1
|
Livshits G, Kalinkovich A. Restoration of epigenetic impairment in the skeletal muscle and chronic inflammation resolution as a therapeutic approach in sarcopenia. Ageing Res Rev 2024; 96:102267. [PMID: 38462046 DOI: 10.1016/j.arr.2024.102267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/17/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Sarcopenia is an age-associated loss of skeletal muscle mass, strength, and function, accompanied by severe adverse health outcomes, such as falls and fractures, functional decline, high health costs, and mortality. Hence, its prevention and treatment have become increasingly urgent. However, despite the wide prevalence and extensive research on sarcopenia, no FDA-approved disease-modifying drugs exist. This is probably due to a poor understanding of the mechanisms underlying its pathophysiology. Recent evidence demonstrate that sarcopenia development is characterized by two key elements: (i) epigenetic dysregulation of multiple molecular pathways associated with sarcopenia pathogenesis, such as protein remodeling, insulin resistance, mitochondria impairments, and (ii) the creation of a systemic, chronic, low-grade inflammation (SCLGI). In this review, we focus on the epigenetic regulators that have been implicated in skeletal muscle deterioration, their individual roles, and possible crosstalk. We also discuss epidrugs, which are the pharmaceuticals with the potential to restore the epigenetic mechanisms deregulated in sarcopenia. In addition, we discuss the mechanisms underlying failed SCLGI resolution in sarcopenia and the potential application of pro-resolving molecules, comprising specialized pro-resolving mediators (SPMs) and their stable mimetics and receptor agonists. These compounds, as well as epidrugs, reveal beneficial effects in preclinical studies related to sarcopenia. Based on these encouraging observations, we propose the combination of epidrugs with SCLI-resolving agents as a new therapeutic approach for sarcopenia that can effectively attenuate of its manifestations.
Collapse
Affiliation(s)
- Gregory Livshits
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 4077625, Israel; Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, School of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel.
| | - Alexander Kalinkovich
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, School of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel
| |
Collapse
|
2
|
Carvalho GB, Brandão-Lima PN, Payolla TB, Lucena SEF, Sarti FM, Fisberg RM, Rogero MM. Circulating MiRNAs Are Associated With Low-grade Systemic Inflammation and Leptin Levels in Older Adults. Inflammation 2023; 46:2132-2146. [PMID: 37464054 DOI: 10.1007/s10753-023-01867-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/17/2023] [Accepted: 06/27/2023] [Indexed: 07/20/2023]
Abstract
Inflammaging refers to the low-grade systemic inflammation that occurs with aging present in chronic non-communicable diseases. MicroRNAs (miRNAs) are potential biomarkers for these diseases in older adults. This study aimed to assess the expression of 21 circulating miRNAs and their associations with inflammatory biomarkers in older adults. This cross-sectional study was performed with 200 individuals participating in ISA-Nutrition. The systemic low-grade inflammation score (SIS) was calculated from the plasma concentration of 10 inflammatory biomarkers. Circulating miRNA expression was assessed using the Fluidigm method. Wilcoxon-Mann-Whitney test was employed to determine differences in SIS among groups distributed according to sex and presence of MetS. Spearman's correlation was used to estimate correlations among SIS, leptin levels, miRNA expression, and variables of interest. Analyses were performed using software R version 4.2.3, with a significance level of 0.05. The final sample consisted of 193 individuals with a mean age of 69.1 (SE = 0.5) years, being 64.7% individuals with metabolic syndrome (MetS). Positive correlations were observed between leptin concentration and metabolic risk factors, and leptin concentration was higher in individuals with MetS compared to those without MetS. The expression of 15 circulating miRNAs was negatively correlated with leptin concentration. GLMs showed negative associations between miRNAs (miR-15a, miR-16, miR-223, miR-363, miR-532), leptin, and/or SIS values; and only miR-21 showed positive association with SIS values. The results suggest the presence of peripheral leptin resistance associated with low-grade inflammation and plasma expression of miRNAs in older adults. These findings suggest the potential role of miRNAs as biomarkers for cardiometabolic risk.
Collapse
Affiliation(s)
- Gabrielli B Carvalho
- Department of Nutrition, School of Public Health, University of São Paulo, 715 Dr. Arnaldo Avenue, São Paulo, SP, 01246-904, Brazil
| | - Paula N Brandão-Lima
- Department of Nutrition, School of Public Health, University of São Paulo, 715 Dr. Arnaldo Avenue, São Paulo, SP, 01246-904, Brazil
| | - Tanyara B Payolla
- Department of Nutrition, School of Public Health, University of São Paulo, 715 Dr. Arnaldo Avenue, São Paulo, SP, 01246-904, Brazil
| | - Sadraque E F Lucena
- Department of Statistics and Actuarial Sciences, Federal University of Sergipe, Marechal Rondon Avenue, São Cristóvão, SE, 49100-000, Brazil
| | - Flávia M Sarti
- School of Arts, Sciences and Humanities, University of São Paulo, 1000 Arlindo Bettio Avenue, São Paulo, SP, 03828-000, Brazil
| | - Regina M Fisberg
- Department of Nutrition, School of Public Health, University of São Paulo, 715 Dr. Arnaldo Avenue, São Paulo, SP, 01246-904, Brazil
| | - Marcelo M Rogero
- Department of Nutrition, School of Public Health, University of São Paulo, 715 Dr. Arnaldo Avenue, São Paulo, SP, 01246-904, Brazil.
| |
Collapse
|
3
|
Samavarchi Tehrani S, Goodarzi G, Panahi G, Maniati M, Meshkani R. Multiple novel functions of circular RNAs in diabetes mellitus. Arch Physiol Biochem 2023; 129:1235-1249. [PMID: 34087083 DOI: 10.1080/13813455.2021.1933047] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022]
Abstract
Circular RNAs (circRNAs), as an emerging group of non-coding RNAs (ncRNAs), have received the attention given evidence indicating that these novel ncRNAs are implicated in various biological processes. Due to the absence of 5' and 3' ends in circ-RNAs, their two ends are covalently bonded together, and they are synthesised from pre-mRNAs in a process called back-splicing, which makes them more stable than linear RNAs. There is accumulating evidence showing that circRNAs play a critical role in the pathogenesis of diabetes mellitus (DM). Moreover, it has been indicated that dysregulation of circRNAs has made them promising diagnostic biomarkers for the detection of DM. Recently, increasing attention has been paid to investigate the mechanisms underlying the DM process. It has been demonstrated that there is a strong correlation between the expression of circRNAs and DM. Hence, our aim is to discuss the crosstalk between circRNAs and DM and its complications.
Collapse
Affiliation(s)
- Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Golnaz Goodarzi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghodratollah Panahi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Maniati
- English Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Lim S, Lee DE, Morena da Silva F, Koopmans PJ, Vechetti IJ, von Walden F, Greene NP, Murach KA. MicroRNA control of the myogenic cell transcriptome and proteome: the role of miR-16. Am J Physiol Cell Physiol 2023; 324:C1101-C1109. [PMID: 36971422 PMCID: PMC10191132 DOI: 10.1152/ajpcell.00071.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
MicroRNAs (miRs) control stem cell biology and fate. Ubiquitously expressed and conserved miR-16 was the first miR implicated in tumorigenesis. miR-16 is low in muscle during developmental hypertrophy and regeneration. It is enriched in proliferating myogenic progenitor cells but is repressed during differentiation. The induction of miR-16 blocks myoblast differentiation and myotube formation, whereas knockdown enhances these processes. Despite a central role for miR-16 in myogenic cell biology, how it mediates its potent effects is incompletely defined. In this investigation, global transcriptomic and proteomic analyses after miR-16 knockdown in proliferating C2C12 myoblasts revealed how miR-16 influences myogenic cell fate. Eighteen hours after miR-16 inhibition, ribosomal protein gene expression levels were higher relative to control myoblasts and p53 pathway-related gene abundance was lower. At the protein level at this same time point, miR-16 knockdown globally upregulated tricarboxylic acid (TCA) cycle proteins while downregulating RNA metabolism-related proteins. miR-16 inhibition induced specific proteins associated with myogenic differentiation such as ACTA2, EEF1A2, and OPA1. We extend prior work in hypertrophic muscle tissue and show that miR-16 is lower in mechanically overloaded muscle in vivo. Our data collectively point to how miR-16 is implicated in aspects of myogenic cell differentiation. A deeper understanding of the role of miR-16 in myogenic cells has consequences for muscle developmental growth, exercise-induced hypertrophy, and regenerative repair after injury, all of which involve myogenic progenitors.
Collapse
Affiliation(s)
- Seongkyun Lim
- Department of Health, Human Performance, and Recreation, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, United States
| | - David E Lee
- Department of Health, Human Performance, and Recreation, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, United States
| | - Francielly Morena da Silva
- Department of Health, Human Performance, and Recreation, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, United States
| | - Pieter J Koopmans
- Department of Health, Human Performance, and Recreation, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, United States
- Cell and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, Arkansas, United States
| | - Ivan J Vechetti
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States
| | - Ferdinand von Walden
- Neuropediatrics, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Nicholas P Greene
- Department of Health, Human Performance, and Recreation, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, United States
- Cell and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, Arkansas, United States
| | - Kevin A Murach
- Department of Health, Human Performance, and Recreation, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, United States
- Cell and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, Arkansas, United States
| |
Collapse
|
5
|
Bourgeois BL, Levitt DE, Molina PE, Simon L. Differential expression of adipocyte and myotube extracellular vesicle miRNA cargo in chronic binge alcohol-administered SIV-infected male macaques. Alcohol 2023; 108:1-9. [PMID: 36351490 PMCID: PMC10033305 DOI: 10.1016/j.alcohol.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/08/2022]
Abstract
Our studies in chronic binge alcohol (CBA) -treated simian immunodeficiency virus (SIV)-infected macaques and in people living with HIV (PLWH) show significant alterations in metabolic homeostasis. CBA promotes a profibrotic phenotype in adipose tissue and skeletal muscle (SKM) and decreases adipose-derived stem cell and myoblast differentiation, making adipose and SKM potential drivers in metabolic dysregulation. Furthermore, we have shown that the differential expression of microRNAs (miRs) in SKM contributes to impaired myoblast differentiation potential. Beyond modulation of intracellular responses, miRs can be transported in extracellular vesicles (EVs) to mediate numerous cellular responses through intercellular and interorgan communication. This study tested the hypothesis that CBA alters concentration and miR cargo of EVs derived from adipocytes and myotubes isolated from SIV-infected male macaques. Fourteen male rhesus macaques received either CBA (2.5 g/kg/day) or sucrose (VEH) for 14.5 months. Three months following the initiation of CBA/VEH, all animals were infected with SIVmac251 and 2.5 months later were initiated on antiretroviral therapy. SKM and adipose tissue samples were collected at the study endpoint (blood alcohol concentration = 0 mM). EVs were isolated by ultracentrifugation of myotube and adipocyte cell culture supernatant. Nanoparticle tracking revealed no differences in concentration or size of particles between VEH and CBA groups. Adipocyte-derived EVs from CBA animals showed decreased miR-let-7a expression (p = 0.03). Myotube-derived EVs from CBA animals had decreased miR-16 (p = 0.04) and increased miR-133a and miR-133b (both p = 0.04) expression. These results indicate that CBA administration differentially regulates EV miR content but does not alter the number of EVs from adipocytes or myotubes. Future studies are warranted to determine the functional relevance of CBA-altered EV miR cargo and their role in intercellular and interorgan communication and metabolic dysregulation.
Collapse
Affiliation(s)
- Brianna L Bourgeois
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Danielle E Levitt
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Patricia E Molina
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Liz Simon
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
| |
Collapse
|
6
|
Chang YC, Chan MH, Yang YF, Li CH, Hsiao M. Glucose transporter 4: Insulin response mastermind, glycolysis catalyst and treatment direction for cancer progression. Cancer Lett 2023; 563:216179. [PMID: 37061122 DOI: 10.1016/j.canlet.2023.216179] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 04/17/2023]
Abstract
The glucose transporter family (GLUT) consists of fourteen members. It is responsible for glucose homeostasis and glucose transport from the extracellular space to the cell cytoplasm to further cascade catalysis. GLUT proteins are encoded by the solute carrier family 2 (SLC2) genes and are members of the major facilitator superfamily of membrane transporters. Moreover, different GLUTs also have their transporter kinetics and distribution, so each GLUT member has its uniqueness and importance to play essential roles in human physiology. Evidence from many studies in the field of diabetes showed that GLUT4 travels between the plasma membrane and intracellular vesicles (GLUT4-storage vesicles, GSVs) and that the PI3K/Akt pathway regulates this activity in an insulin-dependent manner or by the AMPK pathway in response to muscle contraction. Moreover, some published results also pointed out that GLUT4 mediates insulin-dependent glucose uptake. Thus, dysfunction of GLUT4 can induce insulin resistance, metabolic reprogramming in diverse chronic diseases, inflammation, and cancer. In addition to the relationship between GLUT4 and insulin response, recent studies also referred to the potential upstream transcription factors that can bind to the promoter region of GLUT4 to regulating downstream signals. Combined all of the evidence, we conclude that GLUT4 has shown valuable unknown functions and is of clinical significance in cancers, which deserves our in-depth discussion and design compounds by structure basis to achieve therapeutic effects. Thus, we intend to write up a most updated review manuscript to include the most recent and critical research findings elucidating how and why GLUT4 plays an essential role in carcinogenesis, which may have broad interests and impacts on this field.
Collapse
Affiliation(s)
- Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Hsien Chan
- Department of Biomedical Imaging and Radiological Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Fang Yang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan; Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
7
|
Influence of mTOR-regulated anabolic pathways on equine skeletal muscle health. J Equine Vet Sci 2023; 124:104281. [PMID: 36905972 DOI: 10.1016/j.jevs.2023.104281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Skeletal muscle is a highly dynamic organ that is essential for locomotion as well as endocrine regulation in all populations of horses. However, despite the importance of adequate muscle development and maintenance, the mechanisms underlying protein anabolism in horses on different diets, exercise programs, and at different life stages remain obscure. Mechanistic target of rapamycin (mTOR) is a key component of the protein synthesis pathway and is regulated by biological factors such as insulin and amino acid availability. Providing a diet ample in vital amino acids, such as leucine and glutamine, is essential in activating sensory pathways that recruit mTOR to the lysosome and assist in the translation of important downstream targets. When the diet is well balanced, mitochondrial biogenesis and protein synthesis are activated in response to increased exercise bouts in the performing athlete. It is important to note that the mTOR kinase pathways are multi-faceted and very complex, with several binding partners and targets that lead to specific functions in protein turnover of the cell, and ultimately, the capacity to maintain or grow muscle mass. Further, these pathways are likely altered across the lifespan, with an emphasis of growth in young horses while decreases in musculature with aged horses appears to be attributable to degradation or other regulators of protein synthesis rather than alterations in the mTOR pathway. Previous work has begun to pinpoint ways in which the mTOR pathway is influenced by diet, exercise, and age; however, future research is warranted to quantify the functional outcomes related to changes in mTOR. Promisingly, this could provide direction on appropriate management techniques to support skeletal muscle growth and maximize athletic potential in differing equine populations.
Collapse
|
8
|
Abdel Mageed SS, Doghish AS, Ismail A, El-Husseiny AA, Fawzi SF, Mahmoud AMA, El-Mahdy HA. The role of miRNAs in insulin resistance and diabetic macrovascular complications - A review. Int J Biol Macromol 2023; 230:123189. [PMID: 36623613 DOI: 10.1016/j.ijbiomac.2023.123189] [Citation(s) in RCA: 61] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/08/2023]
Abstract
Diabetes is the most prevalent metabolic disturbance disease and has been regarded globally as one of the principal causes of mortality. Diabetes is accompanied by several macrovascular complications, including stroke, coronary artery disease (CAD), and cardiomyopathy as a consequence of atherosclerosis. The onset of type 2 diabetes is closely related to insulin resistance (IR). miRNAs have been linked to various metabolic processes, including glucose homeostasis, regulation of lipid metabolism, gluconeogenesis, adipogenesis, glucose transporter type 4 expression, insulin sensitivity, and signaling. Consequently, miRNA dysregulation mediates IR in some target organs, comprising liver, muscle, and adipose tissue. Moreover, miRNAs are crucial in developing diabetes and its associated macrovascular complications through their roles in several signaling pathways implicated in inflammation, apoptosis, cellular survival and migration, the proliferation of vascular smooth muscle cells, neurogenesis, angiogenesis, autophagy, oxidative stress, cardiac remodeling, and fibrosis. Therefore, the purpose of this review is to clarify the role of miRNAs in hepatic, muscle, and adipose tissue IR and explain their roles in the pathogenesis of macrovascular diabetic complications, including stroke, CAD, and cardiomyopathy. Also, explain their roles in gestational diabetes mellitus (GDM). Besides, this review discusses the latest updates on the alteration of miRNA expression in diabetic macrovascular complications.
Collapse
Affiliation(s)
- Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt.
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Sylvia F Fawzi
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Abdulla M A Mahmoud
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt
| |
Collapse
|
9
|
Circulating microRNAs Showed Specific Responses according to Metabolic Syndrome Components and Sex of Adults from a Population-Based Study. Metabolites 2022; 13:metabo13010002. [PMID: 36676927 PMCID: PMC9861536 DOI: 10.3390/metabo13010002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) regulate several metabolic pathways and are potential biomarkers for early risk prediction of metabolic syndrome (MetS). Our aim was to evaluate the levels of 21 miRNAs in plasma according to MetS components and sex in adults. We employed a cross-sectional study of 192 adults aged 20 to 59 years old from the 2015 Health Survey of São Paulo with Focus in Nutrition. Data showed reduced levels of miR-16 and miR-363 in women with MetS; however, men with one or more risk factors showed higher levels of miR-let-7c and miR-30a. Individuals with raised waist circumference showed higher levels of miR-let-7c, miR-122, miR-30a, miR-146a, miR-15a, miR-30d and miR-222. Individuals with raised blood pressure had higher miR-30a, miR-122 and miR-30a levels. Plasma levels of four miRNAs (miR-16, miR-363, miR-375 and miR-486) were lower in individuals with low HDL-cholesterol concentrations. In addition, plasma levels of five miRNAs (miR-122, miR-139, miR-let-7c, miR-126 and miR-30a) were increased in individuals with high fasting plasma glucose and/or insulin resistance. Our results suggest that the pattern of miRNA levels in plasma may be a useful early biomarker of cardiometabolic components of MetS and highlight the sex differences in the plasma levels of miRNAs in individuals with MetS.
Collapse
|
10
|
Morena da Silva F, Rosa-Caldwell ME, Schrems ER, Martinez L, Amos MG, Lim S, Cabrera AR, Brown JL, Washington TA, Greene NP. PGC-1α overexpression is not sufficient to mitigate cancer cachexia in either male or female mice. Appl Physiol Nutr Metab 2022; 47:933-948. [PMID: 35700525 DOI: 10.1139/apnm-2022-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cancer-cachexia accounts for 20-40% of cancer-related deaths. Mitochondrial aberrations have been shown to precede muscle atrophy in different atrophy models, including cancer. Therefore, this study investigated potential protection from the cachectic phenotype through overexpression of PGC-1α. First, to establish potential of mitochondria-based approaches we showed that the mitochondrial antioxidant mitoTEMPO attenuates myotube atrophy induced by Lewis Lung Carcinoma (LLC) cell conditioned media. Next, cachexia was induced in muscle specific PGC-1α overexpressing (MCK-PCG1α) or wildtype (WT) littermate mice by LLC implantation. MCK-PCG1α did not protect LLC-induced muscle mass loss. In plantaris, Atrogin mRNA content was 6.2-fold and ~11-fold greater in WT-LLC vs. WT-PBS for males and females, respectively (p<0.05). MitoTimer red:green ratio for male PGC was ~65% higher than WT groups (p<0.05), with ~3-fold more red puncta in LLC than PBS (p<0.05). Red:green ratio was ~56% lower in females WT-LLC vs. PGC-LLC (p<0.05). In females, no change in red puncta was noted across conditions. Lc3 mRNA content was ~ 73% and 2-fold higher in male and female LLC mice respectively vs. PBS (p<0.05). While MitoTEMPO could mitigate cancer-induced atrophy in vitro, PGC1α overexpression was insufficient to protect muscle mass and mitochondrial health in vivo despite mitigation of cachexia-associated signaling pathways.
Collapse
Affiliation(s)
| | | | - Eleanor R Schrems
- University of Arkansas Fayetteville, 3341, Fayetteville, Arkansas, United States;
| | - Lauren Martinez
- University of Arkansas Fayetteville, 3341, HHPR, Fayetteville, Arkansas, United States;
| | - Madeline G Amos
- University of Arkansas Fayetteville, 3341, HHPR, Fayetteville, Arkansas, United States;
| | - Seongkyun Lim
- University of Arkansas Fayetteville, 3341, HHPR, Fayetteville, Arkansas, United States;
| | - Ana Regina Cabrera
- University of Arkansas Fayetteville, 3341, HHPR, Fayetteville, Arkansas, United States;
| | - Jacob L Brown
- University of Arkansas Fayetteville, 3341, Health, Human Performance and Recreation, Fayetteville, Arkansas, United States;
| | - Tyrone A Washington
- University of Arkansas Fayetteville, 3341, Health, Human Performance, and Recreation, Fayetteville, Arkansas, United States;
| | - Nicholas P Greene
- University of Arkansas Fayetteville, 3341, Health, Human Performance and Recreation, Fayetteville, Arkansas, United States;
| |
Collapse
|
11
|
Liu D, Bi X, Yang Y. Circular RNA hsa_circ_0011324 is involved in endometrial cancer progression and the evolution of its mechanism. Bioengineered 2022; 13:7485-7499. [PMID: 35259044 PMCID: PMC8973664 DOI: 10.1080/21655979.2022.2049026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Endometrial cancer (EC) is one of the most common gynecological tumors with an increasing incidence. CircRNA plays an essential regulatory role in EC. Our objective was to investigate the potential mechanism of circRNAs derived SPOC Domain Containing 1 (SPOCD1) in EC progression. Seven circRNAs from SPOCD1 were analyzed by circBase and their expression was verified by quantitative real-time polymerase chain reaction. Only the expression of hsa_circ_0011324 was significantly increased in cancer tissues. The cell lines Ishikawa and RL95-2 which interfered with or overexpressed hsa_circ_0011324 were constructed and cell functions were tested. Results revealed hsa_circ_0011324 overexpression promoted cell proliferation, migration, and invasion; while silence of hsa_circ_0011324 had opposite effect on cell functions. RNA22 website and Targetscan website were applied to analyze downstream genes regulated by hsa_circ_0011324. Then, the expression of downstream genes was detected in EC tissues. Results indicated hsa-miR-497/16-5p expression were down-regulated, and mechanistic target of rapamycin kinase (mTOR) was up-regulated in EC. Furthermore, hsa_circ_0011324 regulated mTOR expression and cell functions by affecting hsa-miR-497/16-5p. And the potential mechanism was hsa_circ_0011324 competes with mTOR to directly bind to hsa-miR-497/16-5p. In conclusion, hsa_circ_0011324 could sponge hsa-miR-497/16-5p targeted mTOR to participate in EC progress. Our study may provide a new therapeutic target for EC.
Collapse
Affiliation(s)
- Dajiang Liu
- Department of Obstetrics and Gynecology, The first Hospital of Lanzhou University, Gansu, Lanzhou, China
| | - Xuehan Bi
- Department of Obstetrics and Gynecology, The first Hospital of Lanzhou University, Gansu, Lanzhou, China
| | - Yongxiu Yang
- Department of Obstetrics and Gynecology, The first Hospital of Lanzhou University, Gansu, Lanzhou, China
| |
Collapse
|
12
|
Juchnicka I, Kuźmicki M, Niemira M, Bielska A, Sidorkiewicz I, Zbucka-Krętowska M, Krętowski AJ, Szamatowicz J. miRNAs as Predictive Factors in Early Diagnosis of Gestational Diabetes Mellitus. Front Endocrinol (Lausanne) 2022; 13:839344. [PMID: 35340328 PMCID: PMC8948421 DOI: 10.3389/fendo.2022.839344] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction Circulating miRNAs are important mediators in epigenetic changes. These non-coding molecules regulate post-transcriptional gene expression by binding to mRNA. As a result, they influence the development of many diseases, such as gestational diabetes mellitus (GDM). Therefore, this study investigates the changes in the miRNA profile in GDM patients before hyperglycemia appears. Materials and Methods The study group consisted of 24 patients with GDM, and the control group was 24 normoglycemic pregnant women who were matched for body mass index (BMI), age, and gestational age. GDM was diagnosed with an oral glucose tolerance test between the 24th and 26th weeks of pregnancy. The study had a prospective design, and serum for analysis was obtained in the first trimester of pregnancy. Circulating miRNAs were measured using the NanoString quantitative assay platform. Validation with real time-polymerase chain reaction (RT-PCR) was performed on the same group of patients. Mann-Whitney U-test and Spearman correlation were done to assess the significance of the results. Results Among the 800 miRNAs, 221 miRNAs were not detected, and 439 were close to background noise. The remaining miRNAs were carefully investigated for their average counts, fold changes, p-values, and false discovery rate (FDR) scores. We selected four miRNAs for further validation: miR-16-5p, miR-142-3p, miR-144-3p, and miR-320e, which showed the most prominent changes between the studied groups. The validation showed up-regulation of miR-16-5p (p<0.0001), miR-142-3p (p=0.001), and miR-144-3p (p=0.003). Conclusion We present changes in miRNA profile in the serum of GDM women, which may indicate significance in the pathophysiology of GDM. These findings emphasize the role of miRNAs as a predictive factor that could potentially be useful in early diagnosis.
Collapse
Affiliation(s)
- Ilona Juchnicka
- Department of Gynecology and Gynecological Oncology, Medical University of Bialystok, Bialystok, Poland
| | - Mariusz Kuźmicki
- Department of Gynecology and Gynecological Oncology, Medical University of Bialystok, Bialystok, Poland
| | - Magdalena Niemira
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Agnieszka Bielska
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Iwona Sidorkiewicz
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Monika Zbucka-Krętowska
- Department of Gynecological Endocrinology and Adolescent Gynecology, Medical University of Bialystok, Bialystok, Poland
| | | | - Jacek Szamatowicz
- Department of Gynecology and Gynecological Oncology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
13
|
Lim S, Deaver JW, Rosa-Caldwell ME, Lee DE, Morena da Silva F, Cabrera AR, Schrems ER, Saling LW, Washington TA, Fluckey JD, Greene NP. Muscle miR-16 deletion results in impaired insulin sensitivity and contractile function in a sex-dependent manner. Am J Physiol Endocrinol Metab 2022; 322:E278-E292. [PMID: 35068192 PMCID: PMC8897019 DOI: 10.1152/ajpendo.00333.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/22/2022]
Abstract
microRNAs (miRs) are linked to various human diseases including type 2 diabetes mellitus (T2DM) and emerging evidence suggests that miRs may serve as potential therapeutic targets. Lower miR-16 content is consistent across different models of T2DM; however, the role of miR-16 in muscle metabolic health is still elusive. Therefore, the purpose of this study was to investigate how deletion of miR-16 in mice affects skeletal muscle metabolic health and contractile function in both sexes. This study was conducted using both 1) in vitro and 2) in vivo experiments. In in vitro experiments, we used C2C12 myoblasts to test if inhibition or overexpression of miR-16 affected insulin-mediated glucose handling. In in vivo experiments, we generated muscle-specific miR-16 knockout (KO) mice fed a high-fat diet (HFD) to assess how miR-16 content impacts metabolic and contractile properties including glucose tolerance, insulin sensitivity, muscle contractile function, protein anabolism, and mitochondrial network health. In in vitro experiments, although inhibition of miR-16 induced impaired insulin signaling (P = 0.002) and glucose uptake (P = 0.014), overexpression of miR-16 did not attenuate lipid overload-induced insulin resistance using the diacylglycerol analog 1-oleoyl-2-acetyl-sn-glycerol. In in vivo experiments, miR-16 deletion induced both impaired muscle contractility (P = 0.031-0.033), and mitochondrial network health (P = 0.008-0.018) in both sexes. However, although males specifically exhibited impaired insulin sensitivity following miR-16 deletion (P = 0.030), female KO mice showed pronounced glucose intolerance (P = 0.046), corresponding with lower muscle weights (P = 0.015), and protein hyperanabolism (P = 0.023). Our findings suggest distinct sex differences in muscle adaptation in response to miR-16 deletion and miR-16 may serve as a key regulator for metabolic dysregulation in T2DM.NEW & NOTEWORTHY We set to investigate the role of miR-16 in skeletal muscle during diet-induced insulin resistance. Our data provide novel evidence that the lack of miR-16 induced multiple aberrations in insulin sensitivity, muscle contractility, mitochondrial network health, and protein turnover in a sex-dependent manner. Interestingly, miR-16 deletion leads to insulin resistance in males and exacerbated glucose intolerance in females, suggesting different mechanisms of metabolic dysregulation with a lack of miR-16 between sexes.
Collapse
Affiliation(s)
- Seongkyun Lim
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - J William Deaver
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Megan E Rosa-Caldwell
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - David E Lee
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Francielly Morena da Silva
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Ana Regina Cabrera
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Eleanor R Schrems
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Landen W Saling
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Tyrone A Washington
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - James D Fluckey
- Muscle Biology Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, Texas
| | - Nicholas P Greene
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| |
Collapse
|
14
|
Pelozin BRA, Soci UPR, Gomes JLP, Oliveira EM, Fernandes T. mTOR signaling-related microRNAs as cardiac hypertrophy modulators in high-volume endurance training. J Appl Physiol (1985) 2021; 132:126-139. [PMID: 34792404 DOI: 10.1152/japplphysiol.00881.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aerobic exercise training (ET) promotes cardiovascular adaptations, including physiological left ventricular hypertrophy (LVH). However, the molecular mechanisms that underlying these changes are unclear. The study aimed to elucidate specific miRNAs and target genes involved with the Akt/mTOR signaling in high-volume ET-induced LVH. Eight-week-old female Wistar rats were assigned to three groups: sedentary control (SC), trained protocol 1 (P1), and trained protocol 2 (P2). P1 consisted of 60 minutes/day of swimming, 5x/week, for 10 weeks. P2 consisted of the same protocol as P1 until the 8th week; in the 9th week, rats trained 2x/day, and in the 10th week, trained 3x/day. Subsequently, structure and molecular parameters were evaluated in the heart. Trained groups demonstrate higher values to VO2 peak, exercise tolerance, and LVH in a volume-dependent manner. The miRNA-26a-5p levels were higher in P1 and P2 compared to SC group (150±15%, d=1.8; 148±16%, d=1.7; and 100±7%, respectively, P < 0.05). In contrast, miRNA-16-5p levels were lower in P1 and P2 compared to SC group (69±5%, d=2.3, P < 0.01; 37±4%, d=5.6, P < 0.001 and 100±6%, respectively). Additionally, miRNA-16-5p knockdown and miRNA-26a-5p overexpression significantly promoted cardiomyocyte hypertrophy in neonatal rat cardiomyocytes. Both miRNAs were selected, using Diana Tolls bioinformatics website, for acting in the mTOR signaling pathway. The protein expression of Akt, mTOR, p70S6k, and 4E-BP1 were greater in P1 and even more pronounced in P2. Nonetheless, GSK3β protein expression was lower in trained groups. Together, these molecular changes may contribute to a pronounced physiological LVH observed in high-volume aerobic training.
Collapse
Affiliation(s)
- Bruno R A Pelozin
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Ursula Paula Reno Soci
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - João L P Gomes
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Edilamar Menezes Oliveira
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Tiago Fernandes
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
15
|
Brown LA, Perry RA, Haynie WS, Lee DE, Rosa-Caldwell ME, Brown JL, Greene NP, Wolchok JC, Washington TA. Moderators of skeletal muscle maintenance are compromised in sarcopenic obese mice. Mech Ageing Dev 2021; 194:111404. [PMID: 33249192 DOI: 10.1016/j.mad.2020.111404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 12/31/2022]
Abstract
The purpose of this study was to determine whether sarcopenic obesity accelerates impairments in muscle maintenance through the investigation of cell cycle progression and myogenic, inflammatory, catabolic and protein synthetic signaling in mouse gastrocnemius muscles. At 4 weeks old, 24 male C57BL/6 mice were fed either a high fat diet (HFD, 60 % fat) or normal chow (NC, 17 % fat) for either 8-12 weeks or 21-23 months. At 3-4 months or 22-24 months the gastrocnemius muscles were excised. In addition, plasma was taken for C2C12 differentiation experiments. Mean cross-sectional area (CSA) was reduced by 29 % in aged HFD fed mice compared to the aged NC mice. MyoD was roughly 50 % greater in the aged mice compared to young mice, whereas TNF-α and IGF-1 gene expression in aged HFD fed mice were reduced by 52 % and 65 % in comparison to aged NC fed mice, respectively. Myotubes pretreated with plasma from aged NC fed mice had 14 % smaller myotube diameter than their aged HFD counterparts. Aged obese mice had greater impairments to mediators of muscle maintenance as evident by reductions in muscle mass, CSA, along with alterations in cell cycle regulation and inflammatory and insulin signaling.
Collapse
Affiliation(s)
- Lemuel A Brown
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR 72701 United States; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109 United States
| | - Richard A Perry
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80523 United States
| | - Wesley S Haynie
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR 72701 United States
| | - David E Lee
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville AR, 72701 United States; NSF Research Triangle Materials Research Science and Engineering Center, Duke University, Durham, NC 27708, United States; Department of Chemistry, Duke University, Durham, NC 27708 United States
| | - Megan E Rosa-Caldwell
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville AR, 72701 United States
| | - Jacob L Brown
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville AR, 72701 United States; Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Nicholas P Greene
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville AR, 72701 United States
| | - Jeffrey C Wolchok
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701 United States
| | - Tyrone A Washington
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR 72701 United States.
| |
Collapse
|
16
|
The role of non-coding RNA on macrophage modification in tuberculosis infection. Microb Pathog 2020; 149:104592. [PMID: 33098931 DOI: 10.1016/j.micpath.2020.104592] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023]
Abstract
Tuberculosis (TB), a serious disease caused by Mycobacterium tuberculosis (Mtb), remains the world's top infectious killer. It is well-established that TB can circumvent the host's immune response for long-term survival. Macrophages serve as the major host cells for TB growth and persistence and their altered functions are critical for the response of the host defense against TB exposure (elimination, latency, reactivation, and bacillary dissemination). Noncoding RNAs are crucial posttranscriptional regulators of macrophage discrimination. Therefore, this review highlights the regulatory mechanism underlying the relationship between noncoding RNAs and macrophages in TB infection, which may facilitate the identification of potential therapeutic targets and effective diagnosis biomarkers for TB disease.
Collapse
|
17
|
Kaur P, Kotru S, Singh S, Behera BS, Munshi A. Role of miRNAs in the pathogenesis of T2DM, insulin secretion, insulin resistance, and β cell dysfunction: the story so far. J Physiol Biochem 2020; 76:485-502. [PMID: 32749641 DOI: 10.1007/s13105-020-00760-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 07/29/2020] [Indexed: 01/24/2023]
Abstract
Diabetes, the most common endocrine disorder, also known as a silent killer disease, is characterized by uncontrolled hyperglycemia. According to the International Diabetes Federation, there were 451 million people with diabetes mellitus worldwide in 2017. It is a multifactorial syndrome caused by genetic as well as environmental factors. Noncoding RNAs, especially the miRNAs, play a significant role in the development as well as the progression of the disease. This is on account of insulin resistance or defects in β cell function. Various miRNAs including miR-7, miR-9, miR-16, miR-27, miR-24, miR-29, miR-124a, miR-135, miR-130a, miR-144, miR-181a, and miR-375 and many more have been associated with insulin resistance and other pathogenic conditions leading to the development of the disease. These miRNAs play significant roles in various pathways underlying insulin resistance such as PI3K, AKT/GSK, and mTOR. The main target genes of these miRNAs are FOXO1, FOXA2, STAT3, and PTEN. The miRNAs carry out important functions in insulin target tissues like the adipose tissue, liver, and muscle. MiRNAs miR-9, miR-375, and miR-124a, are also associated with the secretion of insulin from pancreatic cells. There is an interplay between the miRNAs and pancreatic cell growth, especially the miRNAs affecting development and proliferation of these cells. Most of the miRNAs target more than one gene which not only justifies their use as biomarkers but also their therapeutic potential. The current review has been compiled with an aim to discuss the role of various miRNAs involved in various pathogenic mechanisms including insulin resistance, insulin secretion, and the β cell dysfunction.
Collapse
Affiliation(s)
- Prabhsimran Kaur
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151001, India
| | - Sushil Kotru
- Max Endocrinology, Diabetes and Obesity Care Centre, Max Superspeciality Hospital, Bathinda, 151001, India
| | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151001, India
| | - Bidwan Sekhar Behera
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151001, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151001, India.
| |
Collapse
|
18
|
How the enriched get richer? Experience-dependent modulation of microRNAs and the therapeutic effects of environmental enrichment. Pharmacol Biochem Behav 2020; 195:172940. [PMID: 32413435 DOI: 10.1016/j.pbb.2020.172940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/23/2020] [Accepted: 05/01/2020] [Indexed: 11/20/2022]
Abstract
Environmental enrichment and physical exercise have many well-established health benefits. Although these environmental manipulations are known to delay symptom onset and progression in a variety of neurological and psychiatric conditions, the mechanisms underlying these effects remain poorly understood. A notable candidate molecular mechanism is that of microRNA, a family of small noncoding RNAs that are important regulators of gene expression. Research investigating the many diverse roles of microRNAs has greatly expanded over the past decade, with several promising preclinical and clinical studies highlighting the role of dysregulated microRNA expression (in the brain, blood and other peripheral systems) in understanding the aetiology of disease. Altered microRNA levels have also been described following environmental interventions such as exercise and environmental enrichment in non-clinical populations and wild-type animals, as well as in some brain disorders and associated preclinical models. Recent studies exploring the effects of stimulating environments on microRNA levels in the brain have revealed an array of changes that are likely to have important downstream effects on gene expression, and thus may regulate a variety of cellular processes. Here we review literature that explores the differential expression of microRNAs in rodents following environmental enrichment and exercise, in both healthy control animals and preclinical models of relevance to neurological and psychiatric disorders.
Collapse
|
19
|
Moon HY, Yoon KJ, Lee WS, Cho HS, Kim DY, Kim JS. Neural maturation enhanced by exercise-induced extracellular derivatives. Sci Rep 2020; 10:3893. [PMID: 32127592 PMCID: PMC7054262 DOI: 10.1038/s41598-020-60930-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/19/2020] [Indexed: 12/31/2022] Open
Abstract
Physical activity has profound effects on neuronal progenitor cell growth, differentiation, and integration, but the mechanism for these effects is still ambiguous. Using a mouse model, we investigated the effects of two weeks of treadmill running on the dynamics of the size distribution and miRNA profiles of serum extracellular derivatives (EDs) using particle-sizing analysis and small RNA sequencing. We found that an increased average diameter of EDs in the running group compared with the sedentary group (p < 0.05), and 16 miRNAs were significantly altered (p < 0.05) in the running group. Furthermore, functional annotation analysis of differentially expressed miRNA-predicted target genes showed that many of these target genes are involved in the PI3K-Akt pathway. Exercise-induced serum EDs increased Neuro2A cell viability and Akt phosphorylation. We also found that expression levels of neuronal maturation markers such as Microtubule-Associated Protein 2 (MAP2ab) and Neuronal nuclei (NeuN) were increased (p < 0.05, respectively), and that inhibition of the PI3K-Akt pathway by LY294002 pre-treatment ameliorated their expression in Neuro2A cells. Finally, the administration of exercise-induced EDs for 3 days increased the Histone 3 phosphorylation and β-III tubulin expression in Ink/Arf null neural stem cells and progenitors (NSPCs) under each proliferation and differentiation condition. These results suggest that exercise-induced circulating EDs may mediate neuronal maturation during exercise.
Collapse
Affiliation(s)
- Hyo Youl Moon
- Department of Physical Education, Seoul National University, Seoul, Korea.,Institute of Sport Science, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.,School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Kyeong Jin Yoon
- Department of Physical Education, Seoul National University, Seoul, Korea
| | - Won Sang Lee
- Department of Physical Education, Seoul National University, Seoul, Korea
| | - Hae-Sung Cho
- Department of Physical Education, Seoul National University, Seoul, Korea
| | - Do-Yeon Kim
- Department of Pharmacology, School of Dentistry, Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41940, Republic of Korea
| | - Ji-Seok Kim
- Department of Physical Education, Gyeongsang National University, Jinju-daero, Jinju, 52828, Republic of Korea.
| |
Collapse
|
20
|
Rosado JA, Diez-Bello R, Salido GM, Jardin I. Fine-tuning of microRNAs in Type 2 Diabetes Mellitus. Curr Med Chem 2019; 26:4102-4118. [PMID: 29210640 DOI: 10.2174/0929867325666171205163944] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 11/23/2017] [Accepted: 11/23/2017] [Indexed: 12/13/2022]
Abstract
Type 2 diabetes mellitus is a metabolic disease widely spread across industrialized countries. Sedentary lifestyle and unhealthy alimentary habits lead to obesity, boosting both glucose and fatty acid in the bloodstream and eventually, insulin resistance, pancreas inflammation and faulty insulin production or secretion, all of them very well-defined hallmarks of type 2 diabetes mellitus. miRNAs are small sequences of non-coding RNA that may regulate several processes within the cells, fine-tuning protein expression, with an unexpected and subtle precision and in time-frames ranging from minutes to days. Since the discovery of miRNA and their possible implication in pathologies, several groups aimed to find a relationship between type 2 diabetes mellitus and miRNAs. Here we discuss the pattern of expression of different miRNAs in cultured cells, animal models and diabetic patients. We summarize the role of the most important miRNAs involved in pancreas growth and development, insulin secretion and liver, skeletal muscle or adipocyte insulin resistance in the context of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Juan A Rosado
- Institute of Molecular Pathology Biomarkers & Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Caceres, Spain
| | - Raquel Diez-Bello
- Institute of Molecular Pathology Biomarkers & Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Caceres, Spain
| | - Ginés M Salido
- Institute of Molecular Pathology Biomarkers & Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Caceres, Spain
| | - Isaac Jardin
- Institute of Molecular Pathology Biomarkers & Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Caceres, Spain
| |
Collapse
|
21
|
Rossetti ML, Esser KA, Lee C, Tomko RJ, Eroshkin AM, Gordon BS. Disruptions to the limb muscle core molecular clock coincide with changes in mitochondrial quality control following androgen depletion. Am J Physiol Endocrinol Metab 2019; 317:E631-E645. [PMID: 31361545 PMCID: PMC6842919 DOI: 10.1152/ajpendo.00177.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Androgen depletion in humans leads to significant atrophy of the limb muscles. However, the pathways by which androgens regulate limb muscle mass are unclear. Our laboratory previously showed that mitochondrial degradation was related to the induction of autophagy and the degree of muscle atrophy following androgen depletion, implying that decreased mitochondrial quality contributes to muscle atrophy. To increase our understanding of androgen-sensitive pathways regulating decreased mitochondrial quality, total RNA from the tibialis anterior of sham and castrated mice was subjected to microarray analysis. Using this unbiased approach, we identified significant changes in the expression of genes that compose the core molecular clock. To assess the extent to which androgen depletion altered the limb muscle clock, the tibialis anterior muscles from sham and castrated mice were harvested every 4 h throughout a diurnal cycle. The circadian expression patterns of various core clock genes and known clock-controlled genes were disrupted by castration, with most genes exhibiting an overall reduction in phase amplitude. Given that the core clock regulates mitochondrial quality, disruption of the clock coincided with changes in the expression of genes involved with mitochondrial quality control, suggesting a novel mechanism by which androgens may regulate mitochondrial quality. These events coincided with an overall increase in mitochondrial degradation in the muscle of castrated mice and an increase in markers of global autophagy-mediated protein breakdown. In all, these data are consistent with a novel conceptual model linking androgen depletion-induced limb muscle atrophy to reduced mitochondrial quality control via disruption of the molecular clock.
Collapse
Affiliation(s)
- Michael L Rossetti
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, Florida
| | - Karyn A Esser
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Choogon Lee
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida
| | - Robert J Tomko
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida
| | - Alexey M Eroshkin
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
- Rancho BioSciences, San Diego, California
| | - Bradley S Gordon
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, Florida
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida
| |
Collapse
|
22
|
Rosa-Caldwell ME, Brown JL, Perry RA, Shimkus KL, Shirazi-Fard Y, Brown LA, Hogan HA, Fluckey JD, Washington TA, Wiggs MP, Greene NP. Regulation of mitochondrial quality following repeated bouts of hindlimb unloading. Appl Physiol Nutr Metab 2019; 45:264-274. [PMID: 31340136 DOI: 10.1139/apnm-2019-0218] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Muscle disuse impairs muscle quality and is associated with increased mortality. Little is known regarding additive effects of multiple bouts of disuse, which is a common occurrence in patients experiencing multiple surgeries. Mitochondrial quality is vital to muscle health and quality; however, to date mitochondrial quality control has not been investigated following multiple bouts of disuse. Therefore, the purpose of this study was to investigate mitochondrial quality controllers during multiple bouts of disuse by hindlimb unloading. Male rats (n ∼ 8/group) were assigned to the following groups: hindlimb unloading for 28 days, hindlimb unloading with 56 days of reloading, 2 bouts of hindlimb unloading separated by a recovery phase of 56 days of reloading, 2 bouts of hindlimb unloading and recovery after each disuse, or control animals with no unloading. At designated time points, tissues were collected for messenger RNA and protein analysis of mitochondrial quality. Measures of mitochondrial biogenesis, such as proliferator-activated receptor gamma coactivator 1 alpha, decreased 30%-40% with unloading with no differences noted between unloading conditions. Measures of mitochondrial translation were 40%-50% lower in unloading conditions, with no differences noted between bouts of unloading. Measures of mitophagy were 40%-50% lower with reloading, with no differences noted between reloading conditions. In conclusion, disuse causes alterations in measures of mitochondrial quality; however, multiple bouts of disuse does not appear to have additive effects. Novelty Disuse atrophy causes multiple alterations to mitochondrial quality control. With sufficient recovery most detriments to mitochondrial quality control are fixed. In general, multiple bouts of disuse do not produce additive effects.
Collapse
Affiliation(s)
- Megan E Rosa-Caldwell
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR 72701, USA
| | - Jacob L Brown
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR 72701, USA
| | - Richard A Perry
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR 72701, USA
| | - Kevin L Shimkus
- Muscle Biology Laboratory, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA
| | - Yasaman Shirazi-Fard
- Bone Biomechanics Laboratory, Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Lemuel A Brown
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR 72701, USA
| | - Harry A Hogan
- Bone Biomechanics Laboratory, Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - James D Fluckey
- Muscle Biology Laboratory, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA
| | - Tyrone A Washington
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR 72701, USA
| | - Michael P Wiggs
- Integrated Physiology and Nutrition Laboratory, Department of Health and Kinesiology, University of Texas at Tyler, Tyler, TX 75799, USA
| | - Nicholas P Greene
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR 72701, USA.,Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
23
|
Massaro JD, Polli CD, Costa E Silva M, Alves CC, Passos GA, Sakamoto-Hojo ET, Rodrigues de Holanda Miranda W, Bispo Cezar NJ, Rassi DM, Crispim F, Dib SA, Foss-Freitas MC, Pinheiro DG, Donadi EA. Post-transcriptional markers associated with clinical complications in Type 1 and Type 2 diabetes mellitus. Mol Cell Endocrinol 2019; 490:1-14. [PMID: 30926524 DOI: 10.1016/j.mce.2019.03.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/08/2019] [Accepted: 03/20/2019] [Indexed: 01/10/2023]
Abstract
The delayed diagnosis and the inadequate treatment of diabetes increase the risk of chronic complications. The study of regulatory molecules such as miRNAs can provide expression profiles of diabetes and diabetes complications. We evaluated the mononuclear cell miRNA profiles of 63 Type 1 and Type 2 diabetes patients presenting or not microvascular complications, and 40 healthy controls, using massive parallel sequencing. Gene targets, enriched pathways, dendograms and miRNA-mRNA networks were performed for the differentially expressed miRNAs. Six more relevant miRNAs were validated by RT-qPCR and data mining analysis. MiRNAs associated with specific complications included: i) neuropathy (miR-873-5p, miR-125a-5p, miR-145-3p and miR-99b-5p); ii) nephropathy (miR-1249-3p, miR-193a-5p, miR-409-5p, miR-1271-5p, miR-501-3p, miR-148b-3p and miR-9-5p); and iii) retinopathy (miR-143-3p, miR-1271-5p, miR-409-5p and miR-199a-5p). These miRNAs mainly targeted gene families and specific genes associated with advanced glycation end products and their receptors. Sets of miRNAs were also defined as potential targets for diabetes/diabetes complication pathogenesis.
Collapse
Affiliation(s)
- Juliana Doblas Massaro
- Division of Clinical Immunology, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, 14048-900, Ribeirão Preto, SP, Brazil.
| | - Claudia Danella Polli
- Division of Clinical Immunology, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, 14048-900, Ribeirão Preto, SP, Brazil
| | - Matheus Costa E Silva
- Division of Clinical Immunology, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, 14048-900, Ribeirão Preto, SP, Brazil
| | - Cinthia Caroline Alves
- Division of Clinical Immunology, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, 14048-900, Ribeirão Preto, SP, Brazil
| | - Geraldo Aleixo Passos
- Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, 14048-900, Ribeirão Preto, SP, Brazil; Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, 14040-900, Ribeirão Preto, SP, Brazil
| | - Elza Tiemi Sakamoto-Hojo
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, 14040-900, Ribeirão Preto, SP, Brazil
| | - Wallace Rodrigues de Holanda Miranda
- Division of Endocrinology, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, 14048-900, Ribeirão Preto, SP, Brazil
| | - Nathalia Joanne Bispo Cezar
- Division of Clinical Immunology, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, 14048-900, Ribeirão Preto, SP, Brazil
| | - Diane Meyre Rassi
- Division of Clinical Immunology, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, 14048-900, Ribeirão Preto, SP, Brazil
| | - Felipe Crispim
- Endocrinology and Diabetes Division, Department of Medicine, Federal University of São Paulo, 04039-032, São Paulo, SP, Brazil
| | - Sergio Atala Dib
- Endocrinology and Diabetes Division, Department of Medicine, Federal University of São Paulo, 04039-032, São Paulo, SP, Brazil
| | - Maria Cristina Foss-Freitas
- Division of Endocrinology, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, 14048-900, Ribeirão Preto, SP, Brazil
| | - Daniel Guariz Pinheiro
- Department of Technology, Faculty of Agriculture and Veterinary Sciences, University of the State of São Paulo, 14884-900, Jaboticabal, SP, Brazil
| | - Eduardo Antônio Donadi
- Division of Clinical Immunology, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, 14048-900, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
24
|
Sannicandro AJ, Soriano-Arroquia A, Goljanek-Whysall K. Micro(RNA)-managing muscle wasting. J Appl Physiol (1985) 2019; 127:619-632. [PMID: 30991011 DOI: 10.1152/japplphysiol.00961.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Progressive skeletal muscle wasting is a natural consequence of aging and is common in chronic and acute diseases. Loss of skeletal muscle mass and function (strength) often leads to frailty, decreased independence, and increased risk of hospitalization. Despite progress made in our understanding of the mechanisms underlying muscle wasting, there is still no treatment available, with exercise training and dietary supplementation improving, but not restoring, muscle mass and/or function. There has been slow progress in developing novel therapies for muscle wasting, either during aging or disease, partially due to the complex nature of processes underlying muscle loss. The mechanisms of muscle wasting are multifactorial, with a combination of factors underlying age- and disease-related functional muscle decline. These factors include well-characterized changes in muscle such as changes in protein turnover and more recently described mechanisms such as autophagy or satellite cell senescence. Advances in transcriptomics and other high-throughput approaches have highlighted significant deregulation of skeletal muscle gene and protein levels during aging and disease. These changes are regulated at different levels, including posttranscriptional gene expression regulation by microRNAs. microRNAs, potent regulators of gene expression, modulate many processes in muscle, and microRNA-based interventions have been recently suggested as a promising new therapeutic strategy against alterations in muscle homeostasis. Here, we review recent developments in understanding the aging-associated mechanisms of muscle wasting and explore potential microRNA-based therapeutic avenues.
Collapse
Affiliation(s)
- Anthony J Sannicandro
- Department of Physiology, School of Medicine, National University of Ireland, Galway, Ireland
| | - Ana Soriano-Arroquia
- Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom
| | - Katarzyna Goljanek-Whysall
- Department of Physiology, School of Medicine, National University of Ireland, Galway, Ireland.,Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom
| |
Collapse
|
25
|
Mitochondrial mRNA translation initiation contributes to oxidative metabolism in the myocardia of aged, obese mice. Exp Gerontol 2019; 121:62-70. [PMID: 30928679 DOI: 10.1016/j.exger.2019.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 12/19/2022]
Abstract
Being both advanced in age and obese each contribute to cardiac hypertrophy in a unique manner. Electron transport complexes I and IV are implicated in deficient electron transport during cardiomyopathies and contain the majority of protein subunits that are transcribed and translated by machinery localized within the mitochondria. PURPOSE To assess myocardial mt-mRNA translation factors in relation to mitochondrial content and mtDNA-encoded protein using a mouse model of aged obesity and to test the relationship of mt-mRNA translation initiation factor 2 (mtIF2) to oxidative capacity and the cellular oxidation-reduction (redox) state in cardiomyocytes. METHODS Male C56BL/6 J mice fed lean or high fat diet were aged to either ~3 months or ~22 months, the heart was excised and analyzed using immunoblot and qPCR to assess differences in mitochondrial mRNA translation machinery. Using H9c2 cardiomyocytes, mtIF2 was knocked-down and oxidative metabolic characteristics assessed including oxidation/reduction state, bioenergetic flux, and hypoxic resistance was tested. RESULTS Aged, obese mouse hearts were ~40% larger than young, lean controls and contained ~50% less mtIF2 protein alongside ~25-50% lower content of Cytb, a protein encoded by mtDNA. Reducing the level of mtIF2 by shRNA is associated with ~15-20% lower content of OXPHOS complex I and IV, ~30% lower optical redox ratio, ~40% oxygen reserve capacity, and ~20% less cell survival following hypoxia. CONCLUSION We present evidence of altered mt-mRNA translation during cardiac hypertrophy in aged obesity. We build on these results by demonstrating the necessity of mtIF2 in maintaining oxidative characteristics of cardiac muscle cells.
Collapse
|
26
|
miR-1933-3p is upregulated in skeletal muscles of MuSK+ EAMG mice and affects Impa1 and Mrpl27. Neurosci Res 2019; 151:46-52. [PMID: 30763589 DOI: 10.1016/j.neures.2019.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/03/2019] [Accepted: 02/06/2019] [Indexed: 12/15/2022]
Abstract
MuSK antibody seropositive (MuSK+) Myasthenia Gravis (MG) typically affects skeletal muscles of the bulbar area, including the omohyoid muscle, causing focal fatigue, weakness and atrophy. The profile of circulating extracellular microRNA (miRNA) is changed in MuSK + MG, but the intracellular miRNA profile in skeletal muscles of MuSK + MG and MuSK + experimental autoimmune MG (EAMG) remains unknown. This study elucidated the intracellular miRNA profile in the omohyoid muscle of mice with MuSK + EAMG. The levels of eleven mouse miRNAs were elevated and two mouse miRNAs were reduced in muscles of MuSK + EAMG mice. Transient expression of miR-1933-3p and miR-1930-5p in mouse muscle (C2C12) cells revealed several downregulated genes, out of which five had predicted binding sites for miR-1933-3p. The mRNA expression of mitochondrial ribosomal protein L27 (Mrpl27) and Inositol monophosphatase I (Impa1) was reduced in miR-1933-3p transfected C2C12 cells compared to control cells (p = 0.032 versus p = 0.020). Further, transient expression of miR-1933-3p reduced Impa1 protein accumulation in C2C12 cells. These findings provide novel insights of dysregulated miRNAs and their intracellular pathways in muscle tissue afflicted with MuSK + EAMG, providing a possible link to mitochondrial dysfunction and muscle atrophy observed in MuSK + MG.
Collapse
|
27
|
A New Insight into the Roles of MiRNAs in Metabolic Syndrome. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7372636. [PMID: 30648107 PMCID: PMC6311798 DOI: 10.1155/2018/7372636] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/28/2018] [Indexed: 12/13/2022]
Abstract
Metabolic syndrome (MetS), which includes several clinical components such as abdominal obesity, insulin resistance (IR), dyslipidemia, microalbuminuria, hypertension, proinflammatory state, and oxidative stress (OS), has become a global epidemic health issue contributing to a high risk of type 2 diabetes mellitus (T2DM). In recent years, microRNAs (miRNAs), used as noninvasive biomarkers for diagnosis and therapy, have aroused global interest in complex processes in health and diseases, including MetS and its components. MiRNAs can exist stably in serum, liver, skeletal muscle (SM), heart muscle, adipose tissue (AT), and βcells, because of their ability to escape the digestion of RNase. Here we first present an overall review on recent findings of the relationship between miRNAs and several main components of MetS, such as IR, obesity, diabetes, lipid metabolism, hypertension, hyperuricemia, and stress, to illustrate the targeting proteins or relevant pathways that are involved in the progress of MetS and also help us find promising novel diagnostic and therapeutic strategies.
Collapse
|
28
|
Marzano F, Faienza MF, Caratozzolo MF, Brunetti G, Chiara M, Horner DS, Annese A, D'Erchia AM, Consiglio A, Pesole G, Sbisà E, Inzaghi E, Cianfarani S, Tullo A. Pilot study on circulating miRNA signature in children with obesity born small for gestational age and appropriate for gestational age. Pediatr Obes 2018; 13:803-811. [PMID: 30160046 DOI: 10.1111/ijpo.12439] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 02/01/2023]
Abstract
BACKGROUND Children born small for gestational age (SGA) are at increased risk of metabolic dysfunction. Dysregulation of specific microRNAs (miRNAs) contributes to aberrant gene expression patterns underlying metabolic dysfunction. OBJECTIVE We aimed to determine and compare circulating miRNA (c-miRNA) profile of SGA and appropriate for gestational age (AGA) children with obesity and with normal weight, in order to identify biomarkers for early detection of increased risk of developing metabolic dysfunction in SGA and AGA children with obesity. METHODS Small non-coding RNAs from serum of 15 SGA children with obesity (OB-SGA), 10 SGA children with normal weight (NW-SGA), 17 AGA children with obesity (OB-AGA) and 12 AGA children with normal weight (NW-AGA) (mean age 11.2 ± 2.6) have been extracted and sequenced in order to detect and quantify miRNA expression profiles. RESULTS RNA-seq analyses showed 28 miRNAs dysregulated in OB-SGA vs. NW-SGA and 19 miRNAs dysregulated in OB-AGA vs. NW-AGA. Among these, miR-92a-3p, miR-122-5p, miR-423-5p, miR-484, miR-486-3p and miR-532-5p were up regulated, and miR-181b-5p was down regulated in both OB-SGA and OB-AGA compared with normal weight counterparts. Pathway analysis and miRNA target prediction suggested that these miRNAs were particularly involved in insulin signalling, glucose transport, insulin resistance, cholesterol and lipid metabolism. CONCLUSION We identified a specific profile of c-miRNAs in SGA and AGA children with obesity compared with SGA and AGA children with normal weight. These c-miRNAs could represent specific biomarkers for early detection of increased risk of developing metabolic dysfunction in SGA and AGA children with obesity.
Collapse
Affiliation(s)
- F Marzano
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies-IBIOM, CNR, Bari, Italy
| | - M F Faienza
- Department of Biomedical Sciences and Human Oncology, Section of Pediatrics, University of Bari "A. Moro,", Bari, Italy
| | - M F Caratozzolo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies-IBIOM, CNR, Bari, Italy
| | - G Brunetti
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, Section of Human Anatomy and Histology, University of Bari "A. Moro", Bari, Italy
| | - M Chiara
- Department of Biosciences, University of Milan, Milan, Italy
| | - D S Horner
- Department of Biosciences, University of Milan, Milan, Italy
| | - A Annese
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies-IBIOM, CNR, Bari, Italy
| | - A M D'Erchia
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies-IBIOM, CNR, Bari, Italy.,Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - A Consiglio
- Institute for Biomedical Technologies of Bari - ITB, National Research Council, Bari, Italy
| | - G Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies-IBIOM, CNR, Bari, Italy
| | - E Sbisà
- Institute for Biomedical Technologies of Bari - ITB, National Research Council, Bari, Italy
| | - E Inzaghi
- Dipartimento Pediatrico Universitario Ospedaliero, "Bambino Gesu`" Children's Hospital - Tor Vergata University, Rome, Italy
| | - S Cianfarani
- Dipartimento Pediatrico Universitario Ospedaliero, "Bambino Gesu`" Children's Hospital - Tor Vergata University, Rome, Italy.,Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - A Tullo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies-IBIOM, CNR, Bari, Italy
| |
Collapse
|
29
|
Blackwell TA, Cervenka I, Khatri B, Brown JL, Rosa-Caldwell ME, Lee DE, Perry RA, Brown LA, Haynie WS, Wiggs MP, Bottje WG, Washington TA, Kong BC, Ruas JL, Greene NP. Transcriptomic analysis of the development of skeletal muscle atrophy in cancer-cachexia in tumor-bearing mice. Physiol Genomics 2018; 50:1071-1082. [PMID: 30289747 DOI: 10.1152/physiolgenomics.00061.2018] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cancer-cachexia (CC) is a wasting condition directly responsible for 20-40% of cancer-related deaths. The mechanisms controlling development of CC-induced muscle wasting are not fully elucidated. Most investigations focus on the postcachectic state and do not examine progression of the condition. We recently demonstrated mitochondrial degenerations precede muscle wasting in time course progression of CC. However, the extent of muscle perturbations before wasting in CC is unknown. Therefore, we performed global gene expression analysis in CC-induced muscle wasting to enhance understanding of intramuscular perturbations across the development of CC. Lewis lung carcinoma (LLC) was injected into the hind-flank of C57BL6/J mice at 8 wk of age with tumor allowed to develop for 1, 2, 3, or 4 wk and compared with PBS-injected control. Muscle wasting was evident at 4 wk LLC. RNA sequencing of gastrocnemius muscle samples showed widespread alterations in LLC compared with PBS animals with largest differences seen in 4 wk LLC, suggesting extensive transcriptomic alterations concurrent to muscle wasting. Commonly altered pathways included: mitochondrial dysfunction and protein ubiquitination, along with other less studied processes in this condition regulating transcription/translation and cytoskeletal structure. Current findings present novel evidence of transcriptomic shifts and altered cellular pathways in CC-induced muscle wasting.
Collapse
Affiliation(s)
- Thomas A Blackwell
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas , Fayetteville, Arkansas
| | - Igor Cervenka
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Karolinska Institutet , Stockholm , Sweden
| | - Bhuwan Khatri
- Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas
| | - Jacob L Brown
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas , Fayetteville, Arkansas
| | - Megan E Rosa-Caldwell
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas , Fayetteville, Arkansas
| | - David E Lee
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas , Fayetteville, Arkansas
| | - Richard A Perry
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas , Fayetteville, Arkansas
| | - Lemuel A Brown
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas , Fayetteville, Arkansas
| | - Wesley S Haynie
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas , Fayetteville, Arkansas
| | - Michael P Wiggs
- Integrated Physiology and Nutrition Laboratory, Department of Health and Kinesiology, University of Texas at Tyler, Texas
| | - Walter G Bottje
- Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas
| | - Tyrone A Washington
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas , Fayetteville, Arkansas
| | - Byungwhi C Kong
- Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas
| | - Jorge L Ruas
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Karolinska Institutet , Stockholm , Sweden
| | - Nicholas P Greene
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas , Fayetteville, Arkansas
| |
Collapse
|
30
|
Brown JL, Lee DE, Rosa-Caldwell ME, Brown LA, Perry RA, Haynie WS, Huseman K, Sataranatarajan K, Van Remmen H, Washington TA, Wiggs MP, Greene NP. Protein imbalance in the development of skeletal muscle wasting in tumour-bearing mice. J Cachexia Sarcopenia Muscle 2018; 9:987-1002. [PMID: 30328290 PMCID: PMC6204589 DOI: 10.1002/jcsm.12354] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 08/28/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Cancer cachexia occurs in approximately 80% of cancer patients and is a key contributor to cancer-related death. The mechanisms controlling development of tumour-induced muscle wasting are not fully elucidated. Specifically, the progression and development of cancer cachexia are underexplored. Therefore, we examined skeletal muscle protein turnover throughout the development of cancer cachexia in tumour-bearing mice. METHODS Lewis lung carcinoma (LLC) was injected into the hind flank of C57BL6/J mice at 8 weeks age with tumour allowed to develop for 1, 2, 3, or 4 weeks and compared with PBS injected control. Muscle size was measured by cross-sectional area analysis of haematoxylin and eosin stained tibialis anterior muscle. 2 H2 O was used to assess protein synthesis throughout the development of cancer cachexia. Immunoblot and RT-qPCR were used to measure regulators of protein turnover. TUNEL staining was utilized to measure apoptotic nuclei. LLC conditioned media (LCM) treatment of C2C12 myotubes was used to analyse cancer cachexia in vitro. RESULTS Muscle cross-sectional area decreased ~40% 4 weeks following tumour implantation. Myogenic signalling was suppressed in tumour-bearing mice as soon as 1 week following tumour implantation, including lower mRNA contents of Pax7, MyoD, CyclinD1, and Myogenin, when compared with control animals. AchRδ and AchRε mRNA contents were down-regulated by ~50% 3 weeks following tumour implantation. Mixed fractional synthesis rate protein synthesis was ~40% lower in 4 week tumour-bearing mice when compared with PBS controls. Protein ubiquitination was elevated by ~50% 4 weeks after tumour implantation. Moreover, there was an increase in autophagy machinery after 4 weeks of tumour growth. Finally, ERK and p38 MAPK phosphorylations were fourfold and threefold greater than control muscle 4 weeks following tumour implantation, respectively. Inhibition of p38 MAPK, but not ERK MAPK, in vitro partially rescued LCM-induced loss of myotube diameter. CONCLUSIONS Our findings work towards understanding the pathophysiological signalling in skeletal muscle in the initial development of cancer cachexia. Shortly following the onset of the tumour-bearing state alterations in myogenic regulatory factors are apparent, suggesting early onset alterations in the capacity for myogenic induction. Cancer cachexia presents with a combination of a loss of protein synthesis and increased markers of protein breakdown, specifically in the ubiquitin-proteasome system. Also, p38 MAPK may be a potential therapeutic target to combat cancer cachexia via a p38-FOX01-atrogene-ubiquitin-proteasome mechanism.
Collapse
Affiliation(s)
- Jacob L Brown
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| | - David E Lee
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Megan E Rosa-Caldwell
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Lemuel A Brown
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Richard A Perry
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Wesley S Haynie
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Kendra Huseman
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK, 73104, USA
| | - Kavithalakshmi Sataranatarajan
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK, 73104, USA
| | - Holly Van Remmen
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK, 73104, USA.,Oklahoma City VA Medical Center, Oklahoma City, OK, USA
| | - Tyrone A Washington
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Michael P Wiggs
- Integrated Physiology and Nutrition Laboratory, Department of Health and Kinesiology, University of Texas at Tyler, Tyler, TX, 75799, USA
| | - Nicholas P Greene
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| |
Collapse
|
31
|
A Radiosensitizing Inhibitor of HIF-1 alters the Optical Redox State of Human Lung Cancer Cells In Vitro. Sci Rep 2018; 8:8815. [PMID: 29891977 PMCID: PMC5995847 DOI: 10.1038/s41598-018-27262-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/31/2018] [Indexed: 12/21/2022] Open
Abstract
Treatment failure caused by a radiation-resistant cell phenotype remains an impediment to the success of radiation therapy in cancer. We recently showed that a radiation-resistant isogenic line of human A549 lung cancer cells had significantly elevated expression of hypoxia-inducible factor (HIF-1α), and increased glucose catabolism compared with the parental, radiation-sensitive cell line. The objective of this study was to investigate the longitudinal metabolic changes in radiation-resistant and sensitive A549 lung cancer cells after treatment with a combination of radiation therapy and YC-1, a potent HIF-1 inhibitor. Using label-free two-photon excited fluorescence microscopy, we determined changes in the optical redox ratio of FAD/(NADH and FAD) over a period of 24 hours following treatment with YC-1, radiation, and both radiation and YC-1. To complement the optical redox ratio, we also evaluated changes in mitochondrial organization, glucose uptake, reactive oxygen species (ROS), and reduced glutathione. We observed significant differences in the optical redox ratio of radiation-resistant and sensitive A549 cells in response to radiation or YC-1 treatment alone; however, combined treatment eliminated these differences. Our results demonstrate that the optical redox ratio can elucidate radiosensitization of previously radiation-resistant A549 cancer cells, and provide a method for evaluating treatment response in patient-derived tumor biopsies.
Collapse
|
32
|
The interplay between noncoding RNAs and insulin in diabetes. Cancer Lett 2018; 419:53-63. [DOI: 10.1016/j.canlet.2018.01.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/05/2018] [Accepted: 01/10/2018] [Indexed: 12/11/2022]
|
33
|
Ma E, Fu Y, Garvey WT. Relationship of Circulating miRNAs with Insulin Sensitivity and Associated Metabolic Risk Factors in Humans. Metab Syndr Relat Disord 2018; 16:82-89. [PMID: 29360415 PMCID: PMC5833250 DOI: 10.1089/met.2017.0101] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Insulin resistance disrupts metabolic processes and leads to various chronic disease states such as diabetes and metabolic syndrome (MetS). However, the mechanism linking insulin resistance with cardiometabolic disease pathophysiology is still unclear. One possibility may be through circulating microRNAs (c-miRs), which can alter gene expression in target tissues. Our goal was to assess the relationship of c-miRs with insulin sensitivity, as measured by the gold standard, hyperinsulinemic-euglycemic clamp technique. METHODS Eighty-one nondiabetic, sedentary, and weight-stable patients across a wide range of insulin sensitivities were studied. Measurements were taken for blood pressure, anthropometric data, fasting glucose and lipids, and insulin sensitivity measured by clamp. After an initial screening array to identify candidate miRs in plasma, all samples were assessed for relationships between these c-miRs and insulin sensitivity, as well as associated metabolic factors. RESULTS miR-16 and miR-107 were positively associated with insulin sensitivity (R2 = 0.09, P = 0.0074 and R2 = 0.08, P = 0.0417, respectively) and remained so after adjustment with body mass index (BMI). After adjusting for BMI, miR-33, -150, and -222 were additionally found to be related to insulin sensitivity. Regarding metabolic risk factors, miR-16 was associated with waist circumference (r = -0.25), triglycerides (r = -0.28), and high-density lipoprotein (r = 0.22), while miR-33 was inversely associated with systolic blood pressure (r = -0.29). No significant relationships were found between any candidate c-miRs and BMI, diastolic blood pressure, or fasting glucose. CONCLUSIONS Our results show that relative levels of circulating miR-16, -107, -33, -150, and -222 are associated with insulin sensitivity and metabolic risk factors, and suggest that multiple miRs may act in concert to produce insulin resistance and the clustering of associated traits that comprise the MetS. Therefore, miRs may have potential as novel therapeutic targets or agents in cardiometabolic disease.
Collapse
Affiliation(s)
- Elizabeth Ma
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yuchang Fu
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | - W. Timothy Garvey
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
- The Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
34
|
Circulating MiRNAs as biomarkers of gait speed responses to aerobic exercise training in obese older adults. Aging (Albany NY) 2017; 9:900-913. [PMID: 28301325 PMCID: PMC5391238 DOI: 10.18632/aging.101199] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/03/2017] [Indexed: 01/01/2023]
Abstract
Gait speed is a useful predictor of adverse outcomes, including incident mobility disability and mortality in older adults. While aerobic exercise training (AEX) is generally an effective therapy to improve gait speed, individual responses are highly variable. Circulating microRNAs (miRNAs) may contribute to inter-individual changes in gait speed with AEX. We examined whether plasma miRNAs are associated with gait speed changes (dGaitSp) in 33 obese older adults (age: 69.3±3.6 years, BMI: 34.0±3.1 kg/m2, 85% white, 73% women) who performed treadmill walking, 4 days/week for 5 months. Gait speed (baseline: 1.02±0.19 m/s; range of response: −0.2 to 0.35 m/s) was assessed using a 400 meter-fast-paced walk test. Using Nanostring technology, 120 out of 800 miRNAs were found to be abundantly expressed in plasma and 4 of these were significantly changed after AEX: miR-376a-5p increased, while miR-16-5p, miR-27a-3p, and miR-28-3p all decreased. In addition, baseline miR-181a-5p levels (r=-0.40, p=0.02) and percent changes in miR-92a-3p (r=-0.44, p=0.009) associated negatively with dGaitSp. Linear regression combined baseline miR-181a-5p and miR-92a-3p levels showed even stronger associations with dGaitSp (r=-0.48, p=0.005). These results suggest that circulating miR-181a-5p and miR-92a-3p may predict and/or regulate AEX-induced gait speed changes in obese older adults.
Collapse
|
35
|
Dahlmans D, Houzelle A, Jörgensen JA, Phielix E, Lindeboom L, Hesselink MKC, Schrauwen P, Hoeks J. Evaluation of Muscle microRNA Expression in Relation to Human Peripheral Insulin Sensitivity: A Cross-Sectional Study in Metabolically Distinct Subject Groups. Front Physiol 2017; 8:711. [PMID: 28983252 PMCID: PMC5613141 DOI: 10.3389/fphys.2017.00711] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/04/2017] [Indexed: 11/16/2022] Open
Abstract
In recent years, several microRNAs (miRNAs)—post-transcriptional regulators of gene expression—have been linked to the regulation of peripheral insulin sensitivity. Many of these studies, however, have been conducted in cell or animal models and the few human studies available lack adequate measurements of peripheral insulin sensitivity. In the present study, we examined the expression of 25 miRNAs, putatively involved in (peripheral) insulin sensitivity, in skeletal muscle biopsies from extensively phenotyped human individuals, widely ranging in insulin sensitivity. To identify miRNAs expressed in skeletal muscle and associated with insulin sensitivity and type 2 diabetes, a comprehensive PubMed-based literature search was performed. Subsequently, the expression of selected miRNAs was determined by RT-qPCR using predesigned 384-well Pick-&-Mix miRNA PCR Panel plates in muscle biopsies from type 2 diabetes patients, non-diabetic obese/overweight individuals, lean sedentary individuals and endurance-trained athletes. In all subjects, peripheral insulin sensitivity was measured by hyperinsulinemic-euglycemic clamp. The literature search resulted in 25 candidate miRNAs, 6 of which were differentially expressed in human type 2 diabetes compared to non-diabetic obese/overweight individuals. In turn, four of these miRNAs, i.e., miRNA27a-3p (r = −0.45, p = 0.0012), miRNA-29a-3p (r = −0.40, p = 0.0052), miRNA-29b-3p (r = −0.70, p < 0.0001) and miRNA-29c-3p (r = −0.50, p = 0.0004) demonstrated strong negative correlations with peripheral insulin sensitivity across all four subject groups. We identified miR-27a-3p and all members of the miRNA-29 family as potential regulatory players in insulin sensitivity in humans. These miRNA's may represent interesting novel targets for maintaining or improving insulin sensitivity.
Collapse
Affiliation(s)
- Dennis Dahlmans
- Departments of Human Biology and Human Movement Sciences, Maastricht University Medical CenterMaastricht, Netherlands
| | - Alexandre Houzelle
- Departments of Human Biology and Human Movement Sciences, Maastricht University Medical CenterMaastricht, Netherlands
| | - Johanna A. Jörgensen
- Departments of Human Biology and Human Movement Sciences, Maastricht University Medical CenterMaastricht, Netherlands
| | - Esther Phielix
- Departments of Human Biology and Human Movement Sciences, Maastricht University Medical CenterMaastricht, Netherlands
| | - Lucas Lindeboom
- Departments of Human Biology and Human Movement Sciences, Maastricht University Medical CenterMaastricht, Netherlands
- Departments of Radiology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical CenterMaastricht, Netherlands
| | - Matthijs K. C. Hesselink
- Departments of Human Biology and Human Movement Sciences, Maastricht University Medical CenterMaastricht, Netherlands
| | - Patrick Schrauwen
- Departments of Human Biology and Human Movement Sciences, Maastricht University Medical CenterMaastricht, Netherlands
| | - Joris Hoeks
- Departments of Human Biology and Human Movement Sciences, Maastricht University Medical CenterMaastricht, Netherlands
- *Correspondence: Joris Hoeks
| |
Collapse
|
36
|
MicroRNAs and adipocytokines: Promising biomarkers for pharmacological targets in diabetes mellitus and its complications. Biomed Pharmacother 2017; 93:1326-1336. [DOI: 10.1016/j.biopha.2017.07.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/08/2017] [Accepted: 07/11/2017] [Indexed: 02/06/2023] Open
|
37
|
Brown JL, Rosa-Caldwell ME, Lee DE, Brown LA, Perry RA, Shimkus KL, Blackwell TA, Fluckey JD, Carson JA, Dridi S, Washington TA, Greene NP. PGC-1α4 gene expression is suppressed by the IL-6-MEK-ERK 1/2 MAPK signalling axis and altered by resistance exercise, obesity and muscle injury. Acta Physiol (Oxf) 2017; 220:275-288. [PMID: 27809412 DOI: 10.1111/apha.12826] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/13/2016] [Accepted: 10/29/2016] [Indexed: 12/13/2022]
Abstract
AIM PGC-1α4 is a novel regulator of muscle hypertrophy; however, there is limited understanding of the regulation of its expression and role in many (patho)physiological conditions. Therefore, our purpose was to elicit signalling mechanisms regulating gene expression of Pgc1α4 and examine its response to (patho)physiological stimuli associated with altered muscle mass. METHODS IL-6 knockout mice and pharmacological experiments in C2C12 myocytes were used to identify regulation of Pgc1α4 transcription. To examine Pgc1α4 gene expression in (patho)physiological conditions, obese and lean Zucker rats with/without resistance exercise (RE), ageing mice and muscle regeneration from injury were examined. RESULTS In IL-6 knockout mice, Pgc1α4mRNA was ~sevenfold greater than wild type. In C2C12 cells, Pgc1α4mRNA was suppressed ~70% by IL-6. Suppression of Pgc1α4 by IL-6 was prevented by MEK-ERK-MAPK inhibition. RE led to ~260% greater Pgc1α4mRNA content in lean rats. However, obese Zucker rats exhibited ~270% greater Pgc1α4mRNA than lean, sedentary with no further augmentation by RE. No difference was seen in IL-6mRNA or ERK-MAPK phosphorylation in Zucker rats. Aged mice demonstrated ~50% lower Pgc1α4mRNA and ~fivefold greater ERK-MAPK phosphorylation than young despite unchanged Il-6mRNA. During muscle regeneration, Pgc1α4 content is ~30% and IL-6mRNA >threefold of uninjured controls 3 days following injury; at 5 days, Pgc1α4 was >twofold greater in injured mice with no difference in IL-6mRNA. CONCLUSION Our findings reveal a novel mechanism suppressing Pgc1α4 gene expression via IL-6-ERK-MAPK and suggest this signalling axis may inhibit Pgc1α4 in some, but not all, (patho)physiological conditions.
Collapse
Affiliation(s)
- J. L. Brown
- Integrative Muscle Metabolism Laboratory; Human Performance Laboratory; Department of Health; Human Performance and Recreation; University of Arkansas; Fayetteville AR USA
| | - M. E. Rosa-Caldwell
- Integrative Muscle Metabolism Laboratory; Human Performance Laboratory; Department of Health; Human Performance and Recreation; University of Arkansas; Fayetteville AR USA
| | - D. E. Lee
- Integrative Muscle Metabolism Laboratory; Human Performance Laboratory; Department of Health; Human Performance and Recreation; University of Arkansas; Fayetteville AR USA
| | - L. A. Brown
- Exercise Muscle Biology Laboratory; Human Performance Laboratory; Department of Health; Human Performance and Recreation; University of Arkansas; Fayetteville AR USA
| | - R. A. Perry
- Exercise Muscle Biology Laboratory; Human Performance Laboratory; Department of Health; Human Performance and Recreation; University of Arkansas; Fayetteville AR USA
| | - K. L. Shimkus
- Muscle Biology Laboratory; Department of Health & Kinesiology; Texas A&M University; College Station TX USA
| | - T. A. Blackwell
- Integrative Muscle Metabolism Laboratory; Human Performance Laboratory; Department of Health; Human Performance and Recreation; University of Arkansas; Fayetteville AR USA
| | - J. D. Fluckey
- Muscle Biology Laboratory; Department of Health & Kinesiology; Texas A&M University; College Station TX USA
| | - J. A. Carson
- Integrative Muscle Biology Laboratory; Department of Exercise Science; University of South Carolina; Columbia SC USA
| | - S. Dridi
- Center of Excellence for Poultry Science; University of Arkansas; Fayetteville AR USA
| | - T. A. Washington
- Exercise Muscle Biology Laboratory; Human Performance Laboratory; Department of Health; Human Performance and Recreation; University of Arkansas; Fayetteville AR USA
| | - N. P. Greene
- Integrative Muscle Metabolism Laboratory; Human Performance Laboratory; Department of Health; Human Performance and Recreation; University of Arkansas; Fayetteville AR USA
| |
Collapse
|
38
|
Lee DE, Brown JL, Rosa-Caldwell ME, Blackwell TA, Perry RA, Brown LA, Khatri B, Seo D, Bottje WG, Washington TA, Wiggs MP, Kong BW, Greene NP. Cancer cachexia-induced muscle atrophy: evidence for alterations in microRNAs important for muscle size. Physiol Genomics 2017; 49:253-260. [PMID: 28341621 DOI: 10.1152/physiolgenomics.00006.2017] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/24/2017] [Accepted: 03/24/2017] [Indexed: 12/14/2022] Open
Abstract
Muscle atrophy is a hallmark of cancer cachexia resulting in impaired function and quality of life and cachexia is the immediate cause of death for 20-40% of cancer patients. Multiple microRNAs (miRNAs) have been identified as being involved in muscle development and atrophy; however, less is known specifically on miRNAs in cancer cachexia. The purpose of this investigation was to examine the miRNA profile of skeletal muscle atrophy induced by cancer cachexia to uncover potential miRNAs involved with this catabolic condition. Phosphate-buffered saline (PBS) or Lewis lung carcinoma cells (LLC) were injected into C57BL/6J mice at 8 wk of age. LLC animals were allowed to develop tumors for 4 wk to induce cachexia. Tibialis anterior muscles were extracted and processed to isolate small RNAs, which were used for miRNA sequencing. Sequencing results were assembled with mature miRNAs, and functions of miRNAs were analyzed by Ingenuity Pathway Analysis. LLC animals developed tumors that contributed to significantly smaller tibialis anterior muscles (18.5%) and muscle cross-sectional area (40%) compared with PBS. We found 371 miRNAs to be present in the muscle above background levels. Of these, nine miRNAs were found to be differentially expressed. Significantly altered groups of miRNAs were categorized into primary functionalities including cancer, cell-to-cell signaling, and cellular development among others. Gene network analysis predicted specific alterations of factors contributing to muscle size including Akt, FOXO3, and others. These results create a foundation for future research into the sufficiency of targeting these genes to attenuate muscle loss in cancer cachexia.
Collapse
Affiliation(s)
- David E Lee
- Integrative Muscle Metabolism Laboratory, University of Arkansas, Fayetteville, Arkansas
| | - Jacob L Brown
- Integrative Muscle Metabolism Laboratory, University of Arkansas, Fayetteville, Arkansas
| | - Megan E Rosa-Caldwell
- Integrative Muscle Metabolism Laboratory, University of Arkansas, Fayetteville, Arkansas
| | - Thomas A Blackwell
- Integrative Muscle Metabolism Laboratory, University of Arkansas, Fayetteville, Arkansas
| | - Richard A Perry
- Exercise Muscle Biology Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Lemuel A Brown
- Exercise Muscle Biology Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Bhuwan Khatri
- Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas; and
| | - Dongwon Seo
- Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas; and
| | - Walter G Bottje
- Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas; and
| | - Tyrone A Washington
- Exercise Muscle Biology Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Michael P Wiggs
- Department of Health and Kinesiology, University of Texas at Tyler, Tyler, Texas
| | - Byung-Whi Kong
- Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas; and
| | - Nicholas P Greene
- Integrative Muscle Metabolism Laboratory, University of Arkansas, Fayetteville, Arkansas;
| |
Collapse
|
39
|
Rosa-Caldwell ME, Lee DE, Brown JL, Brown LA, Perry RA, Greene ES, Carvallo Chaigneau FR, Washington TA, Greene NP. Moderate physical activity promotes basal hepatic autophagy in diet-induced obese mice. Appl Physiol Nutr Metab 2017; 42:148-156. [DOI: 10.1139/apnm-2016-0280] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Obesity is a known risk factor for the development of hepatic disease; obesity-induced fatty liver can lead to inflammation, steatosis, and cirrhosis and is associated with degeneration of the mitochondria. Lifestyle interventions such as physical activity may ameliorate this condition. The purpose of this study was to investigate regulation of mitochondrial and autophagy quality control in liver following Western diet-induced obesity and voluntary physical activity. Eight-week-old C57BL/6J mice were fed a Western diet (WD) or normal chow (NC, control) for 4 weeks; afterwards, groups were divided into voluntary wheel running (VWR) or sedentary (SED) conditions for an additional 4 weeks. WD-SED animals had a median histology score of 2, whereas WD-VWR was not different from NC groups (median score 1). There was no difference in mRNA of inflammatory markers Il6 and Tnfa in WD animals. WD animals had 50% lower mitochondrial content (COX IV and Cytochrome C proteins), 50% lower Pgc1a mRNA content, and reduced content of mitochondrial fusion and fission markers. Markers of autophagy were increased in VWR animals, regardless of obesity, as measured by 50% greater LC3-II/I ratio and 40% lower p62 protein content. BNIP3 protein content was 30% less in WD animals compared with NC animals, regardless of physical activity. Diet-induced obesity results in derangements in mitochondrial quality control that appear to occur prior to the onset of hepatic inflammation. Moderate physical activity appears to enhance basal autophagy in the liver; increased autophagy may provide protection from hepatic fat accumulation.
Collapse
Affiliation(s)
- Megan E. Rosa-Caldwell
- Integrative Muscle Metabolism Laboratory, Human Performance Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR 72701, USA
| | - David E. Lee
- Integrative Muscle Metabolism Laboratory, Human Performance Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR 72701, USA
| | - Jacob L. Brown
- Integrative Muscle Metabolism Laboratory, Human Performance Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR 72701, USA
| | - Lemuel A. Brown
- Exercise Muscle Biology Laboratory, Human Performance Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR 72701, USA
| | - Richard A. Perry
- Exercise Muscle Biology Laboratory, Human Performance Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR 72701, USA
| | - Elizabeth S. Greene
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Francisco R. Carvallo Chaigneau
- California Animal Health and Food Safety Laboratory, University of California-Davis School of Veterinary Medicine, Davis, CA 95616, USA
| | - Tyrone A. Washington
- Exercise Muscle Biology Laboratory, Human Performance Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR 72701, USA
| | - Nicholas P. Greene
- Integrative Muscle Metabolism Laboratory, Human Performance Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
40
|
Intersections of post-transcriptional gene regulatory mechanisms with intermediary metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:349-362. [PMID: 28088440 DOI: 10.1016/j.bbagrm.2017.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/09/2017] [Accepted: 01/09/2017] [Indexed: 12/16/2022]
Abstract
Intermediary metabolism studies have typically concentrated on four major regulatory mechanisms-substrate availability, allosteric enzyme regulation, post-translational enzyme modification, and regulated enzyme synthesis. Although transcriptional control has been a big focus, it is becoming increasingly evident that many post-transcriptional events are deeply embedded within the core regulatory circuits of enzyme synthesis/breakdown that maintain metabolic homeostasis. The prominent post-transcriptional mechanisms affecting intermediary metabolism include alternative pre-mRNA processing, mRNA stability and translation control, and the more recently discovered regulation by noncoding RNAs. In this review, we discuss the latest advances in our understanding of these diverse mechanisms at the cell-, tissue- and organismal-level. We also highlight the dynamics, complexity and non-linear nature of their regulatory roles in metabolic decision making, and deliberate some of the outstanding questions and challenges in this rapidly expanding field.
Collapse
|
41
|
Esteves JV, Enguita FJ, Machado UF. MicroRNAs-Mediated Regulation of Skeletal Muscle GLUT4 Expression and Translocation in Insulin Resistance. J Diabetes Res 2017; 2017:7267910. [PMID: 28428964 PMCID: PMC5385897 DOI: 10.1155/2017/7267910] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/22/2017] [Accepted: 02/27/2017] [Indexed: 01/12/2023] Open
Abstract
The solute carrier family 2 facilitated glucose transporter member 4 (GLUT4) plays a key role in the insulin-induced glucose uptake by muscle and adipose tissues. In prediabetes and diabetes, GLUT4 expression/translocation has been detected as reduced, participating in mechanisms that impair glycemic control. Recently, a class of short endogenous noncoding RNAs named microRNAs (miRNAs) has been increasingly described as involved in the posttranscriptional epigenetic regulation of gene expression. The present review focuses on miRNAs potentially involved in the expression of GLUT4 expression, and proteins related to GLUT4 and translocation in skeletal muscle, seeking to correlate them with insulin resistance and diabetes. So far, miR-21a-5p, miR-29a-3p, miR-29c-3p, miR-93-5p, miR-106b-5p, miR-133a-3p, miR-133b-3p, miR-222-3p, and miR-223-3p have been reported to directly and/or indirectly regulate the GLUT4 expression; and their expression is altered under diabetes-related conditions. Besides, some miRNAs that have been linked to the expression of proteins involved in GLUT4 translocation machinery in muscle could also impact glucose uptake. That makes these miRNAs promising targets for preventive and/or therapeutic approaches, which could improve glycemic control, thus deserving future new investigations.
Collapse
Affiliation(s)
- João Victor Esteves
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Francisco Javier Enguita
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Ubiratan Fabres Machado
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
- *Ubiratan Fabres Machado:
| |
Collapse
|
42
|
The mTOR Conundrum: Essential for Muscle Function, but Dangerous for Survival. J Am Med Dir Assoc 2016; 17:963-966. [DOI: 10.1016/j.jamda.2016.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 09/01/2016] [Indexed: 02/06/2023]
|