1
|
Pflieger FJ, Wolf J, Feldotto M, Nockher A, Wenderoth T, Hernandez J, Roth J, Ott D, Rummel C. Norepinephrine Inhibits Lipopolysaccharide-Stimulated TNF-α but Not Oxylipin Induction in n-3/n-6 PUFA-Enriched Cultures of Circumventricular Organs. Int J Mol Sci 2022; 23:ijms23158745. [PMID: 35955879 PMCID: PMC9368774 DOI: 10.3390/ijms23158745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Sensory circumventricular organs (sCVOs) are pivotal brain structures involved in immune-to-brain communication with a leaky blood-brain barrier that detect circulating mediators such as lipopolysaccharide (LPS). Here, we aimed to investigate the potential of sCVOs to produce n-3 and n-6 oxylipins after LPS-stimulation. Moreover, we investigated if norepinephrine (NE) co-treatment can alter cytokine- and oxylipin-release. Thus, we stimulated rat primary neuroglial sCVO cultures under n-3- or n-6-enriched conditions with LPS or saline combined with NE or vehicle. Supernatants were assessed for cytokines by bioassays and oxylipins by HPLC-MS/MS. Expression of signaling pathways and enzymes were analyzed by RT-PCR. Tumor necrosis factor (TNF)α bioactivity and signaling, IL-10 expression, and cyclooxygenase (COX)2 were increased, epoxide hydroxylase (Ephx)2 was reduced, and lipoxygenase 15-(LOX) was not changed by LPS stimulation. Moreover, LPS induced increased levels of several n-6-derived oxylipins, including the COX-2 metabolite 15d-prostaglandin-J2 or the Ephx2 metabolite 14,15-DHET. For n-3-derived oxylipins, some were down- and some were upregulated, including 15-LOX-derived neuroprotectin D1 and 18-HEPE, known for their anti-inflammatory potential. While the LPS-induced increase in TNFα levels was significantly reduced by NE, oxylipins were not significantly altered by NE or changes in TNFα levels. In conclusion, LPS-induced oxylipins may play an important functional role in sCVOs for immune-to-brain communication.
Collapse
Affiliation(s)
- Fabian Johannes Pflieger
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Jacqueline Wolf
- Institute for Laboratory Medicine, Pathobiochemistry, and Molecular Diagnostics, University Hospital of Giessen and Marburg, 35043 Marburg, Germany
| | - Martin Feldotto
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Andreas Nockher
- Institute for Laboratory Medicine, Pathobiochemistry, and Molecular Diagnostics, University Hospital of Giessen and Marburg, 35043 Marburg, Germany
| | - Tatjana Wenderoth
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Jessica Hernandez
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Joachim Roth
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, 35032 Marburg, Germany
| | - Daniela Ott
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Christoph Rummel
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, 35032 Marburg, Germany
- Correspondence:
| |
Collapse
|
2
|
Mondal K, Takahashi H, Cole J, Del Mar NA, Li C, Stephenson DJ, Allegood J, Cowart LA, Chalfant CE, Reiner A, Mandal N. Systemic Elevation of n-3 Polyunsaturated Fatty Acids (n-3-PUFA) Is Associated with Protection against Visual, Motor, and Emotional Deficits in Mice following Closed-Head Mild Traumatic Brain Injury. Mol Neurobiol 2021; 58:5564-5580. [PMID: 34365584 DOI: 10.1007/s12035-021-02501-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/17/2021] [Indexed: 12/30/2022]
Abstract
Traumatic brain injury (TBI) causes neuroinflammation and neurodegeneration leading to various pathological complications such as motor and sensory (visual) deficits, cognitive impairment, and depression. N-3 polyunsaturated fatty acid (n-3 PUFA) containing lipids are known to be anti-inflammatory, whereas the sphingolipid, ceramide (Cer), is an inducer of neuroinflammation and degeneration. Using Fat1+-transgenic mice that contain elevated levels of systemic n-3 PUFA, we tested whether they are resistant to mild TBI-mediated sensory-motor and emotional deficits by subjecting Fat1-transgenic mice and their WT littermates to focal cranial air blast (50 psi) or sham blast (0 psi, control). We observed that visual function in WT mice was reduced significantly following TBI but not in Fat1+-blast animals. We also found Fat1+-blast mice were resistant to the decline in motor functions, depression, and fear-producing effects of blast, as well as the reduction in the area of oculomotor nucleus and increase in activated microglia in the optic tract in brain sections seen following blast in WT mice. Lipid and gene expression analyses confirmed an elevated level of the n-3 PUFA eicosapentaenoic acid (EPA) in the plasma and brain, blocking of TBI-mediated increase of Cer in the brain, and decrease in TBI-mediated induction of Cer biosynthetic and inflammatory gene expression in the brain of the Fat1+ mice. Our results demonstrate that suppression of ceramide biosynthesis and inflammatory factors in Fat1+-transgenic mice is associated with significant protection against the visual, motor, and emotional deficits caused by mild TBI. This study suggests that n-3 PUFA (especially, EPA) has a promising therapeutic role in preventing neurodegeneration after TBI.
Collapse
Affiliation(s)
- Koushik Mondal
- Department of Ophthalmology, The University of Tennessee Health Science Centre, TN, 38163, Memphis, USA
| | - Haruka Takahashi
- Department of Ophthalmology, The University of Tennessee Health Science Centre, TN, 38163, Memphis, USA.,Department of Animal Science, Iwate University, Morioka, Japan
| | - Jerome Cole
- Department of Ophthalmology, The University of Tennessee Health Science Centre, TN, 38163, Memphis, USA
| | - Nobel A Del Mar
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Centre, TN, 38163, Memphis, USA
| | - Chunyan Li
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Centre, TN, 38163, Memphis, USA
| | - Daniel J Stephenson
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Jeremy Allegood
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23219, USA
| | - L Ashley Cowart
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23219, USA.,Hunter Holmes McGuire VA Medical Center, Richmond, VA, 23249, USA
| | - Charles E Chalfant
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.,The Moffitt Cancer Center, Tampa, FL, 33620, USA.,Research Service, James A. Haley Veterans Hospital, Tampa, FL, 33612, USA
| | - Anton Reiner
- Department of Ophthalmology, The University of Tennessee Health Science Centre, TN, 38163, Memphis, USA.,Department of Anatomy and Neurobiology, The University of Tennessee Health Science Centre, TN, 38163, Memphis, USA
| | - Nawajes Mandal
- Department of Ophthalmology, The University of Tennessee Health Science Centre, TN, 38163, Memphis, USA. .,Department of Anatomy and Neurobiology, The University of Tennessee Health Science Centre, TN, 38163, Memphis, USA. .,Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Centre, TN, 38163, Memphis, USA. .,Memphis VA Medical Center, Memphis, TN, 38104, USA.
| |
Collapse
|
3
|
fat-1 transgenic zebrafish are protected from abnormal lipid deposition induced by high-vegetable oil feeding. Appl Microbiol Biotechnol 2020; 104:7355-7365. [PMID: 32676712 DOI: 10.1007/s00253-020-10774-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/28/2020] [Accepted: 07/05/2020] [Indexed: 12/27/2022]
Abstract
High dietary concentration of vegetable oil, particularly those rich in n-6 polyunsaturated fatty acids (PUFAs), can induce negative physiological effects including excessive lipid deposition in teleost fish. Omega-3 desaturase (Fat-1) of Caenorhabditis elegans is able to convert n-6 PUFAs to n-3 PUFAs and thus induces a low n-6/n-3 PUFAs ratio alleviating lipid deposition. In this study, we investigated the effects of dietary n-6 PUFAs on lipid metabolism of fat-1 transgenic zebrafish (Tg:fat-1), to explore the role of fat-1 in fish lipid metabolism. We first generated Tg:fat-1 zebrafish and assayed the effects of a low-fat diet (LFD) and a high-fat diet (HFD) prepared from soybean oil. Wild type zebrafish (WT) fed with HFD (HFD-WT) exhibited increased obesity and lipid deposition, especially in the abdominal cavity and liver. These defects were absent from HFD-Tg:fat-1. For each diet group, Tg:fat-1 exhibited significantly decreased levels of almost all hepatic lipid classes compared with WT. Expression levels of lipid synthesis-related genes and lipid deposition-related genes were markedly lower in the liver of HFD-Tg:fat-1 compared with HFD-WT. In contrast, the steatolysis-related genes significantly upregulated in HFD-Tg:fat-1. Then expression profiles of mitochondrial energy metabolism-related genes and ATP contents in the livers from LFD-WT, LFD-Tg:fat-1, HFD-WT, and HFD-Tg:fat-1 were determined. Our findings suggest that fat-1 protects fish from abnormal lipid deposition induced by high-vegetable oil feeding, through endogenously converting n-6 PUFAs to n-3 PUFAs. KEY POINTS: • fat-1 transgenic zebrafish (Tg:fat-1) can endogenously convert n-6 PUFAs to n-3 PUFAs. • Tg:fat-1 avoid serious abnormal lipid deposition induced by high-vegetable oil feeding. • fat-1 transgenosis effectively improved lipid metabolism and mitochondrial energy metabolism in zebrafish.
Collapse
|
4
|
Cao Y, Dong Z, Zhang D, Zhou H. Stillbirth risk on fat-1 transgenic foetus of sheep caused by deregulated DNA methylation of imprinted genes. JOURNAL OF APPLIED ANIMAL RESEARCH 2019. [DOI: 10.1080/09712119.2019.1575224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Yu Cao
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Zhicheng Dong
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Dong Zhang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Huanmin Zhou
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| |
Collapse
|
5
|
Hohos NM, Cho KJ, Swindle DC, Allshouse AA, Rudolph MC, Skaznik-Wikiel ME. Fat-1 Transgene Is Associated With Improved Reproductive Outcomes. Endocrinology 2018; 159:3981-3992. [PMID: 30403782 PMCID: PMC6260063 DOI: 10.1210/en.2018-00723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/30/2018] [Indexed: 01/09/2023]
Abstract
High intake of ω-3 polyunsaturated fatty acids (PUFAs) has been associated with a variety of health benefits. However, the role of ω-3 PUFAs in female reproductive function is unclear, with studies showing both positive and negative effects. The type of diet that ω-3 fatty acids are consumed with, for example, a balanced diet vs a high-fat diet (HFD), may influence how ω-3 fatty acids affect female reproductive function. To address the role of ω-3 PUFAs in female reproduction, we used the fat-1 mouse both with and without HFD exposure. Fat-1 mice constitutively express the fat-1 transgene, allowing the conversion of ω-6 to ω-3 fatty acids to yield an optimal tissue ratio of ω-6 to ω-3 fatty acids (∼1:1). In our study, at 15 weeks of age, fat-1 mice had elevated primordial follicles compared with wild-type controls with both standard chow and HFD feeding. Higher serum levels of the ω-3 docosahexaenoic acid (DHA), docosapentaenoic acid (DPA), and eicosapentaenoic acid (EPA) were positively associated with primordial follicle numbers, whereas the ratio of the ω-6 arachidonic acid to EPA + DPA + DHA had the opposite effect. Furthermore, fat-1 mice had increased pregnancy rates and shorter time to pregnancy when fed an HFD compared with wild-type mice. In conclusion, our novel preclinical model suggests that high tissue levels of long-chain ω-3 PUFAs are associated with an improved ovarian reserve and improved reproductive outcomes. Further studies are needed to evaluate ω-3 PUFAs as a potential intervention strategy in women with diminished ovarian reserve.
Collapse
Affiliation(s)
- Natalie M Hohos
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado
| | - Kirstin J Cho
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado
| | - Delaney C Swindle
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado
| | - Amanda A Allshouse
- Department of Biostatistics and Informatics, Colorado School of Public Health at the University of Colorado Denver, Aurora, Colorado
| | - Michael C Rudolph
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine, Aurora, Colorado
| | - Malgorzata E Skaznik-Wikiel
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado
- Correspondence: Malgorzata E. Skaznik-Wikiel, MD, University of Colorado, Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, Colorado 80045. E-mail:
| |
Collapse
|
6
|
Babajafari S, Hojhabrimanesh A, Sohrabi Z, Ayaz M, Noorafshan A, Akrami A. Comparing isolated soy protein with flaxseed oil vs isolated soy protein with corn oil and wheat flour with corn oil consumption on muscle catabolism, liver function, blood lipid, and sugar in burn patients: a randomized clinical trial. Trials 2018; 19:308. [PMID: 29866187 PMCID: PMC5987465 DOI: 10.1186/s13063-018-2693-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/17/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND There is controversy regarding whether increasing isolated soy protein (ISP) with or without flaxseed oil (FO), as functional foods, would lead to reduce muscle catabolism and cachexia in burn patients. METHODS One hundred and eighty-eight patients were assessed for eligibility in this randomized controlled trial. Of these, seventy-three eligible patients (total burn surface area 20-50%) were randomly assigned to three groups, labeled as Control (wheat flour [WF] + corn oil [CO]), ISP + FO, and ISP + CO, to receive these nutrients for three weeks. Weight, body mass index (BMI), serum hepatic enzymes (alanine transaminase [ALT], aspartate transaminase [AST], alkaline phosphatase [ALP]), systemic inflammatory response syndrome (SIRS), 24-h urinary urea nitrogen excretion (UUN), serum creatinine, 24-h urinary creatinine (UUC) excretion, fasting blood sugar (FBS), triglyceride (TG), and cholesterol were measured. RESULTS Using analysis of covariance models in the intention-to-treat population (n = 73), we found that at three weeks, patients in the ISP groups had lost significantly less in weight and BMI compared to those in the control group (all P < 0.01). Nitrogen retention and serum creatinine (primary outcomes) increased significantly in the ISP groups compared with the control group. Even after controlling for potential covariates in ANCOVA models, changes in these indices were still statistically significant (P = 0.008 and P = 0.005 for nitrogen balance and serum creatinine, respectively). However, no such significant differences were found between the ISP groups. On the other hand, 24-h UUN, and UUC excretion, serum hepatic enzymes, FBS, TG, and cholesterol were not significant between the groups (P > 0.05). CONCLUSION ISP and FO compared to WF and CO reduced muscle catabolism and increased body weight in burn patients. TRIAL REGISTRATION Iranian Registry of Clinical Trials, IRCT2014051817740N1 . Registered on 27 June 2014.
Collapse
Affiliation(s)
- Siavash Babajafari
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdollah Hojhabrimanesh
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Sohrabi
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Ayaz
- Burn Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Noorafshan
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Atefeh Akrami
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Neuman JC, Fenske RJ, Kimple ME. Dietary polyunsaturated fatty acids and their metabolites: Implications for diabetes pathophysiology, prevention, and treatment. NUTRITION AND HEALTHY AGING 2017; 4:127-140. [PMID: 28447067 PMCID: PMC5391679 DOI: 10.3233/nha-160004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Affiliation(s)
- Joshua C. Neuman
- Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Rachel J. Fenske
- Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Michelle E. Kimple
- Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| |
Collapse
|
8
|
Chiu CY, Smyl C, Dogan I, Rothe M, Weylandt KH. Quantitative Profiling of Hydroxy Lipid Metabolites in Mouse Organs Reveals Distinct Lipidomic Profiles and Modifications Due to Elevated n-3 Fatty Acid Levels. BIOLOGY 2017; 6:biology6010009. [PMID: 28165385 PMCID: PMC5372002 DOI: 10.3390/biology6010009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/20/2017] [Accepted: 01/22/2017] [Indexed: 01/22/2023]
Abstract
Polyunsaturated fatty acids (PUFA) are precursors of bioactive metabolites and mediators. In this study, the profile of hydroxyeicosatetraenoic (HETE), hydroxyeicosapentaenoic (HEPE) and hydroxydocosahexaenoic (HDHA) acids derived from arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in colon, liver, lung, spleen, muscle, heart and kidney tissue of healthy wildtype mice were characterized, and compared to profiles in organs from transgenic fat-1 mice engineered to express the Caenorhabditis elegans fat-1 gene encoding an n-3 desaturase and thereby with endogenously elevated n-3 PUFA levels. PUFAs were measured using gas chromatography. The lipid metabolites were assayed using LC-MS/MS. AA and DHA were the prominent PUFAs in wildtype and fat-1 mice. EPA levels were low in both groups even though there was a significant increase in fat-1 organs with an up to 12-fold increase in fat-1 spleen and kidney. DHA levels increased by approximately 1.5-fold in fat-1 as compared to wildtype mice. While HETEs remained the same or decreased moderately and HDHAs increased 1- to 3-fold, HEPE formation in fat-1 tissues increased from 8- (muscle) to 44-fold (spleen). These findings indicate distinct profiles of monohydroxy lipid metabolites in different organs and strong utilization of EPA for HEPE formation, by which moderate EPA supplementation might trigger formation of biologically active EPA-derived resolvins.
Collapse
Affiliation(s)
- Cheng-Ying Chiu
- Department of Medicine, Division of Hepatology and Gastroenterology, Charité University Medicine Berlin, Campus Virchow-Klinikum, 13353 Berlin, Germany.
- Lipid Clinic, Experimental and Clinical Research Centre (ECRC), Charité University Medicine and Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany.
| | - Christopher Smyl
- Department of Medicine, Division of Hepatology and Gastroenterology, Charité University Medicine Berlin, Campus Virchow-Klinikum, 13353 Berlin, Germany.
- Lipid Clinic, Experimental and Clinical Research Centre (ECRC), Charité University Medicine and Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany.
| | | | | | - Karsten-H Weylandt
- Department of Medicine, Division of Hepatology and Gastroenterology, Charité University Medicine Berlin, Campus Virchow-Klinikum, 13353 Berlin, Germany.
- Lipid Clinic, Experimental and Clinical Research Centre (ECRC), Charité University Medicine and Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany.
| |
Collapse
|
9
|
Martínez-Fernández L, Laiglesia LM, Huerta AE, Martínez JA, Moreno-Aliaga MJ. Omega-3 fatty acids and adipose tissue function in obesity and metabolic syndrome. Prostaglandins Other Lipid Mediat 2015. [PMID: 26219838 DOI: 10.1016/j.prostaglandins.2015.07.003] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The n-3 long-chain polyunsaturated fatty acids (n-3 PUFAs) such as eicosapentaenoic (EPA) and docosahexaenoic (DHA) have been reported to improve obesity-associated metabolic disorders including chronic inflammation, insulin resistance and dyslipidaemia. Growing evidence exits about adipose tissue as a target in mediating the beneficial effects of these marine n-3 PUFAs in adverse metabolic syndrome manifestations. Therefore, in this manuscript we focus in reviewing the current knowledge about effects of marine n-3 PUFAs on adipose tissue metabolism and secretory functions. This scope includes n-3 PUFAs actions on adipogenesis, lipogenesis and lipolysis as well as on fatty acid oxidation and mitochondrial biogenesis. The effects of n-3 PUFAs on adipose tissue glucose uptake and insulin signaling are also summarized. Moreover, the roles of peroxisome proliferator-activated receptor γ (PPARγ) and AMPK activation in mediating n-3 PUFAs actions on adipose tissue functions are discussed. Finally, the mechanisms underlying the ability of n-3 PUFAs to prevent and/or ameliorate adipose tissue inflammation are also revised, focusing on the role of n-3 PUFAs-derived specialized proresolving lipid mediators such as resolvins, protectins and maresins.
Collapse
Affiliation(s)
- Leyre Martínez-Fernández
- Department of Nutrition, Food Science and Physiology, School of Pharmacy, University of Navarra, Spain; Centre for Nutrition Research, School of Pharmacy, University of Navarra, Spain
| | - Laura M Laiglesia
- Department of Nutrition, Food Science and Physiology, School of Pharmacy, University of Navarra, Spain; Centre for Nutrition Research, School of Pharmacy, University of Navarra, Spain
| | - Ana E Huerta
- Department of Nutrition, Food Science and Physiology, School of Pharmacy, University of Navarra, Spain; Centre for Nutrition Research, School of Pharmacy, University of Navarra, Spain
| | - J Alfredo Martínez
- Department of Nutrition, Food Science and Physiology, School of Pharmacy, University of Navarra, Spain; Centre for Nutrition Research, School of Pharmacy, University of Navarra, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - María J Moreno-Aliaga
- Department of Nutrition, Food Science and Physiology, School of Pharmacy, University of Navarra, Spain; Centre for Nutrition Research, School of Pharmacy, University of Navarra, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
| |
Collapse
|
10
|
Velazquez MA. Impact of maternal malnutrition during the periconceptional period on mammalian preimplantation embryo development. Domest Anim Endocrinol 2015; 51:27-45. [PMID: 25498236 DOI: 10.1016/j.domaniend.2014.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/27/2014] [Accepted: 10/28/2014] [Indexed: 02/07/2023]
Abstract
During episodes of undernutrition and overnutrition the mammalian preimplantation embryo undergoes molecular and metabolic adaptations to cope with nutrient deficits or excesses. Maternal adaptations also take place to keep a nutritional microenvironment favorable for oocyte development and embryo formation. This maternal-embryo communication takes place via several nutritional mediators. Although adaptive responses to malnutrition by both the mother and the embryo may ensure blastocyst formation, the resultant quality of the embryo can be compromised, leading to early pregnancy failure. Still, studies have shown that, although early embryonic mortality can be induced during malnutrition, the preimplantation embryo possesses an enormous plasticity that allows it to implant and achieve a full-term pregnancy under nutritional stress, even in extreme cases of malnutrition. This developmental strategy, however, may come with a price, as shown by the adverse developmental programming induced by even subtle nutritional challenges exerted exclusively during folliculogenesis and the preimplantation period, resulting in offspring with a higher risk of developing deleterious phenotypes in adulthood. Overall, current evidence indicates that malnutrition during the periconceptional period can induce cellular and molecular alterations in preimplantation embryos with repercussions for fertility and postnatal health.
Collapse
Affiliation(s)
- M A Velazquez
- Centre for Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK.
| |
Collapse
|
11
|
Clarke SE, Kang JX, Ma DWL. The iFat1 transgene permits conditional endogenous n-3 PUFA enrichment both in vitro and in vivo. Transgenic Res 2014; 23:489-501. [PMID: 24622775 PMCID: PMC4010720 DOI: 10.1007/s11248-014-9788-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 03/03/2014] [Indexed: 01/22/2023]
Abstract
Fat-1 transgenic mice, which endogenously convert n-6 PUFA to n-3 PUFA, are a useful tool in health research; however with this model timing of n-3 PUFA enrichment cannot be directly controlled. To add such capability, the novel Cre-recombinase inducible fat-1 (iFat1) transgenic mouse has been developed. The aim of this study was to characterize the utility of the iFat1 transgene as a model of Cre-inducible endogenous n-3 PUFA enrichment. Functionality of the iFat1 transgene was screened both in vitro and in vivo. In the presence of Cre, the iFat1 transgene resulted in a balancing (p < 0.01) of the n-6/n-3 PUFA ratio within phospholipids in the human embryonic kidney 293T cell line. For in vivo analysis, iFat1 transgenic mice were crossed with the R26-Cre-ERT2 (Tam-Cre) mouse line, a tamoxifen inducible Cre-expression model. Tam-Cre/iFat1 double hybrids were transiently treated with tamoxifen at 6–7 weeks, then terminated 3 weeks later. Tamoxifen treated mice had increased (p < 0.05) tissue n-3 PUFA and ≥two-fold reduction (p < 0.05) in the n-6/n-3 PUFA ratio of liver, kidney and muscle phospholipids relative to vehicle treated controls. Collectively these findings suggest that the iFat1 transgenic mouse may be a promising tool to help elucidate the temporal effects through which n-3 PUFA impacts health related outcomes.
Collapse
Affiliation(s)
- Shannon E Clarke
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | | | | |
Collapse
|
12
|
Koren N, Simsa-Maziel S, Shahar R, Schwartz B, Monsonego-Ornan E. Exposure to omega-3 fatty acids at early age accelerate bone growth and improve bone quality. J Nutr Biochem 2014; 25:623-33. [PMID: 24746838 DOI: 10.1016/j.jnutbio.2014.01.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/13/2014] [Accepted: 01/28/2014] [Indexed: 12/28/2022]
Abstract
Omega-3 fatty acids (FAs) are essential nutritional components that must be obtained from foods. Increasing evidence validate that omega-3 FAs are beneficial for bone health, and several mechanisms have been suggested to mediate their effects on bone, including alterations in calcium absorption and urinary calcium loss, prostaglandin synthesis, lipid oxidation, osteoblast formation and inhibition of osteoclastogenesis. However, to date, there is scant information regarding the effect of omega-3 FAs on the developing skeleton during the rapid growth phase. In this study we aim to evaluate the effect of exposure to high levels of omega-3 FAs on bone development and quality during prenatal and early postnatal period. For this purpose, we used the fat-1 transgenic mice that have the ability to convert omega-6 to omega-3 fatty acids and the ATDC5 chondrogenic cell line as models. We show that exposure to high concentrations of omega-3 FAs at a young age accelerates bone growth through alterations of the growth plate, associated with increased chondrocyte proliferation and differentiation. We further propose that those effects are mediated by the receptors G-protein coupled receptor 120 (GPR120) and hepatic nuclear factor 4α, which are expressed by chondrocytes in culture. Additionally, using a combined study on the structural and mechanical bone parameters, we show that high omega-3 levels contribute to superior trabecular and cortical structure, as well as to stiffer bones and improved bone quality. Most interestingly, the fat-1 model allowed us to demonstrate the role of maternal high omega-3 concentration on bone growth during the gestation and postnatal period.
Collapse
Affiliation(s)
- Netta Koren
- Institute of Biochemistry and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Stav Simsa-Maziel
- Institute of Biochemistry and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ron Shahar
- Koret School of Veterinary, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Betty Schwartz
- Institute of Biochemistry and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Efrat Monsonego-Ornan
- Institute of Biochemistry and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
13
|
López-Vicario C, González-Périz A, Rius B, Morán-Salvador E, García-Alonso V, Lozano JJ, Bataller R, Cofán M, Kang JX, Arroyo V, Clària J, Titos E. Molecular interplay between Δ5/Δ6 desaturases and long-chain fatty acids in the pathogenesis of non-alcoholic steatohepatitis. Gut 2014; 63:344-55. [PMID: 23492103 DOI: 10.1136/gutjnl-2012-303179] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The mechanisms underlying non-alcoholic steatohepatitis (NASH) are not completely elucidated. In the current study we integrated gene expression profiling of liver biopsies from NASH patients with translational studies in mouse models of steatohepatitis and pharmacological interventions in isolated hepatocytes to identify new molecular targets in NASH. DESIGN AND RESULTS Using oligonucleotide microarray analysis we identified a significant enrichment of genes involved in the multi-step catalysis of long-chain polyunsaturated fatty acids, namely, Δ-5 desaturase (Δ5D) and Δ6D in NASH. Increased expression of Δ5D and Δ6D at both mRNA and protein level were confirmed in livers from mice with high-fat diet-induced obesity and NASH. Gas chromatography analysis revealed impaired desaturation fluxes toward the ω-6 and ω-3 pathways resulting in increased ω-6 to ω-3 ratio and reduced ω-3 index in human and mouse fatty livers. Restoration of hepatic ω-3 content in transgenic fat-1 mice expressing an ω-3 desaturase, which allows the endogenous conversion of ω-6 into ω-3 fatty acids, produced a significant reduction in hepatic insulin resistance, steatosis, macrophage infiltration, necroinflammation and lipid peroxidation, accompanied by attenuated expression of genes involved in inflammation, fatty acid uptake and lipogenesis. These results were mostly reproduced by feeding obese mice with an exogenous ω-3-enriched diet. A combined Δ5D/Δ6D inhibitor, CP-24879, significantly reduced intracellular lipid accumulation and inflammatory injury in hepatocytes. Interestingly, CP-24879 exhibited superior antisteatotic and anti-inflammatory actions in fat-1 and ω-3-treated hepatocytes. CONCLUSIONS These findings indicate that impaired hepatic fatty acid desaturation and unbalanced ω-6 to ω-3 ratio play a role in the pathogenesis of NASH.
Collapse
Affiliation(s)
- Cristina López-Vicario
- Department of Biochemistry and Molecular Genetics, Hospital Clínic-IDIBAPS-Esther Koplowitz Center, , Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Cheng Z, Abayasekara DRE, Ward F, Preece DM, Raheem KA, Wathes DC. Altering n-3 to n-6 polyunsaturated fatty acid ratios affects prostaglandin production by ovine uterine endometrium. Anim Reprod Sci 2013; 143:38-47. [DOI: 10.1016/j.anireprosci.2013.10.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 10/15/2013] [Accepted: 10/27/2013] [Indexed: 12/11/2022]
|
15
|
Jungheim ES, Frolova AI, Jiang H, Riley JK. Relationship between serum polyunsaturated fatty acids and pregnancy in women undergoing in vitro fertilization. J Clin Endocrinol Metab 2013; 98:E1364-8. [PMID: 23780371 PMCID: PMC3733858 DOI: 10.1210/jc.2012-4115] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
CONTEXT Polyunsaturated fatty acids (PUFAs) and their metabolism may be important in normal reproductive function and fertility. Associations between physiologic PUFAs and pregnancy have not been established in women. OBJECTIVE The purpose of this study was to investigate associations between serum levels of PUFAs and embryo implantation in women undergoing in vitro fertilization (IVF). DESIGN This was a prospective cohort study conducted between 2010 and 2012. SETTING The study was conducted at the Washington University Reproductive Medicine Center. PATIENTS Participants were 200 women undergoing IVF and participating in an ongoing specimen tissue bank. INTERVENTION Fasting serum PUFAs were measured with liquid chromatography-mass spectroscopy. PUFAs measured included linoleic acid (LA), α-linolenic acid (ALA), eicosapentaenoic acid, arachidonic acid, and docosahexaenoic acid. MAIN OUTCOME MEASURES Relationships between serum levels of measured PUFAs and embryo implantation in women undergoing IVF were analyzed. RESULTS In unadjusted analyses, none of the PUFAs alone were associated with a chance of pregnancy; however, women with increased LA:ALA ratios had a higher chance of pregnancy compared with women with lower LA:ALA ratios (relative risk, 1.52; 95% confidence interval, 1.09-2.13). This relationship held after multivariable logistic regression adjusting for age, antral follicle count, body mass index, history of previous pregnancy, and history of endometriosis (odds ratio, 2.7; 95% confidence interval, 1.3-5.7). Embryo implantation rates were also weakly associated with LA:ALA ratios (r = 0.21, P = .003). CONCLUSIONS Our work shows that increased ω-6 to ω-3 PUFA ratios in women undergoing IVF are associated with increased implantation and pregnancy rates. Prospective trials are needed to determine whether manipulation of PUFA ratios through diet or pharmacologic intervention may benefit women planning to conceive.
Collapse
Affiliation(s)
- Emily S Jungheim
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, Missouri 63105, USA.
| | | | | | | |
Collapse
|
16
|
Cardoso TF, Varela AS, Silva EF, Vilela J, Hartmann A, Jardim RD, Colares EP, Corcini CD. Influence of mineral, olive or sunflower oils on male reproductive parameters in vitro--the wild rodent Calomys laucha. Andrologia 2013; 46:722-5. [PMID: 23889566 DOI: 10.1111/and.12138] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2013] [Indexed: 11/30/2022] Open
Abstract
The aim of this study was to evaluate the influence of oils on male reproductive parameters in Calomys laucha. Twenty-four animals were distributed into four groups and given the following substances by gavage: water, mineral oil, olive oil and sunflower oil. After 10 days of gavage, the animals were euthanised and the semen was collected from them for assessing acrosome integrity and carrying out in vitro penetration (IVP) test. Acrosome was significantly reduced (P < 0.05) for the vehicles in relation to control. In vitro penetration was reduced in all vehicles in relation to control, but only sunflower oil had statistically lower levels of reduction (P < 0.05). Oily vehicles are able to influence in vitro reproductive tests negatively, interfering in reproductive toxicological studies.
Collapse
Affiliation(s)
- T F Cardoso
- ReproPel, Faculdade de Veterinária, Campus Capão do Leão, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Titos E, Clària J. Omega-3-derived mediators counteract obesity-induced adipose tissue inflammation. Prostaglandins Other Lipid Mediat 2013; 107:77-84. [PMID: 23707933 DOI: 10.1016/j.prostaglandins.2013.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 05/09/2013] [Accepted: 05/14/2013] [Indexed: 12/26/2022]
Abstract
Chronic low-grade inflammation in adipose tissue has been recognized as a key step in the development of obesity-associated complications. In obesity, the accumulation of infiltrating macrophages in adipose tissue and their phenotypic switch to M1-type dysregulate inflammatory adipokine production leading to obesity-linked insulin resistance. Resolvins are potent anti-inflammatory and pro-resolving mediators endogenously generated from omega-3 fatty acids that act as "stop-signals" of the inflammatory response promoting the resolution of inflammation. Recently, a deficit in the production of these endogenous anti-inflammatory signals has been demonstrated in obese adipose tissue. The restoration of their levels by either exogenous administration of these mediators or feeding omega-3-enriched diets, improves the inflammatory status of adipose tissue and ameliorates metabolic dysfunction. Here, we review the current knowledge on the role of these endogenous autacoids in the resolution of adipose tissue inflammation with special emphasis on their functional actions on macrophages.
Collapse
Affiliation(s)
- Esther Titos
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, Centre Esther Koplowitz (CEK), IDIBAPS, Barcelona 08036, Spain; CIBERehd, Barcelona 08036, Spain.
| | | |
Collapse
|
18
|
An L, Pang YW, Gao HM, Tao L, Miao K, Wu ZH, Tian JH. Heterologous expression of C. elegans fat-1 decreases the n-6/n-3 fatty acid ratio and inhibits adipogenesis in 3T3-L1 cells. Biochem Biophys Res Commun 2012; 428:405-10. [PMID: 23103373 DOI: 10.1016/j.bbrc.2012.10.068] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 10/18/2012] [Indexed: 02/06/2023]
Abstract
In general, a diet enriched in polyunsaturated fatty acids (PUFAs) inhibits the development of obesity and decreases adipose tissue. The specific impacts of n-3 and n-6 PUFAs on adipogenesis, however, have not been definitively determined. Traditional in vivo and in vitro supplementation studies have yielded inconsistent or even contradictory results, which likely reflect insufficiently controlled experimental systems. Caenorhabditiselegans fat-1 gene encodes an n-3 fatty acid desaturase, and its heterologous expression represents an effective method both for altering the n-6/n-3 PUFA ratio and for evaluating the biological effects of n-3 and n-6 PUFAs. We sought to determine whether a reduced n-6/n-3 ratio could influence adipogenesis in 3T3-L1 cells. Lentivirus-mediated introduction of the fat-1 gene into 3T3-L1 preadipocytes significantly reduced the n-6/n-3 ratio and inhibited preadipocyte proliferation and differentiation. In mature adipocytes, fat-1 expression reduced lipid deposition, as measured by Oil Red O staining, and induced apoptosis. Our results indicate that a reduced n-6/n-3 ratio inhibits adipogenesis through several mechanisms and that n-3 PUFAs more effectively inhibit adipogenesis (but not lipogenesis) than do n-6 PUFAs.
Collapse
Affiliation(s)
- Lei An
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | | | | | | | | | | | | |
Collapse
|
19
|
Titos E, Rius B, González-Périz A, López-Vicario C, Morán-Salvador E, Martínez-Clemente M, Arroyo V, Clària J. Resolvin D1 and its precursor docosahexaenoic acid promote resolution of adipose tissue inflammation by eliciting macrophage polarization toward an M2-like phenotype. THE JOURNAL OF IMMUNOLOGY 2011; 187:5408-18. [PMID: 22013115 DOI: 10.4049/jimmunol.1100225] [Citation(s) in RCA: 312] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We recently demonstrated that ω-3-polyunsaturated fatty acids ameliorate obesity-induced adipose tissue inflammation and insulin resistance. In this study, we report novel mechanisms underlying ω-3-polyunsaturated fatty acid actions on adipose tissue, adipocytes, and stromal vascular cells (SVC). Inflamed adipose tissue from high-fat diet-induced obese mice showed increased F4/80 and CD11b double-positive macrophage staining and elevated IL-6 and MCP-1 levels. Docosahexaenoic acid (DHA; 4 μg/g) did not change the total number of macrophages but significantly reduced the percentage of high CD11b/high F4/80-expressing cells in parallel with the emergence of low-expressing CD11b/F4/80 macrophages in the adipose tissue. This effect was associated with downregulation of proinflammatory adipokines in parallel with increased expression of IL-10, CD206, arginase 1, resistin-like molecule α, and chitinase-3 like protein, indicating a phenotypic switch in macrophage polarization toward an M2-like phenotype. This shift was confined to the SVC fraction, in which secretion of Th1 cytokines (IL-6, MCP-1, and TNF-α) was blocked by DHA. Notably, resolvin D1, an anti-inflammatory and proresolving mediator biosynthesized from DHA, markedly attenuated IFN-γ/LPS-induced Th1 cytokines while upregulating arginase 1 expression in a concentration-dependent manner. Resolvin D1 also stimulated nonphlogistic phagocytosis in adipose SVC macrophages by increasing both the number of macrophages containing ingested particles and the number of phagocytosed particles and by reducing macrophage reactive oxygen species production. No changes in adipocyte area and the phosphorylation of hormone-sensitive lipase, a rate-limiting enzyme regulating adipocyte lipolysis, were observed. These findings illustrate novel mechanisms through which resolvin D1 and its precursor DHA confer anti-inflammatory and proresolving actions in inflamed adipose tissue.
Collapse
Affiliation(s)
- Esther Titos
- Department of Biochemistry and Molecular Genetics, Hospital Clinic, Center Esther Koplowitz, August Pi i Sunyer Biomedical Research Institute, 08036 Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Jungheim ES, Macones GA, Odem RR, Patterson BW, Moley KH. Elevated serum α-linolenic acid levels are associated with decreased chance of pregnancy after in vitro fertilization. Fertil Steril 2011; 96:880-3. [PMID: 21840520 DOI: 10.1016/j.fertnstert.2011.07.1115] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/27/2011] [Accepted: 07/20/2011] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To analyze relationships between serum free fatty acid (FFA) concentrations and pregnancy. DESIGN Prospective cohort. SETTING University hospital. PATIENT(S) Ninety-one women undergoing IVF. INTERVENTION(S) Serum was analyzed for total and specific serum FFAs, including myristic, palmitic, stearic, oleic, linoleic, and α-linolenic acids. MAIN OUTCOME MEASURE(S) Univariate analyses were used to identify specific FFAs and other factors associated with pregnancy after IVF. Logistic regression was performed modeling relationships between identified factors and chance of pregnancy. RESULT(S) In unadjusted analyses, women with elevated serum α-linolenic acid (ALA) levels (highest quartile) demonstrated a decreased chance of pregnancy compared with women with the lowest levels (odds ratio 0.24, 95% confidence interval 0.052-0.792). No associations between other FFAs and pregnancy were identified. In a multivariable regression model, associations between elevated serum ALA levels and decreased chance of pregnancy remained after adjusting for patient age, body mass index, and history of endometriosis or previous live birth (adjusted odds ratio 0.139, 95% confidence interval 0.028-0.686). CONCLUSION(S) Elevated serum ALA levels are associated with decreased chance of pregnancy in women undergoing IVF. Further work is needed to determine whether ALA is involved in early reproductive processes and whether the relationship between ALA and pregnancy is associated with excess ALA intake, impaired ALA metabolism, or both.
Collapse
Affiliation(s)
- Emily S Jungheim
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, Missouri 63108, USA.
| | | | | | | | | |
Collapse
|
21
|
Smith BK, Holloway GP, Reza-Lopez S, Jeram SM, Kang JX, Ma DWL. A decreased n-6/n-3 ratio in the fat-1 mouse is associated with improved glucose tolerance. Appl Physiol Nutr Metab 2010; 35:699-706. [PMID: 20962926 DOI: 10.1139/h10-066] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A reduction in skeletal muscle fatty acid oxidation (FAO), manifested as a reduction in mitochondrial content and (or) FAO within mitochondria, may contribute to the development of insulin resistance. n-3 polyunsaturated fatty acids (PUFA) have been observed to increase the capacity for FAO and improve insulin sensitivity. We used the fat-1 mouse model, a transgenic animal capable of synthesizing n-3 PUFA from n-6 PUFA, to examine this relationship. Fat-1 mice exhibited a approximately 20-fold decrease in the n-6/n-3 ratio in skeletal muscle, and plasma glucose and the area under the glucose curve were significantly (p < 0.05) lower in fat-1 mice during a glucose challenge test. The improvement in whole-body glucose tolerance in the fat-1 mouse was associated with a approximately 21% (p < 0.05) decrease in whole-muscle citrate synthase (CS) activity (in red muscle only), without alterations in CS activity of isolated mitochondria (either red or white muscle; p > 0.05). These data suggest that the fat-1 mouse has decreased skeletal muscle mitochondrial content. However, the intrinsic ability of mitochondria to oxidize fatty acids was not altered in the fat-1 mouse, as rates of palmitate oxidation in isolated mitochondria from both red and white muscle were unchanged. Overall, this study demonstrates that a decrease in the n-6/n-3 ratio can enhance glucose tolerance in healthy animals, independent of changes in mitochondrial content.
Collapse
Affiliation(s)
- Brennan K Smith
- Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | | | | | | | | |
Collapse
|
22
|
White PJ, Arita M, Taguchi R, Kang JX, Marette A. Transgenic restoration of long-chain n-3 fatty acids in insulin target tissues improves resolution capacity and alleviates obesity-linked inflammation and insulin resistance in high-fat-fed mice. Diabetes 2010; 59:3066-73. [PMID: 20841610 PMCID: PMC2992767 DOI: 10.2337/db10-0054] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 08/26/2010] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The catabasis of inflammation is an active process directed by n-3 derived pro-resolving lipid mediators. We aimed to determine whether high-fat (HF) diet-induced n-3 deficiency compromises the resolution capacity of obese mice and thereby contributes to obesity-linked inflammation and insulin resistance. RESEARCH DESIGN AND METHODS We used transgenic expression of the fat-1 n-3 fatty acid desaturase from C. elegans to endogenously restore n-3 fatty acids in HF-fed mice. After 8 weeks on HF or chow diets, wild-type and fat-1 transgenic mice were subjected to insulin and glucose tolerance tests and a resolution assay was performed. Metabolic tissues were then harvested for biochemical analyses. RESULTS We report that the n-3 docosanoid resolution mediator protectin D1 is lacking in muscle and adipose tissue of HF-fed wild-type mice. Accordingly, HF-fed wild-type mice have an impaired capacity to resolve an acute inflammatory response and display elevated adipose macrophage accrual and chemokine/cytokine expression. This is associated with insulin resistance and higher activation of iNOS and JNK in muscle and liver. These defects are reversed in HF-fed fat-1 mice, in which the biosynthesis of this important n-3 docosanoid resolution mediator is improved. Importantly, transgenic restoration of n-3 fatty acids prevented obesity-linked inflammation and insulin resistance in HF-fed mice without altering food intake, weight gain, or adiposity. CONCLUSIONS We conclude that inefficient biosynthesis of n-3 resolution mediators in muscle and adipose tissue contributes to the maintenance of chronic inflammation in obesity and that these novel lipids offer exciting potential for the treatment of insulin resistance and diabetes.
Collapse
Affiliation(s)
- Phillip J. White
- Department of Medicine, Faculty of Medicine, Cardiology axe, Quebec Heart and Lung Institute, CHUQ Research Centre, and INAF, Laval University, Quebec, Canada
| | - Makoto Arita
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Ryo Taguchi
- Department of Metabolome, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Jing X. Kang
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - André Marette
- Department of Medicine, Faculty of Medicine, Cardiology axe, Quebec Heart and Lung Institute, CHUQ Research Centre, and INAF, Laval University, Quebec, Canada
| |
Collapse
|
23
|
Reproductive abnormalities in mice expressing omega-3 fatty acid desaturase in their mammary glands. Transgenic Res 2010; 20:283-92. [PMID: 20532624 PMCID: PMC3051059 DOI: 10.1007/s11248-010-9407-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 05/21/2010] [Indexed: 12/19/2022]
Abstract
The Caenorhabditis elegans n-3 fatty acid desaturase (Fat-1) acts on a range of 18- and 20-carbon n-6 fatty acid substrates. Transgenic female mice expressing the Fat-1 gene under transcriptional control of the goat β-casein promoter produce milk phospholipids having elevated levels of n-3 polyunsaturated fatty acids (PUFA). However, females from this line were also observed to have impaired reproductive performance characterized by a smaller litter size (2.7 ± 0.6 vs. 7.2 ± 0.7; P < 0.05) than wildtype controls. While there is a close association between PUFA metabolism, prostaglandin biosynthesis, and fertility; reproductive problems in these mice were unanticipated given that the Fat-1 transgene is primarily expressed in the lactating mammary gland. Using multiple approaches it was found that Fat-1 mice have normal ovulation and fertilization rates; however fewer embryos were present in the uterus prior to implantation. Small litter size was also found to be partly attributable to a high incidence of post-implantation fetal resorptions. Embryo transfer experiments revealed that embryos developing from oocytes derived from transgenic ovaries had an increased rate of post-implantation resorption, regardless of the uterine genotype. Ovary transplantation between Fat-1 and C57BL/6 wildtype females revealed that non-ovarian factors also contributed to the smaller litter size phenotype. Finally, surgical removal of the mammary glands from juvenile Fat-1 mice increased the subsequent number of implantation sites per female, but did not lessen the high rate of post-implantation resorptions. In conclusion, we herein report on a system where an exogenous transgene expressed predominately in the mammary gland detrimentally affects female reproduction, suggesting that in certain circumstances the mammary gland may function as an endocrine regulator of reproductive performance.
Collapse
|
24
|
Das UN, Puskás LG. Transgenic fat-1 mouse as a model to study the pathophysiology of cardiovascular, neurological and psychiatric disorders. Lipids Health Dis 2009; 8:61. [PMID: 20042103 PMCID: PMC2811702 DOI: 10.1186/1476-511x-8-61] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 12/30/2009] [Indexed: 01/18/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) form an important constituent of all the cell membranes in the body. PUFAs such as arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) form precursors to both pro-inflammatory and anti-inflammatory compounds. Low-grade systemic inflammation occurs in clinical conditions such as insulin resistance, hypertension, type 2 diabetes mellitus, atherosclerosis, coronary heart disease, lupus, schizophrenia, Alzheimer's disease, and other dementias, cancer and non-alcoholic fatty liver disease (NAFLD) that are also characterized by an alteration in the metabolism of essential fatty acids in the form of excess production of pro-inflammatory eicosanoids and possibly, decreased synthesis and release of anti-inflammatory lipoxins, resolvins, protectins and maresins. We propose that low-grade systemic inflammation observed in these clinical conditions is due to an imbalance in the metabolism of essential fatty acids that is more in favour of pro-inflammatory molecules. In this context, transgenic fat-1 mouse that is designed to convert n-6 to n-3 fatty acids could form an ideal model to study the altered metabolism of essential fatty acids in the above mentioned conditions. It is envisaged that low-grade systemic inflammatory conditions are much less likely in the fat-1 mouse and/or these diseases will run a relatively mild course. Identifying the anti-inflammatory compounds from n-3 fatty acids that suppress low-grade systemic inflammatory conditions and understanding their mechanism(s) of action may lead to newer therapeutic strategies.
Collapse
Affiliation(s)
- Undurti N Das
- Jawaharlal Nehru Technological University, Kakinada-533 003, Andhra Pradesh, India.
| | | |
Collapse
|