1
|
Rzeszutek I, Cybularczyk-Cecotka M, Deręgowska A, Stec P, Wnuk M, Kołodziej O, Kałafut J, Wawruszak A, Witkowski W, Litwinienko G, Lewińska A. New Mitochondria-Targeted Fisetin Derivative Compromises Mitophagy and Limits Survival of Drug-Induced Senescent Breast Cancer Cells. J Med Chem 2024; 67:17676-17689. [PMID: 39322603 PMCID: PMC11472315 DOI: 10.1021/acs.jmedchem.4c01664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
Mitochondria are considered as promising targets for cancer treatment. In the present study, triphenyl phosphonium cationic group-conjugated fisetin (mito-fisetin) was synthesized, and its anticancer activity was investigated in several cellular models of estrogen receptor (ER)-positive breast cancer in vitro and in vivo in proliferating and tamoxifen-promoted senescent states. Mito-fisetin, when used at low micromolar concentrations, stimulated the dissipation of mitochondrial membrane potential and oxidative stress, and affected mitochondrial function, resulting in apoptosis induction in senescent breast cancer cells. Mito-fisetin-mediated cytotoxicity was due to increased levels of phosphorylated AMPK, decreased levels of AKT and HSP90, and impaired mitophagic response, as judged by the analysis of the markers of mitophagosome formation. Senescent breast cancer cells were found to be more sensitive to mito-fisetin treatment than proliferating ones. We postulate that mitochondrial targeting in the case of fisetin may be considered as a promising anticancer and senotherapeutic strategy to eliminate drug-resistant senescent breast cancer cells.
Collapse
Affiliation(s)
- Iwona Rzeszutek
- Institute
of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | | | - Anna Deręgowska
- Institute
of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Paulina Stec
- Institute
of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Maciej Wnuk
- Institute
of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Olga Kołodziej
- Institute
of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Joanna Kałafut
- Department
of Biochemistry and Molecular Biology, Medical
University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Anna Wawruszak
- Department
of Biochemistry and Molecular Biology, Medical
University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Wojciech Witkowski
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | | | - Anna Lewińska
- Institute
of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| |
Collapse
|
2
|
Zehra K, Banu A, Can E, Hülya C. Fisetin and/or capecitabine causes changes in apoptosis pathways in capecitabine-resistant colorectal cancer cell lines. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7913-7926. [PMID: 38748229 PMCID: PMC11449987 DOI: 10.1007/s00210-024-03145-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 10/04/2024]
Abstract
Capecitabine is recommended as one of the first-line chemotherapy treatments for advanced or metastatic colorectal cancer. Researches have been conducted on capecitabine's impact on the viability of human colon cancer cells and its potential to induce apoptosis. However, even in cases initially responsive to treatment, the development of acquired resistance significantly limits its efficacy. Challenges still exist in effectively treating patients with chemotherapy, and developing new cytotoxic drugs is hindered by drug resistance. Fisetin alters the cell cycle, inducing apoptosis, inhibiting cancer cell proliferation, and enhancing the therapeutic effectiveness of chemotherapy drugs. This work aims to create a plan for reversing capecitabine resistance. For this purpose, the role of capecitabine and/or fisetin combinations in cell proliferation and apoptosis has been determined in both wild-type and capecitabine-resistant HT29 cells (CR/HT29). We developed capecitabine-resistant cell line from wild-type HT29 cells. This study demonstrated the effects of capecitabine, fisetin, and their combinations on both resistant and wild-type cells through experiments including cell survival skills, cell proliferation, wound healing, colony formation, hoechst staining, and western blot analysis. We established capecitabine-resistant cell lines. P-gp expression increased in CR/HT29 cells. Capecitabine effects on a CR/HT29 cells less than wild-type HT29 cells. The combination of fisetin and capecitabine in cell proliferation caused greater reductions in wild-type HT29 cells than in capecitabine-resistant cells. Fisetin has also additive effects on the apoptotic pathway in CR/HT29 cells. This study provides new perspectives on the combination of capecitabine and/or flavonoid treatment in resistant cells.
Collapse
Affiliation(s)
- Kanli Zehra
- Institute of Health Sciences, Marmara University, Basibuyuk-Maltepe, Istanbul, 34854, Turkey
| | - Aydin Banu
- School of Medicine, Department of Biophysics, Marmara University, Basic Medical Sciences Building, Maltepe, Istanbul, 34854, Turkey
| | - Erzik Can
- School of Medicine, Department of Medical Biology, Marmara University, Basic Medical Sciences Building, Maltepe, Istanbul, 34854, Turkey
| | - Cabadak Hülya
- School of Medicine, Department of Biophysics, Marmara University, Basic Medical Sciences Building, Maltepe, Istanbul, 34854, Turkey.
| |
Collapse
|
3
|
Akla N, Veilleux C, Annabi B. The Chemopreventive Impact of Diet-Derived Phytochemicals on the Adipose Tissue and Breast Tumor Microenvironment Secretome. Nutr Cancer 2024:1-17. [PMID: 39300732 DOI: 10.1080/01635581.2024.2401647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024]
Abstract
Cancer cells-derived extracellular vesicles can trigger the transformation of adipose-derived mesenchymal stem cells (ADMSC) into a pro-inflammatory, cancer-associated adipocyte (CAA) phenotype. Such secretome-mediated crosstalk between the adipose tissue and the tumor microenvironment (TME) therefore impacts tumor progression and metastatic processes. In addition, emerging roles of diet-derived phytochemicals, especially epigallocatechin-3-gallate (EGCG) among other polyphenols, in modulating exosome-mediated metabolic and inflammatory signaling pathways have been highlighted. Here, we discuss how selected diet-derived phytochemicals could alter the secretome signature as well as the crosstalk dynamics between the adipose tissue and the TME, with a focus on breast cancer. Their broader implication in the chemoprevention of obesity-related cancers is also discussed.
Collapse
Affiliation(s)
- Naoufal Akla
- Laboratoire d'Oncologie Moléculaire, Département de Chimie and CERMO-FC, Université du Québec à Montréal, Montreal, Canada
| | - Carolane Veilleux
- Laboratoire d'Oncologie Moléculaire, Département de Chimie and CERMO-FC, Université du Québec à Montréal, Montreal, Canada
| | - Borhane Annabi
- Laboratoire d'Oncologie Moléculaire, Département de Chimie and CERMO-FC, Université du Québec à Montréal, Montreal, Canada
| |
Collapse
|
4
|
Solanki R, Srivastav AK, Patel S, Singh SK, Jodha B, Kumar U, Patel S. Folate conjugated albumin as a targeted nanocarrier for the delivery of fisetin: in silico and in vitro biological studies. RSC Adv 2024; 14:7338-7349. [PMID: 38433936 PMCID: PMC10906141 DOI: 10.1039/d3ra08434e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
Fisetin (FST), a natural flavonoid compound derived from various fruits and vegetables, including apple, strawberry, and onion, demonstrates potential for a wide range of pharmaceutical applications, including potential anticancer properties. However, challenges such as low bioavailability, poor aqueous solubility, and limited permeability restrict the use of FST in the pharmaceutical sector. Nowadays, targeted nanomedicines have garnered attention to overcome limitations associated with phytochemicals, including FST. In the present study, we have designed and successfully prepared folate-targeted FST nanoparticles (FFNPs). Characterization through DLS and FE-SEM revealed the successful preparation of monodisperse (PDI: 0.117), nanoscale-sized (150 nm), and spherical nanoparticles. Physicochemical characterization including FTIR, XRD, DSC, and TGA analysis, confirmed the encapsulation of the FST within the Folic acid (FA) - conjugated nanoparticles (CNPs) and revealed its amorphous nature. Molecular docking analysis revealed the strong binding affinity and specific amino acid interactions involved in the BSA-FST-FA complex, suggesting the potential synergistic effect of FST and FA in enhancing the therapeutic activity of the FFANPs. Cytotoxic assessments by the MTT assay, migration assay, AO-EtBr staining assay, colony formation assay, and cellular uptake study demonstrated enhanced anticancer efficacy, apoptosis induction, and enhanced uptake of FFNPs compared to pure FST. These findings propose prepared FFNPs as a promising targeted drug delivery nanocarrier for effective FST delivery in cancer therapy.
Collapse
Affiliation(s)
- Raghu Solanki
- School of Life Sciences, Central University of Gujarat Gandhinagar 382030 India
| | | | - Sejal Patel
- School of Life Sciences, Central University of Gujarat Gandhinagar 382030 India
| | - Sanju Kumari Singh
- School of Life Sciences, Central University of Gujarat Gandhinagar 382030 India
| | - Bhavana Jodha
- School of Life Sciences, Central University of Gujarat Gandhinagar 382030 India
| | - Umesh Kumar
- School of Nano Sciences, Central University of Gujarat Gandhinagar 382030 India
- Nutrition Biology Department, School of Interdisciplinary and Applied Sciences, Central University of Haryana Mahendergarh 123031 India
| | - Sunita Patel
- School of Life Sciences, Central University of Gujarat Gandhinagar 382030 India
| |
Collapse
|
5
|
Talaat SM, Elnaggar YSR, Gowayed MA, El-Ganainy SO, Allam M, Abdallah OY. Novel PEGylated cholephytosomes for targeting fisetin to breast cancer: in vitro appraisal and in vivo antitumoral studies. Drug Deliv Transl Res 2024; 14:433-454. [PMID: 37644299 PMCID: PMC10761494 DOI: 10.1007/s13346-023-01409-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2023] [Indexed: 08/31/2023]
Abstract
Fisetin (FIS) is a multifunctional bioactive flavanol that has been recently exploited as anticancer drug against various cancers including breast cancer. However, its poor aqueous solubility has constrained its clinical application. In the current work, fisetin is complexed for the first time with soy phosphatidylcholine in the presence of cholesterol to form a novel biocompatible phytosomal system entitled "cholephytosomes." To improve fisetin antitumor activity against breast cancer, stearylamine bearing cationic cholephytosomes (mPHY) were prepared and furtherly modified with hyaluronic acid (HPHY) to allow their orientation to cancer cells through their surface exposed phosphatidylserine and CD-44 receptors, respectively. In vitro characterization studies revealed promising physicochemical properties of both modified vesicles (mPHY and HPHY) including excellent FIS complexation efficiency (˷100%), improved octanol/water solubility along with a sustained drug release over 24 h. In vitro cell line studies against MDA-MB-231 cell line showed about 10- and 3.5-fold inhibition in IC50 of modified vesicles compared with free drug and conventional drug-phospholipid complex, respectively. Preclinical studies revealed that both modified cholephytosomes (mPHY and HPHY) had comparable cytotoxicity that is significantly surpassing free drug cytotoxicity. TGF-β1and its non-canonical related signaling pathway; ERK1/2, NF-κB, and MMP-9 were involved in halting tumorigenesis. Thus, tailoring novel phytosomal nanosystems for FIS could open opportunity for its clinical utility against cancer.
Collapse
Affiliation(s)
- Sara M Talaat
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Yosra S R Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
- Head of International Publication and Nanotechnology Center INCC, Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University of Alexandria, Alexandria, Egypt.
| | - Mennatallah A Gowayed
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Samar O El-Ganainy
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Maram Allam
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
6
|
Kumari P, Beeraka NM, Tengli A, Bannimath G, Baath RK, Patil M. Recent Updates on Oncogenic Signaling of Aurora Kinases in Chemosensitive, Chemoresistant Cancers: Novel Medicinal Chemistry Approaches for Targeting Aurora Kinases. Curr Med Chem 2024; 31:3502-3528. [PMID: 37138483 DOI: 10.2174/0929867330666230503124408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/02/2023] [Accepted: 02/27/2023] [Indexed: 05/05/2023]
Abstract
The Aurora Kinase family (AKI) is composed of serine-threonine protein kinases involved in the modulation of the cell cycle and mitosis. These kinases are required for regulating the adherence of hereditary-related data. Members of this family can be categorized into aurora kinase A (Ark-A), aurora kinase B (Ark-B), and aurora kinase C (Ark-C), consisting of highly conserved threonine protein kinases. These kinases can modulate cell processes such as spindle assembly, checkpoint pathway, and cytokinesis during cell division. The main aim of this review is to explore recent updates on the oncogenic signaling of aurora kinases in chemosensitive/chemoresistant cancers and to explore the various medicinal chemistry approaches to target these kinases. We searched Pubmed, Scopus, NLM, Pubchem, and Relemed to obtain information pertinent to the updated signaling role of aurora kinases and medicinal chemistry approaches and discussed the recently updated roles of each aurora kinases and their downstream signaling cascades in the progression of several chemosensitive/chemoresistant cancers; subsequently, we discussed the natural products (scoulerine, Corynoline, Hesperidin Jadomycin-B, fisetin), and synthetic, medicinal chemistry molecules as aurora kinase inhibitors (AKIs). Several natural products' efficacy was explained as AKIs in chemosensitization and chemoresistant cancers. For instance, novel triazole molecules have been used against gastric cancer, whereas cyanopyridines are used against colorectal cancer and trifluoroacetate derivatives could be used for esophageal cancer. Furthermore, quinolone hydrazine derivatives can be used to target breast cancer and cervical cancer. In contrast, the indole derivatives can be preferred to target oral cancer whereas thiosemicarbazone-indole could be used against prostate cancer, as reported in an earlier investigation against cancerous cells. Moreover, these chemical derivatives can be examined as AKIs through preclinical studies. In addition, the synthesis of novel AKIs through these medicinal chemistry substrates in the laboratory using in silico and synthetic routes could be beneficial to develop prospective novel AKIs to target chemoresistant cancers. This study is beneficial to oncologists, chemists, and medicinal chemists to explore novel chemical moiety synthesis to target specifically the peptide sequences of aurora kinases in several chemoresistant cancer cell types.
Collapse
Affiliation(s)
- Pooja Kumari
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | - Narasimha Murthy Beeraka
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya str., Moscow 119991, Russia
| | - Anandkumar Tengli
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | - Gurupadayya Bannimath
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | - Ramandeep Kaur Baath
- Department of Pharmaceautics, IFTM University, Lodhipur Rajput, NH-24 Delhi Road, Moradabad 244102, Uttar Pradesh, India
| | - Mayuri Patil
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| |
Collapse
|
7
|
Markowska A, Antoszczak M, Kacprzak K, Markowska J, Huczyński A. Role of Fisetin in Selected Malignant Neoplasms in Women. Nutrients 2023; 15:4686. [PMID: 37960338 PMCID: PMC10648688 DOI: 10.3390/nu15214686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
A promising therapeutic window and cost-effectiveness are just two of the potential advantages of using naturally derived drugs. Fisetin (3,3',4',7-tetrahydroxyflavone) is a natural flavonoid of the flavonol group, commonly found in fruit and vegetables. In recent years, fisetin has gained wide attention across the scientific community because of its broad spectrum of pharmacological properties, including cytotoxic activity against most abundant cancers. By stimulating or inhibiting selected molecular targets or biochemical processes, fisetin could affect the reduction of metastasis or cancer progression, which indicates its chemotherapeutic or chemopreventive role. In this review, we have summarized the results of studies on the anticancer effects of fisetin on selected female malignancies, both in in vitro and in vivo tests, i.e., breast, cervical, and ovarian cancer, published over the past two decades. Until now, no article dedicated exclusively to the action of fisetin on female malignancies has appeared. This review also describes a growing number of nanodelivery systems designed to improve the bioavailability and solubility of this natural compound. The reported low toxicity and activity of fisetin on cancer cells indicate its valuable potential, but large-scale clinical trials are urgently needed to assess real chemotherapeutic efficacy of this flavonoid.
Collapse
Affiliation(s)
- Anna Markowska
- Department of Perinatology and Women’s Health, Poznań University of Medical Sciences, 60-535 Poznań, Poland;
| | - Michał Antoszczak
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland; (M.A.); (K.K.)
| | - Karol Kacprzak
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland; (M.A.); (K.K.)
| | - Janina Markowska
- Gynecological Oncology Center, Poznańska 58A, 60-850 Poznań, Poland;
| | - Adam Huczyński
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland; (M.A.); (K.K.)
| |
Collapse
|
8
|
Flore G, Deledda A, Lombardo M, Armani A, Velluzzi F. Effects of Functional and Nutraceutical Foods in the Context of the Mediterranean Diet in Patients Diagnosed with Breast Cancer. Antioxidants (Basel) 2023; 12:1845. [PMID: 37891924 PMCID: PMC10603973 DOI: 10.3390/antiox12101845] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Several studies report that breast cancer survivors (BCS) tend to have a poor diet, as fruit, vegetable, and legume consumption is often reduced, resulting in a decreased intake of nutraceuticals. Moreover, weight gain has been commonly described among BCS during treatment, increasing recurrence rate and mortality. Improving lifestyle and nutrition after the diagnosis of BC may have important benefits on patients' general health and on specific clinical outcomes. The Mediterranean diet (MD), known for its multiple beneficial effects on health, can be considered a nutritional pool comprising several nutraceuticals: bioactive compounds and foods with anti-inflammatory and antioxidant effects. Recent scientific advances have led to the identification of nutraceuticals that could amplify the benefits of the MD and favorably influence gene expression in these patients. Nutraceuticals could have beneficial effects in the postdiagnostic phase of BC, including helping to mitigate the adverse effects of chemotherapy and radiotherapy. Moreover, the MD could be a valid and easy-to-follow option for managing excess weight. The aim of this narrative review is to evaluate the recent scientific literature on the possible beneficial effects of consuming functional and nutraceutical foods in the framework of MD in BCS.
Collapse
Affiliation(s)
- Giovanna Flore
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (G.F.); (A.D.); (F.V.)
| | - Andrea Deledda
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (G.F.); (A.D.); (F.V.)
| | - Mauro Lombardo
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Andrea Armani
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
- Laboratory of Cardiovascular Endocrinology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, 00166 Rome, Italy
| | - Fernanda Velluzzi
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (G.F.); (A.D.); (F.V.)
| |
Collapse
|
9
|
Imtiyaz K, Husain Rahmani A, Alsahli MA, Almatroodi SA, Rizvi MMA. Fisetin induces apoptosis in human skin cancer cells through downregulating MTH1. J Biomol Struct Dyn 2023; 41:7339-7353. [PMID: 36129011 DOI: 10.1080/07391102.2022.2121323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/27/2022] [Indexed: 10/14/2022]
Abstract
Fisetin, a natural flavonoid molecule, has been shown to have anticancer properties against various malignancies. In this investigation, we discovered that Fisetin decreased cell viability of both the treated skin cancer cell lines A375 and A431 in a dose and time-dependent manner. The IC50 values ranging from 57.60 µM ± 6.59 to 41.70 µM ± 1.25 in A375 and 48.70 µM ± 5.49 to 33.67 µM ± 1.03 for A431 at the observed time ranging between 24 h to 72 h of treatment remained quite enthusiastic when compared with the normal HEK 293 cells. Fisetin significantly decreased colony formation and migratory ability of the cancer cells. Flow cytometry analysis revealed that Fisetin significantly restricted the progression of skin cancer cells in the G0/G1 phase of the cell cycle and induced cells to undergo apoptosis by increasing reactive oxygen species, decreasing mitochondrial membrane potential, and elevating the count of early and late apoptotic cells. Our in silico studies of molecular docking followed by molecular dynamics simulation found that the interactions and stability of MTH1 protein with Fisetin further showed a considerable binding affinity for MTH1 (-11.4 kcal/mol) and developed stable complexes maintained throughout 100 ns trajectories. Our western blot analysis endorsed this. We found that Fisetin downregulated the expression levels of MTH1 also in addition, it played a crucial role in regulation of apoptotic events in cancer cells. We therefore, conclude that Fisetin anticancer properties against skin cancer cells are mediated through MTH1 inhibition followed by ATM and P53 upregulation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Khalid Imtiyaz
- Department of Bioscience, Genome Biology Lab, New Delhi, India
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Saleh A Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | | |
Collapse
|
10
|
Jalalpour Choupanan M, Shahbazi S, Reiisi S. Naringenin in combination with quercetin/fisetin shows synergistic anti-proliferative and migration reduction effects in breast cancer cell lines. Mol Biol Rep 2023; 50:7489-7500. [PMID: 37480513 DOI: 10.1007/s11033-023-08664-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/03/2023] [Indexed: 07/24/2023]
Abstract
INTRODUCTION & AIM Breast cancer is one of the most common cancers with a high mortality rate among women worldwide. Quercetin/fisetin and naringenin, three well-known flavonoids, have been used to fight against various cancers. The aim of the present study was to investigate the possible synergism of quercetin/fisetin with naringenin on MCF7 and MDA-MB-231 breast cancer cell lines. METHODS In this study, cultured MCF7 and MDA-MB-231 cells were treated with different concentrations of quercetin/fisetin individually and in combination with naringenin. MTT assay and scratch assay was employed to determine cell viability and migration respectively. Real-time PCR was used to study the expression level of apoptosis genes and miR-1275 (tumor suppressor miRNA) and mir-27a-3p (oncogenic miRNA). RESULTS A synergism effect of quercetin/fisetin and naringenin (CI < 1) was observed for both cell lines. Combination therapies were significantly more effective in cell growth reduction, migration suppression and apoptosis induction than single therapies. Gene expression analysis revealed the upregulation of miR-1275 and downregulation miR-27a-3p. CONCLUSION Our results indicate that quercetin/fisetin enhances the anti-proliferative and anti-migratory activities in combination with naringenin in MCF7 and MDA-MB-231 human breast cancer cell lines. Therefore, the combination of Que/Fis and Nar can be proposed as a promising therapeutic strategy for further investigations.
Collapse
Affiliation(s)
| | - Shahrzad Shahbazi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Somayeh Reiisi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran.
| |
Collapse
|
11
|
Farghadani R, Naidu R. The anticancer mechanism of action of selected polyphenols in triple-negative breast cancer (TNBC). Biomed Pharmacother 2023; 165:115170. [PMID: 37481930 DOI: 10.1016/j.biopha.2023.115170] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023] Open
Abstract
Breast cancer is a leadingcause of cancer-related deaths in women globally, with triple-negative breast cancer (TNBC) being an aggressive subtype that lacks targeted therapies and is associated with a poor prognosis. Polyphenols, naturally occurring compounds in plants, have been investigated as a potential therapeutic strategy for TNBC. This review provides an overview of the anticancer effects of polyphenols in TNBC and their mechanisms of action. Several polyphenols, including resveratrol, quercetin, kaempferol, genistein, epigallocatechin-3-gallate, apigenin, fisetin, hesperetin and luteolin, have been shown to inhibit TNBC cell proliferation, induce cell cycle arrest, promote apoptosis, and suppress migration/invasion in preclinical models. The molecular mechanisms underlying their anticancer effects involve the modulation of several signalling pathways, such as PI3K/Akt, MAPK, STATT, and NF-κB pathways. Polyphenols also exhibit synergistic effects with chemotherapy drugs, making them promising candidates for combination therapy. The review also highlights clinical trials investigating the potential use of polyphenols, individually or in combination therapy, against breast cancer. This review deepens the under-standing of the mechanism of action of respective polyphenols and provides valuable insights into the potential use of polyphenols as a therapeutic strategy for TNBC, and lays the groundwork for future research in this area.
Collapse
Affiliation(s)
- Reyhaneh Farghadani
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia.
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia.
| |
Collapse
|
12
|
Talaat SM, Elnaggar YSR, El-Ganainy SO, Gowayed MA, Allam M, Abdallah OY. Self-assembled fisetin-phospholipid complex: Fisetin-integrated phytosomes for effective delivery to breast cancer. Eur J Pharm Biopharm 2023; 189:174-188. [PMID: 37343893 DOI: 10.1016/j.ejpb.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/02/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Nowadays, fisetin (FIS) is extensively studied as potent anticancer surrogate with a multitarget actions against various types of cancers including breast cancer. However, its poor aqueous solubility handicapped its clinical utility. The current work endeavored, for the first time, to develop FIS phytosomes (FIS-PHY) for improving its physicochemical properties and subsequently its anticancer activity. Optimization of FIS- phytosomes involved different preparation techniques (Thin film hydration and ethanol injection) and different FIS: phospholipid molar ratios (1:1, 1:2, and 1:3). Complex formation was confirmed by complexation efficiency, infrared spectroscopy (IR), solubility studies and transmission electron microscope. The optimized FIS-PHY of 1:1 M ratio (PHY1) exhibited a nanometric particle size of 233.01 ± 9.46 nm with homogenous distribution (PDI = 0.27), negative zeta potential of - 29.41 mV, 100% complexation efficiency and controlled drug release over 24 h. In-vitro cytotoxicity study showed 2.5-fold decrease in IC50 of PHY1 compared with free FIS. Also, pharmacodynamic studies confirmed the promoted cytotoxicity of PHY1 against breast cancer through modulating TGF-β1/MMP-9 molecular pathways of tumorigenesis. Overall, overcoming FIS drawbacks were successfully achieved through development of innovative biocompatible phytosomal system.
Collapse
Affiliation(s)
- Sara M Talaat
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt
| | - Yosra S R Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt; Head of International Publication and Nanotechnology Center INCC, Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University of Alexandria, Egypt
| | - Samar O El-Ganainy
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Mennatallah A Gowayed
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Maram Allam
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt
| |
Collapse
|
13
|
Wendlocha D, Krzykawski K, Mielczarek-Palacz A, Kubina R. Selected Flavonols in Breast and Gynecological Cancer: A Systematic Review. Nutrients 2023; 15:2938. [PMID: 37447264 DOI: 10.3390/nu15132938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
The consumption of foods that are rich in phenolic compounds has chemopreventive effects on many cancers, including breast cancer, ovarian cancer, and endometrial cancer. A wide spectrum of their health-promoting properties such as antioxidant, anti-inflammatory, and anticancer activities, has been demonstrated. This paper analyzes the mechanisms of the anticancer action of selected common flavonols, including kemferol, myricetin, quercetin, fisetin, galangin, isorhamnetin, and morin, in preclinical studies, with particular emphasis on in vitro studies in gynecological cancers and breast cancer. In the future, these compounds may find applications in the prevention and treatment of gynecological cancers and breast cancer, but this requires further, more advanced research.
Collapse
Affiliation(s)
- Dominika Wendlocha
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Kamil Krzykawski
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 40-752 Katowice, Poland
| | - Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Robert Kubina
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 40-752 Katowice, Poland
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| |
Collapse
|
14
|
Aboushanab AR, El-Moslemany RM, El-Kamel AH, Mehanna RA, Bakr BA, Ashour AA. Targeted Fisetin-Encapsulated β-Cyclodextrin Nanosponges for Breast Cancer. Pharmaceutics 2023; 15:1480. [PMID: 37242722 PMCID: PMC10223291 DOI: 10.3390/pharmaceutics15051480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/25/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Fisetin (FS) is considered a safer phytomedicine alternative to conventional chemotherapeutics for breast cancer treatment. Despite its surpassing therapeutic potential, its clinical utility is hampered by its low systemic bioavailability. Accordingly, as far as we are aware, this is the first study to develop lactoferrin-coated FS-loaded β-cyclodextrin nanosponges (LF-FS-NS) for targeted FS delivery to breast cancer. NS formation through cross-linking of β-cyclodextrin by diphenyl carbonate was confirmed by FTIR and XRD. The selected LF-FS-NS showed good colloidal properties (size 52.7 ± 7.2 nm, PDI < 0.3, and ζ-potential 24 mV), high loading efficiency (96 ± 0.3%), and sustained drug release of 26 % after 24 h. Morphological examination using SEM revealed the mesoporous spherical structure of the prepared nanosponges with a pore diameter of ~30 nm, which was further confirmed by surface area measurement. Additionally, LF-FS-NS enhanced FS oral and IP bioavailability (2.5- and 3.2-fold, respectively) compared to FS suspension in rats. Antitumor efficacy evaluation in vitro on MDA-MB-231 cells and in vivo on an Ehrlich ascites mouse model demonstrated significantly higher activity and targetability of LF-FS-NS (30 mg/kg) compared to the free drug and uncoated formulation. Consequently, LF-FS-NS could be addressed as a promising formulation for the effective management of breast cancer.
Collapse
Affiliation(s)
- Alaa R. Aboushanab
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21525, Egypt
| | - Riham M. El-Moslemany
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21525, Egypt
| | - Amal H. El-Kamel
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21525, Egypt
| | - Radwa A. Mehanna
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria 21525, Egypt
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria 21525, Egypt
| | - Basant A. Bakr
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21525, Egypt
| | - Asmaa A. Ashour
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21525, Egypt
| |
Collapse
|
15
|
Afzal M, Alarifi A, Karami AM, Ayub R, Abduh NAY, Saeed WS, Muddassir M. Antiproliferative Mechanisms of a Polyphenolic Combination of Kaempferol and Fisetin in Triple-Negative Breast Cancer Cells. Int J Mol Sci 2023; 24:ijms24076393. [PMID: 37047366 PMCID: PMC10094218 DOI: 10.3390/ijms24076393] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/16/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
Herein, we investigate the combinatorial therapeutic effects of naturally occurring flavonoids kaempferol (K) and fisetin (F) on triple-negative breast cancer (TNBC: MDA-MB-231 cell line). Dose-dependent MTT assay results show that K and F exhibited cytotoxicity in MDA-MB-231 cells at 62 and 75 μM (IC50), respectively, after 24 h. However, combined K + F led to 40% and more than 50% TNBC cell death observed at 10 and 20 μM, respectively, which revealed the synergistic association of both. The combination of K and F was determined to be more effective in inhibiting cell viability than either of the agents alone. The morphological changes associated with significant apoptotic cell death were observed under a fluorescent microscope, strongly supporting the synergistic association between K and F. We also proposed that combining the effects of both polyphenols, as opposed to their individual effects, would increase their in vitro efficacy. Furthermore, we assessed the cell death pathway by the combinational treatment via reactive oxygen species-induced DNA damage and the mitochondrially mediated apoptotic pathway. This study reveals the prominent synergistic role of phytochemicals, which helps in elevating the therapeutic efficacy of dietary nutrients and that anticancer effects may be a result of nutrients that act in concert.
Collapse
Affiliation(s)
- Mohd. Afzal
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence:
| | - Abdullah Alarifi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Rashid Ayub
- Department of Science Technology Unit, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naaser A. Y. Abduh
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Waseem Sharaf Saeed
- Restorative Dental Sciences Department, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | - Mohd. Muddassir
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
16
|
Sarvarian P, Samadi P, Gholipour E, khodadadi M, Pourakbari R, Akbarzadelale P, Shamsasenjan K. Fisetin-loaded grape-derived nanoparticles improve anticancer efficacy in MOLT-4 cells. Biochem Biophys Res Commun 2023; 658:69-79. [PMID: 37027907 DOI: 10.1016/j.bbrc.2023.03.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/15/2023] [Indexed: 03/17/2023]
Abstract
PURPOSE Fisetin (FIS) is a natural flavonoid with anti-proliferative and anti-apoptotic effects on different human cancer cell lines and can be considered a therapeutic agent for ALL treatment. However, FIS has little aqueous solubility and bioavailability, limiting its therapeutic applications. Thus, novel drug delivery systems are needed to improve solubility and bioavailability of FIS. Plant-derived nanoparticles (PDNPs) could be considered a great delivery system for FIS to the target tissues. In this study, we investigated the anti-proliferative and anti-apoptotic effect of free FIS and FIS-loaded Grape-derived Nanoparticles (GDN) FIS-GDN in MOLT-4 cells. MATERIALS/METHODS In this study, MOLT-4 cells were treated with increasing concentration of FIS and FIS-GDN and viability of cells were assessed by MTT assay. Additionally, cellular apoptosis rate and related genes expression were evaluated using flow cytometry and Real Time-PCR methods, respectively. RESULTS FIS and FIS-GDN decreased cells viability and increased cells apoptosis dose-dependently, but not time dependently. Treatment of MOLT-4 cells with increasing concentrations of FIS and FIS-GDN considerably increased the expression of caspase 3, 8 and 9 and Bax level, and also decreased the expression of Bcl-2. Results indicated an increased apoptosis after increased concentration of FIS and FIS-GDN at 24, 48 and 72 h. CONCLUSIONS Our data proposed that FIS and FIS-GDN can induce apoptosis and have antitumor properties in MOLT-4 cells. Furthermore, compared to FIS, FIS-GDN induced more apoptosis in these cells by increasing the solubility and efficiency of FIS. Additionally, GDNs increased FIS effectiveness in proliferation inhibition and apoptosis induction.
Collapse
|
17
|
AFROZE N, SUNDARAM MK, RAINA R, JATHAN J, BHAGAVATULA D, HAQUE S, HUSSAIN A. Concurrent treatment of flavonol with chemotherapeutics potentiates or counteracts the therapeutic implications in cervical cancer cells. MINERVA BIOTECHNOLOGY AND BIOMOLECULAR RESEARCH 2023. [DOI: 10.23736/s2724-542x.22.02938-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
18
|
Kumar RM, Kumar H, Bhatt T, Jain R, Panchal K, Chaurasiya A, Jain V. Fisetin in Cancer: Attributes, Developmental Aspects, and Nanotherapeutics. Pharmaceuticals (Basel) 2023; 16:196. [PMID: 37259344 PMCID: PMC9961076 DOI: 10.3390/ph16020196] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 09/21/2023] Open
Abstract
Cancer is one of the major causes of mortality, globally. Cancerous cells invade normal cells and metastasize to distant sites with the help of the lymphatic system. There are several mechanisms involved in the development and progression of cancer. Several treatment strategies including the use of phytoconstituents have evolved and been practiced for better therapeutic outcomes against cancer. Fisetin is one such naturally derived flavone that offers numerous pharmacological benefits, i.e., antioxidant, anti-inflammatory, antiangiogenic, and anticancer properties. It inhibits the rapid growth, invasiveness, and metastasis of tumors by hindering the multiplication of cancer cells, and prompts apoptosis by avoiding cell division related to actuation of caspase-9 and caspase-8. However, its poor bioavailability associated with its extreme hydrophobicity hampers its clinical utility. The issues related to fisetin delivery can be addressed by adapting to the developmental aspects of nanomedicines, such as formulating it into lipid or polymer-based systems, including nanocochleates and liposomes. This review aims to provide in-depth information regarding fisetin as a potential candidate for anticancer therapy, its properties and various formulation strategies.
Collapse
Affiliation(s)
- Rachna M. Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Hitesh Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Tanvi Bhatt
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Rupshee Jain
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India
| | - Kanan Panchal
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Hyderabad, Telangana 500078, India
| | - Akash Chaurasiya
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Hyderabad, Telangana 500078, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| |
Collapse
|
19
|
Rahmani AH, Almatroudi A, Allemailem KS, Khan AA, Almatroodi SA. The Potential Role of Fisetin, a Flavonoid in Cancer Prevention and Treatment. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27249009. [PMID: 36558146 PMCID: PMC9782831 DOI: 10.3390/molecules27249009] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Cancer is a main culprit and the second-leading cause of death worldwide. The current mode of treatment strategies including surgery with chemotherapy and radiation therapy may be effective, but cancer is still considered a major cause of death. Plant-derived products or their purified bioactive compounds have confirmed health-promoting effects as well as cancer-preventive effects. Among these products, flavonoids belong to polyphenols, chiefly found in fruits, vegetables and in various seeds/flowers. It has been considered to be an effective antioxidant, anti-inflammatory and to play a vital role in diseases management. Besides these activities, flavonoids have been revealed to possess anticancer potential through the modulation of various cell signaling molecules. In this regard, fisetin, a naturally occurring flavonoid, has a confirmed role in disease management through antioxidant, neuro-protective, anti-diabetic, hepato-protective and reno-protective potential. As well, its cancer-preventive effects have been confirmed via modulating various cell signaling pathways including inflammation, apoptosis, angiogenesis, growth factor, transcription factor and other cell signaling pathways. This review presents an overview of the anti-cancer potential of fisetin in different types of cancer through the modulation of cell signaling pathways based on in vivo and in vitro studies. A synergistic effect with anticancer drugs and strategies to improve the bioavailability are described. More clinical trials need to be performed to explore the anti-cancer potential and mechanism-of-action of fisetin and its optimum therapeutic dose.
Collapse
Affiliation(s)
- Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
- Correspondence:
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| |
Collapse
|
20
|
Talaat SM, Elnaggar YSR, El-Ganainy SO, Gowayed MA, Abdel-Bary A, Abdallah OY. Novel bio-inspired lipid nanoparticles for improving the anti-tumoral efficacy of fisetin against breast cancer. Int J Pharm 2022; 628:122184. [PMID: 36252641 DOI: 10.1016/j.ijpharm.2022.122184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/20/2022] [Accepted: 09/03/2022] [Indexed: 10/31/2022]
Affiliation(s)
- Sara M Talaat
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt.
| | - Yosra S R Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt; Head of International Publication and Nanotechnology Center INCC, Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University of Alexandria, Egypt
| | - Samar O El-Ganainy
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Mennatallah A Gowayed
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Amany Abdel-Bary
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt
| |
Collapse
|
21
|
Solanki R, Jodha B, Prabina KE, Aggarwal N, Patel S. Recent advances in phytochemical based nano-drug delivery systems to combat breast cancer: A review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Kubina R, Krzykawski K, Kabała-Dzik A, Wojtyczka RD, Chodurek E, Dziedzic A. Fisetin, a Potent Anticancer Flavonol Exhibiting Cytotoxic Activity against Neoplastic Malignant Cells and Cancerous Conditions: A Scoping, Comprehensive Review. Nutrients 2022; 14:2604. [PMID: 35807785 PMCID: PMC9268460 DOI: 10.3390/nu14132604] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 12/10/2022] Open
Abstract
Diet plays a crucial role in homeostasis maintenance. Plants and spices containing flavonoids have been widely used in traditional medicine for thousands of years. Flavonols present in our diet may prevent cancer initiation, promotion and progression by modulating important enzymes and receptors in signal transduction pathways related to proliferation, differentiation, apoptosis, inflammation, angiogenesis, metastasis and reversal of multidrug resistance. The anticancer activity of fisetin has been widely documented in numerous in vitro and in vivo studies. This review summarizes the worldwide, evidence-based research on the activity of fisetin toward various types of cancerous conditions, while describing the chemopreventive and therapeutic effects, molecular targets and mechanisms that contribute to the observed anticancer activity of fisetin. In addition, this review synthesized the results from preclinical studies on the use of fisetin as an anticancer agent. Based on the available literature, it might be suggested that fisetin has a bioactive potential to become a complementary drug in the prevention and treatment of cancerous conditions. However, more in-depth research is required to validate current data, so that this compound or its derivatives can enter the clinical trial phase.
Collapse
Affiliation(s)
- Robert Kubina
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 30 Ostrogórska Str., 41-200 Sosnowiec, Poland;
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 18 Medyków Str., 40-752 Katowice, Poland;
| | - Kamil Krzykawski
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 18 Medyków Str., 40-752 Katowice, Poland;
| | - Agata Kabała-Dzik
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 30 Ostrogórska Str., 41-200 Sosnowiec, Poland;
| | - Robert D. Wojtyczka
- Department of Microbiology and Virology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland;
| | - Ewa Chodurek
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 8 Jedności Str., 41-208 Sosnowiec, Poland;
| | - Arkadiusz Dziedzic
- Department of Conservative Dentistry with Endodontics, Medical University of Silesia, 17 Akademicki Sq., 41-902 Bytom, Poland;
| |
Collapse
|
23
|
Totakul P, Viennasay B, Sommai S, Matra M, Infascelli F, Wanapat M. Chaya (Cnidoscolus aconitifolius, Mill. Johnston) pellet supplementation improved rumen fermentation, milk yield and milk composition of lactating dairy cows. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Afroze N, Pramodh S, Shafarin J, Bajbouj K, Hamad M, Sundaram MK, Haque S, Hussain A. Fisetin Deters Cell Proliferation, Induces Apoptosis, Alleviates Oxidative Stress and Inflammation in Human Cancer Cells, HeLa. Int J Mol Sci 2022; 23:ijms23031707. [PMID: 35163629 PMCID: PMC8835995 DOI: 10.3390/ijms23031707] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/11/2022] Open
Abstract
Background: Fisetin, a flavonol profusely found in vegetables and fruits, exhibited a myriad of properties in preclinical studies to impede cancer growth. Purpose: This study was proposed to delineate molecular mechanisms through analysing the modulated expression of various molecular targets in HeLa cells involved in proliferation, apoptosis and inflammation. Methods: MTT assay, flow cytometry, nuclear morphology, DNA fragmentation and Annexin–Pi were performed to evaluate the anti-cancer potential of fisetin. Furthermore, qPCR and proteome profiler were performed to analyse the expression of variety of gene related to cell death, cell proliferation, oxidative stress and inflammation and cancer pathways. Results: Fisetin demonstrated apoptotic inducing ability in HeLa cells, which was quite evident through nuclear morphology, DNA ladder pattern, decreased TMRE fluorescent intensity, cell cycle arrest at G2/M and increased early and late apoptosis. Furthermore, fisetin treatment modulated pro-apoptotic genes such as APAF1, Bad, Bax, Bid and BIK at both transcript and protein levels and anti-apoptotic gene Bcl-2, BIRC8, MCL-1, XIAP/BIRC4, Livin/BIRC7, clap-2/BIRC3, etc. at protein levels to mitigate cell proliferation and induce apoptosis. Interestingly, the aforementioned alterations consequently led to an elevated level of Caspase-3, Caspase-8 and Caspase-9, which was found to be consistent with the transcript and protein level expression. Moreover, fisetin downregulated the expression of AKT and MAPK pathways to avert proliferation and enhance apoptosis of cancer cells. Fisetin treatment also improves oxidative stress and alleviates inflammation by regulating JAK-STAT/NF-kB pathways. Conclusion: Together, these studies established that fisetin deters human cervical cancer cell proliferation, enhances apoptosis and ameliorates inflammation through regulating various signalling pathways that may be used as a therapeutic regime for better cancer management.
Collapse
Affiliation(s)
- Nazia Afroze
- School of Life Sciences, Manipal Academy of Higher Education-Dubai Campus, Dubai P.O. Box 345050, United Arab Emirates; (N.A.); (M.K.S.)
| | - Sreepoorna Pramodh
- Department of Life and Environmental Sciences, College of Natural and Health Science, Zayed University, Dubai P.O. Box 19282, United Arab Emirates;
| | - Jasmin Shafarin
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (J.S.); (K.B.); (M.H.)
| | - Khuloud Bajbouj
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (J.S.); (K.B.); (M.H.)
| | - Mawieh Hamad
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (J.S.); (K.B.); (M.H.)
| | - Madhumitha Kedhari Sundaram
- School of Life Sciences, Manipal Academy of Higher Education-Dubai Campus, Dubai P.O. Box 345050, United Arab Emirates; (N.A.); (M.K.S.)
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan P.O. Box 114, Saudi Arabia;
- Faculty of Medicine, Görükle Campus, Bursa Uludağ University, Nilüfer 16059, Turkey
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education-Dubai Campus, Dubai P.O. Box 345050, United Arab Emirates; (N.A.); (M.K.S.)
- Correspondence:
| |
Collapse
|
25
|
Wu Q, Wang SP, Sun XX, Tao YF, Yuan XQ, Chen QM, Dai L, Li CL, Zhang JY, Yang AL. HuaChanSu suppresses tumor growth and interferes with glucose metabolism in hepatocellular carcinoma cells by restraining Hexokinase-2. Int J Biochem Cell Biol 2022; 142:106123. [PMID: 34826616 DOI: 10.1016/j.biocel.2021.106123] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/30/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) has become the sixth highly diagnosed cancer and the fourth main reason of cancer deaths worldwide. HuaChanSu, an extract from dried toad skin, exhibits good anticancer effects and has been widely used in the treatment of liver cancer. The reprogramming of glucose metabolism is one remarkable feature of hepatocellular carcinoma, and the effects of HuaChanSu on the abnormal glucose metabolism of cancer cells have not been elucidated. In our study, we investigate the effects of HuaChanSu on glucose metabolism of hepatocellular carcinoma cells and tumor growth in vivo. The results show that HuaChanSu inhibits the tumor growth of hepatoma H22-bearing mice and prolongs the survival time of tumor-bearing mice, additionally, HuaChanSu has no obvious adverse effects in these mice. In vitro, HuaChanSu restrains the proliferation, induces apoptosis and cell cycle arrest of human hepatoma cells. HuaChanSu also promotes ROS production and causes mitochondrial damage. Furthermore, HuaChanSu inhibits glucose uptake and lactate release in human hepatoma cells. Mechanistically, we find that HuaChanSu downregulates Hexokinase-2 (HK2) expression, and using RNA interference, we confirm that HuaChanSu suppresses the growth of HepG2 cells by interfering with glucose metabolism through downregulation of Hexokinase-2. However, knockdown of Hexokinase-2 has no obvious effect on the proliferation of SK-HEP-1 cells, although glucose uptake and lactate release are reduced in siHK2-transfected SK-HEP-1 cells, subsequently, we illustrate that two human hepatoma cell lines exhibit glucose metabolism heterogeneity, which causes the different cell proliferation responses to the inhibition of Hexokinase-2. Taken together, our study indicates that HuaChanSu could inhibit tumor growth and interfere with glucose metabolism via suppression of Hexokinase-2, and these findings provide a new insight into the anti-hepatoma mechanisms of HuaChanSu and lay a theoretical foundation for the further clinical application of HuaChanSu.
Collapse
Affiliation(s)
- Qi Wu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Shao-Ping Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Xiao-Xue Sun
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yu-Fan Tao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Xiao-Qing Yuan
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Qi-Mei Chen
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Long Dai
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Chun-Lei Li
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou 510632, China.
| | - Jia-Yu Zhang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| | - Ai-Lin Yang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
26
|
Kammerud SC, Metge BJ, Elhamamsy AR, Weeks SE, Alsheikh HA, Mattheyses AL, Shevde LA, Samant RS. Novel role of the dietary flavonoid fisetin in suppressing rRNA biogenesis. J Transl Med 2021; 101:1439-1448. [PMID: 34267320 PMCID: PMC8510891 DOI: 10.1038/s41374-021-00642-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022] Open
Abstract
The nucleolus of a cell is a critical cellular compartment that is responsible for ribosome biogenesis and plays a central role in tumor progression. Fisetin, a nutraceutical, is a naturally occurring flavonol from the flavonoid group of polyphenols that has anti-cancer effects. Fisetin negatively impacts several signaling pathways that support tumor progression. However, effect of fisetin on the nucleolus and its functions were unknown. We observed that fisetin is able to physically enter the nucleolus. In the nucleolus, RNA polymerase I (RNA Pol I) mediates the biogenesis of ribosomal RNA. Thus, we investigated the impacts of fisetin on the nucleolus. We observed that breast tumor cells treated with fisetin show a 20-30% decreased nucleolar abundance per cell and a 30-60% downregulation of RNA Pol I transcription activity, as well as a 50-70% reduction in nascent rRNA synthesis, depending on the cell line. Our studies show that fisetin negatively influences MAPK/ERK pathway to impair RNA Pol I activity and rRNA biogenesis. Functionally, we demonstrate that fisetin acts synergistically (CI = 0.4) with RNA Pol I inhibitor, BMH-21 and shows a noteworthy negative impact (60% decrease) on lung colonization of breast cancer cells. Overall, our findings highlight the potential of ribosomal RNA (rRNA) biogenesis as a target for secondary prevention and possible treatment of metastatic disease.
Collapse
Affiliation(s)
- Sarah C Kammerud
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brandon J Metge
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amr R Elhamamsy
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shannon E Weeks
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Heba A Alsheikh
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alexa L Mattheyses
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lalita A Shevde
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rajeev S Samant
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Birmingham VA Medical Center, Birmingham, AL, USA.
| |
Collapse
|
27
|
Das A, Agarwal P, Jain GK, Aggarwal G, Lather V, Pandita D. Repurposing drugs as novel triple negative breast cancer therapeutics. Anticancer Agents Med Chem 2021; 22:515-550. [PMID: 34674627 DOI: 10.2174/1871520621666211021143255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/23/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Among all the types of breast cancer (BC), triple negative breast cancer (TNBC) is the most aggressive form having high metastasis and recurrence rate with limited treatment options. Conventional treatments such as chemotherapy and radiotherapy have lots of toxic side effects and also no FDA approved therapies are available till now. Repurposing of old clinically approved drugs towards various targets of TNBC is the new approach with lesser side effects and also leads to successful inexpensive drug development with less time consuming. Medicinal plants containg various phytoconstituents (flavonoids, alkaloids, phenols, essential oils, tanins, glycosides, lactones) plays very crucial role in combating various types of diseases and used in drug development process because of having lesser side effects. OBJECTIVE The present review focuses in summarization of various categories of repurposed drugs against multitarget of TNBC and also summarizes the phytochemical categories that targets TNBC singly or in combination with synthetic old drugs. METHODS Literature information was collected from various databases such as Pubmed, Web of Science, Scopus and Medline to understand and clarify the role and mechanism of repurposed synthetic drugs and phytoconstituents aginst TNBC by using keywords like "breast cancer", "repurposed drugs", "TNBC" and "phytoconstituents". RESULTS Various repurposed drugs and phytochemicals targeting different signaling pathways that exerts their cytotoxic activities on TNBC cells ultimately leads to apoptosis of cells and also lowers the recurrence rate and stops the metastasis process. CONCLUSION Inhibitory effects seen in different levels, which provides information and evidences to researchers towards drug developments process and thus further more investigations and researches need to be taken to get the better therapeutic treatment options against TNBC.
Collapse
Affiliation(s)
- Amiya Das
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, 201313. India
| | - Pallavi Agarwal
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, 201313. India
| | - Gaurav Kumar Jain
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences & Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, Govt. of NCT of Delhi, New Delhi, 110017. India
| | - Geeta Aggarwal
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences & Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, Govt. of NCT of Delhi, New Delhi, 110017. India
| | - Viney Lather
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sector-125, Noida, 201313. India
| | - Deepti Pandita
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences & Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, Govt. of NCT of Delhi, New Delhi, 110017. India
| |
Collapse
|
28
|
Epithelial-to-Mesenchymal Transition Is Not a Major Modulating Factor in the Cytotoxic Response to Natural Products in Cancer Cell Lines. Molecules 2021; 26:molecules26195858. [PMID: 34641401 PMCID: PMC8512490 DOI: 10.3390/molecules26195858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
Numerous natural products exhibit antiproliferative activity against cancer cells by modulating various biological pathways. In this study, we investigated the potential use of eight natural compounds (apigenin, curcumin, epigallocatechin gallate, fisetin, forskolin, procyanidin B2, resveratrol, urolithin A) and two repurposed agents (fulvestrant and metformin) as chemotherapy enhancers and mesenchymal-to-epithelial (MET) inducers of cancer cells. Screening of these compounds in various colon, breast, and pancreatic cancer cell lines revealed anti-cancer activity for all compounds, with curcumin being the most effective among these in all cell lines. Although some of the natural products were able to induce MET in some cancer cell lines, the MET induction was not related to increased synergy with either 5-FU, irinotecan, gemcitabine, or gefitinib. When synergy was observed, for example with curcumin and irinotecan, this was unrelated to MET induction, as assessed by changes in E-cadherin and vimentin expression. Our results show that MET induction is compound and cell line specific, and that MET is not necessarily related to enhanced chemosensitivity.
Collapse
|
29
|
Development, Characterization and Cell Viability Inhibition of PVA Spheres Loaded with Doxorubicin and 4'-Amino-1-Naphthyl-Chalcone (D14) for Osteosarcoma. Polymers (Basel) 2021; 13:polym13162611. [PMID: 34451151 PMCID: PMC8401585 DOI: 10.3390/polym13162611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
Chalcones (1,3-diaryl-2-propen-1-ones) are naturally occurring polyphenols with known anticancer activity against a variety of tumor cell lines, including osteosarcoma (OS). In this paper, we present the preparation and characterization of spheres (~2 mm) from polyvinyl alcohol (PVA) containing a combination of 4′-Amino-1-Naphthyl-Chalcone (D14) and doxorubicin, to act as a new polymeric dual-drug anticancer delivery. D14 is a potent inhibitor of osteosarcoma progression and, when combined with doxorubicin, presents a synergetic effect; hence, physically crosslinked PVA spheres loaded with D14 and doxorubicin were prepared using liquid nitrogen and six freeze–thawing cycles. Physical-chemical characterization using a scanning electron microscope (SEM), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) presented that the drugs were incorporated into the spheres via weak interactions between the drugs and the polymeric chains, resulting in overall good drug stability. The cytotoxicity activity of the PVA spheres co-encapsulating both drugs was tested against the U2OS human osteosarcoma cell line by 3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide (MTT) assay, and compared to the spheres carrying either D14 or doxorubicin alone. The co-delivery showed a cytotoxic effect 2.6-fold greater than doxorubicin alone, revealing a significant synergistic effect with a coefficient of drug interaction (CDI) of 0.49. The obtained results suggest this developed PVA sphere as a potential dual-drug delivery system that could be used for the prominent synergistic anticancer activity of co-delivering D14 and doxorubicin, providing a new potential strategy for improved osteosarcoma treatment.
Collapse
|
30
|
Hosseinzadeh E, Hassanzadeh A, Marofi F, Alivand MR, Solali S. Flavonoid-Based Cancer Therapy: An Updated Review. Anticancer Agents Med Chem 2021; 20:1398-1414. [PMID: 32324520 DOI: 10.2174/1871520620666200423071759] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/27/2019] [Accepted: 11/06/2019] [Indexed: 12/24/2022]
Abstract
As cancers are one of the most important causes of human morbidity and mortality worldwide, researchers try to discover novel compounds and therapeutic approaches to decrease survival of cancer cells, angiogenesis, proliferation and metastasis. In the last decade, use of special phytochemical compounds and flavonoids was reported to be an interesting and hopeful tactic in the field of cancer therapy. Flavonoids are natural polyphenols found in plant, fruits, vegetables, teas and medicinal herbs. Based on reports, over 10,000 flavonoids have been detected and categorized into several subclasses, including flavonols, anthocyanins, flavanones, flavones, isoflavones and chalcones. It seems that the anticancer effect of flavonoids is mainly due to their antioxidant and anti inflammatory activities and their potential to modulate molecular targets and signaling pathways involved in cell survival, proliferation, differentiation, migration, angiogenesis and hormone activities. The main aim of this review is to evaluate the relationship between flavonoids consumption and cancer risk, and discuss the anti-cancer effects of these natural compounds in human cancer cells. Hence, we tried to collect and revise important recent in vivo and in vitro researches about the most effective flavonoids and their main mechanisms of action in various types of cancer cells.
Collapse
Affiliation(s)
- Elham Hosseinzadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Hassanzadeh
- Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Solali
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
31
|
The Anticancer Effects of Flavonoids through miRNAs Modulations in Triple-Negative Breast Cancer. Nutrients 2021; 13:nu13041212. [PMID: 33916931 PMCID: PMC8067583 DOI: 10.3390/nu13041212] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/31/2022] Open
Abstract
Triple- negative breast cancer (TNBC) incidence rate has regularly risen over the last decades and is expected to increase in the future. Finding novel treatment options with minimum or no toxicity is of great importance in treating or preventing TNBC. Flavonoids are new attractive molecules that might fulfill this promising therapeutic option. Flavonoids have shown many biological activities, including antioxidant, anti-inflammatory, and anticancer effects. In addition to their anticancer effects by arresting the cell cycle, inducing apoptosis, and suppressing cancer cell proliferation, flavonoids can modulate non-coding microRNAs (miRNAs) function. Several preclinical and epidemiological studies indicate the possible therapeutic potential of these compounds. Flavonoids display a unique ability to change miRNAs' levels via different mechanisms, either by suppressing oncogenic miRNAs or activating oncosuppressor miRNAs or affecting transcriptional, epigenetic miRNA processing in TNBC. Flavonoids are not only involved in the regulation of miRNA-mediated cancer initiation, growth, proliferation, differentiation, invasion, metastasis, and epithelial-to-mesenchymal transition (EMT), but also control miRNAs-mediated biological processes that significantly impact TNBC, such as cell cycle, immune system, mitochondrial dysregulation, modulating signaling pathways, inflammation, and angiogenesis. In this review, we highlighted the role of miRNAs in TNBC cancer progression and the effect of flavonoids on miRNA regulation, emphasizing their anticipated role in the prevention and treatment of TNBC.
Collapse
|
32
|
The Most Competent Plant-Derived Natural Products for Targeting Apoptosis in Cancer Therapy. Biomolecules 2021; 11:biom11040534. [PMID: 33916780 PMCID: PMC8066452 DOI: 10.3390/biom11040534] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/17/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer is a challenging problem for the global health community, and its increasing burden necessitates seeking novel and alternative therapies. Most cancers share six basic characteristics known as "cancer hallmarks", including uncontrolled proliferation, refractoriness to proliferation blockers, escaping apoptosis, unlimited proliferation, enhanced angiogenesis, and metastatic spread. Apoptosis, as one of the best-known programmed cell death processes, is generally promoted through two signaling pathways, including the intrinsic and extrinsic cascades. These pathways comprise several components that their alterations can render an apoptosis-resistance phenotype to the cell. Therefore, targeting more than one molecule in apoptotic pathways can be a novel and efficient approach for both identifying new anticancer therapeutics and preventing resistance to therapy. The main purpose of this review is to summarize data showing that various plant extracts and plant-derived molecules can activate both intrinsic and extrinsic apoptosis pathways in human cancer cells, making them attractive candidates in cancer treatment.
Collapse
|
33
|
Imran M, Saeed F, Gilani SA, Shariati MA, Imran A, Afzaal M, Atif M, Tufail T, Anjum FM. Fisetin: An anticancer perspective. Food Sci Nutr 2021; 9:3-16. [PMID: 33473265 PMCID: PMC7802565 DOI: 10.1002/fsn3.1872] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022] Open
Abstract
Despite the provision of safe and cost-effective chemopreventive cancer approaches, still there are requirements to enhance their efficiency. The use of dietary agents as phytochemicals plays an imperative role against different human cancer cell lines. Among these novel dietary agents, fisetin (3,3',4',7-tetrahydroxyflavone) is present in different fruits and vegetables such as apple, persimmon, grape, strawberry, cucumber, and onion. Being a potent anticancer agent, fisetin has been used to inhibit stages in the cancer cells (proliferation, invasion), prevent cell cycle progression, inhibit cell growth, induce apoptosis, cause polymerase (PARP) cleavage, and modulate the expressions of Bcl-2 family proteins in different cancer cell lines (HT-29, U266, MDA-MB-231, BT549, and PC-3M-luc-6), respectively. Further, fisetin also suppresses the activation of the PKCα/ROS/ERK1/2 and p38 MAPK signaling pathways, reduces the NF-κB activation, and down-regulates the level of the oncoprotein securin. Fisetin also inhibited cell division and proliferation and invasion as well as lowered the TET1 expression levels. The current review article highlights and discusses the anticancer role of fisetin in cell cultures and animal and human studies. Conclusively, fisetin as a polyphenol with pleiotropic pharmacological properties showed promising anticancer activity in a wide range of cancers. Fisetin suppresses the cancer cell stages, prevents progression in cell cycle and cell growth, and induces apoptosis.
Collapse
Affiliation(s)
- Muhammad Imran
- Faculty of Allied Health SciencesUniversity Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Farhan Saeed
- Institute of Home & Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Syed Amir Gilani
- Faculty of Allied Health SciencesUniversity Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Mohammad Ali Shariati
- Laboratory of Biocontrol and Antimicrobial ResistanceOrel StateUniversity Named After I.S. TurgenevOrelRussia
| | - Ali Imran
- Institute of Home & Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Muhammad Afzaal
- Institute of Home & Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Muhammad Atif
- Department of Clinical Laboratory SciencesCollege of Applied Medical SciencesJouf UniversitySakakaSaudi Arabia
| | - Tabussam Tufail
- Faculty of Allied Health SciencesUniversity Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | | |
Collapse
|
34
|
Follicle inhibition at the primordial stage without increasing apoptosis, with a combination of everolimus, verapamil. Mol Biol Rep 2020; 47:8711-8726. [PMID: 33079326 DOI: 10.1007/s11033-020-05917-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 10/12/2020] [Indexed: 12/12/2022]
Abstract
The aim of the present study was to test whether inhibition of ovarian primordial follicles and subsequent activation can be achieved by transient mTOR inhibition. In this preclinical investigation, forty-five female immature Wistar rats were randomized in 5 groups. The control group received subcutaneous saline injections. The other groups received Everolimus, Everolimus plus Verapamil, Everolimus plus Fisetin, and Fisetin alone. Primary and secondary outcomes were measured in the left ovary after a treatment period of 8 weeks. Ten days later, animals received 35 IU FSH for 4 days and 35 IU of hCG on the 5th day. The same parameters were examined in the right ovary. AMH, estradiol, and progesterone levels were assessed at the end of both interventions. Significantly, more primordial and less atretic follicles were observed in the Everolimus plus Verapamil group. AMH and progesterone levels were substantially lower in the Everolimus group. Interestingly, after ovarian stimulation higher levels of AMH and progesterone were observed in the Everolimus plus Verapamil group. Immunoblot analysis of ovarian extracts revealed that the administration of Everolimus led to a significant reduction in the mTORC1-mediated phosphorylation of the 70-kDa ribosomal protein S6 kinase 1. This decrease was reversed in the presence of FSH after stopping drug administration. The expression of the anti-apoptotic molecule Bcl2 as well as of LC3-II and ATG12 was increased after removal of the Everolimus plus Verapamil combination, indicating reduced apoptosis and increased autophagy, whereas the levels of the proliferation marker PCNA in the granulosa cells were elevated, consistent with initiation of follicular growth.Thus, the combination of Everolimus plus Verapamil is capable of increasing the number of competent primordial follicles while reducing atresia.
Collapse
|
35
|
Burande AS, Viswanadh MK, Jha A, Mehata AK, Shaik A, Agrawal N, Poddar S, Mahto SK, Muthu MS. EGFR Targeted Paclitaxel and Piperine Co-loaded Liposomes for the Treatment of Triple Negative Breast Cancer. AAPS PharmSciTech 2020; 21:151. [PMID: 32440910 DOI: 10.1208/s12249-020-01671-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/24/2020] [Indexed: 12/13/2022] Open
Abstract
Triple-negative breast (TNBC) cancer that is upregulated with epidermal growth factor receptor (EGFR), and devoid of both the hormonal receptors and epidermal growth factor receptor 2 (HER 2), has led to a concept of treating TNBC with EGFR-targeted therapeutics. The combination of paclitaxel (PTX) and piperine (PIP) may improve the bioavailability of paclitaxel for cancer therapy. TPGS (vit E-PEG 1000-succinate)-coated liposomes were prepared with PTX alone or in combination with PIP, and either with (targeted) or without (non-targeted) cetuximab (CTX) conjugation. The Bradford assay indicated that 75% of CTX has been conjugated on the liposomes. The size and percent encapsulation of PTX&PIP co-loaded liposomes were found to be in the range of 204 to 218 nm and 31-73%, respectively. The drug release rate was found to be higher at pH 5.5 in comparison with release at pH 6.4 and pH 7.4. Cellular uptake and toxicity studies on MDA-MB-231 cells showed that PTX&PIP co-loaded targeted liposomes have demonstrated superior uptake and cytotoxicity than their non-targeted counterparts. The IC50 values of both of the liposomal formulations were found to be significantly higher than PTX control. Indeed, combining PIP with PTX control has improved the cytotoxicity of PTX control, which proved the synergistic anticancer effect of PIP. Lyophilized liposomes showed an excellent stability profile with the size range between 189 and 210 nm. Plasma stability study revealed a slight increase in the particle size due to the adsorption of plasma proteins on the surface of liposomes. The long-term stability study also indicated that liposomes were stable at 4°C.
Collapse
Affiliation(s)
- Ankita Sanjay Burande
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Matte Kasi Viswanadh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Abhishek Jha
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Azad Shaik
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Nishi Agrawal
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Suruchi Poddar
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Sanjeev Kumar Mahto
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India
- Centre for Biomaterials and Tissue Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India.
- Centre for Biomaterials and Tissue Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India.
| |
Collapse
|
36
|
Liang Y, Kong D, Zhang Y, Li S, Li Y, Ramamoorthy A, Ma J. Fisetin Inhibits Cell Proliferation and Induces Apoptosis via JAK/STAT3 Signaling Pathways in Human Thyroid TPC 1 Cancer Cells. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0326-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
Malla RR, Deepak K, Merchant N, Dasari VR. Breast Tumor Microenvironment: Emerging target of therapeutic phytochemicals. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 70:153227. [PMID: 32339885 DOI: 10.1016/j.phymed.2020.153227] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/31/2020] [Accepted: 04/11/2020] [Indexed: 06/11/2023]
Abstract
Triple negative breast cancer (TNBC) is the most aggressive and challenging form of breast cancers. Tumor microenvironment (TME) of TNBC is associated with induction of metastasis, immune system suppression, escaping immune detection and drug resistance. TME is highly complex and heterogeneous, consists of tumor cells, stromal cells and immune cells. The rapid expansion of tumors induce hypoxia, which concerns the reprogramming of TME components. The reciprocal communication of tumor cells and TME cells predisposes cancer cells to metastasis by modulation of developmental pathways, Wnt, notch, hedgehog and their related mechanisms in TME. Dietary phytochemicals are non-toxic and associated with various human health benefits and remarkable spectrum of biological activities. The phytochemicals serve as vital resources for drug discovery and also as a source for breast cancer therapy. The novel properties of dietary phytochemicals propose platform for modulation of tumor signaling, overcoming drug resistance, and targeting TME. Therefore, TME could serve as promising target for the treatment of TNBC. This review presents current status and implications of experimentally evaluated therapeutic phytochemicals as potential targeting agents of TME, potential nanosystems for targeted delivery of phytochemicals and their current challenges and future implications in TNBC treatment. The dietary phytochemicals especially curcumin with significant delivery system could prevent TNBC development as it is considered safe and well tolerated in phase II clinical trials.
Collapse
Affiliation(s)
- Rama Rao Malla
- Cancer Biology Lab, Department of Biochemistry and Bioinformatics, Institute of Science, GITAM (Deemed to be University), Visakhapatnam, 530045, India.
| | - Kgk Deepak
- Cancer Biology Lab, Department of Biochemistry and Bioinformatics, Institute of Science, GITAM (Deemed to be University), Visakhapatnam, 530045, India
| | - Neha Merchant
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Venkata Ramesh Dasari
- Department of Molecular and Functional Genomics, Geisinger Clinic, 100 Academy Ave, Danville, PA, 17822, USA
| |
Collapse
|
38
|
Chiang CY, Hsu KD, Lin YY, Hsieh CW, Liu JM, Lu TY, Cheng KC. The Antiproliferation Activity of Ganoderma formosanum Extracts on Prostate Cancer Cells. MYCOBIOLOGY 2020; 48:219-227. [PMID: 37970558 PMCID: PMC10635139 DOI: 10.1080/12298093.2020.1746064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/12/2020] [Accepted: 03/15/2020] [Indexed: 11/17/2023]
Abstract
Androgen-independent prostate cancer accounts for mortality in the world. In this study, various extracts of a medical fungus dubbed Ganoderma formosanum were screened for inhibition of DU145 cells, an androgen-independent prostate cancer cell line. Results demonstrated that both hexane (GF-EH) and butanol (GF-EB) fraction of G. formosanum ethanol extract inhibited DU145 cell viability in a dose-dependent manner. GF-EH induced cell-cycle arrest in G1 phase of DU145 cells via downregulation of cyclin E2 protein expression. In addition, GF-EB triggered extrinsic apoptosis of DU145 cells by activating caspase 3 gene expression resulting in programed cell death. Above all, both GF-EH and GF-EB show lower toxicity to normal human fibroblast cell line compared to DU145 cell, implying that they possess specific drug action on cancer cells. This study provides a molecular basis of G. formosanum extract as a potential ingredient for treatment of androgen-independent prostate cancer.
Collapse
Affiliation(s)
- Cheng-Yen Chiang
- Division of Urology, Department of Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan City, Taiwan
| | - Kai-Di Hsu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Yen-Yi Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Jui-Ming Liu
- Division of Urology, Department of Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan City, Taiwan
| | - Tze-Ying Lu
- Department of Internal Medicine, Taipei Medical University–Shuang Ho Hospital, New Taipei City, Taiwan
| | - Kuan-Chen Cheng
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Food Science Technology, National Taiwan University, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China. Medical University, Taichung, Taiwan
| |
Collapse
|
39
|
GSK-3β-Targeting Fisetin Promotes Melanogenesis in B16F10 Melanoma Cells and Zebrafish Larvae through β-Catenin Activation. Int J Mol Sci 2020; 21:ijms21010312. [PMID: 31906440 PMCID: PMC6982351 DOI: 10.3390/ijms21010312] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/24/2019] [Accepted: 12/30/2019] [Indexed: 01/01/2023] Open
Abstract
Fisetin is found in many fruits and plants such as grapes and onions, and exerts anti-inflammatory, anti-proliferative, and anticancer activity. However, whether fisetin regulates melanogenesis has been rarely studied. Therefore, we evaluated the effects of fisetin on melanogenesis in B16F10 melanoma cell and zebrafish larvae. The current study revealed that fisetin slightly suppressed in vitro mushroom tyrosinase activity; however, molecular docking data showed that fisetin did not directly bind to mushroom tyrosinase. Unexpectedly, fisetin significantly increased intracellular and extracellular melanin production in B16F10 melanoma cells regardless of the presence or absence of α-melanocyte stimulating hormone (α-MSH). We also found that the expression of melanogenesis-related genes such as tyrosinase and microphthalmia-associated transcription factor (MITF), were highly increased 48 h after fisetin treatment. Pigmentation of zebrafish larvae by fisetin treatment also increased at the concentrations up to 200 µM and then slightly decreased at 400 µM, with no alteration in the heart rates. Molecular docking data also revealed that fisetin binds to glycogen synthase kinase-3β (GSK-3β). Therefore, we evaluated whether fisetin negatively regulated GSK-3β, which subsequently activates β-catenin, resulting in melanogenesis. As expected, fisetin increased the expression of β-catenin, which was subsequently translocated into the nucleus. In the functional assay, FH535, a Wnt/β-catenin inhibitor, significantly inhibited fisetin-mediated melanogenesis in zebrafish larvae. Our data suggested that fisetin inhibits GSK-3β, which activates β-catenin, resulting in melanogenesis through the revitalization of MITF and tyrosinase.
Collapse
|
40
|
Jun HJ, Park SJ, Kang HJ, Lee GY, Lee N, Park JH, Yoo HS. The Survival Benefit of Combination Therapy With Mild Temperature Hyperthermia and an Herbal Prescription of Gun-Chil-Jung in 54 Cancer Patients Treated With Chemotherapy or Radiation Therapy: A Retrospective Study. Integr Cancer Ther 2020; 19:1534735420926583. [PMID: 32449629 PMCID: PMC7249570 DOI: 10.1177/1534735420926583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/25/2020] [Accepted: 04/23/2020] [Indexed: 12/18/2022] Open
Abstract
Background: The combination of herbal medicine with conventional treatment increases the survival rate of cancer patients, but the effect is not great. Hyperthermia may have a synergistic effect with herbal medicine alongside conventional medicine. Objective: To monitor the efficacy of hyperthermia together with Gun-Chil-Jung (GCJ) capsule for event-free survival (EFS) and overall survival (OS) for the treatment of various cancers. Methods: We collected data retrospectively on 54 cancer patients of all stages. They were divided into 4 groups according to each hyperthermia or GCJ treatment period. Hyperthermia with 0.46 MHz radiofrequency wave was applied a power of 50 to 100 W for 70 minutes. GCJ capsules were administered orally 3 times a day. Results: The median follow-up was 13.4 months, and 25 (55.6%) patients showed disease-related events. Hyperthermia with GCJ treatment was administered in combination group (n = 36, 66.7%) and traditional Korean medicine-only group (n = 17, 31.5%). The median EFS was 190 days, and the median OS was 390 days. The group of hyperthermia 7 times or fewer and GCJ more than 28 days showed longer EFS and OS. The analysis of superiority between hyperthermia and GCJ showed no significant difference (EFS, P = .55; OS, P = .364). Conclusions: The combination of hyperthermia 1 to 2 times a week with GCJ treatment may improve survival of cancer patients treated or being treated with conventional cancer therapies.
Collapse
Affiliation(s)
- Hyeong Joon Jun
- Seoul Korean Medicine Hospital of
Daejeon University, Seoul, Republic of Korea
| | - So-Jung Park
- Dunsan Korean Medicine Hospital of
Daejeon University, Daejeon, Republic of Korea
| | - Hwi-Joong Kang
- Seoul Korean Medicine Hospital of
Daejeon University, Seoul, Republic of Korea
| | - Ga-Young Lee
- Cheonan Korean Medicine Hospital of
Daejeon University, Cheonan, Republic of Korea
| | - Namhun Lee
- Cheonan Korean Medicine Hospital of
Daejeon University, Cheonan, Republic of Korea
| | - Ji Hye Park
- Seoul Korean Medicine Hospital of
Daejeon University, Seoul, Republic of Korea
| | - Hwa-Seung Yoo
- Seoul Korean Medicine Hospital of
Daejeon University, Seoul, Republic of Korea
| |
Collapse
|
41
|
Klimaszewska-Wiśniewska A, Grzanka D, Czajkowska P, Hałas-Wiśniewska M, Durślewicz J, Antosik P, Grzanka A, Gagat M. Cellular and molecular alterations induced by low‑dose fisetin in human chronic myeloid leukemia cells. Int J Oncol 2019; 55:1261-1274. [PMID: 31638196 PMCID: PMC6831210 DOI: 10.3892/ijo.2019.4889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/11/2019] [Indexed: 12/23/2022] Open
Abstract
The present study aimed to evaluate the cellular and molecular effects of low concentrations of the flavonoid, fisetin, on K562 human chronic myeloid leukemia cells, in the context of both potential anti-proliferative and anti-metastatic effects. Thiazolyl blue tetrazolium bromide assay, Trypan blue exclusion assay, Annexin V/propidium iodide test, cell cycle analysis, Transwell migration and invasion assays, the fluorescence staining of β-catenin and F-actin as well as reverse transcription-quantitative polymerase chain reaction were performed to achieve the research goal. Furthermore, the nature of the interaction between fisetin and arsenic trioxide in the K562 cells was analyzed according to the Chou-Talalay median-effect method. We found that low concentrations of fisetin had not only a negligible effect on the viability and apoptosis of the K562 cells, but also modulated the mRNA levels of selected metastatic-related markers, accompanied by an increase in the migratory and invasive properties of these cancer cells. Although some markers of cell death were significantly elevated in response to fisetin treatment, these were counterbalanced through anti-apoptotic and pro-survival signals. With decreasing concentrations of fisetin and arsenic trioxide, the antagonistic interactions between the 2 agents increased. On the whole, the findings of this study suggest that careful consideration should be taken when advising cancer patients to take fisetin as a dietary supplement and when considering fisetin as a potential candidate for the treatment of chronic myeloid leukemia. Further more detailed studies are required to confirm our findings.
Collapse
Affiliation(s)
- Anna Klimaszewska-Wiśniewska
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85‑092 Bydgoszcz, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85‑092 Bydgoszcz, Poland
| | - Paulina Czajkowska
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85‑092 Bydgoszcz, Poland
| | - Marta Hałas-Wiśniewska
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85‑092 Bydgoszcz, Poland
| | - Justyna Durślewicz
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85‑092 Bydgoszcz, Poland
| | - Paulina Antosik
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85‑092 Bydgoszcz, Poland
| | - Alina Grzanka
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85‑092 Bydgoszcz, Poland
| | - Maciej Gagat
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85‑092 Bydgoszcz, Poland
| |
Collapse
|
42
|
Kirsanov KI, Vlasova OA, Fetisov TI, Zenkov RG, Lesovaya EA, Belitsky GA, Gurova K, Yakubovskaya MG. Influence of DNA-binding compounds with cancer preventive activity on the mechanisms of gene expression regulation. ADVANCES IN MOLECULAR ONCOLOGY 2019. [DOI: 10.17650/2313-805x-2018-5-4-41-63] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- K. I. Kirsanov
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; Peoples’ Friendship University of Russia
| | - O. A. Vlasova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - T. I. Fetisov
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - R. G. Zenkov
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - E. A. Lesovaya
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; I.P. Pavlov Ryazan State Medical University
| | - G. A. Belitsky
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | | | - M. G. Yakubovskaya
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| |
Collapse
|
43
|
Zhong HY, Yang Z, Qiu Z, Lei SQ, Xia ZY. The neuroprotective mechanism of 2-arachidonoylglycerol 2-AG against non-caspase-dependent apoptosis in mice hippocampal neurons following MCAO. Neuropsychiatr Dis Treat 2019; 15:2417-2424. [PMID: 31692526 PMCID: PMC6711550 DOI: 10.2147/ndt.s208094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 07/23/2019] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE In this study, the neuroprotective mechanism of 2-arachidonoylglycerol 2-AG against non-caspase-dependent apoptosis in mice hippocampal neurons following MCAO was investigated. METHOD One hundred and fifty healthy clean male C57BL/6 mice were randomly divided into 3 groups: sham group, model group and 2-AG treatment group, 50 mice in each group. A modified Zea Longa method was used to establish a model of middle cerebral artery occlusion (MCAO) in mice. The apoptosis rate and mitochondrial membrane potential of hippocampal nerve cells were measured by flow cytometry. The mRNA expressions of AIF, Endo G and BNIP3 in hippocampal tissues were determined by qPCR. Western blot was used to determine the protein expressions of AIF, Endo G and BNIP3 in the mitochondria of hippocampal tissue. RESULTS The apoptosis rate of hippocampal neurons in the group treated with 2-AG was significantly lower than that of the model (P<0.01), which indicated that 2-AG could inhibit the apoptosis of hippocampal neurons induced by MCAO. However, the mitochondrial membrane potential of hippocampal neurons in the group treated with 2-AG was significantly higher than that of the model (P<0.01), indicating that 2-AG could improve the mitochondrial membrane potential of hippocampal neurons in MCAO mice. Real-time quantitative PCR (qPCR) showed that 2-AG could inhibit the gene expressions of AIF, Endo G and BNIP3 in hippocampal tissues. Western blot results showed that 2-AG could inhibit the secretions of AIF, Endo G and BNIP3 into cytoplasm in mitochondria. CONCLUSION Endocannabinoids 2-AG had a protective effect on neurons injury, and the mechanism was possibly associated with the protection of the brain nerve cells in the hippocampus and the integrity of the mitochondrial function. Endocannabinoids 2-AG may inhibit the non-caspase-dependent apoptosis pathway, so as to exert its nerve protective effect.
Collapse
Affiliation(s)
- He-Ying Zhong
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Zhou Yang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Zhen Qiu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Shao-Qing Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Zhong-Yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| |
Collapse
|
44
|
Abdel-Maksoud MS, El-Gamal MI, Benhalilou DR, Ashraf S, Mohammed SA, Oh CH. Mechanistic/mammalian target of rapamycin: Recent pathological aspects and inhibitors. Med Res Rev 2018; 39:631-664. [PMID: 30251347 DOI: 10.1002/med.21535] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 12/23/2022]
Abstract
The mechanistic/mammalian target of rapamycin (mTOR), also known as the mechanistic target of rapamycin, regulates many normal cell processes such as transcription, cell growth, and autophagy. Overstimulation of mTOR by its ligands, amino acids, sugars, and/or growth factors leads to physiological disorders, including cancer and neurodegenerative diseases. In this study, we reviewed the recent advances regarding the mechanism that involves mTOR in cancer, aging, and neurodegenerative diseases. The chemical and biological properties of recently reported small molecules that function as mTOR kinase inhibitors, including adenosine triphosphate-competitive inhibitors and dual mTOR/PI3K inhibitors, have also been reviewed. We focused on the reports published in the literature from 2012 to 2017.
Collapse
Affiliation(s)
- Mohammed S Abdel-Maksoud
- Medicinal & Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Giza, Egypt
| | - Mohammed I El-Gamal
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates.,Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura, Egypt
| | - Dalia Reyane Benhalilou
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Sandy Ashraf
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Chang-Hyun Oh
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Korea.,Department of Biomolecular Science, University of Science and Technology, Daejeon, Korea
| |
Collapse
|
45
|
Varghese E, Samuel SM, Abotaleb M, Cheema S, Mamtani R, Büsselberg D. The "Yin and Yang" of Natural Compounds in Anticancer Therapy of Triple-Negative Breast Cancers. Cancers (Basel) 2018; 10:E346. [PMID: 30248941 PMCID: PMC6209965 DOI: 10.3390/cancers10100346] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 02/07/2023] Open
Abstract
Among the different types of breast cancers, triple-negative breast cancers (TNBCs) are highly aggressive, do not respond to conventional hormonal/human epidermal growth factor receptor 2 (HER2)-targeted interventions due to the lack of the respective receptor targets, have chances of early recurrence, metastasize, tend to be more invasive in nature, and develop drug resistance. The global burden of TNBCs is increasing regardless of the number of cytotoxic drugs being introduced into the market each year as they have only moderate efficacy and/or unforeseen side effects. Therefore, the demand for more efficient therapeutic interventions, with reduced side effects, for the treatment of TNBCs is rising. While some plant metabolites/derivatives actually induce the risk of cancers, many plant-derived active principles have gained attention as efficient anticancer agents against TNBCs, with fewer adverse side effects. Here we discuss the possible oncogenic molecular pathways in TNBCs and how the purified plant-derived natural compounds specifically target and modulate the genes and/or proteins involved in these aberrant pathways to exhibit their anticancer potential. We have linked the anticancer potential of plant-derived natural compounds (luteolin, chalcones, piperine, deguelin, quercetin, rutin, fisetin, curcumin, resveratrol, and others) to their ability to target multiple dysregulated signaling pathways (such as the Wnt/β-catenin, Notch, NF-κB, PI3K/Akt/mammalian target of rapamycin (mTOR), mitogen-activated protein kinase (MAPK) and Hedgehog) leading to suppression of cell growth, proliferation, migration, inflammation, angiogenesis, epithelial-mesenchymal transition (EMT) and metastasis, and activation of apoptosis in TNBCs. Plant-derived compounds in combination with classical chemotherapeutic agents were more efficient in the treatment of TNBCs, possibly with lesser side effects.
Collapse
Affiliation(s)
- Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| | - Mariam Abotaleb
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| | - Sohaila Cheema
- Institute for Population Health, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| | - Ravinder Mamtani
- Institute for Population Health, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| |
Collapse
|
46
|
Sun X, Ma X, Li Q, Yang Y, Xu X, Sun J, Yu M, Cao K, Yang L, Yang G, Zhang G, Wang X. Anti‑cancer effects of fisetin on mammary carcinoma cells via regulation of the PI3K/Akt/mTOR pathway: In vitro and in vivo studies. Int J Mol Med 2018; 42:811-820. [PMID: 29749427 PMCID: PMC6034928 DOI: 10.3892/ijmm.2018.3654] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 04/27/2018] [Indexed: 12/11/2022] Open
Abstract
Fisetin, a natural flavonoid found in a variety of edible and medical plants, has been suggested to inhibit the proliferation of various tumor cells and to induce apoptosis. However, the effects of fisetin on breast cancer have rarely been reported and the underlying mechanism is still undefined. The present study explored the anti‑cancer effects of fisetin on mammary carcinoma cells and the underlying mechanisms. Following treatment with fisetin, viability of 4T1, MCF‑7 and MDA‑MB‑231 cells were measured by MTT assay. The inhibitory effects of fisetin on proliferation, migration and invasion were evaluated in 4T1 cells using proliferation array, wound‑healing assay, and HUV‑EC‑C‑cell barrier based on electrical cell‑substrate impedance sensing platform. Cell apoptosis was analyzed by flow cytometry, and western blotting analysis was performed to identify target molecules. A 4T1 orthotopic mammary tumor model was used to assess the fisetin‑inhibition on tumor growth in vivo. Test kits were used to examine the liver and kidney function of tumor‑bearing mice. The results suggest that fisetin suppressed the proliferation of breast cancer cells, suppressed the metastasis and invasiveness of 4T1 cells, and induced the apoptosis of 4T1 cells in vitro. The potent anti‑cancer effect of fisetin was associated with the regulation of the phosphatidylinositol‑3‑kinase/protein kinase B/mammalian target of rapamycin pathway. In vivo experiments demonstrated that fisetin suppressed the growth of 4T1 cell‑derived orthotopic breast tumors and enhanced tumor cell apoptosis, and the evaluated alanine amino transferase and aspartate amino transferase levels in serum of tumor‑bearing mice suggested that fisetin may lead to side effects on liver biochemical function. The present study confirms that fisetin exerted an anti‑mammary carcinoma effect. However, in vivo experiments also revealed that fisetin had low solubility and low bioavailability. Further investigation is required to determine the clinical value of fisetin.
Collapse
Affiliation(s)
- Xu Sun
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010
| | - Xueman Ma
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010
- Department of Oncology, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120
| | - Qiwei Li
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010
- School of Graduates, Beijing University of Chinese Medicine, Beijing 100029
| | - Yong Yang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010
- School of Graduates, Beijing University of Chinese Medicine, Beijing 100029
| | - Xiaolong Xu
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010
- Department of Immunology, Beijing Institute of Traditional Chinese Medicine, Beijing 100010
| | - Jiaqi Sun
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010
- Department of Gynecology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| | - Mingwei Yu
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010
| | - Kexin Cao
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010
| | - Lin Yang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010
| | - Guowang Yang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010
| | - Ganlin Zhang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010
| | - Xiaomin Wang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010
| |
Collapse
|
47
|
Li J, Gong X, Jiang R, Lin D, Zhou T, Zhang A, Li H, Zhang X, Wan J, Kuang G, Li H. Fisetin Inhibited Growth and Metastasis of Triple-Negative Breast Cancer by Reversing Epithelial-to-Mesenchymal Transition via PTEN/Akt/GSK3β Signal Pathway. Front Pharmacol 2018; 9:772. [PMID: 30108501 PMCID: PMC6080104 DOI: 10.3389/fphar.2018.00772] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 06/26/2018] [Indexed: 12/15/2022] Open
Abstract
Triple negative breast cancer (TNBC), characterized by its highly aggressive and metastatic features, is associated with poor prognosis and high mortality partly due to lack of effective treatment. Fisetin, a natural flavonoid compound, has been demonstrated to possess anti-cancer effects in various cancers. However, the effects and mechanisms of fisetin on metastasis of TNBC remain uncovered. In this study, we found that fisetin dose-dependently inhibited cell proliferation, migration and invasion in TNBC cell lines MDA-MB-231 and BT549 cells. In addition, fisetin reversed epithelial to mesenchymal transition (EMT) as evaluated by cell morphology and EMT markers in MDA-MB-231 and BT549 cells. Furthermore, fisetin suppressed phosphoinositol 3-kinase (PI3K)-Akt-GSK-3β signaling pathway but upregulated the expression of PTEN mRNA and protein in a concentration-dependent manner. Further, silence of PTEN by siRNA abolished these benefits of fisetin on proliferation and metastasis of TNBCs. In vivo, using the metastatic breast cancer xenograft model bearing MDA-MB-231 cells, we found that fisetin dramatically inhibited growth of primary breast tumor and reduced lung metastasis, meanwhile, the expression of EMT molecules and PTEN/Akt/GSK-3β in primary and metastatic tissues changed in the same way as those in vitro experiments. In conclusion, all these results indicated that fisetin could effectively suppress proliferation and metastasis of TNBC and reverse EMT process, which might be mediated by PTEN/Akt/GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Jie Li
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Xia Gong
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Rong Jiang
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Dan Lin
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Tao Zhou
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Aijie Zhang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongzhong Li
- Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiang Zhang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jingyuan Wan
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Ge Kuang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Hongyuan Li
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
48
|
Wang K, Hu DN, Lin HW, Yang WE, Hsieh YH, Chien HW, Yang SF. Fisetin induces apoptosis through mitochondrial apoptosis pathway in human uveal melanoma cells. ENVIRONMENTAL TOXICOLOGY 2018; 33:527-534. [PMID: 29383865 DOI: 10.1002/tox.22538] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/05/2018] [Accepted: 01/06/2018] [Indexed: 06/07/2023]
Abstract
Fisetin, a diatery flavonoid, been reported that possess anticancer effects in various cancers. The purpose of the study was to investigate the antitumor effects of fisetin in cultured uveal melanoma cell lines and compared with normal retinal pigment epithelial (RPE) cells. MTT assay was used for evaluating cytotoxic effects of fisetin. Flow cytometry study was used for the determination of apoptosis. JC-1 fluorescent reader was used to determine mitochondrial transmembrane potential changes. The results shown that fisetin dose-dependently decreased the cell viability of uveal melanoma cells but not influenced the cell viability of RPE cells. Apoptosis of uveal melanoma cells was induced by fisetin efficiently. Fisetin inhibited antiapoptotic Bcl-2 family proteins and damaged the mitochondrial transmembrane potential. The levels of proapoptotic Bcl-2 proteins, cytochrome c, and various caspase activities were increased by fisetin. In conclusion, fisetin induces apoptosis of uveal melanoma cells selectively and may be a promising agent to be explored for the treatment of uveal melanoma.
Collapse
Affiliation(s)
- Kai Wang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Ophthalmology, Sijhih Cathay General Hospital, New Taipei City, Taiwan
- Department of Ophthalmology, Cathay General Hospital, Taipei, Taiwan
| | - Dan-Ning Hu
- Tissue Culture Center, New York Eye and Ear Infirmary of Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Hui-Wen Lin
- Department of Optometry, Asia University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Wei-En Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Hsiang-Wen Chien
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Ophthalmology, Sijhih Cathay General Hospital, New Taipei City, Taiwan
- Department of Ophthalmology, Cathay General Hospital, Taipei, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
49
|
Jeng LB, Kumar Velmurugan B, Chen MC, Hsu HH, Ho TJ, Day CH, Lin YM, Padma VV, Tu CC, Huang CY. Fisetin mediated apoptotic cell death in parental and Oxaliplatin/irinotecan resistant colorectal cancer cells in vitro and in vivo. J Cell Physiol 2018; 233:7134-7142. [PMID: 29574877 DOI: 10.1002/jcp.26532] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 02/02/2018] [Indexed: 11/06/2022]
Abstract
Irinotecan (CPT11) and Oxaliplatin have been used in combination with fluorouracil and leucovorin for treating colorectal cancer. However, the efficacy of these drugs is reduced due to various side effects and drug resistance. Fisetin, a hydroxyflavone possess anti-proliferative, anti-cancer, anti-inflammatory, and antioxidant activity against various types of cancers. Apart from that, fisetin has been shown to induce cytotoxic effects when combined with other known chemotherapeutic drugs. In this study, we aimed to investigate whether Fisetin was capable of sensitizing both Irinotecan and Oxaliplatin resistance colon cancer cells and explored the possible signaling pathways involved using In vitro and In vivo models. The results showed that Fisetin treatment effectively inhibited cell viability and apoptosis of CPT11-LoVo cells than Oxaliplatin (OR) and parental LoVo cancer cells. Western blot assays suggested that apoptosis was induced by fisetin administration, promoting Caspase-8, and Cytochrome-C expressions possibly by inhibiting aberrant activation of IGF1R and AKT proteins. Furthermore, fisetin inhibited tumor growth in athymic nude mouse xenograft model. Overall, our results provided a basis for Fisetin as a promising agent to treat parental as well as chemoresistance colon cancer.
Collapse
Affiliation(s)
- Long-Bin Jeng
- Department of Surgery and Organ Transplantation Center, China Medical University Hospital, Taichung, Taiwan
| | - Bharath Kumar Velmurugan
- Toxicology and Biomedicine Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Ming-Cheng Chen
- Division of Colorectal Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hsi-Hsien Hsu
- Division of Colorectal Surgery, Mackay Memorial Hospital, Taipei, Taiwan.,Mackay Medicine, Nursing and Management College, Taipei, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, China Medical University Beigang Hospital, Yunlin, Taiwan
| | | | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - V Vijaya Padma
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Chuan-Chou Tu
- Division of Chest Medicine, Department of Internal Medicine, Armed Force Taichung General Hospital, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Department of Clinical Laboratory, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangdong, China.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
50
|
Ye J, Zhang R, Wu F, Zhai L, Wang K, Xiao M, Xie T, Sui X. Non-apoptotic cell death in malignant tumor cells and natural compounds. Cancer Lett 2018; 420:210-227. [PMID: 29410006 DOI: 10.1016/j.canlet.2018.01.061] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/18/2018] [Accepted: 01/24/2018] [Indexed: 12/18/2022]
Abstract
Traditional cancer therapy is mainly targeting on enhancing cell apoptosis, however, it is well established that many cancer cells are chemo-resistant and defective in apoptosis induction. Therefore, it may have important therapeutic implications to exploit some novel natural compounds based on non-apoptotic programmed cell death. Currently, accumulating evidence shows that the compounds from nature source can induce non-apoptotic programmed cell death in cancer cells, and therefore these natural compounds have gained a great promise for the future anticancer therapeutics. In this review, we will concentrate our efforts on the latest developments regarding major forms of non-apoptotic programmed cell death--autophagic cell death, necroptosis, ferroptosis, pyroptosis, glutamoptosis and exosome-associated cell death. Our increased understanding of the role of natural compounds in regulating non-apoptotic programmed cell death will hopefully provide prospective strategies for cancer therapy.
Collapse
Affiliation(s)
- Jing Ye
- Department of Otolaryngology Head and Neck Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ruonan Zhang
- Department of Medical Oncology, Holistic Integrative Oncology Institutes and Holistic Integrative Cancer Center of Traditional Chinese and Western Medicine, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China; Department of Cancer Pharmacology, Holistic Integrative Pharmacy Institutes, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Fan Wu
- Des Moines Medical School, Des Moines, IA, USA
| | - Lijuan Zhai
- Department of Medical Oncology, Holistic Integrative Oncology Institutes and Holistic Integrative Cancer Center of Traditional Chinese and Western Medicine, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China; Department of Cancer Pharmacology, Holistic Integrative Pharmacy Institutes, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Kaifeng Wang
- Department of Medical Oncology, Holistic Integrative Oncology Institutes and Holistic Integrative Cancer Center of Traditional Chinese and Western Medicine, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China; Department of Cancer Pharmacology, Holistic Integrative Pharmacy Institutes, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Mang Xiao
- Department of Otolaryngology Head and Neck Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Tian Xie
- Department of Medical Oncology, Holistic Integrative Oncology Institutes and Holistic Integrative Cancer Center of Traditional Chinese and Western Medicine, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China; Department of Cancer Pharmacology, Holistic Integrative Pharmacy Institutes, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China.
| | - Xinbing Sui
- Department of Medical Oncology, Holistic Integrative Oncology Institutes and Holistic Integrative Cancer Center of Traditional Chinese and Western Medicine, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China; Department of Cancer Pharmacology, Holistic Integrative Pharmacy Institutes, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China.
| |
Collapse
|