1
|
Schwartzman JD, McCall M, Ghattas Y, Pugazhendhi AS, Wei F, Ngo C, Ruiz J, Seal S, Coathup MJ. Multifunctional scaffolds for bone repair following age-related biological decline: Promising prospects for smart biomaterial-driven technologies. Biomaterials 2024; 311:122683. [PMID: 38954959 DOI: 10.1016/j.biomaterials.2024.122683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/09/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
The repair of large bone defects due to trauma, disease, and infection can be exceptionally challenging in the elderly. Despite best clinical practice, bone regeneration within contemporary, surgically implanted synthetic scaffolds is often problematic, inconsistent, and insufficient where additional osteobiological support is required to restore bone. Emergent smart multifunctional biomaterials may drive important and dynamic cellular crosstalk that directly targets, signals, stimulates, and promotes an innate bone repair response following age-related biological decline and when in the presence of disease or infection. However, their role remains largely undetermined. By highlighting their mechanism/s and mode/s of action, this review spotlights smart technologies that favorably align in their conceivable ability to directly target and enhance bone repair and thus are highly promising for future discovery for use in the elderly. The four degrees of interactive scaffold smartness are presented, with a focus on bioactive, bioresponsive, and the yet-to-be-developed autonomous scaffold activity. Further, cell- and biomolecular-assisted approaches were excluded, allowing for contemporary examination of the capabilities, demands, vision, and future requisites of next-generation biomaterial-induced technologies only. Data strongly supports that smart scaffolds hold significant promise in the promotion of bone repair in patients with a reduced osteobiological response. Importantly, many techniques have yet to be tested in preclinical models of aging. Thus, greater clarity on their proficiency to counteract the many unresolved challenges within the scope of aging bone is highly warranted and is arguably the next frontier in the field. This review demonstrates that the use of multifunctional smart synthetic scaffolds with an engineered strategy to circumvent the biological insufficiencies associated with aging bone is a viable route for achieving next-generation therapeutic success in the elderly population.
Collapse
Affiliation(s)
| | - Max McCall
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Yasmine Ghattas
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Abinaya Sindu Pugazhendhi
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA
| | - Fei Wei
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA
| | - Christopher Ngo
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA
| | - Jonathan Ruiz
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Sudipta Seal
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA; Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), Materials Science and Engineering, College of Medicine, University of Central Florida, USA, Orlando, FL
| | - Melanie J Coathup
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
2
|
Zhao J, Zhou C, Xiao Y, Zhang K, Zhang Q, Xia L, Jiang B, Jiang C, Ming W, Zhang H, Long H, Liang W. Oxygen generating biomaterials at the forefront of regenerative medicine: advances in bone regeneration. Front Bioeng Biotechnol 2024; 12:1292171. [PMID: 38282892 PMCID: PMC10811251 DOI: 10.3389/fbioe.2024.1292171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024] Open
Abstract
Globally, an annual count of more than two million bone transplants is conducted, with conventional treatments, including metallic implants and bone grafts, exhibiting certain limitations. In recent years, there have been significant advancements in the field of bone regeneration. Oxygen tension regulates cellular behavior, which in turn affects tissue regeneration through metabolic programming. Biomaterials with oxygen release capabilities enhance therapeutic effectiveness and reduce tissue damage from hypoxia. However, precise control over oxygen release is a significant technical challenge, despite its potential to support cellular viability and differentiation. The matrices often used to repair large-size bone defects do not supply enough oxygen to the stem cells being used in the regeneration process. Hypoxia-induced necrosis primarily occurs in the central regions of large matrices due to inadequate provision of oxygen and nutrients by the surrounding vasculature of the host tissues. Oxygen generating biomaterials (OGBs) are becoming increasingly significant in enhancing our capacity to facilitate the bone regeneration, thereby addressing the challenges posed by hypoxia or inadequate vascularization. Herein, we discussed the key role of oxygen in bone regeneration, various oxygen source materials and their mechanism of oxygen release, the fabrication techniques employed for oxygen-releasing matrices, and novel emerging approaches for oxygen delivery that hold promise for their potential application in the field of bone regeneration.
Collapse
Affiliation(s)
- Jiayi Zhao
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, China
| | - Yang Xiao
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Kunyan Zhang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Qiang Zhang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Linying Xia
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Bo Jiang
- Rehabilitation Department, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Chanyi Jiang
- Department of Pharmacy, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Wenyi Ming
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hengjian Zhang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hengguo Long
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| |
Collapse
|
3
|
Insight in Hypoxia-Mimetic Agents as Potential Tools for Mesenchymal Stem Cell Priming in Regenerative Medicine. Stem Cells Int 2022; 2022:8775591. [PMID: 35378955 PMCID: PMC8976669 DOI: 10.1155/2022/8775591] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/28/2022] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
Hypoxia-mimetic agents are new potential tools in MSC priming instead of hypoxia incubators or chambers. Several pharmaceutical/chemical hypoxia-mimetic agents can be used to induce hypoxia in the tissues: deferoxamine (DFO), dimethyloxaloylglycine (DMOG), 2,4-dinitrophenol (DNP), cobalt chloride (CoCl2), and isoflurane (ISO). Hypoxia-mimetic agents can increase cell proliferation, preserve or enhance differentiation potential, increase migration potential, and induce neovascularization in a concentration- and stem cell source-dependent manner. Moreover, hypoxia-mimetic agents may increase HIF-1α, changing the metabolism and enhancing glycolysis like hypoxia. So, there is clear evidence that treatment with hypoxia-mimetic agents is beneficial in regenerative medicine, preserving stem cell capacities. These agents are not studied so wildly as hypoxia but, considering the low cost and ease of use, are believed to find application as pretreatment of many diseases such as ischemic heart disease and myocardial fibrosis and promote cardiac and cartilage regeneration. The knowledge of MSC priming is critical in evaluating safety procedures and use in clinics. In this review, similarities and differences between hypoxia and hypoxia-mimetic agents in terms of their therapeutic efficiency are considered in detail. The advantages, challenges, and future perspectives in MSC priming with hypoxia mimetic agents are also discussed.
Collapse
|
4
|
Jeannerat A, Peneveyre C, Armand F, Chiappe D, Hamelin R, Scaletta C, Hirt-Burri N, de Buys Roessingh A, Raffoul W, Applegate LA, Laurent A. Hypoxic Incubation Conditions for Optimized Manufacture of Tenocyte-Based Active Pharmaceutical Ingredients of Homologous Standardized Transplant Products in Tendon Regenerative Medicine. Cells 2021; 10:cells10112872. [PMID: 34831095 PMCID: PMC8616528 DOI: 10.3390/cells10112872] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/13/2022] Open
Abstract
Human fetal progenitor tenocytes (hFPT) produced in defined cell bank systems have recently been characterized and qualified as potential therapeutic cell sources in tendon regenerative medicine. In view of further developing the manufacture processes of such cell-based active pharmaceutical ingredients (API), the effects of hypoxic in vitro culture expansion on key cellular characteristics or process parameters were evaluated. To this end, multiple aspects were comparatively assessed in normoxic incubation (i.e., 5% CO2 and 21% O2, standard conditions) or in hypoxic incubation (i.e., 5% CO2 and 2% O2, optimized conditions). Experimentally investigated parameters and endpoints included cellular proliferation, cellular morphology and size distribution, cell surface marker panels, cell susceptibility toward adipogenic and osteogenic induction, while relative protein expression levels were analyzed by quantitative mass spectrometry. The results outlined conserved critical cellular characteristics (i.e., cell surface marker panels, cellular phenotype under chemical induction) and modified key cellular parameters (i.e., cell size distribution, endpoint cell yields, matrix protein contents) potentially procuring tangible benefits for next-generation cell manufacturing workflows. Specific proteomic analyses further shed some light on the cellular effects of hypoxia, potentially orienting further hFPT processing for cell-based, cell-free API manufacture. Overall, this study indicated that hypoxic incubation impacts specific hFPT key properties while preserving critical quality attributes (i.e., as compared to normoxic incubation), enabling efficient manufacture of tenocyte-based APIs for homologous standardized transplant products.
Collapse
Affiliation(s)
- Annick Jeannerat
- Applied Research Department, LAM Biotechnologies SA, CH-1066 Épalinges, Switzerland; (A.J.); (C.P.)
| | - Cédric Peneveyre
- Applied Research Department, LAM Biotechnologies SA, CH-1066 Épalinges, Switzerland; (A.J.); (C.P.)
| | - Florence Armand
- Proteomics Core Facility and Technology Platform, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; (F.A.); (D.C.); (R.H.)
| | - Diego Chiappe
- Proteomics Core Facility and Technology Platform, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; (F.A.); (D.C.); (R.H.)
| | - Romain Hamelin
- Proteomics Core Facility and Technology Platform, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; (F.A.); (D.C.); (R.H.)
| | - Corinne Scaletta
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Épalinges, Switzerland; (C.S.); (N.H.-B.); (L.A.A.)
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Épalinges, Switzerland; (C.S.); (N.H.-B.); (L.A.A.)
| | - Anthony de Buys Roessingh
- Children and Adolescent Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland;
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland;
| | - Wassim Raffoul
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland;
- Plastic, Reconstructive, and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Épalinges, Switzerland; (C.S.); (N.H.-B.); (L.A.A.)
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland;
- Plastic, Reconstructive, and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, CH-8057 Zurich, Switzerland
- Oxford OSCAR Suzhou Center, Oxford University, Suzhou 215123, China
| | - Alexis Laurent
- Applied Research Department, LAM Biotechnologies SA, CH-1066 Épalinges, Switzerland; (A.J.); (C.P.)
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Épalinges, Switzerland; (C.S.); (N.H.-B.); (L.A.A.)
- Manufacturing Department, TEC-PHARMA SA, CH-1038 Bercher, Switzerland
- Correspondence: ; Tel.: +41-21-546-42-00
| |
Collapse
|
5
|
Teh SW, Koh AEH, Tong JB, Wu X, Samrot AV, Rampal S, Mok PL, Subbiah SK. Hypoxia in Bone and Oxygen Releasing Biomaterials in Fracture Treatments Using Mesenchymal Stem Cell Therapy: A Review. Front Cell Dev Biol 2021; 9:634131. [PMID: 34490233 PMCID: PMC8417697 DOI: 10.3389/fcell.2021.634131] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 07/22/2021] [Indexed: 12/14/2022] Open
Abstract
Bone fractures have a high degree of severity. This is usually a result of the physical trauma of diseases that affect bone tissues, such as osteoporosis. Due to its highly vascular nature, the bone is in a constant state of remodeling. Although those of younger ages possess bones with high regenerative potential, the impact of a disrupted vasculature can severely affect the recovery process and cause osteonecrosis. This is commonly seen in the neck of femur, scaphoid, and talus bone. In recent years, mesenchymal stem cell (MSC) therapy has been used to aid in the regeneration of afflicted bone. However, the cut-off in blood supply due to bone fractures can lead to hypoxia-induced changes in engrafted MSCs. Researchers have designed several oxygen-generating biomaterials and yielded varying degrees of success in enhancing tissue salvage and preserving cellular metabolism under ischemia. These can be utilized to further improve stem cell therapy for bone repair. In this review, we touch on the pathophysiology of these bone fractures and review the application of oxygen-generating biomaterials to further enhance MSC-mediated repair of fractures in the three aforementioned parts of the bone.
Collapse
Affiliation(s)
- Seoh Wei Teh
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Avin Ee-Hwan Koh
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Jia Bei Tong
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Xiaoyun Wu
- Department of Technology, Research Center for Hua-Da Precision Medicine of Inner Mongolia Autonomous Region, Hohhot, China
| | - Antony V Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Malaysia
| | - Sanjiv Rampal
- Department of Orthopedics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Pooi Ling Mok
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Suresh Kumar Subbiah
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia.,Center for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Bharath University, Chennai, India
| |
Collapse
|
6
|
Sayin E, Baran ET, Elsheikh A, Mudera V, Cheema U, Hasirci V. Evaluating Oxygen Tensions Related to Bone Marrow and Matrix for MSC Differentiation in 2D and 3D Biomimetic Lamellar Scaffolds. Int J Mol Sci 2021; 22:4010. [PMID: 33924614 PMCID: PMC8068918 DOI: 10.3390/ijms22084010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023] Open
Abstract
The physiological O2 microenvironment of mesenchymal stem cells (MSCs) and osteoblasts and the dimensionality of a substrate are known to be important in regulating cell phenotype and function. By providing the physiologically normoxic environments of bone marrow (5%) and matrix (12%), we assessed their potential to maintain stemness, induce osteogenic differentiation, and enhance the material properties in the micropatterned collagen/silk fibroin scaffolds that were produced in 2D or 3D. Expression of osterix (OSX) and vascular endothelial growth factor A (VEGFA) was significantly enhanced in the 3D scaffold in all oxygen environments. At 21% O2, OSX and VEGFA expressions in the 3D scaffold were respectively 13,200 and 270 times higher than those of the 2D scaffold. Markers for assessing stemness were significantly more pronounced on tissue culture polystyrene and 2D scaffold incubated at 5% O2. At 21% O2, we measured significant increases in ultimate tensile strength (p < 0.0001) and Young's modulus (p = 0.003) of the 3D scaffold compared to the 2D scaffold, whilst 5% O2 hindered the positive effect of cell seeding on tensile strength. In conclusion, we demonstrated that the 3D culture of MSCs in collagen/silk fibroin scaffolds provided biomimetic cues for bone progenitor cells toward differentiation and enhanced the tensile mechanical properties.
Collapse
Affiliation(s)
- Esen Sayin
- Department of Biotechnology, Middle East Technical University, 06800 Ankara, Turkey;
| | - Erkan Türker Baran
- Department of Tissue Engineering, University of Health Sciences, 34668 Istanbul, Turkey;
| | - Ahmed Elsheikh
- School of Engineering, The University of Liverpool, Liverpool L69 3GH, UK;
| | - Vivek Mudera
- UCL Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, 43-45 Foley Street, Fitzrovia, London W1W 7TY, UK; (V.M.); (U.C.)
| | - Umber Cheema
- UCL Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, 43-45 Foley Street, Fitzrovia, London W1W 7TY, UK; (V.M.); (U.C.)
| | - Vasif Hasirci
- Department of Biotechnology, Middle East Technical University, 06800 Ankara, Turkey;
- Department of Medical Engineering, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey
| |
Collapse
|
7
|
Sung TC, Heish CW, Lee HHC, Hsu JY, Wang CK, Wang JH, Zhu YR, Jen SH, Hsu ST, Hirad AH, Alarfaj AA, Higuchi A. 3D culturing of human adipose-derived stem cells enhances their pluripotency and differentiation abilities. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 2021; 63:9-17. [DOI: 10.1016/j.jmst.2020.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Fang J, Chen F, Liu D, Gu F, Wang Y. Adipose tissue-derived stem cells in breast reconstruction: a brief review on biology and translation. Stem Cell Res Ther 2021; 12:8. [PMID: 33407902 PMCID: PMC7789635 DOI: 10.1186/s13287-020-01955-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/27/2020] [Indexed: 02/07/2023] Open
Abstract
Recent developments in adipose-derived stromal/stem cell (ADSC) biology provide new hopes for tissue engineering and regeneration medicine. Due to their pluripotent activity, paracrine activity, and immunomodulatory function, ADSCs have been widely administrated and exhibited significant therapeutic effects in the treatment for autoimmune disorders, neurodegenerative diseases, and ischemic conditions both in animals and human clinical trials. Cell-assisted lipotransfer (CAL) based on ADSCs has emerged as a promising cell therapy technology and significantly improved the fat graft retention. Initially applied for cosmetic breast and facial enhancement, CAL has found a potential use for breast reconstruction in breast cancer patients. However, more challenges emerge related to CAL including lack of a standardized surgical procedure, the controversy in the effectiveness of CAL, and the potential oncogenic risk of ADSCs in cancer patients. In this review, we summarized the latest research and intended to give an outline involving the biological characteristics of ADSCs as well as the preclinical and clinical application of ADSCs.
Collapse
Affiliation(s)
- Jun Fang
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China.,Department of Radiation Therapy, Zhejiang Cancer Hospital, Hangzhou, China.,Radiotherapy, Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Feng Chen
- Department of Breast Tumor Surgery, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Dong Liu
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China.,Department of Radiation Therapy, Zhejiang Cancer Hospital, Hangzhou, China.,Radiotherapy, Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Feiying Gu
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China.,Department of Radiation Therapy, Zhejiang Cancer Hospital, Hangzhou, China.,Radiotherapy, Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Yuezhen Wang
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China. .,Department of Radiation Therapy, Zhejiang Cancer Hospital, Hangzhou, China. .,Radiotherapy, Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China.
| |
Collapse
|
9
|
Burst, Short, and Sustained Vitamin D 3 Applications Differentially Affect Osteogenic Differentiation of Human Adipose Stem Cells. Int J Mol Sci 2020; 21:ijms21093202. [PMID: 32366057 PMCID: PMC7247321 DOI: 10.3390/ijms21093202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/25/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023] Open
Abstract
Incorporation of 1,25(OH)2 vitamin D3 (vitD3) into tissue-engineered scaffolds could aid the healing of critical-sized bone defects. We hypothesize that shorter applications of vitD3 lead to more osteogenic differentiation of mesenchymal stem cells (MSCs) than a sustained application. To test this, release from a scaffold was mimicked by exposing MSCs to exactly controlled vitD3 regimens. Human adipose stem cells (hASCs) were seeded onto calcium phosphate particles, cultured for 20 days, and treated with 124 ng vitD3, either provided during 30 min before seeding ([200 nM]), during the first two days ([100 nM]), or during 20 days ([10 nM]). Alternatively, hASCs were treated for two days with 6.2 ng vitD3 ([10 nM]). hASCs attached to the calcium phosphate particles and were viable (~75%). Cell number was not affected by the various vitD3 applications. VitD3 (124 ng) applied over 20 days increased cellular alkaline phosphatase activity at Days 7 and 20, reduced expression of the early osteogenic marker RUNX2 at Day 20, and strongly upregulated expression of the vitD3 inactivating enzyme CYP24. VitD3 (124 ng) also reduced RUNX2 and increased CYP24 applied at [100 nM] for two days, but not at [200 nM] for 30 min. These results show that 20-day application of vitD3 has more effect on hASCs than the same total amount applied in a shorter time span.
Collapse
|
10
|
Omer A, Al-Sharabi N, Qiu Y, Xue Y, Li Y, Fujio M, Mustafa K, Xing Z. Biological responses of dental pulp cells to surfaces modified by collagen 1 and fibronectin. J Biomed Mater Res A 2020; 108:1369-1379. [PMID: 32107841 DOI: 10.1002/jbm.a.36908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/18/2020] [Accepted: 02/24/2020] [Indexed: 01/09/2023]
Abstract
Collagen 1 (COL1) and fibronectin (FN) are extracellular matrix proteins that contribute in cell activity and involve in regulating dental pulp cells (DPCs). The purpose of this study was to investigate the effect of COL1 and FN on the behavior of DPCs. Here, DPCs were grown under three different conditions: COL1 coating, FN coating, and control group without coating. The proliferation and differentiation of DPCs were investigated. DPCs in osteogenic media were able to differentiate into osteoblastic phenotype. The morphological analysis revealed no obvious difference on the shape of cells. Cells had spread well on both coated and noncoated culture plates with slightly more spreading in the coated plates after 24 hr. The MTT analysis did not demonstrate a significant difference at 1 and 3 hr among the groups, but interestingly, the analysis disclosed more cells on the coated plates after longer cultures, which indicated a higher proliferative capacity in response to COL1 and FN. RT-PCR, Western Blotting and mineralization assays did not reveal significant differences between the coated and noncoated surfaces in relation to osteogenic differential potential. Our data suggested that the surface coating of COL1 and FN were able to promote cellular proliferation and the osteogenic differentiation tendency of DPCs was also observed in vitro.
Collapse
Affiliation(s)
- Abedelfattah Omer
- School of Stomatology, Lanzhou University, Lanzhou, People's Republic of China.,Centre for Clinical Dental Research, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Niyaz Al-Sharabi
- Centre for Clinical Dental Research, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Yingfei Qiu
- School of Stomatology, Lanzhou University, Lanzhou, People's Republic of China
| | - Ying Xue
- Centre for Clinical Dental Research, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Yi Li
- School of Stomatology, Lanzhou University, Lanzhou, People's Republic of China
| | - Masahito Fujio
- Centre for Clinical Dental Research, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway.,Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kamal Mustafa
- Centre for Clinical Dental Research, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Zhe Xing
- School of Stomatology, Lanzhou University, Lanzhou, People's Republic of China.,Centre for Clinical Dental Research, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
11
|
Touri M, Moztarzadeh F, Osman NAA, Dehghan MM, Mozafari M. Optimisation and biological activities of bioceramic robocast scaffolds provided with an oxygen-releasing coating for bone tissue engineering applications. CERAMICS INTERNATIONAL 2019; 45:805-816. [DOI: 10.1016/j.ceramint.2018.09.247] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
|
12
|
Ho SS, Hung BP, Heyrani N, Lee MA, Leach JK. Hypoxic Preconditioning of Mesenchymal Stem Cells with Subsequent Spheroid Formation Accelerates Repair of Segmental Bone Defects. Stem Cells 2018; 36:1393-1403. [PMID: 29968952 PMCID: PMC6125201 DOI: 10.1002/stem.2853] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 03/24/2018] [Accepted: 04/13/2018] [Indexed: 12/25/2022]
Abstract
Cell-based approaches for musculoskeletal tissue repair are limited by poor cell survival and engraftment. Short-term hypoxic preconditioning of mesenchymal stem cells (MSCs) can prolong cell viability in vivo, while the aggregation of MSCs into spheroids increases cell survival, trophic factor secretion, and tissue formation in vivo. We hypothesized that preconditioning MSCs in hypoxic culture before spheroid formation would increase cell viability, proangiogenic potential, and resultant bone repair compared with that of individual MSCs. Human MSCs were preconditioned in 1% O2 in monolayer culture for 3 days (PC3) or kept in ambient air (PC0), formed into spheroids of increasing cell density, and then entrapped in alginate hydrogels. Hypoxia-preconditioned MSC spheroids were more resistant to apoptosis than ambient air controls and this response correlated with duration of hypoxia exposure. Spheroids of the highest cell density exhibited the greatest osteogenic potential in vitro and vascular endothelial growth factor (VEGF) secretion was greatest in PC3 spheroids. PC3 spheroids were then transplanted into rat critical-sized femoral segmental defects to evaluate their potential for bone healing. Spheroid-containing gels induced significantly more bone healing compared with gels containing preconditioned individual MSCs or acellular gels. These data demonstrate that hypoxic preconditioning represents a simple approach for enhancing the therapeutic potential of MSC spheroids when used for bone healing. Stem Cells 2018;36:1393-1403.
Collapse
Affiliation(s)
- Steve S. Ho
- Department of Biomedical Engineering, University of California, Davis, Davis CA 95616
| | - Ben P. Hung
- Department of Biomedical Engineering, University of California, Davis, Davis CA 95616
| | - Nasser Heyrani
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento CA 95817
| | - Mark A. Lee
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento CA 95817
| | - J. Kent Leach
- Department of Biomedical Engineering, University of California, Davis, Davis CA 95616
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento CA 95817
| |
Collapse
|
13
|
Leach JK, Whitehead J. Materials-Directed Differentiation of Mesenchymal Stem Cells for Tissue Engineering and Regeneration. ACS Biomater Sci Eng 2018; 4:1115-1127. [PMID: 30035212 PMCID: PMC6052883 DOI: 10.1021/acsbiomaterials.6b00741] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cell-based therapies are a promising alternative to grafts and organ transplantation for treating tissue loss or damage due to trauma, malfunction, or disease. Over the past two decades, mesenchymal stem cells (MSCs) have attracted much attention as a potential cell population for use in regenerative medicine. While the proliferative capacity and multilineage potential of MSCs provide an opportunity to generate clinically relevant numbers of transplantable cells, their use in tissue regenerative applications has met with relatively limited success to date apart from secreting paracrine-acting factors to modulate the defect microenvironment. Presently, there is significant effort to engineer the biophysical properties of biomaterials to direct MSC differentiation and further expand on the potential of MSCs in tissue engineering, regeneration, and repair. Biomaterials can dictate MSC differentiation by modulating features of the substrate including composition, mechanical properties, porosity, and topography. The purpose of this review is to highlight recent approaches for guiding MSC fate using biomaterials and provide a description of the underlying characteristics that promote differentiation toward a desired phenotype.
Collapse
Affiliation(s)
- J. Kent Leach
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616
- Department of Orthopaedic Surgery, School of Medicine, UC Davis Medical Center, Sacramento, C 95817
| | - Jacklyn Whitehead
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616
| |
Collapse
|
14
|
Hypoxia Suppresses Spontaneous Mineralization and Osteogenic Differentiation of Mesenchymal Stem Cells via IGFBP3 Up-Regulation. Int J Mol Sci 2016; 17:ijms17091389. [PMID: 27563882 PMCID: PMC5037669 DOI: 10.3390/ijms17091389] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/14/2016] [Accepted: 08/15/2016] [Indexed: 01/09/2023] Open
Abstract
Hypoxia has diverse stimulatory effects on human adipose-derived stem cells (ASCs). In the present study, we investigated whether hypoxic culture conditions (2% O₂) suppress spontaneous mineralization and osteogenic differentiation of ASCs. We also investigated signaling pathways and molecular mechanisms involved in this process. We found that hypoxia suppressed spontaneous mineralization and osteogenic differentiation of ASCs, and up-regulated mRNA and protein expression of Insulin-like growth factor binding proteins (IGFBPs) in ASCs. Although treatment with recombinant IGFBPs did not affect osteogenic differentiation of ASCs, siRNA-mediated inhibition of IGFBP3 attenuated hypoxia-suppressed osteogenic differentiation of ASCs. In contrast, overexpression of IGFBP3 via lentiviral vectors inhibited ASC osteogenic differentiation. These results indicate that hypoxia suppresses spontaneous mineralization and osteogenic differentiation of ASCs via intracellular IGFBP3 up-regulation. We determined that reactive oxygen species (ROS) generation followed by activation of the MAPK and PI3K/Akt pathways play pivotal roles in IGFBP3 expression under hypoxia. For example, ROS scavengers and inhibitors for MAPK and PI3K/Akt pathways attenuated the hypoxia-induced IGFBP3 expression. Inhibition of Elk1 and NF-κB through siRNA transfection also led to down-regulation of IGFBP3 mRNA expression. We next addressed the proliferative potential of ASCs with overexpressed IGFBP3, but IGFBP3 overexpression reduced the proliferation of ASCs. In addition, hypoxia reduced the osteogenic differentiation of bone marrow-derived clonal mesenchymal stem cells. Collectively, our results indicate that hypoxia suppresses the osteogenic differentiation of mesenchymal stem cells via IGFBP3 up-regulation.
Collapse
|
15
|
Binder BYK, Sagun JE, Leach JK. Reduced serum and hypoxic culture conditions enhance the osteogenic potential of human mesenchymal stem cells. Stem Cell Rev Rep 2016; 11:387-93. [PMID: 25173881 DOI: 10.1007/s12015-014-9555-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
UNLABELLED Current protocols for inducing osteogenic differentiation in mesenchymal stem/stromal cells (MSCs) in culture for tissue engineering applications depend on the use of biochemical supplements. However, standard in vitro culture conditions expose cells to ambient oxygen concentrations and high levels of serum (21% O2, 10% FBS) that do not accurately recapitulate the physiological milieu. While we and others have examined MSC behavior under hypoxia, the synergistic effect of low serum levels, such as those present in ischemic injury sites, on osteogenic differentiation has not been clearly examined. We hypothesized that a concomitant reduction of serum and O2 would enhance in vitro osteogenic differentiation of MSCs by more accurately mimicking the fracture microenvironment. We show that serum deprivation, in conjunction with hypoxia, potentiates osteogenic differentiation in MSCs. These data demonstrate the role of serum levels in regulating osteogenesis and its importance in optimizing MSC differentiation strategies. HIGHLIGHTS Serum levels, in addition to hypoxia, have a significant effect on MSC osteogenic differentiation. Both naïve and osteogenically induced MSCs exhibit higher osteogenic markers in reduced serum. MSCs deposit the most calcium under 5% O2 in osteogenic media supplemented with 5% FBS. Standard culture conditions (21% O2, 10% FBS) may not be optimal for MSC osteogenic differentiation.
Collapse
Affiliation(s)
- Bernard Y K Binder
- Department of Biomedical Engineering, University of California, Davis, 451 Health Sciences Drive, Davis, CA, 95616, USA
| | | | | |
Collapse
|
16
|
Three-Dimensional Modelling inside a Differential Pressure Laminar Flow Bioreactor Filled with Porous Media. BIOMED RESEARCH INTERNATIONAL 2015; 2015:320280. [PMID: 26301245 PMCID: PMC4537716 DOI: 10.1155/2015/320280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 07/05/2015] [Indexed: 12/22/2022]
Abstract
A three-dimensional computational fluid dynamics- (CFD-) model based on a differential pressure laminar flow bioreactor prototype was developed to further examine performance under changing culture conditions. Cell growth inside scaffolds was simulated by decreasing intrinsic permeability values and led to pressure build-up in the upper culture chamber. Pressure release by an integrated bypass system allowed continuation of culture. The specific shape of the bioreactor culture vessel supported a homogenous flow profile and mass flux at the scaffold level at various scaffold permeabilities. Experimental data showed an increase in oxygen concentration measured inside a collagen scaffold seeded with human mesenchymal stem cells when cultured in the perfusion bioreactor after 24 h compared to static culture in a Petri dish (dynamic: 11% O2 versus static: 3% O2). Computational fluid simulation can support design of bioreactor systems for tissue engineering application.
Collapse
|
17
|
Weyand B, Nöhre M, Schmälzlin E, Stolz M, Israelowitz M, Gille C, von Schroeder HP, Reimers K, Vogt PM. Noninvasive Oxygen Monitoring in Three-Dimensional Tissue Cultures Under Static and Dynamic Culture Conditions. Biores Open Access 2015; 4:266-77. [PMID: 26309802 PMCID: PMC4497672 DOI: 10.1089/biores.2015.0004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We present a new method for noninvasive real-time oxygen measurement inside three-dimensional tissue-engineered cell constructs in static and dynamic culture settings in a laminar flow bioreactor. The OPAL system (optical oxygen measurement system) determines the oxygen-dependent phosphorescence lifetime of spherical microprobes and uses a two-frequency phase-modulation technique, which fades out the interference of background fluorescence from the cell carrier and culture medium. Higher cell densities in the centrum of the scaffolds correlated with lower values of oxygen concentration obtained with the OPAL system. When scaffolds were placed in the bioreactor, higher oxygen values were measured compared to statically cultured scaffolds in a Petri dish, which were significantly different at day 1-3 of culture. This technique allows the use of signal-weak microprobes in biological environments and monitors the culture process inside a bioreactor.
Collapse
Affiliation(s)
- Birgit Weyand
- Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School , Hannover, Germany
| | - Mariel Nöhre
- Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School , Hannover, Germany
| | | | | | | | | | - Herb P von Schroeder
- Biomimetics Technologies, Inc. , Toronto, Canada . ; University Hand Program and Bone Lab, Department of Surgery, University of Toronto , Toronto, Canada
| | - Kerstin Reimers
- Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School , Hannover, Germany
| | - Peter M Vogt
- Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School , Hannover, Germany
| |
Collapse
|
18
|
DelNero P, Lane M, Verbridge SS, Kwee B, Kermani P, Hempstead B, Stroock A, Fischbach C. 3D culture broadly regulates tumor cell hypoxia response and angiogenesis via pro-inflammatory pathways. Biomaterials 2015; 55:110-8. [PMID: 25934456 DOI: 10.1016/j.biomaterials.2015.03.035] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 03/16/2015] [Accepted: 03/20/2015] [Indexed: 01/08/2023]
Abstract
Oxygen status and tissue dimensionality are critical determinants of tumor angiogenesis, a hallmark of cancer and an enduring target for therapeutic intervention. However, it is unclear how these microenvironmental conditions interact to promote neovascularization, due in part to a lack of comprehensive, unbiased data sets describing tumor cell gene expression as a function of oxygen levels within three-dimensional (3D) culture. Here, we utilized alginate-based, oxygen-controlled 3D tumor models to study the interdependence of culture context and the hypoxia response. Microarray gene expression analysis of tumor cells cultured in 2D versus 3D under ambient or hypoxic conditions revealed striking interdependence between culture dimensionality and hypoxia response, which was mediated in part by pro-inflammatory signaling pathways. In particular, interleukin-8 (IL-8) emerged as a major player in the microenvironmental regulation of the hypoxia program. Notably, this interaction between dimensionality and oxygen status via IL-8 increased angiogenic sprouting in a 3D endothelial invasion assay. Taken together, our data suggest that pro-inflammatory pathways are critical regulators of tumor hypoxia response within 3D environments that ultimately impact tumor angiogenesis, potentially providing important therapeutic targets. Furthermore, these results highlight the importance of pathologically relevant tissue culture models to study the complex physical and chemical processes by which the cancer microenvironment mediates new vessel formation.
Collapse
Affiliation(s)
- Peter DelNero
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Maureen Lane
- Department of Medicine, Weill Cornell Medical School, New York, NY 10065, USA
| | - Scott S Verbridge
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA 24061, USA
| | - Brian Kwee
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Pouneh Kermani
- Department of Medicine, Weill Cornell Medical School, New York, NY 10065, USA
| | - Barbara Hempstead
- Department of Medicine, Weill Cornell Medical School, New York, NY 10065, USA
| | - Abraham Stroock
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA
| | - Claudia Fischbach
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
19
|
Oxygen-tension controlled matrices for enhanced osteogenic cell survival and performance. Ann Biomed Eng 2014; 42:1261-70. [PMID: 24570389 DOI: 10.1007/s10439-014-0990-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 02/17/2014] [Indexed: 02/07/2023]
Abstract
The success of a clinically-applicable bone tissue engineering construct for large area bone defects depends on its ability to allow for homogeneous bone regeneration throughout the construct. Insufficient vascularization, and consequently inadequate oxygen tension, throughout constructs has been largely cited as the most significant obstacle facing successful bone regeneration in large area defects. The development of constructs that support bone and vessel-forming cell growth and function throughout the scaffold structure are desired for large-area bone defect repair. Here, we developed oxygen tension-controlled matrices that support more homogenous oxygen levels throughout the constructs. Specifically, we examined polylactic co-glycolic acid (PLGA) scaffolds with optimized pore distribution and the percent pore volumes, and demonstrated significantly decreased oxygen and pH gradient from the exterior of the construct to the interior after long-term cell culture in vitro. We confirmed the ability of these optimized constructs to support the cellular survival via live/dead assay. In addition, we examined their ability to support the maintenance of two clinically relevant progenitor cell populations for bone tissue engineering and vascularization, namely mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs), and confirmed the expression of key bone and vascular markers via immunofluorescence.
Collapse
|
20
|
Binder BYK, Genetos DC, Leach JK. Lysophosphatidic acid protects human mesenchymal stromal cells from differentiation-dependent vulnerability to apoptosis. Tissue Eng Part A 2014; 20:1156-64. [PMID: 24131310 DOI: 10.1089/ten.tea.2013.0487] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The survival of transplanted cells and their resulting efficacy in cell-based therapies is markedly impaired due to serum deprivation and hypoxia (SD/H) resulting from poor vascularization within tissue defects. Lysophosphatidic acid (LPA) is a platelet-derived growth factor with pleiotropic effects on many cell types. Mesenchymal stromal cells (MSC) exhibit unique secretory and stimulatory characteristics depending on their differentiation state. In light of the potential of MSC in cell-based therapies, we examined the ability of LPA to abrogate SD/H-induced apoptosis in human MSC at increasing stages of osteogenic differentiation in vitro and assessed MSC survival in vivo. Undifferentiated MSC were rescued from SD/H-induced apoptosis by treatment with both 25 and 100 μM LPA. However, MSC conditioned with osteogenic supplements responded to 25 μM LPA, and cells conditioned with dexamethasone-containing osteogenic media required 100 μM LPA. This rescue was mediated through LPA1 in all cases. The addition of 25 μM LPA enhanced vascular endothelial growth factor (VEGF) secretion by MSC in all conditions, but VEGF availability was not responsible for protection against apoptosis. We also showed that codelivery of 25 μM LPA with MSC in alginate hydrogels significantly improved the persistence of undifferentiated MSC in vivo over 4 weeks as measured by bioluminescence imaging. Osteogenic differentiation alone was protective of SD/H-induced apoptosis in vitro, and the synergistic delivery of LPA did not enhance persistence of osteogenically induced MSC in vivo. These data demonstrate that the capacity of LPA to inhibit SD/H-induced apoptosis in MSC is dependent on both the differentiation state and dosage. This information will be valuable for optimizing osteogenic conditioning regimens for MSC before in vivo implementation.
Collapse
Affiliation(s)
- Bernard Y K Binder
- 1 Department of Biomedical Engineering, University of California , Davis, Davis, California
| | | | | |
Collapse
|
21
|
Russo V, Yu C, Belliveau P, Hamilton A, Flynn LE. Comparison of human adipose-derived stem cells isolated from subcutaneous, omental, and intrathoracic adipose tissue depots for regenerative applications. Stem Cells Transl Med 2013; 3:206-17. [PMID: 24361924 DOI: 10.5966/sctm.2013-0125] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Adipose tissue is an abundant source of multipotent progenitor cells that have shown promise in regenerative medicine. In humans, fat is primarily distributed in the subcutaneous and visceral depots, which have varying biochemical and functional properties. In most studies to date, subcutaneous adipose tissue has been investigated as the adipose-derived stem cell (ASC) source. In this study, we sought to develop a broader understanding of the influence of specific adipose tissue depots on the isolated ASC populations through a systematic comparison of donor-matched abdominal subcutaneous fat and omentum, and donor-matched pericardial adipose tissue and thymic remnant samples. We found depot-dependent and donor-dependent variability in the yield, viability, immunophenotype, clonogenic potential, doubling time, and adipogenic and osteogenic differentiation capacities of the ASC populations. More specifically, ASCs isolated from both intrathoracic depots had a longer average doubling time and a significantly higher proportion of CD34(+) cells at passage 2, as compared with cells isolated from subcutaneous fat or the omentum. Furthermore, ASCs from subcutaneous and pericardial adipose tissue demonstrated enhanced adipogenic differentiation capacity, whereas ASCs isolated from the omentum displayed the highest levels of osteogenic markers in culture. Through cell culture analysis under hypoxic (5% O(2)) conditions, oxygen tension was shown to be a key mediator of colony-forming unit-fibroblast number and osteogenesis for all depots. Overall, our results suggest that depot selection is an important factor to consider when applying ASCs in tissue-specific cell-based regenerative therapies, and also highlight pericardial adipose tissue as a potential new ASC source.
Collapse
Affiliation(s)
- Valerio Russo
- Departments of Chemical Engineering and Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Human Mobility Research Centre and Department of Surgery, Kingston General Hospital, Kingston, Ontario, Canada
| | | | | | | | | |
Collapse
|
22
|
Binder BYK, Sondergaard CS, Nolta JA, Leach JK. Lysophosphatidic acid enhances stromal cell-directed angiogenesis. PLoS One 2013; 8:e82134. [PMID: 24312635 PMCID: PMC3846884 DOI: 10.1371/journal.pone.0082134] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/21/2013] [Indexed: 11/19/2022] Open
Abstract
Ischemic diseases such as peripheral vascular disease (PVD) affect more than 15% of the general population and in severe cases result in ulcers, necrosis, and limb loss. While the therapeutic delivery of growth factors to promote angiogenesis has been widely investigated, large-scale implementation is limited by strategies to effectively deliver costly recombinant proteins. Multipotent adipose-derived stromal cells (ASC) and progenitor cells from other tissue compartments secrete bioactive concentrations of angiogenic molecules, making cell-based strategies for in situ delivery of angiogenic cytokines an exciting alternative to the use of recombinant proteins. Here, we show that the phospholipid lysophosphatidic acid (LPA) synergistically improves the proangiogenic effects of ASC in ischemia. We found that LPA upregulates angiogenic growth factor production by ASC under two- and three-dimensional in vitro models of serum deprivation and hypoxia (SD/H), and that these factors significantly enhance endothelial cell migration. The concurrent delivery of LPA and ASC in fibrin gels significantly improves vascularization in a murine critical hindlimb ischemia model compared to LPA or ASC alone, thus exhibiting the translational potential of this method. Furthermore, these results are achieved using an inexpensive lipid molecule, which is orders-of-magnitude less costly than recombinant growth factors that are under investigation for similar use. Our results demonstrate a novel strategy for enhancing cell-based strategies for therapeutic angiogenesis, with significant applications for treating ischemic diseases.
Collapse
Affiliation(s)
- Bernard Y. K. Binder
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
| | - Claus S. Sondergaard
- Department of Surgery, Division of Cardiothoracic Surgery, School of Medicine, University of California Davis, Sacramento, California, United States of America
| | - Jan A. Nolta
- Departments of Hematology/Oncology, Cell Biology and Human Anatomy and Stem Cell Program, School of Medicine, University of California Davis, Sacramento, California, United States of America
| | - J. Kent Leach
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
- Department of Orthopaedic Surgery, School of Medicine, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
23
|
Bhat A, Hoch AI, Decaris ML, Leach JK. Alginate hydrogels containing cell‐interactive beads for bone formation. FASEB J 2013; 27:4844-52. [DOI: 10.1096/fj.12-213611] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Archana Bhat
- Department of Biomedical EngineeringUniversity of California–DavisDavisCaliforniaUSA
| | - Allison I. Hoch
- Department of Biomedical EngineeringUniversity of California–DavisDavisCaliforniaUSA
| | - Martin L. Decaris
- Department of Biomedical EngineeringUniversity of California–DavisDavisCaliforniaUSA
| | - J. Kent Leach
- Department of Biomedical EngineeringUniversity of California–DavisDavisCaliforniaUSA
- Department of Orthopaedic SurgeryUniversity of California–Davis School of MedicineSacramentoCaliforniaUSA¼
| |
Collapse
|
24
|
Yue Y, Yang X, Wei X, Chen J, Fu N, Fu Y, Ba K, Li G, Yao Y, Liang C, Zhang J, Cai X, Wang M. Osteogenic differentiation of adipose-derived stem cells prompted by low-intensity pulsed ultrasound. Cell Prolif 2013; 46:320-7. [PMID: 23692090 DOI: 10.1111/cpr.12035] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 02/06/2013] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Based on in vivo studies, low-intensity pulsed ultrasound (LIPUS) stimulation has been widely used in the clinic for advancing bone growth during healing of non-union alignment, fractures and other osseous defects. In this study, we have investigated osteogenic differentiation of adipose stem cells (ASCs) regulated by LIPUS, and also in a preliminarily manner, we have discussed diverse effects of different duty ratio parameters. MATERIALS AND METHODS Mouse adipose stem cells were isolated and osteogenically induced. Then they were treated with LIPUS for 10 min/day for 3 days, 5 days and 7 days, respectively. Finally, effects of LIPUS on osteogenic differentiation of the ASCs were analysed by real-time PCR, western blotting and immunofluorescence. RESULTS Our data indicated that LIPUS promoted mRNA levels of runt-related transcription factor 2, osteopontin and osterix in the presence of osteo-induction medium; moreover, protein levels of runt-related transcription factor 2 and osteopontin were upregulated. CONCLUSIONS We successfully demonstrated that LIPUS enhanced osteogenesis of ASCs, specially at the duty ratio of 20%.
Collapse
Affiliation(s)
- Y Yue
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Review of biophysical factors affecting osteogenic differentiation of human adult adipose-derived stem cells. Biophys Rev 2012; 5:11-28. [PMID: 28510177 DOI: 10.1007/s12551-012-0079-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Accepted: 03/15/2012] [Indexed: 12/11/2022] Open
Abstract
Developing bone is subject to the control of a broad variety of influences in vivo. For bone repair applications, in vitro osteogenic assays are routinely used to test the responses of bone-forming cells to drugs, hormones, and biomaterials. Results of these assays are used to predict the behavior of bone-forming cells in vivo. Stem cell research has shown promise for enhancing bone repair. In vitro osteogenic assays to test the bone-forming response of stem cells typically use chemical solutions. Stem cell in vitro osteogenic assays often neglect important biophysical cues, such as the forces associated with regular weight-bearing exercise, which promote bone formation. Incorporating more biophysical cues that promote bone formation would improve in vitro osteogenic assays for stem cells. Improved in vitro osteogenic stimulation opens opportunities for "pre-conditioning" cells to differentiate towards the desired lineage. In this review, we explore the role of select biophysical factors-growth surfaces, tensile strain, fluid flow and electromagnetic stimulation-in promoting osteogenic differentiation of stem cells from human adipose. Emphasis is placed on the potential for physical microenvironment manipulation to translate tissue engineering and stem cell research into widespread clinical usage.
Collapse
|
26
|
Hoch AI, Binder BY, Genetos DC, Leach JK. Differentiation-dependent secretion of proangiogenic factors by mesenchymal stem cells. PLoS One 2012; 7:e35579. [PMID: 22536411 PMCID: PMC3334972 DOI: 10.1371/journal.pone.0035579] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 03/18/2012] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are a promising cell population for cell-based bone repair due to their proliferative potential, ability to differentiate into bone-forming osteoblasts, and their secretion of potent trophic factors that stimulate angiogenesis and neovascularization. To promote bone healing, autogenous or allogeneic MSCs are transplanted into bone defects after differentiation to varying degrees down the osteogenic lineage. However, the contribution of the stage of osteogenic differentiation upon angiogenic factor secretion is unclear. We hypothesized that the proangiogenic potential of MSCs was dependent upon their stage of osteogenic differentiation. After 7 days of culture, we observed the greatest osteogenic differentiation of MSCs when cells were cultured with dexamethasone (OM+). Conversely, VEGF protein secretion and upregulation of angiogenic genes were greatest in MSCs cultured in growth media (GM). Using conditioned media from MSCs in each culture condition, GM-conditioned media maximized proliferation and enhanced chemotactic migration and tubule formation of endothelial colony forming cells (ECFCs). The addition of a neutralizing VEGF(165/121) antibody to conditioned media attenuated ECFC proliferation and chemotactic migration. ECFCs seeded on microcarrier beads and co-cultured with MSCs previously cultured in GM in a fibrin gel exhibited superior sprouting compared to MSCs previously cultured in OM+. These results confirm that MSCs induced farther down the osteogenic lineage possess reduced proangiogenic potential, thereby providing important findings for consideration when using MSCs for bone repair.
Collapse
Affiliation(s)
- Allison I. Hoch
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
| | - Bernard Y. Binder
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
| | - Damian C. Genetos
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - J. Kent Leach
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
| |
Collapse
|
27
|
ICHIJIMA TAKEHIRO, MATSUZAKA KENICHI, TONOGI MORIO, YAMANE GENYUKI, INOUE TAKASHI. Osteogenic differences in cultured rat periosteal cells under hypoxic and normal conditions. Exp Ther Med 2012; 3:165-170. [PMID: 22969863 PMCID: PMC3438792 DOI: 10.3892/etm.2011.393] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 11/21/2011] [Indexed: 01/08/2023] Open
Abstract
The aim of the present study was to investigate the osteogenic capability of rat calvarial periosteal cells in hypoxic conditions in vitro. Periosteum was obtained from the calvarial bone of Sprague-Dawley rats. Following primary tissue culture, subcultured cells were used in hypoxic or normal conditions. On days 1, 2, 3 and 4 following the cell culture, cell proliferation and mRNA and protein expression levels were evaluated. No significant difference in the cell proliferation rate was found between the normal and hypoxic condition groups. The hypoxic condition group exhibited a stronger expression of hypoxia-inducible factor (HIF)1α, vascular endothelial growth factor (VEGF), Runx2, alkaline phosphatase (ALP), bone sialoprotein (BSP), osteocalcin (OCN) and periostin at the mRNA level compared to that of the normal condition group. The hypoxic condition group also exhibited a stronger expression of HIF1α, VEGF, bone morphogenetic protein (BMP)2, Runx2, ALP and BSP at the protein level compared to that of the normal condition group. In conclusion, periosteal cells cultured in hypoxic conditions demonstrated activated osteogenic capability in vitro.
Collapse
Affiliation(s)
- TAKEHIRO ICHIJIMA
- Department of Oral Medicine, Oral and Maxillofacial Surgery, Tokyo Dental College, Ichikawa General Hospital, Ichikawa-shi, Chiba 272-8513
- Oral Health Science Center hrc7, Tokyo Dental College, Chiba 261-8502
| | - KENICHI MATSUZAKA
- Oral Health Science Center hrc7, Tokyo Dental College, Chiba 261-8502
- Department of Clinical Pathophysiology, Tokyo Dental College, Chiba 261-8502, Japan
| | - MORIO TONOGI
- Department of Oral Medicine, Oral and Maxillofacial Surgery, Tokyo Dental College, Ichikawa General Hospital, Ichikawa-shi, Chiba 272-8513
| | - GEN-YUKI YAMANE
- Department of Oral Medicine, Oral and Maxillofacial Surgery, Tokyo Dental College, Ichikawa General Hospital, Ichikawa-shi, Chiba 272-8513
| | - TAKASHI INOUE
- Oral Health Science Center hrc7, Tokyo Dental College, Chiba 261-8502
- Department of Clinical Pathophysiology, Tokyo Dental College, Chiba 261-8502, Japan
| |
Collapse
|
28
|
Park SG, Kim JH, Xia Y, Sung JH. Generation of reactive oxygen species in adipose-derived stem cells: friend or foe? Expert Opin Ther Targets 2011; 15:1297-306. [PMID: 21981031 DOI: 10.1517/14728222.2011.628315] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Reactive oxygen species (ROS) participate in cellular apoptosis and are involved in pathophysiological etiology of degenerative diseases. However, recent studies suggest that ROS at low levels may play a pivotal role as second messengers and activate normal cellular processes. Intracellular ROS increase the proliferation, migration, and regenerative potential of adipose-derived stem cells (ASCs). In contrast, manipulations that diminish intracellular ROS levels interfere with normal ASC function. ROS generation therefore acts like a double-edged sword. AREAS COVERED This review discusses the following research questions: i) Do ROS stimulate or suppress ASCs? ii) How are ROS generated from ASCs? iii) Which function(s) is/are regulated by intracellular ROS generation? In addition, the antioxidant/antiapoptotic effect of ASCs is briefly introduced. EXPERT OPINION Whether ROS is harmful or beneficial is primarily a question of dosage. Low or moderate ROS generation increases the proliferation, migration and regenerative potential of ASCs. Therefore, it is beneficial to expose ASCs to moderate oxidative stress during manipulation. The addition of a ROS donor in culture can reduce the cost for the expansion of ASCs and a ROS preconditioning can enhance the regenerative potential of ASCs.
Collapse
Affiliation(s)
- Sang Gyu Park
- CHA University, Department of Biomedical Science, Seoul, Korea
| | | | | | | |
Collapse
|
29
|
Differential growth factor adsorption to calvarial osteoblast-secreted extracellular matrices instructs osteoblastic behavior. PLoS One 2011; 6:e25990. [PMID: 21998741 PMCID: PMC3187840 DOI: 10.1371/journal.pone.0025990] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 09/15/2011] [Indexed: 12/22/2022] Open
Abstract
Craniosynostosis (CS), the premature ossification of cranial sutures, is attributed to increased osteogenic potential of resident osteoblasts, yet the contribution of the surrounding extracellular matrix (ECM) on osteogenic differentiation is unclear. The osteoblast-secreted ECM provides binding sites for cellular adhesion and regulates the transport and signaling of osteoinductive factors secreted by the underlying dura mater. The binding affinity of each osteoinductive factor for the ECM may amplify or mute its relative effect, thus contributing to the rate of suture fusion. The purpose of this paper was to examine the role of ECM composition derived from calvarial osteoblasts on protein binding and its resultant effect on cell phenotype. We hypothesized that potent osteoinductive proteins present during sutural fusion (e.g., bone morphogenetic protein-2 (BMP-2) and transforming growth factor beta-1 (TGF-β1)) would exhibit distinct differences in binding when exposed to ECMs generated by human calvarial osteoblasts from unaffected control individuals (CI) or CS patients. Decellularized ECMs produced by osteoblasts from CI or CS patients were incubated in the presence of BMP-2 or TGF-β1, and the affinity of each protein was analyzed. The contribution of ECM composition to protein binding was interrogated by enzymatically modulating proteoglycan content within the ECM. BMP-2 had a similar binding affinity for each ECM, while TGF-β1 had a greater affinity for ECMs produced by osteoblasts from CI compared to CS patients. Enzymatic treatment of ECMs reduced protein binding. CS osteoblasts cultured on enzymatically-treated ECMs secreted by osteoblasts from CI patients in the presence of BMP-2 exhibited impaired osteogenic differentiation compared to cells on untreated ECMs. These data demonstrate the importance of protein binding to cell-secreted ECMs and confirm that protein-ECM interactions have an important role in directing osteoblastic differentiation of calvarial osteoblasts.
Collapse
|
30
|
Kim JH, Park SH, Park SG, Choi JS, Xia Y, Sung JH. The pivotal role of reactive oxygen species generation in the hypoxia-induced stimulation of adipose-derived stem cells. Stem Cells Dev 2011; 20:1753-61. [PMID: 21265612 DOI: 10.1089/scd.2010.0469] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Adipose-derived stem cells (ASCs) offer a potential alternative for tissue repair and regeneration. We have recently shown that hypoxia stimulates ASCs and enhances the regenerative potential of ASCs, which is beneficial for ASC therapy. In the present study, we further investigated a key mediator and a signal pathway involved in the stimulation of ASC during hypoxia. Culturing ASC in a hypoxic incubator (2% oxygen tension) increased the proliferation and migration, and this was mediated by Akt and ERK pathways. To determine the generation of reactive oxygen species (ROS), 2',7'-dichlorofluorescin diacetate intensity was detected by fluorescence-activated cell sorting. Hypoxia significantly increased the dichlorofluorescin diacetate intensity, which was greatly reduced by N-acetyl-cysteine and diphenyleneiodonium treatment. Likewise, the hypoxia-induced proliferation and migration of ASCs were reversed by N-acetyl-cysteine and diphenyleneiodonium treatment, suggesting the involvement of ROS generation in ASC stimulation. Further, we examined the activation of receptor tyrosine kinases and observed that hypoxia stimulated the phosphorylation of platelet-derived growth factor receptor-β. In summary, the ROS produced by ASCs in response to hypoxia was mostly likely due to NADPH oxidase activity. The increased cellular ROS was accompanied by the phosphorylation of platelet-derived growth factor receptor-β as well as by the activation of ERK and Akt signal pathways. Our results suggest a pivotal role for ROS generation in the stimulation of ASCs by hypoxia.
Collapse
Affiliation(s)
- Ji Hye Kim
- Department of Applied Bioscience, CHA University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
31
|
Fite BZ, Decaris M, Sun Y, Sun Y, Lam A, Ho CKL, Leach JK, Marcu L. Noninvasive multimodal evaluation of bioengineered cartilage constructs combining time-resolved fluorescence and ultrasound imaging. Tissue Eng Part C Methods 2011; 17:495-504. [PMID: 21303258 DOI: 10.1089/ten.tec.2010.0368] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A multimodal diagnostic system that integrates time-resolved fluorescence spectroscopy, fluorescence lifetime imaging microscopy, and ultrasound backscatter microscopy is evaluated here as a potential tool for assessing changes in engineered tissue composition and microstructure nondestructively and noninvasively. The development of techniques capable of monitoring the quality of engineered tissue, determined by extracellular matrix (ECM) content, before implantation would alleviate the need for destructive assays over multiple time points and advance the widespread development and clinical application of engineered tissues. Using a prototype system combining time-resolved fluorescence spectroscopy, FLIM, and UBM, we measured changes in ECM content occurring during chondrogenic differentiation of equine adipose stem cells on 3D biodegradable matrices. The optical and ultrasound results were validated against those acquired via conventional techniques, including collagen II immunohistochemistry, picrosirius red staining, and measurement of construct stiffness. Current results confirm the ability of this multimodal approach to follow the progression of tissue maturation along the chondrogenic lineage by monitoring ECM production (namely, collagen type II) and by detecting resulting changes in mechanical properties of tissue constructs. Although this study was directed toward monitoring chondrogenic tissue maturation, these data demonstrate the feasibility of this approach for multiple applications toward engineering other tissues, including bone and vascular grafts.
Collapse
Affiliation(s)
- Brett Z Fite
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Decaris ML, Leach JK. Design of experiments approach to engineer cell-secreted matrices for directing osteogenic differentiation. Ann Biomed Eng 2010; 39:1174-85. [PMID: 21120695 PMCID: PMC3069311 DOI: 10.1007/s10439-010-0217-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 11/19/2010] [Indexed: 12/18/2022]
Abstract
The presentation of extracellular matrix (ECM) proteins provides an opportunity to instruct the phenotype and behavior of responsive cells. Decellularized cell-secreted matrix coatings (DM) represent a biomimetic culture surface that retains the complexity of the natural ECM. Microenvironmental culture conditions alter the composition of these matrices and ultimately the ability of DMs to direct cell fate. We employed a design of experiments (DOE) multivariable analysis approach to determine the effects and interactions of four variables (culture duration, cell seeding density, oxygen tension, and media supplementation) on the capacity of DMs to direct the osteogenic differentiation of human mesenchymal stem cells (hMSCs). DOE analysis revealed that matrices created with extended culture duration, ascorbate-2-phosphate supplementation, and in ambient oxygen tension exhibited significant correlations with enhanced hMSC differentiation. We validated the DOE model results using DMs predicted to have superior (DM1) or lesser (DM2) osteogenic potential for naïve hMSCs. Compared to cells on DM2, hMSCs cultured on DM1 expressed 2-fold higher osterix levels and deposited 3-fold more calcium over 3 weeks. Cells on DM1 coatings also exhibited greater proliferation and viability compared to DM2-coated substrates. This study demonstrates that DOE-based analysis is a powerful tool for optimizing engineered systems by identifying significant variables that have the greatest contribution to the target output.
Collapse
Affiliation(s)
- Martin L. Decaris
- Department of Biomedical Engineering, University of California, 451 Health Sciences Drive, Davis, CA 95616 USA
| | - J. Kent Leach
- Department of Biomedical Engineering, University of California, 451 Health Sciences Drive, Davis, CA 95616 USA
| |
Collapse
|