucleus, Dlo-RSZ20b, Dlo-RSZ20c, Dlo-RSZ20d, Dlo-SC18, Dlo-RS2Z29, Dlo-SCL41, and Dlo-SR33 were localized in chloroplasts, and Dlo-RS43, Dlo-SC33, Dlo-SC37, Dlo-RS2Z33, Dlo-RS2Z16, Dlo-RS2Z24, Dlo-SCL43, Dlo-SR112, and Dlo-SR59 were localized in the nucleus and chloroplasts. The Dlo-SR genes exhibited differential expression patterns in different tissues of longan. The transcript levels of Dlo-RSZ20a, Dlo-SC18, Dlo-RS2Z29, DLo-SR59, Dlo-SR53, and Dlo-SR17 were low in all analyzed tissues, whereas Dlo-RS43, Dlo-RS2Z16, Dlo-RS2Z24, and Dlo-SR30 were highly expressed in all tissues. To clarify their function during SE, the transcript levels of Dlo-SR genes were analyzed at different four stages of SE, comprising non-embryonic callus (NEC), friable-embryogenic callus (EC), incomplete compact pro-embryogenic culture (ICpEC) and globular embryo (GE). Interestingly, the transcript levels of Dlo-RS2Z29 and Dlo-SR112 were increased in embryogenic cells compared with the NEC stage, whereas transcript levels of Dlo-RSZ20a, Dlo-RS43, Dlo-SC37, and Dlo-RS2Z16 were especially increased at the GE stage compared with the other stages. Alternative splicing events of Dlo-SR mRNA precursors (pre-mRNAs) was detected during SE, with totals of 41, 29, 35, and 44 events detected during NEC, EC, ICpEC, and GE respectively. Protein–protein interaction analysis showed that SR proteins were capable of interaction with each other. The results indicate that the alternative splicing of Dlo-SR pre-mRNAs occurs during SE and that Dlo-SR proteins may interact to regulate embryogenesis of longan.
Collapse
Affiliation(s)
- Xiaodong Chen
- Institute of horticultural biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuqi Huang
- Institute of horticultural biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mengqi Jiang
- Institute of horticultural biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yukun Chen
- Institute of horticultural biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xu XuHan
- Institute of horticultural biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute de la Recherche Interdisciplinaire de Toulouse, Toulouse, France
| | - Zihao Zhang
- Institute of horticultural biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuling Lin
- Institute of horticultural biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
- * E-mail: (YL); (ZL)
| | - Zhongxiong Lai
- Institute of horticultural biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
- * E-mail: (YL); (ZL)
| |
Collapse
|
26
|
Peter SC, Murugan N, Mohanan MV, Sasikumar SPT, Selvarajan D, Jayanarayanan AN, Shivalingamurthy SG, Chennappa M, Ramanathan V, Govindakurup H, Ram B, Chinnaswamy A. Isolation, characterization and expression analysis of stress responsive plant nuclear transcriptional factor subunit ( NF-YB2) from commercial Saccharum hybrid and wild relative Erianthus arundinaceus. 3 Biotech 2020; 10:304. [PMID: 32566442 DOI: 10.1007/s13205-020-02295-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/07/2020] [Indexed: 12/26/2022] Open
Abstract
Plant nuclear factor (NF-Y) is a transcription activating factor, consisting of three subunits, and plays a key regulatory role in many stress-responsive mechanisms including drought and salinity stresses. NF-Ys function both as complex and individual subunits. Considering the importance of sugarcane as a commercial crop with high socio-economic importance and the crop being affected mostly by water deficit stress and salinity stress causing significant yield loss, nuclear transcriptional factor NF-YB2 was focused in this study. Plant nuclear factor subunit B2 from Erianthus arundinaceus (EaNF-YB2), a wild relative of sugarcane which is known for its drought and salinity stress tolerance, and commercial Saccharum hybrid Co 86032 (ShNF-YB2) was isolated and characterized. Both EaNF-YB2 and ShNF-YB2 genes are 543 bp long that encodes for a polypeptide of 180 amino acid residues. Comparison of EaNF-YB2 and ShNF-YB2 gene sequences revealed nucleotide substitutions at nine positions corresponding to three synonymous and six nonsynonymous amino acid substitutions that resulted in variations in physiochemical properties. However, multiple sequence alignment (MSA) of NF-YB2 proteins showed conservation of functionally important amino acid residues. In silico analysis revealed NF-YB2 to be a hydrophilic and intracellular protein, and EaNF-YB2 is thermally more stable than that of ShNF-YB2. Phylogenetic analysis suggested the lower rate of evolution of NF-YB2. Subcellular localization in sugarcane callus revealed NF-YB2 localization at nucleus that further evidenced it to be a transcription activation factor. Comparative RT-qPCR experiments showed a significantly higher level of NF-YB2 expression in E. arundinaceus when compared to that in the commercial Saccharum hybrid Co 86032 under drought and salinity stresses. Hence, EaNF-YB2 could be an ideal candidate gene, and its overexpression in sugarcane through genetic engineering approach might enhance tolerance to drought and salinity stresses.
Collapse
Affiliation(s)
- Swathik Clarancia Peter
- Division of Crop Improvement, ICAR Sugarcane Breeding Institute, Tamil Nadu, Coimbatore, 641007 India
| | - Naveenarani Murugan
- Division of Crop Improvement, ICAR Sugarcane Breeding Institute, Tamil Nadu, Coimbatore, 641007 India
| | | | | | - Dharshini Selvarajan
- Division of Crop Improvement, ICAR Sugarcane Breeding Institute, Tamil Nadu, Coimbatore, 641007 India
| | | | | | - Mahadevaiah Chennappa
- Division of Crop Improvement, ICAR Sugarcane Breeding Institute, Tamil Nadu, Coimbatore, 641007 India
| | - Valarmathi Ramanathan
- Division of Crop Improvement, ICAR Sugarcane Breeding Institute, Tamil Nadu, Coimbatore, 641007 India
| | - Hemaprabha Govindakurup
- Division of Crop Improvement, ICAR Sugarcane Breeding Institute, Tamil Nadu, Coimbatore, 641007 India
| | - Bakshi Ram
- Division of Crop Improvement, ICAR Sugarcane Breeding Institute, Tamil Nadu, Coimbatore, 641007 India
| | - Appunu Chinnaswamy
- Division of Crop Improvement, ICAR Sugarcane Breeding Institute, Tamil Nadu, Coimbatore, 641007 India
| |
Collapse
|
27
|
Zhao X, Min Z, Wei X, Ju Y, Fang Y. Using the Chou's 5-steps rule, transient overexpression technique, subcellular location, and bioinformatic analysis to verify the function of Vitis vinifera O-methyltranferase 3 (VvOMT3) protein. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:621-629. [PMID: 32335385 DOI: 10.1016/j.plaphy.2020.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 06/11/2023]
Abstract
3-Isobutyl-2-methoxypyrazine (IBMP) is an important odor compound that revives unripe grapes or poor-quality wine. The biosynthesis of IBMP in grape berries is under the catalysis of Vitis vinifera O-methyltranferase 3 (VvOMT3). The homologous verification in this paper was carried out with the transient overexpression technique. The results showed that both the expression levels of the VvOMT3 gene and the IBMP concentration in 'Red globe' grapes increased significantly, which suggested that VvOMT3 could function in the biosynthesis of IBMP. Based on β-glucuronidase (GUS) staining results, blue color was only observed in grape pulp, not in grape skin, which indicated that VvOMT3 was expressed in grape pulp. The outcomes of the subcellular location examination performed on the protoplasts of Arabidopsis thaliana showed that the VvOMT3 protein was located on the inner surface of the cytoplasmic membrane. In summary, the VvOMT3 enzyme may function at the inner surface of the cytoplasmic membrane of pulp cells during grape development. These results will provide a background for future research on the catalytic mechanisms of VvOMT3.
Collapse
Affiliation(s)
- Xianfang Zhao
- College of Enology, Heyang Viti-viniculture Station, Northwest A & F University, Yangling, 712100, Shaanxi, China; Life School of Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China.
| | - Zhuo Min
- College of Enology, Heyang Viti-viniculture Station, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Xiaofeng Wei
- College of Enology, Heyang Viti-viniculture Station, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Yanlun Ju
- College of Enology, Heyang Viti-viniculture Station, Northwest A & F University, Yangling, 712100, Shaanxi, China.
| | - Yulin Fang
- College of Enology, Heyang Viti-viniculture Station, Northwest A & F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
28
|
Liu B, Leng L, Sun X, Wang Y, Ma J, Zhu Y. ECMPride: prediction of human extracellular matrix proteins based on the ideal dataset using hybrid features with domain evidence. PeerJ 2020; 8:e9066. [PMID: 32377454 PMCID: PMC7195829 DOI: 10.7717/peerj.9066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/05/2020] [Indexed: 01/28/2023] Open
Abstract
Extracellular matrix (ECM) proteins play an essential role in various biological processes in multicellular organisms, and their abnormal regulation can lead to many diseases. For large-scale ECM protein identification, especially through proteomic-based techniques, a theoretical reference database of ECM proteins is required. In this study, based on the experimentally verified ECM datasets and by the integration of protein domain features and a machine learning model, we developed ECMPride, a flexible and scalable tool for predicting ECM proteins. ECMPride achieved excellent performance in predicting ECM proteins, with appropriate balanced accuracy and sensitivity, and the performance of ECMPride was shown to be superior to the previously developed tool. A new theoretical dataset of human ECM components was also established by applying ECMPride to all human entries in the SwissProt database, containing a significant number of putative ECM proteins as well as the abundant biological annotations. This dataset might serve as a valuable reference resource for ECM protein identification.
Collapse
Affiliation(s)
- Binghui Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, Beijing, China
| | - Ling Leng
- Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xuer Sun
- Tissue Engineering Lab, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Yunfang Wang
- Tissue Engineering Lab, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Jie Ma
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, Beijing, China
| | - Yunping Zhu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, Beijing, China.,Basic Medical School, Anhui Medical University, Anhui, China
| |
Collapse
|
29
|
Singh J, Gupta SK, Devanna BN, Singh S, Upadhyay A, Sharma TR. Blast resistance gene Pi54 over-expressed in rice to understand its cellular and sub-cellular localization and response to different pathogens. Sci Rep 2020; 10:5243. [PMID: 32251298 PMCID: PMC7090074 DOI: 10.1038/s41598-020-59027-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/31/2019] [Indexed: 11/26/2022] Open
Abstract
Rice blast resistance gene, Pi54 provides broad-spectrum resistance against different strains of Magnaporthe oryzae. Understanding the cellular localization of Pi54 protein is an essential step towards deciphering its place of interaction with the cognate Avr-gene. In this study, we investigated the sub-cellular localization of Pi54 with Green Fluorescent Protein (GFP) as a molecular tag through transient and stable expression in onion epidermal cells (Allium cepa) and susceptible japonica cultivar rice Taipei 309 (TP309), respectively. Confocal microscopy based observations of the onion epidermal cells revealed nucleus and cytoplasm specific GFP signals. In the stable transformed rice plants, GFP signal was recorded in the stomata, upper epidermal cells, mesophyll cells, vascular bundle, and walls of bundle sheath and bulliform cells of leaf tissues. These observations were further confirmed by Immunocytochemical studies. Using GFP specific antibodies, it was found that there was sufficient aggregation of GFP::Pi54protein in the cytoplasm of the leaf mesophyll cells and periphery of the epidermal cells. Interestingly, the transgenic lines developed in this study could show a moderate level of resistance to Xanthomonas oryzae and Rhizoctonia solani, the causal agents of the rice bacterial blight and sheath blight diseases, respectively. This study is a first detailed report, which emphasizes the cellular and subcellular distribution of the broad spectrum blast resistance gene Pi54 in rice and the impact of its constitutive expression towards resistance against other fungal and bacterial pathogens of rice.
Collapse
Affiliation(s)
- Jyoti Singh
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
- Hislop College, R.T.M Nagpur University, Nagpur, India
| | | | - B N Devanna
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | - Sunil Singh
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | | | - Tilak R Sharma
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India.
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India.
| |
Collapse
|
30
|
The Genome-Wide Analysis of RALF-Like Genes in Strawberry (Wild and Cultivated) and Five Other Plant Species (Rosaceae). Genes (Basel) 2020; 11:genes11020174. [PMID: 32041308 PMCID: PMC7073784 DOI: 10.3390/genes11020174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 11/21/2022] Open
Abstract
The rapid alkalinization factor (RALF) gene family is essential for the plant growth and development. However, there is little known about these genes among Rosaceae species. Here, we identify 124 RALF-like genes from seven Rosaceae species, and 39 genes from Arabidopsis, totally 163 genes, divided into four clades according to the phylogenetic analysis, which includes 45 mature RALF genes from Rosaceae species. The YISY motif and RRXL cleavage site are typical features of true RALF genes, but some variants were detected in our study, such as YISP, YIST, NISY, YINY, YIGY, YVGY, FIGY, YIAY, and RRVM. Motif1 is widely distributed among all the clades. According to screening of cis-regulatory elements, GO annotation, expression sequence tags (EST), RNA-seq, and RT-qPCR, we reported that 24 RALF genes coding mature proteins related to tissue development, fungal infection, and hormone response. Purifying selection may play an important role in the evolutionary process of RALF-like genes among Rosaceae species according to the result from ka/ks. The tandem duplication event just occurs in four gene pairs (Fv-RALF9 and Fv-RALF10, Md-RALF7 and Md-RALF8, Pm-RALF2 and Pm-RALF8, and Pp-RALF11 and Pp-RALF14) from four Rosaceae species. Our research provides a wide overview of RALF-like genes in seven Rosaceae species involved in identification, classification, structure, expression, and evolution analysis.
Collapse
|
31
|
Diaz‐Granados A, Sterken MG, Overmars H, Ariaans R, Holterman M, Pokhare SS, Yuan Y, Pomp R, Finkers‐Tomczak A, Roosien J, Slootweg E, Elashry A, Grundler FM, Xiao F, Goverse A, Smant G. The effector GpRbp-1 of Globodera pallida targets a nuclear HECT E3 ubiquitin ligase to modulate gene expression in the host. MOLECULAR PLANT PATHOLOGY 2020; 21:66-82. [PMID: 31756029 PMCID: PMC6913204 DOI: 10.1111/mpp.12880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Plant-parasitic nematodes secrete effectors that manipulate plant cell morphology and physiology to achieve host invasion and establish permanent feeding sites. Effectors from the highly expanded SPRYSEC (SPRY domain with a signal peptide for secretion) family in potato cyst nematodes have been implicated in activation and suppression of plant immunity, but the mechanisms underlying these activities remain largely unexplored. To study the host mechanisms used by SPRYSEC effectors, we identified plant targets of GpRbp-1 from the potato cyst nematode Globodera pallida. Here, we show that GpRbp-1 interacts in yeast and in planta with a functional potato homologue of the Homology to E6-AP C-Terminus (HECT)-type ubiquitin E3 ligase UPL3, which is located in the nucleus. Potato lines lacking StUPL3 are not available, but the Arabidopsis mutant upl3-5 displaying a reduced UPL3 expression showed a consistently small but not significant decrease in susceptibility to cyst nematodes. We observed a major impact on the root transcriptome by the lower levels of AtUPL3 in the upl3-5 mutant, but surprisingly only in association with infections by cyst nematodes. To our knowledge, this is the first example that a HECT-type ubiquitin E3 ligase is targeted by a pathogen effector and that a member of this class of proteins specifically regulates gene expression under biotic stress conditions. Together, our data suggest that GpRbp-1 targets a specific component of the plant ubiquitination machinery to manipulate the stress response in host cells.
Collapse
Affiliation(s)
| | - Mark G. Sterken
- Laboratory of NematologyWageningen University and ResearchWageningenNetherlands
| | - Hein Overmars
- Laboratory of NematologyWageningen University and ResearchWageningenNetherlands
| | - Roel Ariaans
- Laboratory of NematologyWageningen University and ResearchWageningenNetherlands
| | - Martijn Holterman
- Laboratory of NematologyWageningen University and ResearchWageningenNetherlands
| | - Somnath S. Pokhare
- Department of Molecular PhytomedicineUniversity of BonnBonnGermany
- ICAR National Rice Research InstituteCuttack753006India
| | - Yulin Yuan
- Department of Plant SciencesUniversity of IdahoMoscowUSA
| | - Rikus Pomp
- Laboratory of NematologyWageningen University and ResearchWageningenNetherlands
| | - Anna Finkers‐Tomczak
- Laboratory of NematologyWageningen University and ResearchWageningenNetherlands
- KeyGene N.V.WageningenNetherlands
| | - Jan Roosien
- Laboratory of NematologyWageningen University and ResearchWageningenNetherlands
| | - Erik Slootweg
- Laboratory of NematologyWageningen University and ResearchWageningenNetherlands
| | - Abdenaser Elashry
- Department of Molecular PhytomedicineUniversity of BonnBonnGermany
- Strube Research GmbHHauptstrasse 138387SöllingenGermany
| | | | - Fangming Xiao
- Department of Plant SciencesUniversity of IdahoMoscowUSA
| | - Aska Goverse
- Laboratory of NematologyWageningen University and ResearchWageningenNetherlands
| | - Geert Smant
- Laboratory of NematologyWageningen University and ResearchWageningenNetherlands
| |
Collapse
|
32
|
Witasari LD, Huang F, Hoffmann T, Rozhon W, Fry SC, Schwab W. Higher expression of the strawberry xyloglucan endotransglucosylase/hydrolase genes FvXTH9 and FvXTH6 accelerates fruit ripening. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:1237-1253. [PMID: 31454115 PMCID: PMC8653885 DOI: 10.1111/tpj.14512] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 05/04/2023]
Abstract
Fruit softening in Fragaria (strawberry) is proposed to be associated with the modification of cell wall components such as xyloglucan by the action of cell wall-modifying enzymes. This study focuses on the in vitro and in vivo characterization of two recombinant xyloglucan endotransglucosylase/hydrolases (XTHs) from Fragaria vesca, FvXTH9 and FvXTH6. Mining of the publicly available F. vesca genome sequence yielded 28 putative XTH genes. FvXTH9 showed the highest expression level of all FvXTHs in a fruit transcriptome data set and was selected with the closely related FvXTH6 for further analysis. To investigate their role in fruit ripening in more detail, the coding sequences of FvXTH9 and FvXTH6 were cloned into the vector pYES2 and expressed in Saccharomyces cerevisiae. FvXTH9 and FvXTH6 displayed xyloglucan endotransglucosylase (XET) activity towards various acceptor substrates using xyloglucan as the donor substrate. Interestingly, FvXTH9 showed activity of mixed-linkage glucan:xyloglucan endotransglucosylase (MXE) and cellulose:xyloglucan endotransglucosylase (CXE). The optimum pH of both FvXTH9 and FvXTH6 was 6.5. The prediction of subcellular localization suggested localization to the secretory pathway, which was confirmed by localization studies in Nicotiana tabacum. Overexpression showed that Fragaria × ananassa fruits infiltrated with FvXTH9 and FvXTH6 ripened faster and showed decreased firmness compared with the empty vector control pBI121. Thus FvXTH9 and also FvXTH6 might promote strawberry fruit ripening by the modification of cell wall components.
Collapse
Affiliation(s)
- Lucia D. Witasari
- Biotechnology of Natural ProductsTechnische Universität MünchenLiesel‐Beckmann‐Str. 185354FreisingGermany
- Department of Food and Agricultural Product TechnologyFaculty of Agricultural TechnologyUniversitas Gadjah MadaJl. Flora No. 1 – BulaksumurYogyakartaIndonesia
| | - Fong‐Chin Huang
- Biotechnology of Natural ProductsTechnische Universität MünchenLiesel‐Beckmann‐Str. 185354FreisingGermany
| | - Thomas Hoffmann
- Biotechnology of Natural ProductsTechnische Universität MünchenLiesel‐Beckmann‐Str. 185354FreisingGermany
| | - Wilfried Rozhon
- Biotechnology of Horticultural CropsTUM School of Life Sciences WeihenstephanTechnische Universität MünchenLiesel‐Beckmann‐Str. 185354FreisingGermany
| | - Stephen C. Fry
- Edinburgh Cell Wall GroupInstitute of Molecular Plant SciencesThe University of EdinburghDaniel Rutherford BuildingThe King's BuildingsEdinburghEH9 3BFUK
| | - Wilfried Schwab
- Biotechnology of Natural ProductsTechnische Universität MünchenLiesel‐Beckmann‐Str. 185354FreisingGermany
| |
Collapse
|
33
|
Chou KC. Advances in Predicting Subcellular Localization of Multi-label Proteins and its Implication for Developing Multi-target Drugs. Curr Med Chem 2019; 26:4918-4943. [PMID: 31060481 DOI: 10.2174/0929867326666190507082559] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 12/16/2022]
Abstract
The smallest unit of life is a cell, which contains numerous protein molecules. Most
of the functions critical to the cell’s survival are performed by these proteins located in its different
organelles, usually called ‘‘subcellular locations”. Information of subcellular localization
for a protein can provide useful clues about its function. To reveal the intricate pathways at the
cellular level, knowledge of the subcellular localization of proteins in a cell is prerequisite.
Therefore, one of the fundamental goals in molecular cell biology and proteomics is to determine
the subcellular locations of proteins in an entire cell. It is also indispensable for prioritizing
and selecting the right targets for drug development. Unfortunately, it is both timeconsuming
and costly to determine the subcellular locations of proteins purely based on experiments.
With the avalanche of protein sequences generated in the post-genomic age, it is highly
desired to develop computational methods for rapidly and effectively identifying the subcellular
locations of uncharacterized proteins based on their sequences information alone. Actually,
considerable progresses have been achieved in this regard. This review is focused on those
methods, which have the capacity to deal with multi-label proteins that may simultaneously
exist in two or more subcellular location sites. Protein molecules with this kind of characteristic
are vitally important for finding multi-target drugs, a current hot trend in drug development.
Focused in this review are also those methods that have use-friendly web-servers established so
that the majority of experimental scientists can use them to get the desired results without the
need to go through the detailed mathematics involved.
Collapse
Affiliation(s)
- Kuo-Chen Chou
- Gordon Life Science Institute, Boston, MA 02478, United States
| |
Collapse
|
34
|
Abstract
The smallest unit of life is a cell, which contains numerous protein molecules. Most
of the functions critical to the cell’s survival are performed by these proteins located in its different
organelles, usually called ‘‘subcellular locations”. Information of subcellular localization
for a protein can provide useful clues about its function. To reveal the intricate pathways at the
cellular level, knowledge of the subcellular localization of proteins in a cell is prerequisite.
Therefore, one of the fundamental goals in molecular cell biology and proteomics is to determine
the subcellular locations of proteins in an entire cell. It is also indispensable for prioritizing
and selecting the right targets for drug development. Unfortunately, it is both timeconsuming
and costly to determine the subcellular locations of proteins purely based on experiments.
With the avalanche of protein sequences generated in the post-genomic age, it is highly
desired to develop computational methods for rapidly and effectively identifying the subcellular
locations of uncharacterized proteins based on their sequences information alone. Actually,
considerable progresses have been achieved in this regard. This review is focused on those
methods, which have the capacity to deal with multi-label proteins that may simultaneously
exist in two or more subcellular location sites. Protein molecules with this kind of characteristic
are vitally important for finding multi-target drugs, a current hot trend in drug development.
Focused in this review are also those methods that have use-friendly web-servers established so
that the majority of experimental scientists can use them to get the desired results without the
need to go through the detailed mathematics involved.
Collapse
Affiliation(s)
- Kuo-Chen Chou
- Gordon Life Science Institute, Boston, MA 02478, United States
| |
Collapse
|
35
|
Chhajed S, Misra BB, Tello N, Chen S. Chemodiversity of the Glucosinolate-Myrosinase System at the Single Cell Type Resolution. FRONTIERS IN PLANT SCIENCE 2019; 10:618. [PMID: 31164896 PMCID: PMC6536577 DOI: 10.3389/fpls.2019.00618] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/25/2019] [Indexed: 05/08/2023]
Abstract
Glucosinolates (GLSs) are a well-defined group of specialized metabolites, and like any other plant specialized metabolites, their presence does not directly affect the plant survival in terms of growth and development. However, specialized metabolites are essential to combat environmental stresses, such as pathogens and herbivores. GLSs naturally occur in many pungent plants in the order of Brassicales. To date, more than 200 different GLS structures have been characterized and their distribution differs from species to species. GLSs co-exist with classical and atypical myrosinases, which can hydrolyze GLS into an unstable aglycone thiohydroximate-O-sulfonate, which rearranges to produce different degradation products. GLSs, myrosinases, myrosinase interacting proteins, and GLS degradation products constitute the GLS-myrosinase (GM) system ("mustard oil bomb"). This review discusses the cellular and subcellular organization of the GM system, its chemodiversity, and functions in different cell types. Although there are many studies on the functions of GLSs and/or myrosinases at the tissue and whole plant levels, very few studies have focused on different single cell types. Single cell type studies will help to reveal specific functions that are missed at the tissue and organismal level. This review aims to highlight (1) recent progress in cellular and subcellular compartmentation of GLSs, myrosinases, and myrosinase interacting proteins; (2) molecular and biochemical diversity of GLSs and myrosinases; and (3) myrosinase interaction with its interacting proteins, and how it regulates the degradation of GLSs and thus the biological functions (e.g., plant defense against pathogens). Future prospects may include targeted approaches for engineering/breeding of plants and crops in the cell type-specific manner toward enhanced plant defense and nutrition.
Collapse
Affiliation(s)
- Shweta Chhajed
- Department of Biology, University of Florida, Gainesville, FL, United States
- Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Biswapriya B. Misra
- Department of Biology, University of Florida, Gainesville, FL, United States
- Section on Molecular Medicine, Department of Internal Medicine, Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Nathalia Tello
- Department of Biology, University of Florida, Gainesville, FL, United States
- Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Sixue Chen
- Department of Biology, University of Florida, Gainesville, FL, United States
- Genetics Institute, University of Florida, Gainesville, FL, United States
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL, United States
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, United States
- *Correspondence: Sixue Chen,
| |
Collapse
|
36
|
Qiu WR, Sun BQ, Xiao X, Xu ZC, Jia JH, Chou KC. iKcr-PseEns: Identify lysine crotonylation sites in histone proteins with pseudo components and ensemble classifier. Genomics 2018; 110:239-246. [DOI: 10.1016/j.ygeno.2017.10.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 10/23/2017] [Accepted: 10/25/2017] [Indexed: 01/23/2023]
|
37
|
Mirzaei Mehrabad E, Hassanzadeh R, Eslahchi C. PMLPR: A novel method for predicting subcellular localization based on recommender systems. Sci Rep 2018; 8:12006. [PMID: 30104743 PMCID: PMC6089892 DOI: 10.1038/s41598-018-30394-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 07/30/2018] [Indexed: 12/16/2022] Open
Abstract
The importance of protein subcellular localization problem is due to the importance of protein's functions in different cell parts. Moreover, prediction of subcellular locations helps to identify the potential molecular targets for drugs and has an important role in genome annotation. Most of the existing prediction methods assign only one location for each protein. But, since some proteins move between different subcellular locations, they can have multiple locations. In recent years, some multiple location predictors have been introduced. However, their performances are not accurate enough and there is much room for improvement. In this paper, we introduced a method, PMLPR, to predict locations for a protein. PMLPR predicts a list of locations for each protein based on recommender systems and it can properly overcome the multiple location prediction problem. For evaluating the performance of PMLPR, we considered six datasets RAT, FLY, HUMAN, Du et al., DBMLoc and Höglund. The performance of this algorithm is compared with six state-of-the-art algorithms, YLoc, WOLF-PSORT, prediction channel, MDLoc, Du et al. and MultiLoc2-HighRes. The results indicate that our proposed method is significantly superior on RAT and Fly proteins, and decent on HUMAN proteins. Moreover, on the datasets introduced by Du et al., DBMLoc and Höglund, PMLPR has comparable results. For the case study, we applied the algorithms on 8 proteins which are important in cancer research. The results of comparison with other methods indicate the efficiency of PMLPR.
Collapse
Affiliation(s)
- Elnaz Mirzaei Mehrabad
- Department of Computer Science, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran
| | - Reza Hassanzadeh
- Department of Engineering Sciences, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran
- Department of Bioinformatics, Faculty of Computer Engineering and Information Technology, Sabalan University of Advanced Technologies (SUAT), Namin, Iran
| | - Changiz Eslahchi
- Department of Computer Science, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran.
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| |
Collapse
|
38
|
Wu L, Zhang X, Xu B, Li Y, Jia L, Wang R, Ren X, Wang G, Xia Q. Identification and expression analysis of EDR1-like genes in tobacco ( Nicotiana tabacum) in response to Golovinomyces orontii. PeerJ 2018; 6:e5244. [PMID: 30018863 PMCID: PMC6044316 DOI: 10.7717/peerj.5244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 06/26/2018] [Indexed: 01/15/2023] Open
Abstract
ENHANCED DISEASE RESISTANCE1 (EDR1) encodes a Raf-like mitogen-activated protein kinase, and it acts as a negative regulator of disease resistance and ethylene-induced senescence. Mutations in the EDR1 gene can enhance resistance to powdery mildew both in monocotyledonous and dicotyledonous plants. However, little is known about EDR1-like gene members from a genome-wide perspective in plants. In this study, the tobacco (Nicotiana tabacum)EDR1-like gene family was first systematically analyzed. We identified 19 EDR1-like genes in tobacco, and compared them to those from Arabidopsis, tomato and rice. Phylogenetic analyses divided the EDR1-like gene family into six clades, among them monocot and dicot plants were respectively divided into two sub-clades. NtEDR1-1A and NtEDR1-1B were classified into clade I in which the other members have been reported to negatively regulate plant resistance to powdery mildew. The expression patterns of tobacco EDR1-like genes were analyzed after plants were challenged by Golovinomyces orontii, and showed that several other EDR1-like genes were induced after infection, as well as NtEDR1-1A and NtEDR1-1B. Expression analysis showed that NtEDR1-13 and NtEDR1-16 had exclusively abundant expression patterns in roots and leaves, respectively, and the remaining NtEDR1-like members were actively expressed in most of the tissue/organ samples investigated. Our findings will contribute to further study of the physiological functions of EDR1-like genes in tobacco.
Collapse
Affiliation(s)
- Lei Wu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Xiaoying Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Bingxin Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yueyue Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Ling Jia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Rengang Wang
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Xueliang Ren
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Genhong Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| |
Collapse
|
39
|
Wan S, Duan Y, Zou Q. HPSLPred: An Ensemble Multi-Label Classifier for Human Protein Subcellular Location Prediction with Imbalanced Source. Proteomics 2017; 17. [PMID: 28776938 DOI: 10.1002/pmic.201700262] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/19/2017] [Indexed: 11/11/2022]
Abstract
Predicting the subcellular localization of proteins is an important and challenging problem. Traditional experimental approaches are often expensive and time-consuming. Consequently, a growing number of research efforts employ a series of machine learning approaches to predict the subcellular location of proteins. There are two main challenges among the state-of-the-art prediction methods. First, most of the existing techniques are designed to deal with multi-class rather than multi-label classification, which ignores connections between multiple labels. In reality, multiple locations of particular proteins imply that there are vital and unique biological significances that deserve special focus and cannot be ignored. Second, techniques for handling imbalanced data in multi-label classification problems are necessary, but never employed. For solving these two issues, we have developed an ensemble multi-label classifier called HPSLPred, which can be applied for multi-label classification with an imbalanced protein source. For convenience, a user-friendly webserver has been established at http://server.malab.cn/HPSLPred.
Collapse
Affiliation(s)
- Shixiang Wan
- School of Computer Science and Technology, Tianjin University, Tianjin, P. R. China
| | - Yucong Duan
- State Key Laboratory of Marine Resource Utilization in the South China Sea, College of Information and Technology, Hainan University, Haikou, Hainan, P. R. China
| | - Quan Zou
- School of Computer Science and Technology, Tianjin University, Tianjin, P. R. China
| |
Collapse
|
40
|
ScMED7, a sugarcane mediator subunit gene, acts as a regulator of plant immunity and is responsive to diverse stress and hormone treatments. Mol Genet Genomics 2017; 292:1363-1375. [DOI: 10.1007/s00438-017-1352-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 07/27/2017] [Indexed: 10/19/2022]
|
41
|
Liu B, Yang F, Chou KC. 2L-piRNA: A Two-Layer Ensemble Classifier for Identifying Piwi-Interacting RNAs and Their Function. MOLECULAR THERAPY-NUCLEIC ACIDS 2017. [PMID: 28624202 PMCID: PMC5415553 DOI: 10.1016/j.omtn.2017.04.008] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Involved with important cellular or gene functions and implicated with many kinds of cancers, piRNAs, or piwi-interacting RNAs, are of small non-coding RNA with around 19–33 nt in length. Given a small non-coding RNA molecule, can we predict whether it is of piRNA according to its sequence information alone? Furthermore, there are two types of piRNA: one has the function of instructing target mRNA deadenylation, and the other does not. Can we discriminate one from the other? With the avalanche of RNA sequences emerging in the postgenomic age, it is urgent to address the two problems for both basic research and drug development. Unfortunately, to the best of our knowledge, so far no computational methods whatsoever could be used to deal with the second problem, let alone deal with the two problems together. Here, by incorporating the physicochemical properties of nucleotides into the pseudo K-tuple nucleotide composition (PseKNC), we proposed a powerful predictor called 2L-piRNA. It is a two-layer ensemble classifier, in which the first layer is for identifying whether a query RNA molecule is piRNA or non-piRNA, and the second layer for identifying whether a piRNA is with or without the function of instructing target mRNA deadenylation. Rigorous cross-validations have indicated that the success rates achieved by the proposed predictor are quite high. For the convenience of most biologists and drug development scientists, the web server for 2L-piRNA has been established at http://bioinformatics.hitsz.edu.cn/2L-piRNA/, by which users can easily get their desired results without the need to go through the mathematical details.
Collapse
Affiliation(s)
- Bin Liu
- School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, Guangdong 518055, China; Key Laboratory of Network Oriented Intelligent Computation, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, Guangdong 518055, China; Gordon Life Science Institute, Belmont, MA 02478, USA.
| | - Fan Yang
- School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
| | - Kuo-Chen Chou
- Gordon Life Science Institute, Belmont, MA 02478, USA; Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China; Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
42
|
Cheng X, Zhao SG, Xiao X, Chou KC. iATC-mHyb: a hybrid multi-label classifier for predicting the classification of anatomical therapeutic chemicals. Oncotarget 2017; 8:58494-58503. [PMID: 28938573 PMCID: PMC5601669 DOI: 10.18632/oncotarget.17028] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/28/2017] [Indexed: 01/18/2023] Open
Abstract
Recommended by the World Health Organization (WHO), drug compounds have been classified into 14 main ATC (Anatomical Therapeutic Chemical) classes according to their therapeutic and chemical characteristics. Given an uncharacterized compound, can we develop a computational method to fast identify which ATC class or classes it belongs to? The information thus obtained will timely help adjusting our focus and selection, significantly speeding up the drug development process. But this problem is by no means an easy one since some drug compounds may belong to two or more than two ATC classes. To address this problem, using the DO (Drug Ontology) approach based on the ChEBI (Chemical Entities of Biological Interest) database, we developed a predictor called iATC-mDO. Subsequently, hybridizing it with an existing drug ATC classifier, we constructed a predictor called iATC-mHyb. It has been demonstrated by the rigorous cross-validation and from five different measuring angles that iATC-mHyb is remarkably superior to the best existing predictor in identifying the ATC classes for drug compounds. To convenience most experimental scientists, a user-friendly web-server for iATC-mHyd has been established at http://www.jci-bioinfo.cn/iATC-mHyb, by which users can easily get their desired results without the need to go through the complicated mathematical equations involved.
Collapse
Affiliation(s)
- Xiang Cheng
- College of Information Science and Technology, Donghua University, Shanghai 201620, China.,Computer Department, Jingdezhen Ceramic Institute, Jingdezhen 333001, China
| | - Shu-Guang Zhao
- College of Information Science and Technology, Donghua University, Shanghai 201620, China
| | - Xuan Xiao
- Computer Department, Jingdezhen Ceramic Institute, Jingdezhen 333001, China.,Gordon Life Science Institute, Boston, MA 02478, USA
| | - Kuo-Chen Chou
- Gordon Life Science Institute, Boston, MA 02478, USA.,Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.,Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
43
|
Meisrimler CN, Wienkoop S, Lüthje S. Proteomic Profiling of the Microsomal Root Fraction: Discrimination of Pisum sativum L. Cultivars and Identification of Putative Root Growth Markers. Proteomes 2017; 5:proteomes5010008. [PMID: 28257117 PMCID: PMC5372229 DOI: 10.3390/proteomes5010008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 12/04/2022] Open
Abstract
Legumes are a large and economically important family, containing a variety of crop plants. Alongside different cereals, some fruits, and tropical roots, a number of leguminosae evolved for millennia as crops with human society. One of these legumes is Pisum sativum L., the common garden pea. In the past, breeding has been largely selective on improved above-ground organs. However, parameters, such as root-growth, which determines acquisition of nutrients and water, have largely been underestimated. Although the genome of P. sativum is still not fully sequenced, multiple proteomic studies have been published on a variety of physiological aspects in the last years. The presented work focused on the connection between root length and the influence of the microsomal root proteome of four different pea cultivars after five days of germination (cultivar Vroege, Girl from the Rhineland, Kelvedon Wonder, and Blauwschokker). In total, 60 proteins were identified to have significantly differential abundances in the four cultivars. Root growth of five-days old seedlings and their microsomal proteome revealed a similar separation pattern, suggesting that cultivar-specific root growth performance is explained by differential membrane and ribosomal protein levels. Hence, we reveal and discuss several putative root growth protein markers possibly playing a key role for improved primary root growth breeding strategies.
Collapse
Affiliation(s)
- Claudia-Nicole Meisrimler
- Oxidative Stress and Plant Proteomics Group, Biocenter Klein Flottbek and Botanical Garden, University of Hamburg, Ohnhorststraße 18, D-22609 Hamburg, Germany.
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | - Stefanie Wienkoop
- Deptartment of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria.
| | - Sabine Lüthje
- Oxidative Stress and Plant Proteomics Group, Biocenter Klein Flottbek and Botanical Garden, University of Hamburg, Ohnhorststraße 18, D-22609 Hamburg, Germany.
| |
Collapse
|
44
|
Muthu Krishnan S. Classify vertebrate hemoglobin proteins by incorporating the evolutionary information into the general PseAAC with the hybrid approach. J Theor Biol 2016; 409:27-37. [PMID: 27575465 DOI: 10.1016/j.jtbi.2016.08.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/11/2016] [Accepted: 08/16/2016] [Indexed: 01/26/2023]
Abstract
Hemoglobin is an oxygen-binding protein widely present in all kingdoms of life from prokaryotic to eukaryotic, but well established in the vertebrate system. An attempt was made to determine the Vertebrate hemoglobin (VerHb) protein on their animal classifications, based on general pseudo amino acid composition (PseAAC)'s evolutionary profiles and hybrid approach. The support vector machine (SVM) has been applied to develop all models, the prediction results further compared according to their animal classification. The performance of the approaches estimated using five-fold cross-validation techniques. The prediction performance was further investigated by receiver operating characteristic (ROC) and prediction score graphs. The prediction accuracy (ACC), sensitivity (SN) and specificity (SP) were examined to find the accurate predictions on the threshold level. Based on the approach, a web-tool has been developed for identifying the VerHb proteins.
Collapse
Affiliation(s)
- S Muthu Krishnan
- CSIR - Institute of Microbial Technology (IMTECH), Sector-39A, Chandigarh, India.
| |
Collapse
|
45
|
Yin X, Komatsu S. Nuclear Proteomics Reveals the Role of Protein Synthesis and Chromatin Structure in Root Tip of Soybean during the Initial Stage of Flooding Stress. J Proteome Res 2016; 15:2283-98. [PMID: 27291164 DOI: 10.1021/acs.jproteome.6b00330] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To identify the upstream events controlling the regulation of flooding-responsive proteins in soybean, proteomic analysis of nuclear proteins in root tip was performed. By using nuclear fractions, which were highly enriched, a total of 365 nuclear proteins were changed in soybean root tip at initial stage of flooding stress. Four exon-junction complex-related proteins and NOP1/NOP56, which function in upstream of 60S preribosome biogenesis, were decreased in flooded soybean. Furthermore, proteomic analysis of crude protein extract revealed that the protein translation was suppressed by continuous flooding stress. Seventeen chromatin structure-related nuclear proteins were decreased in response to flooding stress. Out of them, histone H3 was clearly decreased with protein abundance and mRNA expression levels at the initial flooding stress. Additionally, a number of protein synthesis-, RNA-, and DNA-related nuclear proteins were decreased in a time-dependent manner. mRNA expressions of genes encoding the significantly changed flooding-responsive nuclear proteins were inhibited by the transcriptional inhibitor, actinomycin D. These results suggest that protein translation is suppressed through inhibition of preribosome biogenesis- and mRNA processing-related proteins in nuclei of soybean root tip at initial flooding stress. In addition, flooding stress may regulate histone variants with gene expression in root tip.
Collapse
Affiliation(s)
- Xiaojian Yin
- Graduate School of Life and Environmental Sciences, University of Tsukuba , Tsukuba 305-8572, Japan
- National Institute of Crop Science, National Agriculture and Food Research Organization , Tsukuba 305-8518, Japan
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Sciences, University of Tsukuba , Tsukuba 305-8572, Japan
- National Institute of Crop Science, National Agriculture and Food Research Organization , Tsukuba 305-8518, Japan
| |
Collapse
|
46
|
Guo X, Liu F, Ju Y, Wang Z, Wang C. Human Protein Subcellular Localization with Integrated Source and Multi-label Ensemble Classifier. Sci Rep 2016; 6:28087. [PMID: 27323846 PMCID: PMC4914962 DOI: 10.1038/srep28087] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/26/2016] [Indexed: 12/23/2022] Open
Abstract
Predicting protein subcellular location is necessary for understanding cell function. Several machine learning methods have been developed for computational prediction of primary protein sequences because wet experiments are costly and time consuming. However, two problems still exist in state-of-the-art methods. First, several proteins appear in different subcellular structures simultaneously, whereas current methods only predict one protein sequence in one subcellular structure. Second, most software tools are trained with obsolete data and the latest new databases are missed. We proposed a novel multi-label classification algorithm to solve the first problem and integrated several latest databases to improve prediction performance. Experiments proved the effectiveness of the proposed method. The present study would facilitate research on cellular proteomics.
Collapse
Affiliation(s)
- Xiaotong Guo
- School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing, China
| | - Fulin Liu
- School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing, China
| | - Ying Ju
- School of Information Science and Technology, Xiamen University, Xiamen, China
| | - Zhen Wang
- School of Information Science and Technology, Xiamen University, Xiamen, China
| | - Chunyu Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
47
|
Azizi P, Rafii MY, Abdullah SNA, Hanafi MM, Maziah M, Sahebi M, Ashkani S, Taheri S, Jahromi MF. Over-Expression of the Pikh Gene with a CaMV 35S Promoter Leads to Improved Blast Disease (Magnaporthe oryzae) Tolerance in Rice. FRONTIERS IN PLANT SCIENCE 2016; 7:773. [PMID: 27379107 PMCID: PMC4911359 DOI: 10.3389/fpls.2016.00773] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 05/17/2016] [Indexed: 05/04/2023]
Abstract
Magnaporthe oryzae is a rice blast fungus and plant pathogen that causes a serious rice disease and, therefore, poses a threat to the world's second most important food security crop. Plant transformation technology has become an adaptable system for cultivar improvement and to functionally analyze genes in plants. The objective of this study was to determine the effects (through over-expressing and using the CaMV 35S promoter) of Pikh on MR219 resistance because it is a rice variety that is susceptible to the blast fungus pathotype P7.2. Thus, a full DNA and coding DNA sequence (CDS) of the Pikh gene, 3172 bp, and 1206 bp in length, were obtained through amplifying the gDNA and cDNA template from a PH9-resistant rice variety using a specific primer. Agrobacterium-mediated transformation technology was also used to introduce the Pikh gene into the MR219 callus. Subsequently, transgenic plants were evaluated from the DNA to protein stages using polymerase chain reaction (PCR), semi-quantitative RT-PCR, real-time quantitative PCR and high performance liquid chromatography (HPLC). Transgenic plants were also compared with a control using a real-time quantification technique (to quantify the pathogen population), and transgenic and control plants were challenged with the local most virulent M. oryzae pathotype, P7.2. Based on the results, the Pikh gene encodes a hydrophilic protein with 18 sheets, 4 helixes, and 21 coils. This protein contains 401 amino acids, among which the amino acid sequence from 1 to 376 is a non-cytoplasmic region, that from 377 to 397 is a transmembrane region, and that from 398 to 401 is a cytoplasmic region with no identified disordered regions. The Pikh gene was up-regulated in the transgenic plants compared with the control plants. The quantity of the amino acid leucine in the transgenic rice plants increased significantly from 17.131 in the wild-type to 47.865 mg g(-1) in transgenic plants. The M. oryzae population was constant at 31, 48, and 72 h after inoculation in transgenic plants, while it was increased in the inoculated control plants. This study successfully clarified that over-expression of the Pikh gene in transgenic plants can improve their blast resistance against the M. oryzae pathotype P7.2.
Collapse
Affiliation(s)
- Parisa Azizi
- Laboratory of Food Crops, Institute of Tropical Agriculture, Universiti Putra MalaysiaSerdang, Malaysia
| | - Mohd Y. Rafii
- Laboratory of Food Crops, Institute of Tropical Agriculture, Universiti Putra MalaysiaSerdang, Malaysia
| | - Siti N. A. Abdullah
- Laboratory of Plantation Crop, Institute of Tropical Agriculture, Universiti Putra MalaysiaSerdang, Malaysia
| | - Mohamed M. Hanafi
- Laboratory of Plantation Crop, Institute of Tropical Agriculture, Universiti Putra MalaysiaSerdang, Malaysia
| | - M. Maziah
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra MalaysiaSerdang, Malaysia
| | - Mahbod Sahebi
- Laboratory of Plantation Crop, Institute of Tropical Agriculture, Universiti Putra MalaysiaSerdang, Malaysia
| | - Sadegh Ashkani
- Laboratory of Food Crops, Institute of Tropical Agriculture, Universiti Putra MalaysiaSerdang, Malaysia
- Department of Agronomy and Plant Breeding, Shahr-e-Rey Branch, Islamic Azad UniversityTehran, Iran
| | - Sima Taheri
- Depatment of Crop Science, Faculty of Agriculture, Universiti Putra MalaysiaSerdang, Malaysia
| | - Mohammad F. Jahromi
- Laboratory of animal production, Institute of Tropical Agriculture, Universiti Putra MalaysiaSerdang, Malaysia
| |
Collapse
|
48
|
Chinpongpanich A, Phean-O-Pas S, Thongchuang M, Qu LJ, Buaboocha T. C-terminal extension of calmodulin-like 3 protein from Oryza sativa L.: interaction with a high mobility group target protein. Acta Biochim Biophys Sin (Shanghai) 2015; 47:880-9. [PMID: 26423116 DOI: 10.1093/abbs/gmv097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/28/2015] [Indexed: 11/14/2022] Open
Abstract
A large number of calmodulin-like (CML) proteins are present in plants, but there is little detailed information on the functions of these proteins in rice (Oryza sativa L.). Here, the CML3 protein from rice (OsCML3) and its truncated form lacking the C-terminal extension (OsCML3m) were found to exhibit a Ca2+-binding property and subsequent conformational change, but the ability to bind the CaM kinase II peptide was only observed for OsCML3m. Changes in their secondary structure upon Ca2+-binding measured by circular dichroism revealed that OsCML3m had a higher helical content than OsCML3. Moreover, OsCML3 was mainly localized in the plasma membrane, whereas OsCML3m was found in the nucleus. The rice high mobility group B1 (OsHMGB1) protein was identified as one of the putative OsCML3 target proteins. Bimolecular fluorescence complementation analysis revealed that OsHMGB1 bound OsCML3, OsCML3m or OsCML3s (cysteine to serine mutation at the prenylation site) in the nucleus presumably through the methionine and phenylalanine-rich hydrophobic patches, confirming that OsHMGB1 is a target protein in planta. The effect of OsCML3 or OsCML3m on the DNA-binding ability of OsHMGB1 was measured using an electrophoretic mobility shift assay. OsCML3m decreased the level of OsHMGB1 binding to pUC19 double-stranded DNA whereas OsCML3 did not. Taken together, OsCML3 probably provides a mechanism for manipulating the DNA-binding ability of OsHMGB1 in the nucleus and its C-terminal extension provides an intracellular Ca2+ regulatory switch.
Collapse
Affiliation(s)
- Aumnart Chinpongpanich
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Srivilai Phean-O-Pas
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Mayura Thongchuang
- Division of Food Safety Management and Technology, Department of Science, Faculty of Science and Technology, Rajamangala University of Technology Krungthep, Bangkok 10120, Thailand
| | - Li-Jia Qu
- National Laboratory for Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China National Plant Gene Research Center (Beijing), Beijing 100101, China
| | - Teerapong Buaboocha
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
49
|
Georgiou DN, Karakasidis TE, Megaritis AC, Nieto JJ, Torres A. An extension of fuzzy topological approach for comparison of genetic sequences. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2015. [DOI: 10.3233/ifs-151701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- DN Georgiou
- Department of Mathematics, University of Patras, Patras, Greece
| | - TE Karakasidis
- Department of Civil Engineering, University of Thessaly, Volos, Greece
| | - AC Megaritis
- Technological Educational Institute of Western Greece, Department of Accounting and Finance, Messolonghi, Greece
| | - Juan J. Nieto
- Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Santiago de Compostela, Spain
| | - A Torres
- Departamento de Psiquiatría Radiología y Salud Pública, Facultad de Medicina, Universidad de Santiago de Compostela, Spain
| |
Collapse
|
50
|
Zhu X, Liang S, Yin J, Yuan C, Wang J, Li W, He M, Wang J, Chen W, Ma B, Wang Y, Qin P, Li S, Chen X. The DnaJ OsDjA7/8 is essential for chloroplast development in rice (Oryza sativa). Gene 2015. [PMID: 26210810 DOI: 10.1016/j.gene.2015.07.067] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
DnaJ proteins belong to chaperones of Hsp40 family that ubiquitously participate in various cellular processes. Previous studies have shown chloroplast-targeted DnaJs are involved in the development of chloroplast in some plant species. However, little is known about the function of DnaJs in rice, one of the main staple crops. In this study, we characterized a type I DnaJ protein OsDjA7/8. We found that the gene OsDjA7/8 was expressed in all collected tissues, with a priority in the vigorous growth leaf. Subcellular localization revealed that the protein OsDjA7/8 was mainly distributed in chloroplast. Reduced expression of OsDjA7/8 in rice led to albino lethal at the seedling stage. Transmission electron microscopy observation showed that the chloroplast structures were abnormally developed in the plants silenced for OsDjA7/8. In addition, the transcriptional expression of the genes tightly associated with the development of chloroplast was deeply reduced in the plants silenced for OsDjA7/8. Collectively, our study reveals that OsDjA7/8 encodes a chloroplast-localized protein and is essential for chloroplast development and differentiation in rice.
Collapse
Affiliation(s)
- Xiaobo Zhu
- Rice Research Institute, Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; State Key Laboratory of Hybrid Rice, Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin at Sichuan, Chengdu 611130, China
| | - Sihui Liang
- Rice Research Institute, Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; State Key Laboratory of Hybrid Rice, Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin at Sichuan, Chengdu 611130, China
| | - Junjie Yin
- Rice Research Institute, Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; State Key Laboratory of Hybrid Rice, Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin at Sichuan, Chengdu 611130, China
| | - Can Yuan
- Rice Research Institute, Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; State Key Laboratory of Hybrid Rice, Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin at Sichuan, Chengdu 611130, China
| | - Jing Wang
- Rice Research Institute, Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; State Key Laboratory of Hybrid Rice, Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin at Sichuan, Chengdu 611130, China
| | - Weitao Li
- Rice Research Institute, Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; State Key Laboratory of Hybrid Rice, Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin at Sichuan, Chengdu 611130, China
| | - Min He
- Rice Research Institute, Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; State Key Laboratory of Hybrid Rice, Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin at Sichuan, Chengdu 611130, China
| | - Jichun Wang
- Rice Research Institute, Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; State Key Laboratory of Hybrid Rice, Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin at Sichuan, Chengdu 611130, China
| | - Weilan Chen
- Rice Research Institute, Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; State Key Laboratory of Hybrid Rice, Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin at Sichuan, Chengdu 611130, China
| | - Bingtian Ma
- Rice Research Institute, Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; State Key Laboratory of Hybrid Rice, Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin at Sichuan, Chengdu 611130, China
| | - Yuping Wang
- Rice Research Institute, Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; State Key Laboratory of Hybrid Rice, Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin at Sichuan, Chengdu 611130, China
| | - Peng Qin
- Rice Research Institute, Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; State Key Laboratory of Hybrid Rice, Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin at Sichuan, Chengdu 611130, China
| | - Shigui Li
- Rice Research Institute, Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; State Key Laboratory of Hybrid Rice, Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin at Sichuan, Chengdu 611130, China
| | - Xuewei Chen
- Rice Research Institute, Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; State Key Laboratory of Hybrid Rice, Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin at Sichuan, Chengdu 611130, China.
| |
Collapse
|