1
|
Latha Laxmi IP, Job AT, Manickam V, Tamizhselvi R. Intertwined relationship of dynamin-related protein 1, mitochondrial metabolism and circadian rhythm. Mol Biol Rep 2024; 51:488. [PMID: 38578426 DOI: 10.1007/s11033-024-09430-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/08/2024] [Indexed: 04/06/2024]
Abstract
In recent years, mitochondria have gained significant interest in the field of biomedical research due to their impact on human health and ageing. As mitochondrial dynamics are strongly controlled by clock genes, misalignment of the circadian rhythm leads to adverse metabolic health effects. In this review, by exploring various aspects of research and potential links, we hope to update the current understanding of the intricate relationship between DRP1-mediated mitochondrial dynamics and changes in circadian rhythmicity leading to health issues. Thus, this review addresses the potential bidirectional relationships between DRP1-linked mitochondrial function and circadian rhythm misalignment, their impact on different metabolic pathways, and the potential therapeutics for metabolic and systemic disorders.
Collapse
Affiliation(s)
| | - Anica Tholath Job
- Department of Biotechnology, National Institute of Technology, Warangal, 506004, Telangana, India
| | - Venkatraman Manickam
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632104, Tamil Nadu, India
| | - Ramasamy Tamizhselvi
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632104, Tamil Nadu, India.
| |
Collapse
|
2
|
Jin Z, Ji Y, Su W, Zhou L, Wu X, Gao L, Guo J, Liu Y, Zhang Y, Wen X, Xia ZY, Xia Z, Lei S. The role of circadian clock-controlled mitochondrial dynamics in diabetic cardiomyopathy. Front Immunol 2023; 14:1142512. [PMID: 37215098 PMCID: PMC10196400 DOI: 10.3389/fimmu.2023.1142512] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Diabetes mellitus is a metabolic disease with a high prevalence worldwide, and cardiovascular complications are the leading cause of mortality in patients with diabetes. Diabetic cardiomyopathy (DCM), which is prone to heart failure with preserved ejection fraction, is defined as a cardiac dysfunction without conventional cardiac risk factors such as coronary heart disease and hypertension. Mitochondria are the centers of energy metabolism that are very important for maintaining the function of the heart. They are highly dynamic in response to environmental changes through mitochondrial dynamics. The disruption of mitochondrial dynamics is closely related to the occurrence and development of DCM. Mitochondrial dynamics are controlled by circadian clock and show oscillation rhythm. This rhythm enables mitochondria to respond to changing energy demands in different environments, but it is disordered in diabetes. In this review, we summarize the significant role of circadian clock-controlled mitochondrial dynamics in the etiology of DCM and hope to play a certain enlightening role in the treatment of DCM.
Collapse
Affiliation(s)
- Zhenshuai Jin
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanwei Ji
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wating Su
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lu Zhou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaojing Wu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lei Gao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Junfan Guo
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yutong Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuefu Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinyu Wen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhong-Yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Shaoqing Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Mezhnina V, Ebeigbe OP, Poe A, Kondratov RV. Circadian Control of Mitochondria in Reactive Oxygen Species Homeostasis. Antioxid Redox Signal 2022; 37:647-663. [PMID: 35072523 PMCID: PMC9587791 DOI: 10.1089/ars.2021.0274] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/06/2022] [Indexed: 12/11/2022]
Abstract
Significance: Mitochondria produce most of the cellular ATP through the process of oxidative phosphorylation. Energy metabolism in the mitochondria is associated with the production of reactive oxygen species (ROS). Excessive ROS production leads to oxidative stress and compromises cellular physiology. Energy metabolism in the mitochondria depends on nutrient flux and cellular metabolic needs, which are in turn connected with the feeding/fasting cycle. In animals, the feeding/fasting cycle is controlled by the circadian clock that generates 24-h rhythms in behavior, metabolism, and signaling. Recent Advances: Here, we discuss the role of the circadian clock and rhythms in mitochondria on ROS homeostasis. The circadian clock is involved in mitochondrial ROS production and detoxification through the control of nutrient flux and oxidation, uncoupling, antioxidant defense, and mitochondrial dynamics. Critical Issues: Little is known on the molecular mechanisms of circadian control of mitochondrial functions. The circadian clock regulates the expression and activity of mitochondrial metabolic and antioxidant enzymes. The regulation involves a direct transcriptional control by Circadian Locomotor Output Cycles Kaput/brain and muscle ARNT-like 1(CLOCK/BMAL1), nuclear factor erythroid-2-related factor 2 (NRF2) transcriptional network, and sirtuin-dependent posttranslational protein modifications. Future Perspectives: We hypothesize that the circadian clock orchestrates mitochondrial physiology to synchronize it with the feeding/fasting cycle. Circadian coordination of mitochondrial function couples energy metabolism with diets and contributes to antioxidant defense to prevent metabolic diseases and delay aging. Antioxid. Redox Signal. 37, 647-663.
Collapse
Affiliation(s)
- Volha Mezhnina
- Department of Biological, Geological, and Environmental Sciences and Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio, USA
| | - Oghogho P. Ebeigbe
- Department of Biological, Geological, and Environmental Sciences and Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio, USA
| | - Allan Poe
- Department of Biological, Geological, and Environmental Sciences and Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio, USA
| | - Roman V. Kondratov
- Department of Biological, Geological, and Environmental Sciences and Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio, USA
| |
Collapse
|
4
|
Wang Q, Yu P, Liu C, He X, Wang G. Mitochondrial fragmentation in liver cancer: Emerging player and promising therapeutic opportunities. Cancer Lett 2022; 549:215912. [PMID: 36103914 DOI: 10.1016/j.canlet.2022.215912] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/24/2022] [Accepted: 09/06/2022] [Indexed: 11/02/2022]
Abstract
Hepatocellular carcinoma (HCC) is the leading cause of cancer-related death worldwide. Enhanced mitochondrial fragmentation (MF) is associated with poor prognosis in HCC patients. However, its molecular mechanism in HCC remains elusive. Although enhanced MF activates effector T cells and dendritic cells, it induces immunoescape by decreasing the number and cytotoxicity of natural killer cells in the HCC immune microenvironment. Therefore, the influence of MF on the activity of different immune cells is a great challenge. Enhanced MF contributes to maintaining stemness by promoting the asymmetric division of liver cancer stem cells (LCSCs), suggesting that MF may become a potential target for HCC recurrence, metastasis, and chemotherapy resistance. Moreover, mechanistic studies suggest that MF may promote tumour progression through autophagy, oxidative stress, and metabolic reprogramming. Human-induced hepatocyte organoids are a recently developed system that can be genetically manipulated to mimic cancer initiation and identify potential preventive treatments. We can use it to screen MF-related candidate inhibitors of HCC progression and further explore the role of MF in hepatocarcinogenesis. We herein describe the mechanisms by which MF contributes to HCC development, discuss potential therapeutic approaches, and highlight the possibility that MF modulation has a synergistic effect with immunotherapy.
Collapse
Affiliation(s)
- Qian Wang
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China.
| | - Pengfei Yu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Chaoxu Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310006, China
| | - Xianli He
- Department of General Surgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Gang Wang
- Department of General Surgery, The 74th Group Army Hospital, Guangzhou, 510318, China.
| |
Collapse
|
5
|
Wong H, Buck JM, Borski C, Pafford JT, Keller BN, Milstead RA, Hanson JL, Stitzel JA, Hoeffer CA. RCAN1 knockout and overexpression recapitulate an ensemble of rest-activity and circadian disruptions characteristic of Down syndrome, Alzheimer's disease, and normative aging. J Neurodev Disord 2022; 14:33. [PMID: 35610565 PMCID: PMC9128232 DOI: 10.1186/s11689-022-09444-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 05/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Regulator of calcineurin 1 (RCAN1) is overexpressed in Down syndrome (DS), but RCAN1 levels are also increased in Alzheimer's disease (AD) and normal aging. AD is highly comorbid among individuals with DS and is characterized in part by progressive neurodegeneration that resembles accelerated aging. Importantly, abnormal RCAN1 levels have been demonstrated to promote memory deficits and pathophysiology that appear symptomatic of DS, AD, and aging. Anomalous diurnal rest-activity patterns and circadian rhythm disruptions are also common in DS, AD, and aging and have been implicated in facilitating age-related cognitive decline and AD progression. However, no prior studies have assessed whether RCAN1 dysregulation may also promote the age-associated alteration of rest-activity profiles and circadian rhythms, which could in turn contribute to neurodegeneration in DS, AD, and aging. METHODS The present study examined the impacts of RCAN1 deficiency and overexpression on the photic entrainment, circadian periodicity, intensity and distribution, diurnal patterning, and circadian rhythmicity of wheel running in young (3-6 months old) and aged (9-14 months old) mice of both sexes. RESULTS We found that daily RCAN1 levels in the hippocampus and suprachiasmatic nucleus (SCN) of light-entrained young mice are generally constant and that balanced RCAN1 expression is necessary for normal circadian locomotor activity rhythms. While the light-entrained diurnal period was unaltered, RCAN1-null and RCAN1-overexpressing mice displayed lengthened endogenous (free-running) circadian periods like mouse models of AD and aging. In light-entrained young mice, RCAN1 deficiency and overexpression also recapitulated the general hypoactivity, diurnal rest-wake pattern fragmentation, and attenuated amplitudes of circadian activity rhythms reported in DS, preclinical and clinical AD, healthily aging individuals, and rodent models thereof. Under constant darkness, RCAN1-null and RCAN1-overexpressing mice displayed altered locomotor behavior indicating circadian clock dysfunction. Using the Dp(16)1Yey/+ (Dp16) mouse model for DS, which expresses three copies of Rcan1, we found reduced wheel running activity and rhythmicity in both light-entrained and free-running young Dp16 mice like young RCAN1-overexpressing mice. Critically, these diurnal and circadian deficits were rescued in part or entirely by restoring Rcan1 to two copies in Dp16 mice. We also found that RCAN1 deficiency but not RCAN1 overexpression altered protein levels of the clock gene Bmal1 in the SCN. CONCLUSIONS Collectively, this study's findings suggest that both loss and aberrant gain of RCAN1 precipitate anomalous light-entrained diurnal and circadian activity patterns emblematic of DS, AD, and possibly aging.
Collapse
Affiliation(s)
- Helen Wong
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30th Street, Boulder, CO, 80309-0447, USA
- Department of Integrative Physiology, University of Colorado, Boulder, CO, 80303, USA
| | - Jordan M Buck
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30th Street, Boulder, CO, 80309-0447, USA
- Department of Integrative Physiology, University of Colorado, Boulder, CO, 80303, USA
| | - Curtis Borski
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30th Street, Boulder, CO, 80309-0447, USA
- Department of Integrative Physiology, University of Colorado, Boulder, CO, 80303, USA
| | - Jessica T Pafford
- Department of Integrative Physiology, University of Colorado, Boulder, CO, 80303, USA
| | - Bailey N Keller
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30th Street, Boulder, CO, 80309-0447, USA
| | - Ryan A Milstead
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30th Street, Boulder, CO, 80309-0447, USA
- Department of Integrative Physiology, University of Colorado, Boulder, CO, 80303, USA
| | - Jessica L Hanson
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30th Street, Boulder, CO, 80309-0447, USA
- Department of Integrative Physiology, University of Colorado, Boulder, CO, 80303, USA
| | - Jerry A Stitzel
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30th Street, Boulder, CO, 80309-0447, USA
- Department of Integrative Physiology, University of Colorado, Boulder, CO, 80303, USA
| | - Charles A Hoeffer
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30th Street, Boulder, CO, 80309-0447, USA.
- Department of Integrative Physiology, University of Colorado, Boulder, CO, 80303, USA.
- Linda Crnic Institute, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
6
|
Witzig M, Grimm A, Schmitt K, Lejri I, Frank S, Brown SA, Eckert A. Clock-Controlled Mitochondrial Dynamics Correlates with Cyclic Pregnenolone Synthesis. Cells 2020; 9:cells9102323. [PMID: 33086741 PMCID: PMC7589815 DOI: 10.3390/cells9102323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
Neurosteroids are steroids synthetized in the nervous system, with the first step of steroidogenesis taking place within mitochondria with the synthesis of pregnenolone. They exert important brain-specific functions by playing a role in neurotransmission, learning and memory processes, and neuroprotection. Here, we show for the first time that mitochondrial neurosteroidogenesis follows a circadian rhythm and correlates with the rhythmic changes in mitochondrial morphology. We used synchronized human A172 glioma cells, which are steroidogenic cells with a functional core molecular clock, to show that pregnenolone levels and translocator protein (TSPO) are controlled by the clock, probably via circadian regulation of mitochondrial fusion/fission. Key findings were recapitulated in mouse brains. We also showed that genetic or pharmacological abrogation of fusion/fission activity, as well as disturbing the core molecular clock, abolished circadian rhythms of pregnenolone and TSPO. Our findings provide new insights into the crosstalk between mitochondrial function (here, neurosteroidogenesis) and circadian cycles.
Collapse
Affiliation(s)
- Melissa Witzig
- Neurobiology Lab for Brain Aging and Mental Health, Molecular & Cognitive Neuroscience, Transfaculty Research Platform, University of Basel, 4002 Basel, Switzerland; (M.W.); (A.G.); (K.S.); (I.L.)
- Psychiatric University Clinics Basel, Medical Faculty, University of Basel, 4002 Basel, Switzerland
| | - Amandine Grimm
- Neurobiology Lab for Brain Aging and Mental Health, Molecular & Cognitive Neuroscience, Transfaculty Research Platform, University of Basel, 4002 Basel, Switzerland; (M.W.); (A.G.); (K.S.); (I.L.)
- Psychiatric University Clinics Basel, Medical Faculty, University of Basel, 4002 Basel, Switzerland
- Division of Molecular Psychology, Live Sciences Training Facility, University of Basel, 4055 Basel, Switzerland
| | - Karen Schmitt
- Neurobiology Lab for Brain Aging and Mental Health, Molecular & Cognitive Neuroscience, Transfaculty Research Platform, University of Basel, 4002 Basel, Switzerland; (M.W.); (A.G.); (K.S.); (I.L.)
- Psychiatric University Clinics Basel, Medical Faculty, University of Basel, 4002 Basel, Switzerland
| | - Imane Lejri
- Neurobiology Lab for Brain Aging and Mental Health, Molecular & Cognitive Neuroscience, Transfaculty Research Platform, University of Basel, 4002 Basel, Switzerland; (M.W.); (A.G.); (K.S.); (I.L.)
- Psychiatric University Clinics Basel, Medical Faculty, University of Basel, 4002 Basel, Switzerland
| | - Stephan Frank
- Division of Neuropathology, Institute of Pathology, University Hospital Basel, 4031 Basel, Switzerland;
| | - Steven A. Brown
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, University of Zürich, 8057 Zürich, Switzerland;
| | - Anne Eckert
- Neurobiology Lab for Brain Aging and Mental Health, Molecular & Cognitive Neuroscience, Transfaculty Research Platform, University of Basel, 4002 Basel, Switzerland; (M.W.); (A.G.); (K.S.); (I.L.)
- Psychiatric University Clinics Basel, Medical Faculty, University of Basel, 4002 Basel, Switzerland
- Correspondence: ; Tel.: +41-61-325-5487; Fax: +41-06-1325-5577
| |
Collapse
|
7
|
Miyazaki D, Shimizu D, Fukushima A, Ebihara N, Uchio E, Shoji J, Namba K, Inoue Y, Ohashi Y, Okamoto S, Takamura E, Fujishima H. Reduced steroid-induced intraocular pressure elevation in tacrolimus-treated refractory allergic ocular diseases. Jpn J Ophthalmol 2020; 64:568-576. [PMID: 33026594 DOI: 10.1007/s10384-020-00774-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/16/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE To determine whether topical tacrolimus can lessen steroid-induced intraocular pressure (IOP) elevation. STUDY DESIGN Open cohort post hoc analysis study. METHODS Five hundred eleven patients with vernal keratoconjunctivitis or atopic keratoconjunctivitis (mean age 17.0 ± 9.2 years) were studied. All 511 patients were treated with topical tacrolimus with or without topical steroids, and the changes in IOP were measured monthly for 3 months. The elevation in IOP induced by use of topical steroids was calculated using mixed linear regression analyses. The relationship between the elevation in IOP within 4 weeks and the use or nonuse of tacrolimus reported in published data was analyzed using metaregression analysis to estimate the effects of tacrolimus on the IOP in eyes treated with topical steroids. RESULTS The mean topical steroid-induced IOP elevation in tacrolimus-treated eyes was lower, by 5.2 mmHg (P = 0.04), than that in earlier published data without tacrolimus as the control. In the tacrolimus-treated eyes, the mean betamethasone-induced IOP elevation was 1.3 mmHg without discontinuation of the steroid. Metaregression analysis indicated that glaucoma history and younger age had significant effects on topical steroid-induced IOP elevation, by 4.0 mmHg (P = 0.002) and 3.9 mmHg (P = 0.01), respectively. In tacrolimus-treated eyes, the most significant effect on the IOP was associated with glaucoma history or medication; however, its effect on the IOP was limited to 1.7 mmHg elevation (P = 0.006). CONCLUSIONS Topical tacrolimus may lessen the steroid-induced elevation in IOP in younger individuals and may be a good adjunctive therapy to avoid IOP elevation in refractory cases.
Collapse
Affiliation(s)
- Dai Miyazaki
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan.
| | - Daisuke Shimizu
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | | | - Nobuyuki Ebihara
- Department of Ophthalmology, Juntendo University School of Medicine, Tokyo, Japan
| | - Eiichi Uchio
- Department of Ophthalmology, School of Medicine, Fukuoka University, Fukuoka, Japan
| | - Jun Shoji
- Division of Ophthalmology, Department of Visual Sciences, Nihon University School of Medicine, Tokyo, Japan
| | - Kenichi Namba
- Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - Yoshitsugu Inoue
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Yuichi Ohashi
- Department of Ophthalmology, Ehime University School of Medicine, Toon, Ehime, Japan
| | | | - Etsuko Takamura
- Department of Ophthalmology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Hiroshi Fujishima
- Department of Ophthalmology, Tsurumi University Dental Hospital, Yokohama, Kanagawa, Japan
| |
Collapse
|
8
|
Ko GYP. Circadian regulation in the retina: From molecules to network. Eur J Neurosci 2020; 51:194-216. [PMID: 30270466 PMCID: PMC6441387 DOI: 10.1111/ejn.14185] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 12/14/2022]
Abstract
The mammalian retina is the most unique tissue among those that display robust circadian/diurnal oscillations. The retina is not only a light sensing tissue that relays light information to the brain, it has its own circadian "system" independent from any influence from other circadian oscillators. While all retinal cells and retinal pigment epithelium (RPE) possess circadian oscillators, these oscillators integrate by means of neural synapses, electrical coupling (gap junctions), and released neurochemicals (such as dopamine, melatonin, adenosine, and ATP), so the whole retina functions as an integrated circadian system. Dysregulation of retinal clocks not only causes retinal or ocular diseases, it also impacts the circadian rhythm of the whole body, as the light information transmitted from the retina entrains the brain clock that governs the body circadian rhythms. In this review, how circadian oscillations in various retinal cells are integrated, and how retinal diseases affect daily rhythms.
Collapse
Affiliation(s)
- Gladys Y-P Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas
| |
Collapse
|
9
|
Chen L, Zhang B, Yang L, Bai YG, Song JB, Ge YL, Ma HZ, Cheng JH, Ma J, Xie MJ. BMAL1 Disrupted Intrinsic Diurnal Oscillation in Rat Cerebrovascular Contractility of Simulated Microgravity Rats by Altering Circadian Regulation of miR-103/Ca V1.2 Signal Pathway. Int J Mol Sci 2019; 20:ijms20163947. [PMID: 31416128 PMCID: PMC6720455 DOI: 10.3390/ijms20163947] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/17/2019] [Accepted: 08/06/2019] [Indexed: 12/11/2022] Open
Abstract
The functional and structural adaptations in cerebral arteries could be one of the fundamental causes in the occurrence of orthostatic intolerance after space flight. In addition, emerging studies have found that many cardiovascular functions exhibit circadian rhythm. Several lines of evidence suggest that space flight might increase an astronaut’s cardiovascular risks by disrupting circadian rhythm. However, it remains unknown whether microgravity disrupts the diurnal variation in vascular contractility and whether microgravity impacts on circadian clock system. Sprague-Dawley rats were subjected to 28-day hindlimb-unweighting to simulate the effects of microgravity on vasculature. Cerebrovascular contractility was estimated by investigating vasoconstrictor responsiveness and myogenic tone. The circadian regulation of CaV1.2 channel was determined by recording whole-cell currents, evaluating protein and mRNA expressions. Then the candidate miRNA in relation with Ca2+ signal was screened. Lastly, the underlying pathway involved in circadian regulation of cerebrovascular contractility was determined. The major findings of this study are: (1) The clock gene BMAL1 could induce the expression of miR-103, and in turn modulate the circadian regulation of CaV1.2 channel in rat cerebral arteries at post-transcriptional level; and (2) simulated microgravity disrupted intrinsic diurnal oscillation in rat cerebrovascular contractility by altering circadian regulation of BMAL1/miR-103/CaV1.2 signal pathway.
Collapse
Affiliation(s)
- Li Chen
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an 710032, China
| | - Bin Zhang
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an 710032, China
| | - Lu Yang
- Department of Physiology, Fourth Military Medical University, Xi'an 710032, China
| | - Yun-Gang Bai
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an 710032, China
| | - Ji-Bo Song
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an 710032, China
| | - Yi-Ling Ge
- First Cadet Brigade, Fourth Military Medical University, Xi'an 710032, China
| | - Hong-Zhe Ma
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an 710032, China
| | - Jiu-Hua Cheng
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an 710032, China
| | - Jin Ma
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an 710032, China
| | - Man-Jiang Xie
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
10
|
Yang X, Ye A, Chen L, Xia Y, Jiang W, Sun W. Involvement of calcium in 50-Hz magnetic field-induced activation of sphingosine kinase 1 signaling pathway. Bioelectromagnetics 2019; 40:180-187. [PMID: 30920672 DOI: 10.1002/bem.22181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/26/2019] [Indexed: 01/09/2023]
Abstract
Previously, we found that exposure to a 50-Hz magnetic field (MF) could induce human amniotic epithelial (FL) cell proliferation and sphingosine kinase 1 (SK1) activation, but the mechanism was not clearly understood. In the present study, the possible signaling pathways which were involved in SK1 activation induced by 50-Hz MF exposure were investigated. Results showed that MF exposure increased intracellular Ca2+ which was dependent on the L-type calcium channel, and induced Ca2+ -dependent phosphorylation of extracellular regulated protein kinase (ERK), SK1, and protein kinase C α (PKCα). Also, treatment with U0126, an inhibitor of ERK, could block MF-induced SK1 phosphorylation, but had no effect on PKCα phosphorylation. Also, the inhibitor of PKCα, Gö6976, had no effect on MF-induced SK1 activation in FL cells. In addition, the activation of ERK and PKCα could be abolished by SKI II, the inhibitor of SK1. In conclusion, the intracellular Ca2+ mediated the 50-Hz MF-induced SK1 activation which enhanced PKCα phosphorylation, and there might be a feedback mechanism between SK1 and ERK activation in responding to MF exposure in FL cells. Bioelectromagnetics. 9999:XX-XX, 2019. © 2019 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Xiaobo Yang
- Bioelectromagnetics Key Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Anfang Ye
- Department of Occupational Disease of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Liangjing Chen
- Bioelectromagnetics Key Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yongpeng Xia
- Bioelectromagnetics Key Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wei Jiang
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenjun Sun
- Bioelectromagnetics Key Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Occupational Disease of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Chang JYA, Shi L, Ko ML, Ko GYP. Circadian Regulation of Mitochondrial Dynamics in Retinal Photoreceptors. J Biol Rhythms 2019; 33:151-165. [PMID: 29671706 DOI: 10.1177/0748730418762152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Energy expenditure and metabolism in the vertebrate retina are under circadian control, as we previously reported that the overall retinal ATP content and various signaling molecules related to metabolism display daily or circadian rhythms. Changes in the fission and fusion process of mitochondria, the major organelles producing ATP, in retinal photoreceptors are largely dependent on light exposure, but whether mitochondrial dynamics in photoreceptors and retinal neurons are under circadian control is not clear. Herein, we investigated the possible roles of circadian oscillators in regulating mitochondrial dynamics, mitophagy, and redox states in the chicken retina and mammalian photoreceptors. After entrainment to 12:12-h light-dark (LD) cycles for several days followed by free-running in constant darkness (DD), chicken embryonic retinas and cone-derived 661W cells were collected in either LD or DD at 6 different zeitgeber time (ZT) or circadian time (CT) points. The protein expression of mitochondrial dynamin-related protein 1 (DRP1), mitofusin 2 (MFN2), and PTEN-induced putative kinase 1 (PINK1) displayed daily rhythms, but only DRP1 was under circadian control in the chicken retinas and cultured 661W cells. In addition, cultured chicken retinal cells responded to acute oxidative stress differently from 661W cells. Using pMitoTimer as a mitochondrial redox indicator, we found that the mitochondrial redox states were more affected by light exposure than regulated by circadian oscillators. Thus, this study demonstrates that the influence of cyclic lights might outweigh the circadian regulation of complex mitochondrial dynamics in light-sensing retinal cells.
Collapse
Affiliation(s)
- Janet Ya-An Chang
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas.,Interdisciplinary Toxicology Program, Texas A&M University, College Station, Texas
| | - Liheng Shi
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas
| | - Michael L Ko
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas
| | - Gladys Y-P Ko
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas.,Interdisciplinary Toxicology Program, Texas A&M University, College Station, Texas.,Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas
| |
Collapse
|
12
|
Schmitt K, Grimm A, Dallmann R, Oettinghaus B, Restelli LM, Witzig M, Ishihara N, Mihara K, Ripperger JA, Albrecht U, Frank S, Brown SA, Eckert A. Circadian Control of DRP1 Activity Regulates Mitochondrial Dynamics and Bioenergetics. Cell Metab 2018; 27:657-666.e5. [PMID: 29478834 DOI: 10.1016/j.cmet.2018.01.011] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/06/2017] [Accepted: 01/19/2018] [Indexed: 01/20/2023]
Abstract
Mitochondrial fission-fusion dynamics and mitochondrial bioenergetics, including oxidative phosphorylation and generation of ATP, are strongly clock controlled. Here we show that these circadian oscillations depend on circadian modification of dynamin-related protein 1 (DRP1), a key mediator of mitochondrial fission. We used a combination of in vitro and in vivo models, including human skin fibroblasts and DRP1-deficient or clock-deficient mice, to show that these dynamics are clock controlled via circadian regulation of DRP1. Genetic or pharmacological abrogation of DRP1 activity abolished circadian network dynamics and mitochondrial respiratory activity and eliminated circadian ATP production. Pharmacological silencing of pathways regulating circadian metabolism and mitochondrial function (e.g., sirtuins, AMPK) also altered DRP1 phosphorylation, and abrogation of DRP1 activity impaired circadian function. Our findings provide new insight into the crosstalk between the mitochondrial network and circadian cycles.
Collapse
Affiliation(s)
- Karen Schmitt
- Neurobiology Lab for Brain Aging and Mental Health, Transfaculty Research Platform, Molecular & Cognitive Neuroscience, University of Basel, Basel, Switzerland; Psychiatric University Clinics, University of Basel, Basel, Switzerland
| | - Amandine Grimm
- Neurobiology Lab for Brain Aging and Mental Health, Transfaculty Research Platform, Molecular & Cognitive Neuroscience, University of Basel, Basel, Switzerland; Psychiatric University Clinics, University of Basel, Basel, Switzerland
| | - Robert Dallmann
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Bjoern Oettinghaus
- Division of Neuropathology, Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Lisa Michelle Restelli
- Division of Neuropathology, Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Melissa Witzig
- Neurobiology Lab for Brain Aging and Mental Health, Transfaculty Research Platform, Molecular & Cognitive Neuroscience, University of Basel, Basel, Switzerland; Psychiatric University Clinics, University of Basel, Basel, Switzerland
| | - Naotada Ishihara
- Department of Protein Biochemistry, Institute of Life Science, Kurume University, Kurume 839-0864, Japan
| | - Katsuyoshi Mihara
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Jürgen A Ripperger
- Department of Biology, Unit of Biochemistry, University of Fribourg, Fribourg, Switzerland
| | - Urs Albrecht
- Department of Biology, Unit of Biochemistry, University of Fribourg, Fribourg, Switzerland
| | - Stephan Frank
- Division of Neuropathology, Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Steven A Brown
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.
| | - Anne Eckert
- Neurobiology Lab for Brain Aging and Mental Health, Transfaculty Research Platform, Molecular & Cognitive Neuroscience, University of Basel, Basel, Switzerland; Psychiatric University Clinics, University of Basel, Basel, Switzerland.
| |
Collapse
|
13
|
Gyöngyösi N, Szőke A, Ella K, Káldi K. The small G protein RAS2 is involved in the metabolic compensation of the circadian clock in the circadian model Neurospora crassa. J Biol Chem 2017; 292:14929-14939. [PMID: 28729421 DOI: 10.1074/jbc.m117.804922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Indexed: 11/06/2022] Open
Abstract
Accumulating evidence from both experimental and clinical investigations indicates a tight interaction between metabolism and circadian timekeeping; however, knowledge of the underlying mechanism is still incomplete. Metabolic compensation allows circadian oscillators to run with a constant speed at different substrate levels and, therefore, is a substantial criterion of a robust rhythm in a changing environment. Because previous data have suggested a central role of RAS2-mediated signaling in the adaptation of yeast to different nutritional environments, we examined the involvement of RAS2 in the metabolic regulation of the clock in the circadian model organism Neurospora crassa We show that, in a ras2-deficient strain, the period is longer than in the control. Moreover, unlike in the WT, in Δras2, operation of the circadian clock was affected by glucose; compared with starvation conditions, the period was longer and the oscillation of expression of the frequency (frq) gene was dampened. In constant darkness, the delayed phosphorylation of the FRQ protein and the long-lasting accumulation of FRQ in the nucleus were in accordance with the longer period and the less robust rhythm in the mutant. Although glucose did not affect the subcellular distribution of FRQ in the WT, highly elevated FRQ levels were detected in the nucleus in Δras2 RAS2 interacted with the RAS-binding domain of the adenylate cyclase in vitro, and the cAMP analogue 8-bromo-cyclic AMP partially rescued the circadian phenotype in vivo We therefore propose that RAS2 acts via a cAMP-dependent pathway and exerts significant metabolic control on the Neurospora circadian clock.
Collapse
Affiliation(s)
- Norbert Gyöngyösi
- From the Department of Physiology, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary
| | - Anita Szőke
- From the Department of Physiology, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary
| | - Krisztina Ella
- From the Department of Physiology, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary
| | - Krisztina Káldi
- From the Department of Physiology, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary
| |
Collapse
|
14
|
Xu C, Ochi H, Fukuda T, Sato S, Sunamura S, Takarada T, Hinoi E, Okawa A, Takeda S. Circadian Clock Regulates Bone Resorption in Mice. J Bone Miner Res 2016; 31:1344-55. [PMID: 26841172 DOI: 10.1002/jbmr.2803] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 01/20/2016] [Accepted: 02/01/2016] [Indexed: 01/06/2023]
Abstract
The circadian clock controls many behavioral and physiological processes beyond daily rhythms. Circadian dysfunction increases the risk of cancer, obesity, and cardiovascular and metabolic diseases. Although clinical studies have shown that bone resorption is controlled by circadian rhythm, as indicated by diurnal variations in bone resorption, the molecular mechanism of circadian clock-dependent bone resorption remains unknown. To clarify the role of circadian rhythm in bone resorption, aryl hydrocarbon receptor nuclear translocator-like (Bmal1), a prototype circadian gene, was knocked out specifically in osteoclasts. Osteoclast-specific Bmal1-knockout mice showed a high bone mass phenotype due to reduced osteoclast differentiation. A cell-based assay revealed that BMAL1 upregulated nuclear factor of activated T cells, cytoplasmic, calcineurin-dependent 1 (Nfatc1) transcription through its binding to an E-box element located on the Nfatc1 promoter in cooperation with circadian locomotor output cycles kaput (CLOCK), a heterodimer partner of BMAL1. Moreover, steroid receptor coactivator (SRC) family members were shown to interact with and upregulate BMAL1:CLOCK transcriptional activity. Collectively, these data suggest that bone resorption is controlled by osteoclastic BMAL1 through interactions with the SRC family and binding to the Nfatc1 promoter. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Cheng Xu
- Department of Physiology and Cell Biology, Tokyo Medical and Dental University, Tokyo, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo, Japan
- Department of Orthopedic Surgery and Global Center of Excellence (GCOE) Program, International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroki Ochi
- Department of Physiology and Cell Biology, Tokyo Medical and Dental University, Tokyo, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo, Japan
| | - Toru Fukuda
- Department of Physiology and Cell Biology, Tokyo Medical and Dental University, Tokyo, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo, Japan
| | - Shingo Sato
- Department of Physiology and Cell Biology, Tokyo Medical and Dental University, Tokyo, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo, Japan
| | - Satoko Sunamura
- Department of Physiology and Cell Biology, Tokyo Medical and Dental University, Tokyo, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo, Japan
| | - Takeshi Takarada
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Ishikawa, Japan
| | - Eiichi Hinoi
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Ishikawa, Japan
| | - Atsushi Okawa
- Department of Orthopedic Surgery and Global Center of Excellence (GCOE) Program, International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shu Takeda
- Department of Physiology and Cell Biology, Tokyo Medical and Dental University, Tokyo, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo, Japan
| |
Collapse
|
15
|
Huang CCY, Shi L, Lin CH, Kim AJ, Ko ML, Ko GYP. A new role for AMP-activated protein kinase in the circadian regulation of L-type voltage-gated calcium channels in late-stage embryonic retinal photoreceptors. J Neurochem 2015; 135:727-41. [PMID: 26337027 DOI: 10.1111/jnc.13349] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/13/2015] [Accepted: 08/25/2015] [Indexed: 12/25/2022]
Abstract
AMP-activated protein kinase (AMPK) is a cellular energy sensor, which is activated when the intracellular ATP production decreases. The activities of AMPK display circadian rhythms in various organs and tissues, indicating that AMPK is involved in the circadian regulation of cellular metabolism. In vertebrate retina, the circadian clocks regulate many aspects of retinal function and physiology, including light/dark adaption, but whether and how AMPK was involved in the retinal circadian rhythm was not known. We hypothesized that the activation of AMPK (measured as phosphorylated AMPK) in the retina was under circadian control, and AMPK might interact with other intracellular signaling molecules to regulate photoreceptor physiology. We combined ATP assays, western blots, immunostaining, patch-clamp recordings, and pharmacological treatments to decipher the role of AMPK in the circadian regulation of photoreceptor physiology. We found that the overall retinal ATP content displayed a diurnal rhythm that peaked at early night, which was nearly anti-phase to the diurnal and circadian rhythms of AMPK phosphorylation. AMPK was also involved in the circadian phase-dependent regulation of photoreceptor L-type voltage-gated calcium channels (L-VGCCs), the ion channel essential for sustained neurotransmitter release. The activation of AMPK dampened the L-VGCC currents at night with a corresponding decrease in protein expression of the L-VGCCα1 pore-forming subunit, while inhibition of AMPK increased the L-VGCC current during the day. AMPK appeared to be upstream of extracellular-signal-regulated kinase and mammalian/mechanistic target of rapamycin complex 1 (mTORC1) but downstream of adenylyl cyclase in regulating the circadian rhythm of L-VGCCs. Hence, as a cellular energy sensor, AMPK integrates into the cell signaling network to regulate the circadian rhythm of photoreceptor physiology. We found that in chicken embryonic retina, the activation of AMP-activated protein kinase (AMPK) is under circadian control and anti-phase to the retinal ATP rhythm. While ATP content is higher at night, phosphorylated AMPK (pAMPK) is higher during the day. AMPK appears to be upstream of extracellular signal-regulated kinase (ERK), protein kinase B (AKT), and mammalian target of rapamycin complex 1 (mTORC1) but downstream of adenylyl cyclase in regulating the circadian rhythm of L-VGCCs. Therefore, as a cellular energy sensor, AMPK integrates into the cell signaling network to regulate the circadian rhythm of photoreceptor physiology.
Collapse
Affiliation(s)
- Cathy C Y Huang
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Liheng Shi
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Chia-Hung Lin
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Andy Jeesu Kim
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Michael L Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Gladys Y-P Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA.,Texas A&M Institute of Neuroscience, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
16
|
Chang RCA, Shi L, Huang CCY, Kim AJ, Ko ML, Zhou B, Ko GYP. High-Fat Diet-Induced Retinal Dysfunction. Invest Ophthalmol Vis Sci 2015; 56:2367-80. [PMID: 25788653 DOI: 10.1167/iovs.14-16143] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
PURPOSE The purpose of this study was to investigate the impact of obesity-induced prediabetes/early diabetes on the retina to provide new evidence on the pathogenesis of type 2 diabetes-associated diabetic retinopathy (DR). METHODS A high-fat diet (HFD)-induced obesity mouse model (male C57BL/6J) was used in this study. At the end of the 12-week HFD feeding regimen, mice were evaluated for glucose and insulin tolerance, and retinal light responses were recorded by electroretinogram (ERG). Western immunoblot and immunohistochemical staining were used to determine changes in elements regulating calcium homeostasis between HFD and control retinas, as well as unstained human retinal sections from DR patients and age-appropriate controls. RESULTS Compared to the control, the scotopic and photopic ERGs from HFD mice were decreased. There were significant decreases in molecules related to cell signaling, calcium homeostasis, and glucose metabolism from HFD retinas, including phosphorylated protein kinase B (pAKT), glucose transporter 4, L-type voltage-gated calcium channel (L-VGCC), and plasma membrane calcium ATPase (PMCA). Similar changes for pAKT, PMCA, and L-VGCC were also observed in human retinal sections from DR patients. CONCLUSIONS Obesity-induced hyperglycemic and prediabetic/early diabetic conditions caused detrimental impacts on retinal light sensitivities and health. The decrease of the ERG components in early diabetes reflects the decreased neuronal activity of retinal light responses, which may be caused by a decrease in neuronal calcium signaling. Since PI3K-AKT is important in regulating calcium homeostasis and neural survival, maintaining proper PI3K-AKT signaling in early diabetes or at the prediabetic stage might be a new strategy for DR prevention.
Collapse
Affiliation(s)
- Richard Cheng-An Chang
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
| | - Liheng Shi
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
| | - Cathy Chia-Yu Huang
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
| | - Andy Jeesu Kim
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
| | - Michael L Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
| | - Beiyan Zhou
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
| | - Gladys Y-P Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States 3Texas A&M Institute of Neuroscience, Texas A&M University, College Station, Texas, Unite
| |
Collapse
|
17
|
Liu F, Weng SJ, Yang XL, Zhong YM. Orexin-A potentiates L-type calcium/barium currents in rat retinal ganglion cells. Neuroscience 2015; 305:225-37. [PMID: 26259903 DOI: 10.1016/j.neuroscience.2015.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/27/2015] [Accepted: 08/04/2015] [Indexed: 01/07/2023]
Abstract
Two neuropeptides, orexin-A and orexin-B (also called hypocretin-1 and -2), have been implicated in sleep/wake regulation, feeding behaviors via the activation of two subtypes of G-protein-coupled receptors: orexin 1 and orexin 2 receptors (OX1R and OX2R). While the expression of orexins and orexin receptors is immunohistochemically revealed in retinal neurons, the function of these peptides in the retina is largely unknown. Using whole-cell patch-clamp recordings in rat retinal slices, we demonstrated that orexin-A increased L-type-like barium currents (IBa,L) in ganglion cells (GCs), and the effect was blocked by the selective OX1R antagonist SB334867, but not by the OX2R antagonist TCS OX2 29. The orexin-A effect was abolished by intracellular dialysis of GDP-β-S/GPAnt-2A, a Gq protein inhibitor, suggesting the mediation of Gq. Additionally, during internal dialysis of the phosphatidylinositol (PI)-phospholipase C (PLC) inhibitor U73122, orexin-A did not change the IBa,L of GCs, whereas the orexin-A effect persisted in the presence of the phosphatidylcholine (PC)-PLC inhibitor D609. The orexin-A-induced potentiation was not seen with internal infusion of Ca(2+)-free solution or when inositol 1,4,5-trisphosphate (IP3)-sensitive Ca(2+) release from intracellular stores was blocked by heparin/xestospongins-C. Moreover, the orexin-A effect was mimicked by the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate, but was eliminated when PKC was inhibited by bisindolylmaleimide IV (Bis-IV)/Gö6976. Neither adenosine 3',5'-cyclic monophosphate (cAMP)-protein kinase A (PKA) nor guanosine 3',5'-cyclic monophosphate (cGMP)-protein kinase G (PKG) signaling pathway was likely involved, as orexin-A persisted to potentiate the IBa,L of GCs no matter these two pathways were activated or inhibited. These results suggest that, by activating OX1R, orexin-A potentiates the IBa,L of rat GCs through a distinct Gq/PI-PLC/IP3/Ca(2+)/PKC signaling pathway.
Collapse
Affiliation(s)
- F Liu
- Institute of Neurobiology, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - S-J Weng
- Institute of Neurobiology, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - X-L Yang
- Institute of Neurobiology, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Y-M Zhong
- Institute of Neurobiology, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China.
| |
Collapse
|
18
|
Weir RK, Dudley JA, Yan TC, Grabowska EM, Peña-Oliver Y, Ripley TL, Stephens DN, Stanford SC, Hunt SP. The influence of test experience and NK1 receptor antagonists on the performance of NK1R-/- and wild type mice in the 5-Choice Serial Reaction-Time Task. J Psychopharmacol 2014; 28:270-81. [PMID: 23845920 DOI: 10.1177/0269881113495722] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Genetically-altered mice, lacking functional NK1 receptors (NK1R-/-), express abnormal behaviours that are prominent in Attention Deficit Hyperactivity Disorder: namely, inattentiveness and impulsivity (indicated by their greater % omissions and premature responses in the 5-Choice Serial Reaction-Time Task (5-CSRTT) and locomotor hyperactivity. We investigated how behaviour in the 5-CSRTT is affected by repeated testing and whether the abnormalities expressed by NK1R-/- mice are mimicked by treating wild type mice with a NK1R antagonist (L 733060 or RP 67580; 5 or 10 mg/kg). Repeated testing with a variable (VITI) or fixed, prolonged (LITI) intertrial interval reduced % omissions. Premature responses also declined, but only in NK1R-/- mice, in the VITI test. By contrast, perseveration increased in both genotypes. RP 67580 (10 mg/kg) increased the % omissions in both genotypes in the VITI, an action which cannot be attributed to NK1R antagonism. Neither drug affected perseveration. However, for premature responses, the response profile suggested that the low and high doses of RP 67580 (VITI) and L 733060 (LITI) had opposing effects on this behaviour. We infer that the effect of NK1R antagonists in the 5-CSRTT is confounded by animals' test experience and non-specific drug effects at sites other than NK1R, possibly L-type Ca²⁺(v) channels.
Collapse
Affiliation(s)
- R K Weir
- 1University College London, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Shi L, Ko ML, Huang CCY, Park SY, Hong MP, Wu C, Ko GYP. Chicken embryos as a potential new model for early onset type I diabetes. J Diabetes Res 2014; 2014:354094. [PMID: 25133191 PMCID: PMC4122024 DOI: 10.1155/2014/354094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/26/2014] [Indexed: 11/18/2022] Open
Abstract
Diabetic retinopathy (DR) is the leading cause of blindness among the American working population. The purpose of this study is to establish a new diabetic animal model using a cone-dominant avian species to address the distorted color vision and altered cone pathway responses in prediabetic and early diabetic patients. Chicken embryos were injected with either streptozotocin (STZ), high concentration of glucose (high-glucose), or vehicle at embryonic day 11. Cataracts occurred in varying degrees in both STZ- and high glucose-induced diabetic chick embryos at E18. Streptozotocin-diabetic chicken embryos had decreased levels of blood insulin, glucose transporter 4 (Glut4), and phosphorylated protein kinase B (pAKT). In STZ-injected E20 embryos, the ERG amplitudes of both a- and b-waves were significantly decreased, the implicit time of the a-wave was delayed, while that of the b-wave was significantly increased. Photoreceptors cultured from STZ-injected E18 embryos had a significant decrease in L-type voltage-gated calcium channel (L-VGCC) currents, which was reflected in the decreased level of L-VGCCα1D subunit in the STZ-diabetic retinas. Through these independent lines of evidence, STZ-injection was able to induce pathological conditions in the chicken embryonic retina, and it is promising to use chickens as a potential new animal model for type I diabetes.
Collapse
Affiliation(s)
- Liheng Shi
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4458 TAMU, College Station, TX 77843-4458, USA
| | - Michael L. Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4458 TAMU, College Station, TX 77843-4458, USA
| | - Cathy Chia-Yu Huang
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4458 TAMU, College Station, TX 77843-4458, USA
| | - So-Young Park
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4458 TAMU, College Station, TX 77843-4458, USA
| | - Min-Pyo Hong
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4458 TAMU, College Station, TX 77843-4458, USA
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, TX 77843-4458, USA
| | - Gladys Y.-P. Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4458 TAMU, College Station, TX 77843-4458, USA
- Texas A&M Institute of Neuroscience, Texas A&M University, College Station, TX 77843-445, USA
- *Gladys Y.-P. Ko:
| |
Collapse
|
20
|
Ko ML, Shi L, Huang CCY, Grushin K, Park SY, Ko GYP. Circadian phase-dependent effect of nitric oxide on L-type voltage-gated calcium channels in avian cone photoreceptors. J Neurochem 2013; 127:314-28. [PMID: 23895452 DOI: 10.1111/jnc.12384] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 07/19/2013] [Accepted: 07/25/2013] [Indexed: 12/20/2022]
Abstract
Nitric oxide (NO) plays an important role in phase-shifting of circadian neuronal activities in the suprachiasmatic nucleus and circadian behavior activity rhythms. In the retina, NO production is increased in a light-dependent manner. While endogenous circadian oscillators in retinal photoreceptors regulate their physiological states, it is not clear whether NO also participates in the circadian regulation of photoreceptors. In this study, we demonstrate that NO is involved in the circadian phase-dependent regulation of L-type voltage-gated calcium channels (L-VGCCs). In chick cone photoreceptors, the L-VGCCα1 subunit expression and the maximal L-VGCC currents are higher at night, and both Ras-mitogen-activated protein kinase (MAPK)-extracellular signal-regulated kinase (Erk) and Ras-phosphatidylinositol 3 kinase (PI3K)-protein kinase B (Akt) are part of the circadian output pathways regulating L-VGCCs. The NO-cGMP-protein kinase G (PKG) pathway decreases L-VGCCα1 subunit expression and L-VGCC currents at night, but not during the day, and exogenous NO donor or cGMP decreases the phosphorylation of Erk and Akt at night. The protein expression of neural NO synthase (nNOS) is also under circadian control, with both nNOS and NO production being higher during the day. Taken together, NO/cGMP/PKG signaling is involved as part of the circadian output pathway to regulate L-VGCCs in cone photoreceptors. In cone photoreceptors, the protein expression of neural nitric oxide synthase (nNOS) and NO production are under circadian control. NO-cGMP-protein kinase G (PKG) signaling serves in the circadian output pathway to regulate the circadian rhythms of L-type voltage-gated calcium channels (L-VGCCs) in part through regulating the phosphorylation states of extracellular-signal-regulated kinase (Erk) and protein kinase B (Akt).
Collapse
Affiliation(s)
- Michael L Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | | | | | | | | | | |
Collapse
|
21
|
Huang CCY, Ko ML, Ko GYP. A new functional role for mechanistic/mammalian target of rapamycin complex 1 (mTORC1) in the circadian regulation of L-type voltage-gated calcium channels in avian cone photoreceptors. PLoS One 2013; 8:e73315. [PMID: 23977383 PMCID: PMC3747127 DOI: 10.1371/journal.pone.0073315] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 07/19/2013] [Indexed: 01/10/2023] Open
Abstract
In the retina, the L-type voltage-gated calcium channels (L-VGCCs) are responsible for neurotransmitter release from photoreceptors and are under circadian regulation. Both the current densities and protein expression of L-VGCCs are significantly higher at night than during the day. However, the underlying mechanisms of circadian regulation of L-VGCCs in the retina are not completely understood. In this study, we demonstrated that the mechanistic/mammalian target of rapamycin complex (mTORC) signaling pathway participated in the circadian phase-dependent modulation of L-VGCCs. The activities of the mTOR cascade, from mTORC1 to its downstream targets, displayed circadian oscillations throughout the course of a day. Disruption of mTORC1 signaling dampened the L-VGCC current densities, as well as the protein expression of L-VGCCs at night. The decrease of L-VGCCs at night by mTORC1 inhibition was in part due to a reduction of L-VGCCα1 subunit translocation from the cytosol to the plasma membrane. Finally, we showed that mTORC1 was downstream of the phosphatidylionositol 3 kinase-protein kinase B (PI3K-AKT) signaling pathway. Taken together, mTORC1 signaling played a role in the circadian regulation of L-VGCCs, in part through regulation of ion channel trafficking and translocation, which brings to light a new functional role for mTORC1: the modulation of ion channel activities.
Collapse
Affiliation(s)
- Cathy Chia-Yu Huang
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Michael Lee Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Gladys Yi-Ping Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
22
|
Protein phosphatase-dependent circadian regulation of intermediate-term associative memory. J Neurosci 2013; 33:4605-13. [PMID: 23467376 DOI: 10.1523/jneurosci.4534-12.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The endogenous circadian clock is a principal factor modulating memory across species. Determining the processes through which the circadian clock modulates memory formation is a key issue in understanding and identifying mechanisms to improve memory. We used the marine mollusk Aplysia californica to investigate circadian modulation of intermediate-term memory (ITM) and the mechanisms through which the circadian clock phase specifically suppresses memory using the operant learning paradigm, learning that food is inedible. We found that ITM, a temporally and mechanistically distinct form of memory, is rhythmically expressed under light-dark and constant conditions when induced by either massed or spaced training. Strong circadian regulation of ITM occurs with memory exhibited only by animals trained during the early subjective day; no apparent memory is expressed when training occurs during the late subjective day or night. Given the necessity of multiple persistent kinase cascades for ITM, we investigated whether protein phosphatase activity affected circadian modulation. Inhibition of protein phosphatases 1 and 2A blocked ITM when animals were trained during the early (subjective) day while resulting in phase-specific memory rescue when animals were trained late in the subjective day and early night. In contrast, inhibition of calcineurin did not block ITM when animals were trained during the early day and permitted ITM when animals were trained during the late subjective day, early evening, and throughout the night. These results demonstrate that levels of protein phosphatase activity are critical regulators of ITM and one mechanism through which the circadian clock regulates memory formation.
Collapse
|