1
|
Shiraishi T, Sato K. Real-time imaging of intracellular deformation dynamics in vibrated adherent cell cultures. Biotechnol Bioeng 2024; 121:3034-3046. [PMID: 38961714 DOI: 10.1002/bit.28793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024]
Abstract
Mechanical vibration has been shown to regulate cell proliferation and differentiation in vitro and in vivo. However, the mechanism of its cellular mechanotransduction remains unclear. Although the measurement of intracellular deformation dynamics under mechanical vibration could reveal more detailed mechanisms, corroborating experimental evidence is lacking due to technical difficulties. In this study, we aimed to propose a real-time imaging method of intracellular structure deformation dynamics in vibrated adherent cell cultures and investigate whether organelles such as actin filaments connected to a nucleus and the nucleus itself show deformation under horizontal mechanical vibration. The proposed real-time imaging was achieved by conducting vibration isolation and making design improvements to the experimental setup; using a high-speed and high-sensitivity camera with a global shutter; and reducing image blur using a stroboscope technique. Using our system, we successfully produced the first experimental report on the existence of the deformation of organelles connected to a nucleus and the nucleus itself under horizontal mechanical vibration. Furthermore, the intracellular deformation difference between HeLa and MC3T3-E1 cells measured under horizontal mechanical vibration agrees with the prediction of their intracellular structure based on the mechanical vibration theory. These results provide new findings about the cellular mechanotransduction mechanism under mechanical vibration.
Collapse
Affiliation(s)
- Toshihiko Shiraishi
- Division of Artificial Environment and Information, Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama, Japan
| | - Katsuya Sato
- Division of Artificial Environment and Information, Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama, Japan
| |
Collapse
|
2
|
Mou K, Chan SMH, Vlahos R. Musculoskeletal crosstalk in chronic obstructive pulmonary disease and comorbidities: Emerging roles and therapeutic potentials. Pharmacol Ther 2024; 257:108635. [PMID: 38508342 DOI: 10.1016/j.pharmthera.2024.108635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/13/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a multifaceted respiratory disorder characterized by progressive airflow limitation and systemic implications. It has become increasingly apparent that COPD exerts its influence far beyond the respiratory system, extending its impact to various organ systems. Among these, the musculoskeletal system emerges as a central player in both the pathogenesis and management of COPD and its associated comorbidities. Muscle dysfunction and osteoporosis are prevalent musculoskeletal disorders in COPD patients, leading to a substantial decline in exercise capacity and overall health. These manifestations are influenced by systemic inflammation, oxidative stress, and hormonal imbalances, all hallmarks of COPD. Recent research has uncovered an intricate interplay between COPD and musculoskeletal comorbidities, suggesting that muscle and bone tissues may cross-communicate through the release of signalling molecules, known as "myokines" and "osteokines". We explored this dynamic relationship, with a particular focus on the role of the immune system in mediating the cross-communication between muscle and bone in COPD. Moreover, we delved into existing and emerging therapeutic strategies for managing musculoskeletal disorders in COPD. It underscores the development of personalized treatment approaches that target both the respiratory and musculoskeletal aspects of COPD, offering the promise of improved well-being and quality of life for individuals grappling with this complex condition. This comprehensive review underscores the significance of recognizing the profound impact of COPD on the musculoskeletal system and its comorbidities. By unravelling the intricate connections between these systems and exploring innovative treatment avenues, we can aspire to enhance the overall care and outcomes for COPD patients, ultimately offering hope for improved health and well-being.
Collapse
Affiliation(s)
- Kevin Mou
- Centre for Respiratory Science and Health, School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Stanley M H Chan
- Centre for Respiratory Science and Health, School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Ross Vlahos
- Centre for Respiratory Science and Health, School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia.
| |
Collapse
|
3
|
Adamopoulos KI, Sanders LM, Costes SV. NASA GeneLab derived microarray studies of Mus musculus and Homo sapiens organisms in altered gravitational conditions. NPJ Microgravity 2024; 10:49. [PMID: 38671027 PMCID: PMC11053165 DOI: 10.1038/s41526-024-00392-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
One of the greatest challenges of humanity for deep space exploration is to fully understand how altered gravitational conditions affect human physiology. It is evident that the spaceflight environment causes multiple alterations to musculoskeletal, cardiovascular, immune and central nervous systems, to name a few known effects. To better characterize these biological effects, we compare gene expression datasets from microarray studies found in NASA GeneLab, part of the NASA Open Science Data Repository. In this review, we summarize these archived results for various tissues, emphasizing key genes which are highly reproducible in different mice or human experiments. Such exhaustive mining shows the potential of NASA Open Science data to identify and validate mechanisms taking place when mammalian organisms are exposed to microgravity or other spaceflight conditions. Our comparative meta-analysis findings highlight certain degrees of overlap and reproducibility in genes identified as differentially expressed within musculoskeletal tissues in each species across a variety of altered gravity conditions. However, the level of overlap between species was found to be significantly limited, partly attributed to the limited availability of human samples.
Collapse
Affiliation(s)
- Konstantinos I Adamopoulos
- National Technical University of Athens, School of Electrical and Computer Engineering, Biomedical Engineering Laboratory, Zografou, Athens, Greece
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Lauren M Sanders
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
- NASA Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Sylvain V Costes
- NASA Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA.
| |
Collapse
|
4
|
Cappariello A, Muraca M, Teti A, Rucci N. Circulating Extracellular Vesicles Express Receptor Activator of Nuclear Factor κB Ligand and Other Molecules Informative of the Bone Metabolic Status of Mouse Models of Experimentally Induced Osteoporosis. Calcif Tissue Int 2023; 112:74-91. [PMID: 36282293 PMCID: PMC9813163 DOI: 10.1007/s00223-022-01032-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/11/2022] [Indexed: 01/09/2023]
Abstract
Extracellular vesicles (EVs) are potent means of cell-to-cell communication. They are released in biological fluids, including blood, urine, and saliva, and can be exploited to identify new biomarkers of diseases. We hypothesized that EVs contain molecular cargos involved in bone metabolism, possibly mirroring biological differences between postmenopausal and disuse osteoporosis. We tested this hypothesis in primary murine osteoblasts subjected to steroid depletion or to unloading, and in the serum of animal models of osteoporosis induced by ovariectomy or hindlimb tail suspension. EVs were isolated by ultracentrifugation and analysed by transmission electron microscopy, cytofluorimetry, immunoblotting and RT-PCR. Large-scale analyses were performed by Real-Time arrays and Proteome Profiler™ Antibody arrays. Finally, precise titration of analytes was carried out by ELISA assay. In vitro, we confirmed an increased release of EVs enriched in surface RANKL by primary mouse osteoblasts subjected to steroid depletion or simulated microgravity compared to controls. In vivo, circulating EVs isolated from the sera of control female mice expressed RANKL along with other genes associated with bone metabolism. Serum EVs from ovariectomized or hindlimb tail-suspended mice showed distinct molecular profiles. They expressed RANKL with different kinetics, while transcriptomic and proteomic profiles uncovered unique molecular signatures that discriminated the two conditions, unveiling exclusive molecules expressed in time- and osteoporosis type-dependent manner. These results suggest that circulating EVs could represent a new tool for monitoring the onset and the progression of diverse types of the disease in mice, paving the way for their exploitation to diagnose human osteoporosis in liquid biopsies.
Collapse
Affiliation(s)
- Alfredo Cappariello
- Research Laboratories, Department of Onco-Haematology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio - Coppito 2, 67100, L'Aquila, Italy
| | - Maurizio Muraca
- Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - Anna Teti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio - Coppito 2, 67100, L'Aquila, Italy.
| | - Nadia Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio - Coppito 2, 67100, L'Aquila, Italy
| |
Collapse
|
5
|
Yang W, Zhang W, Li F, Xu N, Sun P. Dysregulation of circRNA-0076906 and circRNA-0134944 is Correlated with Susceptibility to Osteoporosis and Osteoporotic Fracture in Postmenopausal Females from the Chinese Han Population. Pharmgenomics Pers Med 2023; 16:183-194. [PMID: 36926413 PMCID: PMC10013579 DOI: 10.2147/pgpm.s394757] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/12/2023] [Indexed: 03/12/2023] Open
Abstract
Introduction Many circRNAs, such as circRNA-0076906 and circRNA-0134944, have been reported to participate in the pathogenesis of osteoporosis via sponging miRNAs in postmenopausal female patients. In this study, we aimed to study potential signaling pathways underlying the role of certain circRNAs, miRNAs and their target genes in the pathogenesis of osteoporotic fracture in postmenopausal females. Methods Quantitative real-time PCR was performed to analyze the expression of circRNAs, miRNAs and their targets genes. Luciferase assays were carried out to explore the regulatory relationship between circ_0076906/miR-548i/OGN and circ_0134944/miR-630/TLR4. Results Osteoporosis and fracture were positively correlated to the expression of circ_0134944, miR-548i and TLR4, but negatively correlated to the expression of circ_0076906, miR-630 and OGN in the peripheral blood and bone tissue samples of postmenopausal women. Luciferase activities of wild-type circ_0076906 and OGN were inhibited by miR-548i, and the luciferase activities of wild-type circ_0134944 and TLR4 were suppressed by miR-630 in MG-63 and U-2 OS cells. Inhibition of circ_0076906 expression in MG-63 and U-2 OS cells activated the expression of miR-548i and inhibited the expression of OGN. Moreover, the overexpression of circ_0134944 in MG-63 and U-2 OS cells suppressed the expression of miR-630 and enhanced the expression of TLR4. Conclusion This study implied that the dysregulation of circRNA-0076906 and circRNA-0134944 modulated their specific signaling and thus contributed to the severity of osteoporosis, increasing the risk of osteoporotic fracture.
Collapse
Affiliation(s)
- Weijie Yang
- Department of Orthopedics, Shanghai Eighth People's Hospital, Shanghai, 200235, People's Republic of China
| | - Wei Zhang
- Department of Orthopedics, Shanghai Eighth People's Hospital, Shanghai, 200235, People's Republic of China
| | - Fengqian Li
- Department of Orthopedics, Shanghai Eighth People's Hospital, Shanghai, 200235, People's Republic of China
| | - Ning Xu
- Department of Orthopedics, Shanghai Eighth People's Hospital, Shanghai, 200235, People's Republic of China
| | - Ping Sun
- Department of Orthopedics, Shanghai Eighth People's Hospital, Shanghai, 200235, People's Republic of China
| |
Collapse
|
6
|
Zhang X, Xue T, Hu Z, Guo X, Li G, Wang Y, Zhang L, Xu L, Cao X, Zhang S, Shi F, Wang K. Bioinformatic analysis of the RNA expression patterns in microgravity-induced bone loss. Front Genet 2022; 13:985025. [PMID: 36425065 PMCID: PMC9681495 DOI: 10.3389/fgene.2022.985025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/24/2022] [Indexed: 08/27/2023] Open
Abstract
Researchers have linked microgravity in space to the significant imbalance between bone formation and bone resorption that induces persistent bone loss in load-bearing bones. However, the underlying molecular mechanisms are still unclear, which hinders the development of therapeutic measures. The aim of this study was to identify hub genes and explore novel molecular mechanisms underlying microgravity-induced bone loss using transcriptome datasets obtained from the GEO and SRA databases. In summary, comparative RNA expression pattern studies that differ in species (Homo or Mus), models (in vitro or in vivo), microgravity conditions (real microgravity or ground-based simulators) and microgravity duration showed that it is difficult to reach a consistent conclusion about the pathogenesis of microgravity-induced bone loss across these studies. Even so, we identified 11 hub genes and some miRNA-mRNA interactions mainly based on the GSE100930 dataset. Also, the expression of CCL2, ICAM1, IGF1, miR-101-3p and miR-451a markedly changed under clinorotation-microgravity condition. Remarkedly, ICAM1 and miR-451a were key mediators of the osteogenesis of hMSCs under clinorotation-microgravity condition. These findings provide novel insights into the molecular mechanisms of bone loss during microgravity and could indicate potential targets for further countermeasures against this condition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Fei Shi
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi’an, China
| | - Ke Wang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi’an, China
| |
Collapse
|
7
|
Long-term osteogenic differentiation of human bone marrow stromal cells in simulated microgravity: novel proteins sighted. Cell Mol Life Sci 2022; 79:536. [PMID: 36181557 PMCID: PMC9526692 DOI: 10.1007/s00018-022-04553-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/23/2022] [Accepted: 09/09/2022] [Indexed: 12/03/2022]
Abstract
Microgravity-induced bone loss is a major concern for space travelers. Ground-based microgravity simulators are crucial to study the effect of microgravity exposure on biological systems and to address the limitations posed by restricted access to real space. In this work, for the first time, we adopt a multidisciplinary approach to characterize the morphological, biochemical, and molecular changes underlying the response of human bone marrow stromal cells to long-term simulated microgravity exposure during osteogenic differentiation. Our results show that osteogenic differentiation is reduced while energy metabolism is promoted. We found novel proteins were dysregulated under simulated microgravity, including CSC1-like protein, involved in the mechanotransduction of pressure signals, and PTPN11, SLC44A1 and MME which are involved in osteoblast differentiation pathways and which may become the focus of future translational projects. The investigation of cell proteome highlighted how simulated microgravity affects a relatively low number of proteins compared to time and/or osteogenic factors and has allowed us to reconstruct a hypothetical pipeline for cell response to simulated microgravity. Further investigation focused on the application of nanomaterials may help to increase understanding of how to treat or minimize the effects of microgravity.
Collapse
|
8
|
Ando R, Sakai A, Iida T, Kataoka K, Mizutani Y, Enomoto A. Good and Bad Stroma in Pancreatic Cancer: Relevance of Functional States of Cancer-Associated Fibroblasts. Cancers (Basel) 2022; 14:cancers14143315. [PMID: 35884375 PMCID: PMC9317763 DOI: 10.3390/cancers14143315] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Recent progress in research on the biology of cancer-associated fibroblasts (CAFs) in pancreatic ductal adenocarcinoma (PDAC) indicates their diverse states and plasticity, which may lead to good and bad stroma, suppressing and promoting cancer progression, respectively. The characteristics of the stroma differ spatially, even within the same tumors, based on the balance between cancer-restraining CAF and cancer-promoting CAF proliferation at the site. These heterogeneous CAFs also influence the sensitivity of PDAC to anticancer therapeutics. Further preclinical and clinical studies will advance our understanding of the roles of CAFs in disease progression and aid the development of therapeutics that modulate or ameliorate the tumor microenvironment in PDAC. Abstract A well-known feature of human pancreatic ductal adenocarcinoma (PDAC) is the extensive proliferation of cancer-associated fibroblasts (CAFs) and highly fibrotic stroma. Recent evidence, based mainly on single-cell analyses, has identified various subsets of CAFs in PDAC mouse models. However, we do not know how these CAF subsets are involved in the progression and drug resistance of human PDAC. Additionally, it remains unclear whether these diverse CAFs have distinct origins and are indicators of genuinely distinct CAF lineages or reflect different states of the same CAFs depending on the tumor microenvironment. Interestingly, recent preclinical studies have started to characterize the nature of cancer-restraining CAFs and have identified their markers Meflin and collagen type I alpha 1. These studies have led to the development of strategies to induce changes in CAF phenotypes using chemical reagents or recombinant viruses, and some of them have been tested in clinical studies. These strategies have the unique potential to convert the so-called bad stroma to good stroma and may also have therapeutic implications for non-cancer diseases such as fibrotic diseases. Together with recently developed sophisticated strategies that specifically target distinct CAF subsets via adoptive cell transfer therapy, vaccination, and antibody–drug conjugates, any future findings arising from these clinical efforts may expand our understanding of the significance of CAF diversity in human PDAC.
Collapse
Affiliation(s)
- Ryota Ando
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (R.A.); (A.S.); (T.I.); (K.K.); (Y.M.)
| | - Akihiro Sakai
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (R.A.); (A.S.); (T.I.); (K.K.); (Y.M.)
| | - Tadashi Iida
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (R.A.); (A.S.); (T.I.); (K.K.); (Y.M.)
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kunio Kataoka
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (R.A.); (A.S.); (T.I.); (K.K.); (Y.M.)
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yasuyuki Mizutani
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (R.A.); (A.S.); (T.I.); (K.K.); (Y.M.)
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (R.A.); (A.S.); (T.I.); (K.K.); (Y.M.)
- Correspondence: ; Tel.: +81-52-744-2093
| |
Collapse
|
9
|
Sperm of Fruit Fly Drosophila melanogaster under Space Flight. Int J Mol Sci 2022; 23:ijms23147498. [PMID: 35886847 PMCID: PMC9319090 DOI: 10.3390/ijms23147498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 02/05/2023] Open
Abstract
Studies of reproductive function under long-term space flight conditions are of interest in planning the exploration of deep space. Motility, including the use of various inhibitors, cellular respiration, and the content of cytoskeletal proteins were studied, assessing the level of expression of the corresponding genes in spermatozoa of Drosophila melanogaster, which were in space flight conditions for 12 days. The experiment was carried out twice on board the Russian Segment of the International Space Station. Sperm motility speed after space flight, and subsequently 16 h after landing, is reduced relative to the control by 20% (p < 0.05). In comparison with the simulation experiment, we showed that this occurs as a result of the action of overloads and readaptation to the Earth’s gravity. At the same time, cellular respiration, the content of proteins of the respiratory chain, and the expression of their genes do not change. We used kinase inhibitor 6-(dimethylamino)purine (6-DMAP) and phosphatase inhibitors; 6-DMAP restored the reduced the speed of spermatozoa in the flight group to that of the control. These results can be useful in developing a strategy for protecting reproductive health during the development of other bodies in the solar system.
Collapse
|
10
|
Impairment of 7F2 osteoblast function by simulated partial gravity in a Random Positioning Machine. NPJ Microgravity 2022; 8:20. [PMID: 35672327 PMCID: PMC9174291 DOI: 10.1038/s41526-022-00202-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 05/10/2022] [Indexed: 12/23/2022] Open
Abstract
The multifaceted adverse effects of reduced gravity pose a significant challenge to human spaceflight. Previous studies have shown that bone formation by osteoblasts decreases under microgravity conditions, both real and simulated. However, the effects of partial gravity on osteoblasts’ function are less well understood. Utilizing the software-driven newer version of the Random Positioning Machine (RPMSW), we simulated levels of partial gravity relevant to future manned space missions: Mars (0.38 G), Moon (0.16 G), and microgravity (Micro, ~10−3 G). Short-term (6 days) culture yielded a dose-dependent reduction in proliferation and the enzymatic activity of alkaline phosphatase (ALP), while long-term studies (21 days) showed a distinct dose-dependent inhibition of mineralization. By contrast, expression levels of key osteogenic genes (Alkaline phosphatase, Runt-related Transcription Factor 2, Sparc/osteonectin) exhibited a threshold behavior: gene expression was significantly inhibited when the cells were exposed to Mars-simulating partial gravity, and this was not reduced further when the cells were cultured under simulated Moon or microgravity conditions. Our data suggest that impairment of cell function with decreasing simulated gravity levels is graded and that the threshold profile observed for reduced gene expression is distinct from the dose dependence observed for cell proliferation, ALP activity, and mineral deposition. Our study is of relevance, given the dearth of research into the effects of Lunar and Martian gravity for forthcoming space exploration.
Collapse
|
11
|
Man J, Graham T, Squires-Donelly G, Laslett AL. The effects of microgravity on bone structure and function. NPJ Microgravity 2022; 8:9. [PMID: 35383182 PMCID: PMC8983659 DOI: 10.1038/s41526-022-00194-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/04/2022] [Indexed: 12/22/2022] Open
Abstract
Humans are spending an increasing amount of time in space, where exposure to conditions of microgravity causes 1-2% bone loss per month in astronauts. Through data collected from astronauts, as well as animal and cellular experiments conducted in space, it is evident that microgravity induces skeletal deconditioning in weight-bearing bones. This review identifies contentions in current literature describing the effect of microgravity on non-weight-bearing bones, different bone compartments, as well as the skeletal recovery process in human and animal spaceflight data. Experiments in space are not readily available, and experimental designs are often limited due to logistical and technical reasons. This review introduces a plethora of on-ground research that elucidate the intricate process of bone loss, utilising technology that simulates microgravity. Observations from these studies are largely congruent to data obtained from spaceflight experiments, while offering more insights behind the molecular mechanisms leading to microgravity-induced bone loss. These insights are discussed herein, as well as how that knowledge has contributed to studies of current therapeutic agents. This review also points out discrepancies in existing data, highlighting knowledge gaps in our current understanding. Further dissection of the exact mechanisms of microgravity-induced bone loss will enable the development of more effective preventative and therapeutic measures to protect against bone loss, both in space and possibly on ground.
Collapse
Affiliation(s)
- Joey Man
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Clayton, Victoria, 3168, Australia.
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, 3800, Australia.
- Space Technology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, 3168, Australia.
| | - Taylor Graham
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Clayton, Victoria, 3168, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, 3800, Australia
| | - Georgina Squires-Donelly
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Clayton, Victoria, 3168, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, 3800, Australia
| | - Andrew L Laslett
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Clayton, Victoria, 3168, Australia.
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, 3800, Australia.
- Space Technology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, 3168, Australia.
| |
Collapse
|
12
|
Tay J, Barbier V, Helwani FM, Price GR, Levesque JP, Winkler IG. Prostacyclin is an endosteal bone marrow niche component and its clinical analog iloprost protects hematopoietic stem cell potential during stress. Stem Cells 2021; 39:1532-1545. [PMID: 34260805 DOI: 10.1002/stem.3438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Hematopoietic stem cells (HSCs) with superior reconstitution potential are reported to be enriched in the endosteal compared to central bone marrow (BM) region. To investigate whether specific factors at the endosteum may contribute to HSC potency, we screened for candidate HSC niche factors enriched in the endosteal compared to central BM regions. Together with key known HSC supporting factors Kitl and Cxcl12, we report that prostacyclin/prostaglandin I2 (PGI2 ) synthase (Ptgis) was one of the most highly enriched mRNAs (>10-fold) in endosteal compared to central BM. As PGI2 signals through receptors distinct from prostaglandin E2 (PGE2 ), we investigated functional roles for PGI2 at the endosteal niche using therapeutic PGI2 analogs, iloprost, and cicaprost. We found PGI2 analogs strongly reduced HSC differentiation in vitro. Ex vivo iloprost pulse treatment also significantly boosted long-term competitive repopulation (LT-CR) potential of HSCs upon transplantation. This was associated with increased tyrosine-phosphorylation of transducer and activator of transcription-3 (STAT3) signaling in HSCs but not altered cell cycling. In vivo, iloprost administration protected BM HSC potential from radiation or granulocyte colony-stimulating factor-induced exhaustion, and restored HSC homing potential with increased Kitl and Cxcl12 transcription in the BM. In conclusion, we propose that PGI2 is a novel HSC regulator enriched in the endosteum that promotes HSC regenerative potential following stress.
Collapse
Affiliation(s)
- Joshua Tay
- Stem Cell and Cancer Group, Blood and Bone Diseases Program, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Valerie Barbier
- Stem Cell and Cancer Group, Blood and Bone Diseases Program, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Falak M Helwani
- Stem Cell Biology Group, Blood and Bone Diseases Program, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Gareth R Price
- Stem Cell and Cancer Group, Blood and Bone Diseases Program, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Jean-Pierre Levesque
- Stem Cell Biology Group, Blood and Bone Diseases Program, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - Ingrid G Winkler
- Stem Cell and Cancer Group, Blood and Bone Diseases Program, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
| |
Collapse
|
13
|
Fournier R, Harrison RE. Methods for studying MLO-Y4 osteocytes in collagen-hydroxyapatite scaffolds in the rotary cell culture system. Connect Tissue Res 2021; 62:436-453. [PMID: 32375524 DOI: 10.1080/03008207.2020.1764548] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: The rotary cell culture system (RCCS) is a common clinorotation device for cell culture. It is also used as a low-shear suspension culture bioreactor to form functionalized 3D tissue constructs and to model microgravity. We sought to develop a 3D scaffold composed of type I collagen and hydroxyapatite (collagen-HA) to characterize MLO-Y4 osteocytes following suspension culture or clinorotation.Materials and Methods: MLO-Y4 cells were embedded in collagen-HA. The scaffold was formed into droplets for suspension culture or wall-adhered to the RCCS for clinorotation. AFM, rheometry, immunofluorescence and qRT-PCR were employed to measure the scaffold stiffness, cell viability and gene expression of cells in collagen-HA scaffolds. Dendritic cells were visualized and quantified and gene expression after suspension culture and clinorotation was compared to static controls.Results: The optimized scaffold for the RCCS consisted of collagen with 6 mg/mL HA which had a stiffness of < 1 kPa. MLO-Y4 cell viability was higher in collagen-HA scaffolds, compared to scaffolds without HA. Collagen-HA scaffolds induced higher osteocyte-specific gene expression compared to cells cultured on 2D plastic. Cells in the scaffold downregulated DMP1, E11, IL-6, and RANKL, and had fewer dendritic cells following suspension culture whereas clinorotation downregulated DMP1 and E11 genes, compared to static controls.Conclusions: Suspension culture for 3 days in collagen-HA stimulates growth of osteocytes but may also desensitize them to mechanical cues. Clinorotation for 3 days in collagen-HA does not stimulate proliferation or expression of mechanosensitive genes, indicating that it may be an effective mechanical unloading environment.
Collapse
Affiliation(s)
- Roxanne Fournier
- Department of Cell & Systems Biology and the Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Rene E Harrison
- Department of Cell & Systems Biology and the Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Uda Y, Spatz JM, Hussein A, Garcia JH, Lai F, Dedic C, Fulzele K, Dougherty S, Eberle M, Adamson C, Misener L, Gerstenfeld L, Divieti Pajevic P. Global transcriptomic analysis of a murine osteocytic cell line subjected to spaceflight. FASEB J 2021; 35:e21578. [PMID: 33835498 DOI: 10.1096/fj.202100059r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/13/2021] [Accepted: 03/22/2021] [Indexed: 01/18/2023]
Abstract
Bone loss is a major health concern for astronauts during long-term spaceflight and for patients during prolonged bed rest or paralysis. Growing evidence suggests that osteocytes, the most abundant cells in the mineralized bone matrix, play a key role in sensing mechanical forces applied to the skeleton and integrating the orchestrated response into subcellular biochemical signals to modulate bone homeostasis. However, the precise molecular mechanisms underlying both mechanosensation and mechanotransduction in late-osteoblast-to-osteocyte cells under microgravity (µG) have yet to be elucidated. To unravel the mechanisms by which late osteoblasts and osteocytes sense and respond to mechanical unloading, we exposed the osteocytic cell line, Ocy454, to 2, 4, or 6 days of µG on the SpaceX Dragon-6 resupply mission to the International Space Station. Our results showed that µG impairs the differentiation of osteocytes, consistent with prior osteoblast spaceflight experiments, which resulted in the downregulation of key osteocytic genes. Importantly, we demonstrate the modulation of critical glycolysis pathways in osteocytes subjected to microgravity and discovered a set of mechanical sensitive genes that are consistently regulated in multiple cell types exposed to microgravity suggesting a common, yet to be fully elucidated, genome-wide response to microgravity. Ground-based simulated microgravity experiments utilizing the NASA rotating-wall-vessel were unable to adequately replicate the changes in microgravity exposure highlighting the importance of spaceflight missions to understand the unique environmental stress that microgravity presents to diverse cell types. In summary, our findings demonstrate that osteocytes respond to µG with an increase in glucose metabolism and oxygen consumption.
Collapse
Affiliation(s)
- Yuhei Uda
- Department of Translational Dental Medicine, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA, USA
| | - Jordan M Spatz
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Amira Hussein
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, MA, USA
| | - Joseph H Garcia
- School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Forest Lai
- Department of Translational Dental Medicine, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA, USA
| | - Chris Dedic
- Department of Translational Dental Medicine, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA, USA
| | - Keertik Fulzele
- Department of Translational Dental Medicine, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA, USA
| | | | | | | | | | - Louis Gerstenfeld
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, MA, USA
| | - Paola Divieti Pajevic
- Department of Translational Dental Medicine, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA, USA.,Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Zhao XH, Peng XL, Gong HL, Wei DX. Osteogenic differentiation system based on biopolymer nanoparticles for stem cells in simulated microgravity. Biomed Mater 2021; 16. [PMID: 33631731 DOI: 10.1088/1748-605x/abe9d1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
An efficient long-term intracellular growth factor release system in simulated microgravity for osteogenic differentiation was prepared based on polylactic acid (PLA) and polyhydroxyalkanoate (PHA) nanoparticles for loading of bone morphogenetic protein 2 (BMP2) and bone morphogenetic protein 7 (BMP7) (defined as sB2-PLA-NP and sB7-PHA-NP), respectively, associated with osteogenic differentiation of human adipose derived stem cells (hADSCs). On account of soybean lecithin (SL) as biosurfactants, sB2-PLA-NPs and sB7-PHA-NPs had a high encapsulation efficiency (>80%) of BMPs and uniform small size (<100 nm), and showed different slow-release to provide BMP2 in early stage and BMP7 in late stages of osteogenic differentiation within 20 days, due to degradation rate of PLA and PHA in cells. After uptake into hADSCs, by comparison with single sB2-PLA-NP or sB7-PHA-NP, the Mixture NPs, compound of sB2-PLA-NP and sB7-PHA-NP with a mass ratio of 1:1, can well-promote ALP activity, expression of OPN and upregulated related osteo-genes. Directed osteo-differentiation of Mixture NPs was similar to result of sustained free-BMP2 and BMP7-supplying (sFree-B2&B7) in simulated microgravity, which demonstrated the reliability and stability of Mixture NPs as a long-term osteogenic differentiation system in space medicine and biology in future.
Collapse
Affiliation(s)
- Xiao-Hong Zhao
- Northwest University, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of life sciences and medicine, Xi'an, Shaanxi, 710069, CHINA
| | - Xue-Liang Peng
- Northwest University, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of life sciences and medicine, Xi'an, Shaanxi, 710069, CHINA
| | - Hai-Lun Gong
- Northwest University, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of life sciences and medicine, Xi'an, Shaanxi, 710069, CHINA
| | - Dai-Xu Wei
- Northwest University, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of life sciences and medicine, Xi'an, Shaanxi, 710069, CHINA
| |
Collapse
|
16
|
The combined effects of simulated microgravity and X-ray radiation on MC3T3-E1 cells and rat femurs. NPJ Microgravity 2021; 7:3. [PMID: 33589605 PMCID: PMC7884416 DOI: 10.1038/s41526-021-00131-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 01/13/2021] [Indexed: 01/05/2023] Open
Abstract
Microgravity is well-known to induce Osteopenia. However, the combined effects of microgravity and radiation that commonly exist in space have not been broadly elucidated. This research investigates the combined effects on MC3T3-E1 cells and rat femurs. In MC3T3-E1 cells, simulated microgravity and X-ray radiation, alone or combination, show decreased cell activity, increased apoptosis rates by flow cytometric analysis, and decreased Runx2 and increased Caspase-3 mRNA and protein expressions. In rat femurs, simulated microgravity and X-ray radiation, alone or combination, show increased bone loss by micro-CT test and Masson staining, decreased serum BALP levels and Runx2 mRNA expressions, and increased serum CTX-1 levels and Caspase-3 mRNA expressions. The strongest effect is observed in the combined group in MC3T3-E1 cells and rat femurs. These findings suggest that the combination of microgravity and radiation exacerbates the effects of either treatment alone on MC3T3-E1 cells and rat femurs.
Collapse
|
17
|
Chen W, Wang L, You W, Shan T. Myokines mediate the cross talk between skeletal muscle and other organs. J Cell Physiol 2020; 236:2393-2412. [PMID: 32885426 DOI: 10.1002/jcp.30033] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022]
Abstract
Myokines are muscle-derived cytokines and chemokines that act extensively on organs and exert beneficial metabolic functions in the whole-body through specific signal networks. Myokines as mediators provide the conceptual basis for a whole new paradigm useful for understanding how skeletal muscle communicates with other organs. In this review, we summarize and discuss classes of myokines and their physiological functions in mediating the regulatory roles of skeletal muscle on other organs and the regulation of the whole-body energy metabolism. We review the mechanisms involved in the interaction between skeletal muscle and nonmuscle organs through myokines. Moreover, we clarify the connection between exercise, myokines and disease development, which may contribute to the understanding of a potential mechanism by which physical inactivity affects the process of metabolic diseases via myokines. Based on the current findings, myokines are important factors that mediate the effect of skeletal muscle on other organ functions and whole-body metabolism.
Collapse
Affiliation(s)
- Wentao Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
| | - Liyi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
| | - Wenjing You
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
| |
Collapse
|
18
|
Avitabile E, Fusco L, Minardi S, Orecchioni M, Zavan B, Yilmazer A, Rauner M, Pippia P, Tasciotti E, Delogu LG. Bioinspired Scaffold Action Under the Extreme Physiological Conditions of Simulated Space Flights: Osteogenesis Enhancing Under Microgravity. Front Bioeng Biotechnol 2020; 8:722. [PMID: 32733868 PMCID: PMC7362936 DOI: 10.3389/fbioe.2020.00722] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 06/08/2020] [Indexed: 12/24/2022] Open
Abstract
Prolonged exposure to microgravity (MG) during long-duration space flights is known to induce severe dysregulation of osteoblast functions connected to a significant bone loss, similar to the condition induced by osteoporosis. Hence, we here present MG as a promising model to challenge the effectiveness of new scaffolds designed for bone regeneration in counteracting bone loss. To this end, we carried out an integrative study aimed to evaluate, in the extreme condition of Random Positioning Machine-simulated MG, the osteoinductive potential of nanocrystalline magnesium-doped hydroxyapatite/type I collagen composite scaffold (MHA/Coll), that we previously demonstrated to be an excellent tool for bone tissue engineering. Initially, to test the osteoinductive properties of our bioinspired-scaffold, MHA/Coll structure was fully characterized under MG condition and compared to its static counterpart. Human bone marrow-derived mesenchymal stem cells were used to investigate the scaffold biocompatibility and ability to promote osteogenic differentiation after long-duration exposure to MG (up to 21 days). The results demonstrate that the nanostructure of MHA/Coll scaffold can alleviate MG-induced osteoblast dysfunction, promoting cell differentiation along the osteogenic lineage, with a consequent reduction in the expression of the surface markers CD29, CD44, and CD90. Moreover, these findings were corroborated by the ability of MHA/Coll to induce the expression of genes linked to osteogenesis, including alkaline phosphatase and osteocalcin. This study confirmed MHA/Coll capabilities in promoting osteogenesis even in extreme long-term condition of MG, suggesting MG as an effective challenging model to apply in future studies to validate the ability of advanced scaffolds to counteract bone loss, facilitating their application in translational Regenerative Medicine and Tissue Engineering.
Collapse
Affiliation(s)
| | - Laura Fusco
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy.,Fondazione Istituto di Ricerca pediatrica Cittá della Speranza, Padua, Italy.,Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Silvia Minardi
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Marco Orecchioni
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Barbara Zavan
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Maria Cecilia Hospital, GVM Care & Research, Ravenna, Italy
| | - Acelya Yilmazer
- Department of Biomedical Engineering, Ankara University, Ankara, Turkey.,Stem Cell Institute, Ankara University, Ankara, Turkey
| | - Martina Rauner
- Department of Medicine III, Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Proto Pippia
- Department of Physiological, Biochemical and Cellular Science, University of Sassari, Sassari, Italy
| | - Ennio Tasciotti
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States
| | - Lucia Gemma Delogu
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy.,Fondazione Istituto di Ricerca pediatrica Cittá della Speranza, Padua, Italy.,Department of Biomedical Science, University of Padua, Padua, Italy
| |
Collapse
|
19
|
Exploration of space to achieve scientific breakthroughs. Biotechnol Adv 2020; 43:107572. [PMID: 32540473 DOI: 10.1016/j.biotechadv.2020.107572] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/05/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022]
Abstract
Living organisms adapt to changing environments using their amazing flexibility to remodel themselves by a process called evolution. Environmental stress causes selective pressure and is associated with genetic and phenotypic shifts for better modifications, maintenance, and functioning of organismal systems. The natural evolution process can be used in complement to rational strain engineering for the development of desired traits or phenotypes as well as for the production of novel biomaterials through the imposition of one or more selective pressures. Space provides a unique environment of stressors (e.g., weightlessness and high radiation) that organisms have never experienced on Earth. Cells in the outer space reorganize and develop or activate a range of molecular responses that lead to changes in cellular properties. Exposure of cells to the outer space will lead to the development of novel variants more efficiently than on Earth. For instance, natural crop varieties can be generated with higher nutrition value, yield, and improved features, such as resistance against high and low temperatures, salt stress, and microbial and pest attacks. The review summarizes the literature on the parameters of outer space that affect the growth and behavior of cells and organisms as well as complex colloidal systems. We illustrate an understanding of gravity-related basic biological mechanisms and enlighten the possibility to explore the outer space environment for application-oriented aspects. This will stimulate biological research in the pursuit of innovative approaches for the future of agriculture and health on Earth.
Collapse
|
20
|
Bradbury P, Wu H, Choi JU, Rowan AE, Zhang H, Poole K, Lauko J, Chou J. Modeling the Impact of Microgravity at the Cellular Level: Implications for Human Disease. Front Cell Dev Biol 2020; 8:96. [PMID: 32154251 PMCID: PMC7047162 DOI: 10.3389/fcell.2020.00096] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/04/2020] [Indexed: 12/15/2022] Open
Abstract
A lack of gravity experienced during space flight has been shown to have profound effects on human physiology including muscle atrophy, reductions in bone density and immune function, and endocrine disorders. At present, these physiological changes present major obstacles to long-term space missions. What is not clear is which pathophysiological disruptions reflect changes at the cellular level versus changes that occur due to the impact of weightlessness on the entire body. This review focuses on current research investigating the impact of microgravity at the cellular level including cellular morphology, proliferation, and adhesion. As direct research in space is currently cost prohibitive, we describe here the use of microgravity simulators for studies at the cellular level. Such instruments provide valuable tools for cost-effective research to better discern the impact of weightlessness on cellular function. Despite recent advances in understanding the relationship between extracellular forces and cell behavior, very little is understood about cellular biology and mechanotransduction under microgravity conditions. This review will examine recent insights into the impact of simulated microgravity on cell biology and how this technology may provide new insight into advancing our understanding of mechanically driven biology and disease.
Collapse
Affiliation(s)
- Peta Bradbury
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW, Australia
| | - Hanjie Wu
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
| | - Jung Un Choi
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Alan E Rowan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Hongyu Zhang
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Kate Poole
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Jan Lauko
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Joshua Chou
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
21
|
Hu Z, Zhang L, Wang H, Wang Y, Tan Y, Dang L, Wang K, Sun Z, Li G, Cao X, Zhang S, Shi F, Zhang G. Targeted silencing of miRNA-132-3p expression rescues disuse osteopenia by promoting mesenchymal stem cell osteogenic differentiation and osteogenesis in mice. Stem Cell Res Ther 2020; 11:58. [PMID: 32054528 PMCID: PMC7020585 DOI: 10.1186/s13287-020-1581-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/07/2020] [Accepted: 02/04/2020] [Indexed: 01/03/2023] Open
Abstract
Background Skeletal unloading can induce severe disuse osteopenia that often occurs in spaceflight astronauts or in patients subjected to prolonged bed-rest or immobility. Previously, we revealed a mechano-sensitive factor, miRNA-132-3p, that is closely related to the osteoblast function. The aim of this study was to investigate whether miRNA-132-3p could be an effective target for treating disuse osteopenia. Methods The 2D-clinostat device and the hindlimb-unloaded (HU) model were used to copy the mechanical unloading condition at the cellular and animal levels, respectively. Mimics or inhibitors of miRNA-132-3p were used to interfere with the expression of miRNA-132-3p in bone marrow-derived mesenchymal stem cells (BMSCs) in vitro for analyzing the effects on osteogenic differentiation. The special in vivo antagonists of miRNA-132-3p was delivered to the bone formation regions of HU mice for treating disuse osteopenia by a bone-targeted (AspSerSer)6-cationic liposome system. The bone mass, microstructure, and strength of the hindlimb bone tissue were analyzed for evaluating the therapeutic effect in vivo. Results miRNA-132-3p expression was declined under normal conditions and increased under gravitational mechanical unloading conditions during osteogenic differentiation of BMSCs in vitro. The upregulation of miRNA-132-3p expression resulted in the inhibition of osteogenic differentiation, whereas the downregulation of miRNA-132-3p expression enhanced osteogenic differentiation. The inhibition of miRNA-132-3p expression was able to attenuate the negative effects of mechanical unloading on BMSC osteogenic differentiation. Most importantly, the targeted silencing of miRNA-132-3p expression in the bone tissues could effectively preserve bone mass, microstructure, and strength by promoting osteogenic differentiation and osteogenesis in HU mice. Conclusion The overexpression of miRNA-132-3p induced by mechanical unloading is disadvantageous for BMSC osteogenic differentiation and osteogenesis. Targeted silencing of miRNA-132-3p expression presents a potential therapeutic target for the prevention and treatment of disuse osteoporosis.
Collapse
Affiliation(s)
- Zebing Hu
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Lijun Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Han Wang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China.,Department of Orthopedics, Affiliated Hospital of Air Force Aviation Medicine Research Institute, Air Force Medical University, Beijing, 100089, China
| | - Yixuan Wang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Yingjun Tan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Lei Dang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ke Wang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Zhongyang Sun
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China.,Department of Orthopedics, No. 454 Hospital of PLA, Nanjing, 210002, China
| | - Gaozhi Li
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Xinsheng Cao
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Shu Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Fei Shi
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China.
| | - Ge Zhang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
22
|
Molecular response of Deinococcus radiodurans to simulated microgravity explored by proteometabolomic approach. Sci Rep 2019; 9:18462. [PMID: 31804539 PMCID: PMC6895123 DOI: 10.1038/s41598-019-54742-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 11/19/2019] [Indexed: 12/21/2022] Open
Abstract
Regarding future space exploration missions and long-term exposure experiments, a detailed investigation of all factors present in the outer space environment and their effects on organisms of all life kingdoms is advantageous. Influenced by the multiple factors of outer space, the extremophilic bacterium Deinococcus radiodurans has been long-termly exposed outside the International Space Station in frames of the Tanpopo orbital mission. The study presented here aims to elucidate molecular key components in D. radiodurans, which are responsible for recognition and adaptation to simulated microgravity. D. radiodurans cultures were grown for two days on plates in a fast-rotating 2-D clinostat to minimize sedimentation, thus simulating reduced gravity conditions. Subsequently, metabolites and proteins were extracted and measured with mass spectrometry-based techniques. Our results emphasize the importance of certain signal transducer proteins, which showed higher abundances in cells grown under reduced gravity. These proteins activate a cellular signal cascade, which leads to differences in gene expressions. Proteins involved in stress response, repair mechanisms and proteins connected to the extracellular milieu and the cell envelope showed an increased abundance under simulated microgravity. Focusing on the expression of these proteins might present a strategy of cells to adapt to microgravity conditions.
Collapse
|
23
|
Usik MA, Ogneva IV. DNA Methylation in Mouse Spermatozoa under Long-Term Modeling the Effects of Microgravity. Russ J Dev Biol 2019. [DOI: 10.1134/s1062360419040076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Chatziravdeli V, Katsaras GN, Lambrou GI. Gene Expression in Osteoblasts and Osteoclasts Under Microgravity Conditions: A Systematic Review. Curr Genomics 2019; 20:184-198. [PMID: 31929726 PMCID: PMC6935951 DOI: 10.2174/1389202920666190422142053] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/05/2019] [Accepted: 04/05/2019] [Indexed: 12/28/2022] Open
Abstract
Background Microgravity (μG) negatively influences bone metabolism by affecting normal osteoblast and osteoclast function. μG effects on bone metabolism has been an extensive field of study in recent years, due to the challenges presented by space flight. Methods We systematically reviewed research data from genomic studies performed in real or simulat-ed μG, on osteoblast and osteoclast cells. Our search yielded 50 studies, of which 39 concerned cells of the osteoblast family and 11 osteoclast precursors. Results Osteoblastic cells under μG show a decreased differentiation phenotype, proved by diminished expression levels of Alkaline Phosphatase (ALP) and Osteocalcin (OCN) but no apoptosis. Receptor Activator of NF-κB Ligand (RANKL)/ Osteoprotegerine (OPG) ratio is elevated in favor of RANKL in a time-dependent manner, and further RANKL production is caused by upregulation of Interleukin-6 (IL-6) and the inflammation pathway. Extracellular signals and changes in the gravitational environment are perceived by mechanosensitive proteins of the cytoskeleton and converted to intracellular signals through the Mitogen Activated Protein Kinase pathway (MAPK). This is followed by changes in the ex-pression of nuclear transcription factors of the Activator Protein-1 (AP-1) family and in turn of the NF-κB, thus affecting osteoblast differentiation, cell cycle, proliferation and maturation. Pre-osteoclastic cells show increased expression of the marker proteins such as Tryptophan Regulated Attenuation Protein (TRAP), cathepsin K, Matrix Metalloproteinase-9 (MMP-9) under μG conditions and become sensitized to RANKL. Conclusion Suppressing the expression of fusion genes such as syncytine-A which acts independently of RANKL, could be possible future therapeutic targets for microgravity side effects.
Collapse
Affiliation(s)
- Vasiliki Chatziravdeli
- 18 Orthopedic Department, Shoulder Surgery Unit, General Hospital " Asklepieio", Vassileos Pavlou Av. 1, 16673, Voula, Athens, Greece; 2Graduate Program "Metabolic Bones Diseases", National and Kapodistrian University of Athens, Medical School, Mikras Asias 75, 11527, Goudi, Athens, Greece; 3Neonatal Intensive Care Unit, General Hospital of Nikaia "Aghios Panteleimon", Andrea Petrou Mantouvalou Str. 3, 18454, Nikaia, Piraeus, Greece; 4Laboratory for the Research of Musculoskeletal Disorders, Medical School, National and Kapodistrian University of Athens, Nikis 2, 14561, Kifissia, Athens, Greece; 5First Department of Pediatrics, University of Athens, Choremeio Research Laboratory, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527, Goudi, Athens, Greece
| | - George N Katsaras
- 18 Orthopedic Department, Shoulder Surgery Unit, General Hospital " Asklepieio", Vassileos Pavlou Av. 1, 16673, Voula, Athens, Greece; 2Graduate Program "Metabolic Bones Diseases", National and Kapodistrian University of Athens, Medical School, Mikras Asias 75, 11527, Goudi, Athens, Greece; 3Neonatal Intensive Care Unit, General Hospital of Nikaia "Aghios Panteleimon", Andrea Petrou Mantouvalou Str. 3, 18454, Nikaia, Piraeus, Greece; 4Laboratory for the Research of Musculoskeletal Disorders, Medical School, National and Kapodistrian University of Athens, Nikis 2, 14561, Kifissia, Athens, Greece; 5First Department of Pediatrics, University of Athens, Choremeio Research Laboratory, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527, Goudi, Athens, Greece
| | - George I Lambrou
- 18 Orthopedic Department, Shoulder Surgery Unit, General Hospital " Asklepieio", Vassileos Pavlou Av. 1, 16673, Voula, Athens, Greece; 2Graduate Program "Metabolic Bones Diseases", National and Kapodistrian University of Athens, Medical School, Mikras Asias 75, 11527, Goudi, Athens, Greece; 3Neonatal Intensive Care Unit, General Hospital of Nikaia "Aghios Panteleimon", Andrea Petrou Mantouvalou Str. 3, 18454, Nikaia, Piraeus, Greece; 4Laboratory for the Research of Musculoskeletal Disorders, Medical School, National and Kapodistrian University of Athens, Nikis 2, 14561, Kifissia, Athens, Greece; 5First Department of Pediatrics, University of Athens, Choremeio Research Laboratory, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527, Goudi, Athens, Greece
| |
Collapse
|
25
|
Testes and duct deferens of mice during space flight: cytoskeleton structure, sperm-specific proteins and epigenetic events. Sci Rep 2019; 9:9730. [PMID: 31278362 PMCID: PMC6611814 DOI: 10.1038/s41598-019-46324-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 06/26/2019] [Indexed: 01/21/2023] Open
Abstract
To analyze the effect of gravity on the structure of germinal tissues, we examined tissues of the testes and duct deferens of mice that were exposed to space flight conditions for 21–24 days (experiment Rodent Research-4, SpaceX-10 mission, February 2017, USA). We evaluated the levels of cytoskeletal proteins, sperm-specific proteins, and epigenetic events; in particular, we evaluated levels of 5-hydroxymethylcytosine and of enzymes that regulate DNA methylation/demethylation. We did not detect changes in the levels of cytoskeletal proteins, sperm-specific proteins, DNA-methylases, DNA demethylases, DNA acetylases, or histone deacetylases. However, there were changes at the gene expression level. In particular, there was an increase in the demethylase Tet2 and a decrease in the histone deacetylase Hdac1. These gene expression changes may be of key importance during the early period of readaptation since they could lead to an increase in the expression of target genes.
Collapse
|
26
|
DNA Methylation of Mouse Testes, Cardiac and Lung Tissue During Long-Term Microgravity Simulation. Sci Rep 2019; 9:7974. [PMID: 31138883 PMCID: PMC6538624 DOI: 10.1038/s41598-019-44468-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 05/17/2019] [Indexed: 01/05/2023] Open
Abstract
Under microgravity, the gene expression levels vary in different types of cells; however, the reasons for this have not been sufficiently studied. The aim of this work was to evaluate the methylation of CpG islands in the promoter regions of the genes encoding some cytoskeletal proteins, the total methylation and 5 hmC levels, and the levels of enzymes that regulate these processes in the testes, heart, and lungs in mice after a 30-day microgravity modeling by antiorthostatic suspension and after a subsequent 12-hour recovery as well as in the corresponding control group and identical groups treated with essential phospholipids. The obtained results indicate that under modeling microgravity in the examined tissues a decrease of cytoskeletal gene expression (mainly in the heart and lungs tissues) correlated with an increase in the CpG islands methylation and an increase of the expression (mainly in the testes tissue) - with a decrease of the CpG-methylation, despite of the fact that in the examined tissues took place a decrease of the content methylases and demethylases. But the deacetylase HDAC1 content increased in the heart and lungs tissues and decreased in the testes, letting us suggest its participation in the regulation of the methylation level under microgravity conditions.
Collapse
|
27
|
Beheshti A, Miller J, Kidane Y, Berrios D, Gebre SG, Costes SV. NASA GeneLab Project: Bridging Space Radiation Omics with Ground Studies. Radiat Res 2018; 189:553-559. [DOI: 10.1667/rr15062.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Afshin Beheshti
- Wyle Labs, NASA Ames Research Center, Moffett Field, California, 94035
| | - Jack Miller
- Lawrence Berkeley National Laboratory, Berkeley, California, 94720
| | - Yared Kidane
- Wyle Labs, NASA Ames Research Center, Moffett Field, California, 94035
| | - Daniel Berrios
- USRA, NASA Ames Research Center, Moffett Field, Calfornia 94035
| | - Samrawit G. Gebre
- Wyle Labs, NASA Ames Research Center, Moffett Field, California, 94035
| | - Sylvain V. Costes
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, California 94035
| |
Collapse
|
28
|
Turko AJ, Kültz D, Fudge D, Croll RP, Smith FM, Stoyek MR, Wright PA. Skeletal stiffening in an amphibious fish out of water is a response to increased body weight. ACTA ACUST UNITED AC 2018; 220:3621-3631. [PMID: 29046415 DOI: 10.1242/jeb.161638] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/07/2017] [Indexed: 01/06/2023]
Abstract
Terrestrial animals must support their bodies against gravity, while aquatic animals are effectively weightless because of buoyant support from water. Given this evolutionary history of minimal gravitational loading of fishes in water, it has been hypothesized that weight-responsive musculoskeletal systems evolved during the tetrapod invasion of land and are thus absent in fishes. Amphibious fishes, however, experience increased effective weight when out of water - are these fishes responsive to gravitational loading? Contrary to the tetrapod-origin hypothesis, we found that terrestrial acclimation reversibly increased gill arch stiffness (∼60% increase) in the amphibious fish Kryptolebias marmoratus when loaded normally by gravity, but not under simulated microgravity. Quantitative proteomics analysis revealed that this change in mechanical properties occurred via increased abundance of proteins responsible for bone mineralization in other fishes as well as in tetrapods. Type X collagen, associated with endochondral bone growth, increased in abundance almost ninefold after terrestrial acclimation. Collagen isoforms known to promote extracellular matrix cross-linking and cause tissue stiffening, such as types IX and XII collagen, also increased in abundance. Finally, more densely packed collagen fibrils in both gill arches and filaments were observed microscopically in terrestrially acclimated fish. Our results demonstrate that the mechanical properties of the fish musculoskeletal system can be fine-tuned in response to changes in effective body weight using biochemical pathways similar to those in mammals, suggesting that weight sensing is an ancestral vertebrate trait rather than a tetrapod innovation.
Collapse
Affiliation(s)
- Andy J Turko
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, Canada N1G 2W1
| | - Dietmar Kültz
- Department of Animal Sciences, University of California, Davis, 1 Shields Ave., Meyer Hall, Davis, CA 95616, USA
| | - Douglas Fudge
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, Canada N1G 2W1.,Schmid College of Science and Technology, Chapman University, 1 University Dr., Orange, CA 92866, USA
| | - Roger P Croll
- Department of Physiology and Biophysics, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, Canada B3H 4R2
| | - Frank M Smith
- Department of Medical Neuroscience, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, Canada B3H 4R2
| | - Matthew R Stoyek
- Department of Physiology and Biophysics, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, Canada B3H 4R2.,Department of Medical Neuroscience, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, Canada B3H 4R2
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, Canada N1G 2W1
| |
Collapse
|
29
|
Gioia M, Michaletti A, Scimeca M, Marini M, Tarantino U, Zolla L, Coletta M. Simulated microgravity induces a cellular regression of the mature phenotype in human primary osteoblasts. Cell Death Discov 2018; 4:59. [PMID: 29760957 PMCID: PMC5945613 DOI: 10.1038/s41420-018-0055-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 03/26/2018] [Indexed: 01/08/2023] Open
Abstract
Decreased mechanical loading on bones, such as prolonged bed rest and microgravity during space flights, leads to the development of an osteoporotic-like phenotype. Although osteoblast hypo-functionality is reported to be involved in the progression of bone pathological conditions, the cellular mechanisms of this process remain largely unknown. The combined application of mass spectrometry "-omics" and histochemical and ultrastructural approaches have been employed to investigate the effects of the gravitational unloading on human bone-cell biology. Here we show, ex vivo, that simulated microgravity (Sμg) on human primary osteoblasts (hpOB) induces an alteration of pro-osteogenic determinants (i.e., cell morphology and deposit of hydroxyapatite crystals), accompanied by a downregulation of adhesive proteins and bone differentiation markers (e.g., integrin beta-1, protein folding Crystallin Alpha B (CRYα-B), runt-related transcription factor 2 (RUNX-2), bone morphogenic protein-2 (BMP-2), and receptor activator of nuclear factor kappa-B ligand (RANK-L)), indicating an impairment of osteogenesis. Further, we observed for the first time that Sμg can trigger a transition toward a mesenchymal-like phenotype, in which a mature osteoblast displays an hampered vitamin A metabolism, loses adhesive molecules, gains mesenchymal components (e.g., pre-osteoblast state marker CD44), morphological protrusions (filopodium-like), enhances GTPase activities, which in turn allows it to acquire migrating properties. Although this phenotypic conversion is not complete and can be reversible, Sμg environment proves a plasticity potential hidden on Earth. Overall, our results suggest that Sμg can be a powerful physical cue for triggering ex vivo a dedifferentiation impulse on hpOBs, opening a new scenario of possible innovative therapeutical biomechanical strategies for the treatment of osteo-degenerative diseases.
Collapse
Affiliation(s)
- Magda Gioia
- 1Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Anna Michaletti
- 2Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Manuel Scimeca
- 3Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Mario Marini
- 4Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Umberto Tarantino
- 1Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Lello Zolla
- 2Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Massimo Coletta
- 1Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
30
|
Chen X, Chen J, Xu D, Zhao S, Song H, Peng Y. Effects of Osteoglycin (OGN) on treating senile osteoporosis by regulating MSCs. BMC Musculoskelet Disord 2017; 18:423. [PMID: 29073887 PMCID: PMC5658998 DOI: 10.1186/s12891-017-1779-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 10/11/2017] [Indexed: 01/13/2023] Open
Abstract
Background Significant amount of bone mass is lost during the process of aging due to an imbalance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption in bone marrow microenvironment, which leads to net bone loss in the aging population, resulting in the pathogenesis of osteoporosis. Methods Firstly, differences in proliferative capacity of adipocyte or adipogenic differentiation in mouse mesenchymal stem cells (MMSCs) and senile mouse model-derived bone marrow mesenchymal stem cells (SMMSCs), as well as mRNA expression of OGN and PPARγ2 were observed. Secondly, osteogenic abilities of MMSCs and SMMSCs treated with rosiglitazone (a PPARγ2 agonist) to induce osteogenic changes were observed, and negative correlation of PPARγ2 with OGN was evaluated. Thirdly, the role of SMMSCs in promoting osteogenesis was examined through enhancing expression of OGN; besides, the related mechanism was investigated by means of expression of related adipocyte and osteoblast specific genes. Results Forced OGN expression by OGN-infected lentivirus could increase expression of Wnt5b, RUNX2, OCN, ALP and Colla1, as well as bone formation, while decreases expression of adipogenesis marker PPARγ2. It resulted in expression inhibition of adipocyte genes such as adipocytic differentiation related genes adipocyte binding protein 2 (aP2) and osteoclast differentiation factor Rankl in bone marrow, giving rise to increased bone mass. Conclusion OGN may plays a significant role in osteoporosis, which may also provide a potential target for therapeutic intervention of senile osteoporosis characterized by altered differentiation of BMSCs into osteoblasts and adipocytes.
Collapse
Affiliation(s)
- Xia Chen
- Department of Endocrinology and Metabolism, Shanghai General Hospital of Nanjing Medical University, 100 Haining Road, Shanghai, 200080, China
| | - Junsong Chen
- Key Laboratory of Systems Biomedicine(Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Dongliang Xu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, Shanghai, 200080, China
| | - Shuangxia Zhao
- Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No. 639 zhizaoju Road, Shanghai, China
| | - Huaidong Song
- Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No. 639 zhizaoju Road, Shanghai, China
| | - Yongde Peng
- Department of Endocrinology and Metabolism, Shanghai General Hospital of Nanjing Medical University, 100 Haining Road, Shanghai, 200080, China.
| |
Collapse
|
31
|
Hu Z, Wang H, Wang Y, Zhou H, Shi F, Zhao J, Zhang S, Cao X. Genome‑wide analysis and prediction of functional long noncoding RNAs in osteoblast differentiation under simulated microgravity. Mol Med Rep 2017; 16:8180-8188. [PMID: 28990099 PMCID: PMC5779904 DOI: 10.3892/mmr.2017.7671] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 08/17/2017] [Indexed: 01/12/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have been regarded as important regulators in numerous biological processes during cell development. However, the holistic lncRNA expression pattern and potential functions during osteoblast differentiation under simulated microgravity remain unknown. In the present study, a high throughput microarray assay was performed to detect lncRNA and mRNA expression profiles during MC3TC-E1 pre-osteoblast cell osteo-differentiation under simulated microgravity. The expression of 857 lncRNAs and 2,264 mRNAs was significantly altered when MC3T3-E1 cells were exposed to simulated microgravity. A relatively consistent distribution pattern on the chromosome and a co-expression network were observed between the differentially-expressed lncRNAs and mRNAs. Genomic context analysis further identified 132 differentially-expressed lncRNAs and nearby coding gene pairs. Subsequently, 3 lncRNAs were screened out for their possible function in osteoblast differentiation, based on their co-expression association and potential cis-acting regulatory pattern with the deregulated mRNAs. The present study aimed to provide a comprehensive understanding of and a foundation for future studies into lncRNA function in mechanical signal-mediated osteoblast differentiation.
Collapse
Affiliation(s)
- Zebing Hu
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Han Wang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yixuan Wang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Hua Zhou
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Fei Shi
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jiangdong Zhao
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Shu Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xinsheng Cao
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
32
|
Shi W, Xie Y, He J, Zhou J, Gao Y, Wei W, Ding N, Ma H, Xian CJ, Chen K, Wang J. Microgravity induces inhibition of osteoblastic differentiation and mineralization through abrogating primary cilia. Sci Rep 2017; 7:1866. [PMID: 28500304 PMCID: PMC5431935 DOI: 10.1038/s41598-017-02049-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 04/05/2017] [Indexed: 12/17/2022] Open
Abstract
It is well documented that microgravity in space environment leads to bone loss in astronauts. These physiological changes have also been validated by human and animal studies and modeled in cell-based analogs. However, the underlying mechanisms are elusive. In the current study, we identified a novel phenomenon that primary cilia (key sensors and functioning organelles) of rat calvarial osteoblasts (ROBs) gradually shrank and disappeared almost completely after exposure to simulated microgravity generated by a random positioning machine (RPM). Along with the abrogation of primary cilia, the differentiation, maturation and mineralization of ROBs were inhibited. We also found that the disappearance of primary cilia was prevented by treating ROBs with cytochalasin D, but not with LiCl or dynein light chain Tctex-type 1 (Dynlt1) siRNA. The repression of the differentiation, maturation and mineralization of ROBs was effectively offset by cytochalasin D treatment in microgravity conditions. Blocking ciliogenesis using intraflagellar transport protein 88 (IFT88) siRNA knockdown inhibited the ability of cytochalasin D to counteract this reduction of osteogenesis. These results indicate that the abrogation of primary cilia may be responsible for the microgravity's inhibition on osteogenesis. Reconstruction of primary cilia may become a potential strategy against bone loss induced by microgravity.
Collapse
Affiliation(s)
- Wengui Shi
- Gansu Key laboratory of Space Radiobiology, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanfang Xie
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou, 730050, P. R. China
| | - Jinpeng He
- Gansu Key laboratory of Space Radiobiology, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Jian Zhou
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou, 730050, P. R. China
| | - Yuhai Gao
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou, 730050, P. R. China
| | - Wenjun Wei
- Gansu Key laboratory of Space Radiobiology, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Nan Ding
- Gansu Key laboratory of Space Radiobiology, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Huiping Ma
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou, 730050, P. R. China
| | - Cory J Xian
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Keming Chen
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou, 730050, P. R. China.
| | - Jufang Wang
- Gansu Key laboratory of Space Radiobiology, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China.
| |
Collapse
|
33
|
Rutkovskiy A, Stensløkken KO, Vaage IJ. Osteoblast Differentiation at a Glance. Med Sci Monit Basic Res 2016; 22:95-106. [PMID: 27667570 PMCID: PMC5040224 DOI: 10.12659/msmbr.901142] [Citation(s) in RCA: 426] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Ossification is a tightly regulated process, performed by specialized cells called osteoblasts. Dysregulation of this process may cause inadequate or excessive mineralization of bones or ectopic calcification, all of which have grave consequences for human health. Understanding osteoblast biology may help to treat diseases such as osteogenesis imperfecta, calcific heart valve disease, osteoporosis, and many others. Osteoblasts are bone-building cells of mesenchymal origin; they differentiate from mesenchymal progenitors, either directly or via an osteochondroprogenitor. The direct pathway is typical for intramembranous ossification of the skull and clavicles, while the latter is a hallmark of endochondral ossification of the axial skeleton and limbs. The pathways merge at the level of preosteoblasts, which progress through 3 stages: proliferation, matrix maturation, and mineralization. Osteoblasts can also differentiate into osteocytes, which are stellate cells populating narrow interconnecting passages within the bone matrix. The key molecular switch in the commitment of mesenchymal progenitors to osteoblast lineage is the transcription factor cbfa/runx2, which has multiple upstream regulators and a wide variety of targets. Upstream is the Wnt/Notch system, Sox9, Msx2, and hedgehog signaling. Cofactors of Runx2 include Osx, Atf4, and others. A few paracrine and endocrine factors serve as coactivators, in particular, bone morphogenetic proteins and parathyroid hormone. The process is further fine-tuned by vitamin D and histone deacetylases. Osteoblast differentiation is subject to regulation by physical stimuli to ensure the formation of bone adequate for structural and dynamic support of the body. Here, we provide a brief description of the various stimuli that influence osteogenesis: shear stress, compression, stretch, micro- and macrogravity, and ultrasound. A complex understanding of factors necessary for osteoblast differentiation paves a way to introduction of artificial bone matrices.
Collapse
Affiliation(s)
- Arkady Rutkovskiy
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Kåre-Olav Stensløkken
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Ingvar Jarle Vaage
- Department of Emergency Medicine and Intensive Care, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
34
|
Jha R, Wu Q, Singh M, Preininger MK, Han P, Ding G, Cho HC, Jo H, Maher KO, Wagner MB, Xu C. Simulated Microgravity and 3D Culture Enhance Induction, Viability, Proliferation and Differentiation of Cardiac Progenitors from Human Pluripotent Stem Cells. Sci Rep 2016; 6:30956. [PMID: 27492371 PMCID: PMC4974658 DOI: 10.1038/srep30956] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 07/12/2016] [Indexed: 12/21/2022] Open
Abstract
Efficient generation of cardiomyocytes from human pluripotent stem cells is critical for their regenerative applications. Microgravity and 3D culture can profoundly modulate cell proliferation and survival. Here, we engineered microscale progenitor cardiac spheres from human pluripotent stem cells and exposed the spheres to simulated microgravity using a random positioning machine for 3 days during their differentiation to cardiomyocytes. This process resulted in the production of highly enriched cardiomyocytes (99% purity) with high viability (90%) and expected functional properties, with a 1.5 to 4-fold higher yield of cardiomyocytes from each undifferentiated stem cell as compared with 3D-standard gravity culture. Increased induction, proliferation and viability of cardiac progenitors as well as up-regulation of genes associated with proliferation and survival at the early stage of differentiation were observed in the 3D culture under simulated microgravity. Therefore, a combination of 3D culture and simulated microgravity can be used to efficiently generate highly enriched cardiomyocytes.
Collapse
Affiliation(s)
- Rajneesh Jha
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Qingling Wu
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Monalisa Singh
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Marcela K Preininger
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Pengcheng Han
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Gouliang Ding
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Hee Cheol Cho
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.,Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Kevin O Maher
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Mary B Wagner
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Chunhui Xu
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| |
Collapse
|
35
|
Effects of myokines on bone. BONEKEY REPORTS 2016; 5:826. [PMID: 27579164 DOI: 10.1038/bonekey.2016.48] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 05/01/2016] [Indexed: 12/22/2022]
Abstract
The links between muscle and bone have been recently examined because of the increasing number of patients with osteoporosis and sarcopenia. Myokines are skeletal muscle-derived humoral cytokines and growth factors, which exert physiological and pathological functions in various distant organs, including the regulation of glucose, energy and bone metabolism. Myostatin is a crucial myokine, the expression of which is mainly limited to muscle tissues. The inhibition of myostatin signaling increases bone remodeling, bone mass and muscle mass, and it may provide a target for the treatment of both sarcopenia and osteoporosis. As myostatin is involved in osteoclast formation and bone destruction in rheumatoid arthritis, myostatin may be a target myokine for the treatment of accelerated bone resorption and joint destruction in rheumatoid arthritis. Numerous other myokines, including transforming growth factor-β, follistatin, insulin-like growth factor-I, fibroblast growth factor-2, osteoglycin, FAM5C, irisin, interleukin (IL)-6, leukemia inhibitory factor, IL-7, IL-15, monocyte chemoattractant protein-1, ciliary neurotrophic factor, osteonectin and matrix metalloproteinase 2, also affect bone cells in various manners. However, the effects of myokines on bone metabolism are largely unknown. Further research is expected to clarify the interaction between muscle and bone, which may lead to greater diagnosis and the development of the treatment for muscle and bone disorders, such as osteoporosis and sarcopenia.
Collapse
|
36
|
Maeda K, Enomoto A, Hara A, Asai N, Kobayashi T, Horinouchi A, Maruyama S, Ishikawa Y, Nishiyama T, Kiyoi H, Kato T, Ando K, Weng L, Mii S, Asai M, Mizutani Y, Watanabe O, Hirooka Y, Goto H, Takahashi M. Identification of Meflin as a Potential Marker for Mesenchymal Stromal Cells. Sci Rep 2016; 6:22288. [PMID: 26924503 PMCID: PMC4770287 DOI: 10.1038/srep22288] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 02/11/2016] [Indexed: 01/14/2023] Open
Abstract
Bone marrow-derived mesenchymal stromal cells (BM-MSCs) in culture are derived from BM stromal cells or skeletal stem cells. Whereas MSCs have been exploited in clinical medicine, the identification of MSC-specific markers has been limited. Here, we report that a cell surface and secreted protein, Meflin, is expressed in cultured MSCs, fibroblasts and pericytes, but not other types of cells including epithelial, endothelial and smooth muscle cells. In vivo, Meflin is expressed by immature osteoblasts and chondroblasts. In addition, Meflin is found on stromal cells distributed throughout the BM, and on pericytes and perivascular cells in multiple organs. Meflin maintains the undifferentiated state of cultured MSCs and is downregulated upon their differentiation, consistent with the observation that Meflin-deficient mice exhibit increased number of osteoblasts and accelerated bone development. In the bone and BM, Meflin is more highly expressed in primitive stromal cells that express platelet-derived growth factor receptor α and Sca-1 than the Sca-1-negative adipo-osteogenic progenitors, which create a niche for hematopoiesis. Those results are consistent with a decrease in the number of clonogenic colony-forming unit-fibroblasts within the BM of Meflin-deficient mice. These preliminary data suggest that Meflin is a potential marker for cultured MSCs and their source cells in vivo.
Collapse
Affiliation(s)
- Keiko Maeda
- Department of Pathology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.,Department of Gastroenterology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Atsushi Enomoto
- Department of Pathology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Akitoshi Hara
- Department of Pathology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Naoya Asai
- Department of Pathology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Takeshi Kobayashi
- Department of Physiology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Asuka Horinouchi
- Department of Nephrology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Shoichi Maruyama
- Department of Nephrology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yuichi Ishikawa
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, , 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Takahiro Nishiyama
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, , 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, , 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Takuya Kato
- Tumour Cell Biology Laboratory, The Francis-Crick Institute, 44 Lincoln's Inn Fields, London, WC2A 3LY, United Kingdom
| | - Kenju Ando
- Department of Pathology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Liang Weng
- Department of Pathology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Shinji Mii
- Department of Pathology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Masato Asai
- Department of Pathology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yasuyuki Mizutani
- Department of Pathology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.,Department of Gastroenterology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Osamu Watanabe
- Department of Gastroenterology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yoshiki Hirooka
- Department of Gastroenterology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hidemi Goto
- Department of Gastroenterology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Masahide Takahashi
- Department of Pathology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
37
|
miRNA-132-3p inhibits osteoblast differentiation by targeting Ep300 in simulated microgravity. Sci Rep 2015; 5:18655. [PMID: 26686902 PMCID: PMC4685444 DOI: 10.1038/srep18655] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/11/2015] [Indexed: 12/04/2022] Open
Abstract
Recent studies have demonstrated that miRNAs can play important roles in osteoblast differentiation and bone formation. However, the function of miRNAs in bone loss induced by microgravity remains unclear. In this study, we investigated the differentially expressed miRNAs in both the femur tissues of hindlimb unloading rats and primary rat osteoblasts (prOB) exposed to simulated microgravity. Specifically, miR-132-3p was found up-regulated and negatively correlated with osteoblast differentiation. Overexpression of miR-132-3p significantly inhibited prOB differentiation, whereas inhibition of miR-132-3p function yielded an opposite effect. Furthermore, silencing of miR-132-3p expression effectively attenuated the negative effects of simulated microgravity on prOB differentiation. Further experiments confirmed that E1A binding protein p300 (Ep300), a type of histone acetyltransferase important for Runx2 activity and stability, was a direct target of miR-132-3p. Up-regulation of miR-132-3p by simulated microgravity could inhibit osteoblast differentiation in part by decreasing Ep300 protein expression, which, in turn, resulted in suppression of the activity and acetylation of Runx2, a key regulatory factor of osteoblast differentiation. Taken together, our findings are the first to demonstrate that miR-132-3p can inhibit osteoblast differentiation and participate in the regulation of bone loss induced by simulated microgravity, suggesting a potential target for counteracting decreases in bone formation.
Collapse
|
38
|
|
39
|
Indo HP, Tomiyoshi T, Suenaga S, Tomita K, Suzuki H, Masuda D, Terada M, Ishioka N, Gusev O, Cornette R, Okuda T, Mukai C, Majima HJ. MnSOD downregulation induced by extremely low 0.1 mGy single and fractionated X-rays and microgravity treatment in human neuroblastoma cell line, NB-1. J Clin Biochem Nutr 2015; 57:98-104. [PMID: 26388666 PMCID: PMC4566025 DOI: 10.3164/jcbn.15-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 02/16/2015] [Indexed: 11/22/2022] Open
Abstract
A human neuroblastoma cell line, NB-1, was treated with 24 h of microgravity simulation by clinostat, or irradiated with extremely small X-ray doses of 0.1 or 1.0 mGy using single and 10 times fractionation regimes with 1 and 2 h time-intervals. A quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) examination was performed for apoptosis related factors (BAX, CYTC, APAF1, VDAC1–3, CASP3, CASP8, CASP9 P53, AIF, ANT1 and 2, BCL2, MnSOD, autophagy related BECN and necrosis related CYP-40. The qRT-PCR results revealed that microgravity did not result in significant changes except for a upregulation of proapoptotic VDAC2, and downregulations of proapoptotic CASP9 and antiapoptotic MnSOD. After 0.1 mGy fractionation irradiation, there was increased expression of proapoptotic APAF1 and downregulation of proapoptotic CYTC, VDAC2, VDAC3, CASP8, AIF, ANT1, and ANT2, as well as an increase in expression of antiapoptotic BCL2. There was also a decrease in MnSOD expression with 0.1 mGy fractionation irradiation. These results suggest that microgravity and low-dose radiation may decrease apoptosis but may potentially increase oxidative stress.
Collapse
Affiliation(s)
- Hiroko P Indo
- Department of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Tsukasa Tomiyoshi
- Department of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Shigeaki Suenaga
- Department of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Kazuo Tomita
- Department of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Hiromi Suzuki
- Department of Space Environmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan ; Life Science Research Group, Department of Science and Applications, Japan Space Forum, 3-2-1 Surugadai, Chiyoda, Tokyo 100-0004, Japan
| | - Daisuke Masuda
- Department of Space Environmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan ; Utilization & Engineering Department, Japan Manned Space Systems Corporation, 2-1-6 Tsukuba, Ibaraki 305-0047, Japan
| | - Masahiro Terada
- Department of Space Environmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan ; Space Biosciences Division, NASA Ames Research Center, Moffett Field, California 94035, USA
| | - Noriaki Ishioka
- Department of Space Environmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan ; Department of Space Biology and Microgravity Sciences, Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
| | - Oleg Gusev
- Department of Space Environmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan ; Department of Space Biology and Microgravity Sciences, Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan ; Department of Invertebrates Zoology and Functional Morphology, Institute of Fundamental Medicine and Biology, Kazan Federal University 420008, Kremevskaya str., 17 Kazan 420-008, Russia ; Anhydrobiosis Research Unit, National Institute of Agrobiological Sciences, 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Richard Cornette
- Anhydrobiosis Research Unit, National Institute of Agrobiological Sciences, 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Takashi Okuda
- Anhydrobiosis Research Unit, National Institute of Agrobiological Sciences, 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Chiaki Mukai
- Center for Applied Space Medicine and Human Research, Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
| | - Hideyuki J Majima
- Department of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan ; Department of Space Environmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| |
Collapse
|
40
|
Ruggiu A, Cancedda R. Bone mechanobiology, gravity and tissue engineering: effects and insights. J Tissue Eng Regen Med 2014; 9:1339-51. [PMID: 25052837 DOI: 10.1002/term.1942] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 05/23/2014] [Accepted: 05/27/2014] [Indexed: 01/10/2023]
Abstract
Bone homeostasis strongly depends on fine tuned mechanosensitive regulation signals from environmental forces into biochemical responses. Similar to the ageing process, during spaceflights an altered mechanotransduction occurs as a result of the effects of bone unloading, eventually leading to loss of functional tissue. Although spaceflights represent the best environment to investigate near-zero gravity effects, there are major limitations for setting up experimental analysis. A more feasible approach to analyse the effects of reduced mechanostimulation on the bone is represented by the 'simulated microgravity' experiments based on: (1) in vitro studies, involving cell cultures studies and the use of bioreactors with tissue engineering approaches; (2) in vivo studies, based on animal models; and (3) direct analysis on human beings, as in the case of the bed rest tests. At present, advanced tissue engineering methods allow investigators to recreate bone microenvironment in vitro for mechanobiology studies. This group and others have generated tissue 'organoids' to mimic in vitro the in vivo bone environment and to study the alteration cells can go through when subjected to unloading. Understanding the molecular mechanisms underlying the bone tissue response to mechanostimuli will help developing new strategies to prevent loss of tissue caused by altered mechanotransduction, as well as identifying new approaches for the treatment of diseases via drug testing. This review focuses on the effects of reduced gravity on bone mechanobiology by providing the up-to-date and state of the art on the available data by drawing a parallel with the suitable tissue engineering systems.
Collapse
Affiliation(s)
- Alessandra Ruggiu
- University of Genova, Department of Experimental Medicine, Genova, Italy
| | - Ranieri Cancedda
- University of Genova, Department of Experimental Medicine & IRCCS AOU San Martino-IST, National Institute for Cancer Research, Genova, Italy
| |
Collapse
|
41
|
Grimm D, Pietsch J, Wehland M, Richter P, Strauch SM, Lebert M, Magnusson NE, Wise P, Bauer J. The impact of microgravity-based proteomics research. Expert Rev Proteomics 2014; 11:465-76. [DOI: 10.1586/14789450.2014.926221] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Daniela Grimm
- Institute of Biomedicine, Pharmacology, Aarhus University, 8000 Aarhus C, Denmark
| | - Jessica Pietsch
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Markus Wehland
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Peter Richter
- Department of Biology, Cell Biology, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Sebastian M Strauch
- Department of Biology, Cell Biology, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Michael Lebert
- Department of Biology, Cell Biology, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Nils Erik Magnusson
- Medical Research Laboratories, Department of Clinical Medicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Petra Wise
- Hematology/Oncology, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA 90027, USA
| | - Johann Bauer
- Max-Planck Institute for Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
42
|
Choi MK, Seong I, Kang SA, Kim J. Down-regulation of Sox11 is required for efficient osteogenic differentiation of adipose-derived stem cells. Mol Cells 2014; 37:337-44. [PMID: 24722414 PMCID: PMC4012083 DOI: 10.14348/molcells.2014.0021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/06/2014] [Accepted: 03/07/2014] [Indexed: 01/09/2023] Open
Abstract
Adipose-derived stem cells represent a type of mesenchymal stem cells with the attendant capacity to self-renew and differentiate into multiple cell lineages. We have performed a microarray-based gene expression profiling of osteogenic differentiation and found that the transcription factor Sox11 is down-regulated during the process. Functional assays demonstrate that down-regulation of Sox11 is required for an efficient differentiation. Furthermore, results from forced expression of constitutively-active and dominant-negative derivatives of Sox11 indicate that Sox11 functions as a transcriptional activator in inhibiting osteogenesis. Sox11 thus represents a novel regulator of osteogenesis whose expression and activity can be potentially manipulated for controlled differentiation.
Collapse
Affiliation(s)
- Mi Kyung Choi
- Department of Life Science, Ewha Womans University, Seoul 120-750,
Korea
| | - Ikjoo Seong
- Department of Life Science, Ewha Womans University, Seoul 120-750,
Korea
- Ewha Research Center for Systems Biology, Seoul 120-750,
Korea
| | - Seon Ah Kang
- Department of Life Science, Ewha Womans University, Seoul 120-750,
Korea
| | - Jaesang Kim
- Department of Life Science, Ewha Womans University, Seoul 120-750,
Korea
- Ewha Research Center for Systems Biology, Seoul 120-750,
Korea
| |
Collapse
|
43
|
Hu M, Qin YX. Dynamic fluid flow stimulation on cortical bone and alterations of the gene expressions of osteogenic growth factors and transcription factors in a rat functional disuse model. Arch Biochem Biophys 2014; 545:154-61. [PMID: 24486201 DOI: 10.1016/j.abb.2014.01.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 01/17/2014] [Accepted: 01/21/2014] [Indexed: 12/31/2022]
Abstract
Recently we have developed a dynamic hydraulic stimulation (DHS) as a loading modality to induce anabolic responses in bone. To further study the functional process of DHS regulated bone metabolism, the objective of this study was to evaluate the effects of DHS on cortical bone and its alterations on gene expressions of osteogenic growth factors and transcription factors as a function of time. Using a model system of 5-month-old hindlimb suspended (HLS) female Sprague-Dawley rats, DHS was applied to the right tibiae of the stimulated rats with a loading frequency of 2Hz with 30mmHg (p-p) dynamic pressure, 5days/week, for a total of 28days. Midshafts of the tibiae were analyzed using μCT and histology. Total RNA was analyzed using RT-PCR on selected osteogenic genes (RUNX2, β-catenin, osteopontin, VEGF, BMP2, IGF-1, and TGF-β) on 3-, 7-, 14- , and 21-day. Results showed increased Cort.Th and Ct.BV/TV as well as a time-dependent fashion of gradual changes in mRNA levels upon DHS. While DHS-driven fold changes of the mRNA levels remained low before Day-7, its fold changes started to elevate by Day-14 and then dropped by Day-21. This study further delineates the underlying molecular mechanism of DHS-derived mechanical signals, and its time-dependent optimization.
Collapse
Affiliation(s)
- Minyi Hu
- Dept. of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, United States
| | - Yi-Xian Qin
- Dept. of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, United States.
| |
Collapse
|
44
|
Rolfe RA, Nowlan NC, Kenny EM, Cormican P, Morris DW, Prendergast PJ, Kelly D, Murphy P. Identification of mechanosensitive genes during skeletal development: alteration of genes associated with cytoskeletal rearrangement and cell signalling pathways. BMC Genomics 2014; 15:48. [PMID: 24443808 PMCID: PMC3905281 DOI: 10.1186/1471-2164-15-48] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 12/18/2013] [Indexed: 12/15/2022] Open
Abstract
Background Mechanical stimulation is necessary for regulating correct formation of the skeleton. Here we test the hypothesis that mechanical stimulation of the embryonic skeletal system impacts expression levels of genes implicated in developmentally important signalling pathways in a genome wide approach. We use a mutant mouse model with altered mechanical stimulation due to the absence of limb skeletal muscle (Splotch-delayed) where muscle-less embryos show specific defects in skeletal elements including delayed ossification, changes in the size and shape of cartilage rudiments and joint fusion. We used Microarray and RNA sequencing analysis tools to identify differentially expressed genes between muscle-less and control embryonic (TS23) humerus tissue. Results We found that 680 independent genes were down-regulated and 452 genes up-regulated in humeri from muscle-less Spd embryos compared to littermate controls (at least 2-fold; corrected p-value ≤0.05). We analysed the resulting differentially expressed gene sets using Gene Ontology annotations to identify significant enrichment of genes associated with particular biological processes, showing that removal of mechanical stimuli from muscle contractions affected genes associated with development and differentiation, cytoskeletal architecture and cell signalling. Among cell signalling pathways, the most strongly disturbed was Wnt signalling, with 34 genes including 19 pathway target genes affected. Spatial gene expression analysis showed that both a Wnt ligand encoding gene (Wnt4) and a pathway antagonist (Sfrp2) are up-regulated specifically in the developing joint line, while the expression of a Wnt target gene, Cd44, is no longer detectable in muscle-less embryos. The identification of 84 genes associated with the cytoskeleton that are down-regulated in the absence of muscle indicates a number of candidate genes that are both mechanoresponsive and potentially involved in mechanotransduction, converting a mechanical stimulus into a transcriptional response. Conclusions This work identifies key developmental regulatory genes impacted by altered mechanical stimulation, sheds light on the molecular mechanisms that interpret mechanical stimulation during skeletal development and provides valuable resources for further investigation of the mechanistic basis of mechanoregulation. In particular it highlights the Wnt signalling pathway as a potential point of integration of mechanical and molecular signalling and cytoskeletal components as mediators of the response.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Paula Murphy
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
45
|
Nasir A, Strauch SM, Becker I, Sperling A, Schuster M, Richter PR, Weißkopf M, Ntefidou M, Daiker V, An YA, Li XY, Liu YD, Lebert M. The influence of microgravity on Euglena gracilis as studied on Shenzhou 8. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16 Suppl 1:113-119. [PMID: 23926886 DOI: 10.1111/plb.12067] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 05/31/2013] [Indexed: 06/02/2023]
Abstract
The German Aerospace Center (DLR) enabled German participation in the joint space campaign on the unmanned Shenzhou 8 spacecraft in November 2011. In this report, the effect of microgravity on Euglena gracilis cells is described. Custom-made dual compartment cell fixation units (containing cells in one chamber and fixative - RNA lysis buffer - in another one) were enclosed in a small container and placed in the Simbox incubator, which is an experiment support system. Cells were fixed by injecting them with fixative at different time intervals. In addition to stationary experiment slots, Simbox provides a 1 g reference centrifuge. Cell fixation units were mounted in microgravity and 1 g reference positions of Simbox. Two Simbox incubators were used, one for space flight and the other as ground reference. Cells were fixed soon after launch and shortly before return of the spaceship. Due to technical problems, only early in-flight samples (about 40 min after launch microgravity and corresponding 1 g reference) were fully mixed with fixative, therefore only data from those samples are presented. Transcription of several genes involved in signal transduction, oxidative stress defence, cell cycle regulation and heat shock responses was investigated with quantitative PCR. The data indicate that Euglena cells suffer stress upon short-term exposure to microgravity; various stress-induced genes were up-regulated. Of 32 tested genes, 18 were up-regulated, one down-regulated and the rest remained unaltered. These findings are in a good agreement with results from other research groups using other organisms.
Collapse
Affiliation(s)
- A Nasir
- Department of Biology, Cell Biology Division, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Gershovich PM, Gershovich YG, Buravkova LB. Molecular genetic features of human mesenchymal stem cells after their osteogenic differentiation under the conditions of microgravity. ACTA ACUST UNITED AC 2013. [DOI: 10.1134/s036211971305006x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Nagaraja MP, Risin D. The current state of bone loss research: data from spaceflight and microgravity simulators. J Cell Biochem 2013; 114:1001-8. [PMID: 23150462 DOI: 10.1002/jcb.24454] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 11/01/2012] [Indexed: 11/11/2022]
Abstract
Bone loss is a well documented phenomenon occurring in humans both in short- and in long-term spaceflights. This phenomenon can be also reproduced on the ground in human and animals and also modeled in cell-based analogs. Since space flights are infrequent and expensive to study the biomedical effects of microgravity on the human body, much of the known pathology of bone loss comes from experimental studies. The most commonly used in vitro simulators of microgravity are clinostats while in vivo simulators include the bed rest studies in humans and hindlimb unloading experiments in animals. Despite the numerous reports that have documented bone loss in wide ranges in multiple crew members, the pathology remains a key concern and development of effective countermeasures is still a major task. Thus far, the offered modalities have not shown much success in preventing or alleviating bone loss in astronauts and cosmonauts. The objective of this review is to capture the most recent research on bone loss from spaceflights, bed rest and hindlimb unloading, and in vitro studies utilizing cellular models in clinostats. Additionally, this review offers projections on where the research has to focus to ensure the most rapid development of effective countermeasures.
Collapse
|
48
|
Broxmeyer HE, Mor-Vaknin N, Kappes F, Legendre M, Saha AK, Ou X, O'Leary H, Capitano M, Cooper S, Markovitz DM. Concise review: role of DEK in stem/progenitor cell biology. Stem Cells 2013; 31:1447-53. [PMID: 23733396 PMCID: PMC3814160 DOI: 10.1002/stem.1443] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/06/2013] [Accepted: 05/08/2013] [Indexed: 12/19/2022]
Abstract
Understanding the factors that regulate hematopoiesis opens up the possibility of modifying these factors and their actions for clinical benefit. DEK, a non-histone nuclear phosphoprotein initially identified as a putative proto-oncogene, has recently been linked to regulate hematopoiesis. DEK has myelosuppressive activity in vitro on proliferation of human and mouse hematopoietic progenitor cells and enhancing activity on engraftment of long-term marrow repopulating mouse stem cells, has been linked in coordinate regulation with the transcription factor C/EBPα, for differentiation of myeloid cells, and apparently targets a long-term repopulating hematopoietic stem cell for leukemic transformation. This review covers the uniqueness of DEK, what is known about how it now functions as a nuclear protein and also as a secreted molecule that can act in paracrine fashion, and how it may be regulated in part by dipeptidylpeptidase 4, an enzyme known to truncate and modify a number of proteins involved in activities on hematopoietic cells. Examples are provided of possible future areas of investigation needed to better understand how DEK may be regulated and function as a regulator of hematopoiesis, information possibly translatable to other normal and diseased immature cell systems.
Collapse
Affiliation(s)
- Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Hu M, Yeh R, Lien M, Teeratananon M, Agarwal K, Qin YX. Dynamic Fluid Flow Mechanical Stimulation Modulates Bone Marrow Mesenchymal Stem Cells. Bone Res 2013; 1:98-104. [PMID: 26273495 DOI: 10.4248/br201301007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 01/24/2013] [Indexed: 11/10/2022] Open
Abstract
Osteoblasts are derived from mesenchymal stem cells (MSCs), which initiate and regulate bone formation. New strategies for osteoporosis treatments have aimed to control the fate of MSCs. While functional disuse decreases MSC growth and osteogenic potentials, mechanical signals enhance MSC quantity and bias their differentiation toward osteoblastogenesis. Through a non-invasive dynamic hydraulic stimulation (DHS), we have found that DHS can mitigate trabecular bone loss in a functional disuse model via rat hindlimb suspension (HLS). To further elucidate the downstream cellular effect of DHS and its potential mechanism underlying the bone quality enhancement, a longitudinal in vivo study was designed to evaluate the MSC populations in response to DHS over 3, 7, 14, and 21 days. Five-month old female Sprague Dawley rats were divided into three groups for each time point: age-matched control, HLS, and HLS+DHS. DHS was delivered to the right mid-tibiae with a daily "10 min on-5 min off-10 min on" loading regime for five days/week. At each sacrifice time point, bone marrow MSCs of the stimulated and control tibiae were isolated through specific cell surface markers and quantified by flow cytometry analysis. A strong time-dependent manner of bone marrow MSC induction was observed in response to DHS, which peaked on day 14. After 21 days, this effect of DHS was diminished. This study indicates that the MSC pool is positively influenced by the mechanical signals driven by DHS. Coinciding with our previous findings of mitigation of disuse bone loss, DHS induced changes in MSC number may bias the differentiation of the MSC population towards osteoblastogenesis, thereby promoting bone formation under disuse conditions. This study provides insights into the mechanism of time-sensitive MSC induction in response to mechanical loading, and for the optimal design of osteoporosis treatments.
Collapse
Affiliation(s)
- Minyi Hu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook , NY 11794-5281, USA
| | - Robbin Yeh
- Department of Biomedical Engineering, Stony Brook University, Stony Brook , NY 11794-5281, USA
| | - Michelle Lien
- Department of Biomedical Engineering, Stony Brook University, Stony Brook , NY 11794-5281, USA
| | - Morgan Teeratananon
- Department of Biomedical Engineering, Stony Brook University, Stony Brook , NY 11794-5281, USA
| | - Kunal Agarwal
- Department of Biomedical Engineering, Stony Brook University, Stony Brook , NY 11794-5281, USA
| | - Yi-Xian Qin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook , NY 11794-5281, USA
| |
Collapse
|
50
|
Zupanska AK, Denison FC, Ferl RJ, Paul AL. Spaceflight engages heat shock protein and other molecular chaperone genes in tissue culture cells of Arabidopsis thaliana. AMERICAN JOURNAL OF BOTANY 2013; 100:235-48. [PMID: 23258370 DOI: 10.3732/ajb.1200343] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
PREMISE OF THE STUDY Gravity has been a major force throughout the evolution of terrestrial organisms, and plants have developed exquisitely sensitive, regulated tropisms and growth patterns that are based on the gravity vector. The nullified gravity during spaceflight allows direct assessment of gravity roles. The microgravity environments provided by the Space Shuttle and International Space Station have made it possible to seek novel insights into gravity perception at the organismal, tissue, and cellular levels. Cell cultures of Arabidopsis thaliana perceive and respond to spaceflight, even though they lack the specialized cell structures normally associated with gravity perception in intact plants; in particular, genes for a specific subset of heat shock proteins (HSPs) and factors (HSFs) are induced. Here we ask if similar changes in HSP gene expression occur during nonspaceflight changes in gravity stimulation. METHODS Quantitative RT-qPCR was used to evaluate mRNA levels for Hsp17.6A and Hsp101 in cell cultures exposed to four conditions: spaceflight (mission STS-131), hypergravity (centrifugation at 3 g or 16 g), sustained two-dimensional clinorotation, and transient milligravity achieved on parabolic flights. KEY RESULTS We showed that HSP genes were induced in cells only in response to sustained clinorotation. Transient microgravity intervals in parabolic flight and various hypergravity conditions failed to induce HSP genes. CONCLUSIONS We conclude that nondifferentiated cells do indeed sense their gravity environment and HSP genes are induced only in response to prolonged microgravity or simulated microgravity conditions. We hypothesize that HSP induction upon microgravity indicates a role for HSP-related proteins in maintaining cytoskeletal architecture and cell shape signaling.
Collapse
Affiliation(s)
- Agata K Zupanska
- Horticultural Science Department, Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611, USA
| | | | | | | |
Collapse
|