1
|
Gupta A, Madhyastha H, Kumar A, Singh S. Osteo-modulatory potential of biologically synthesized cis-resveratrol passivated gold nanoparticles. Int J Pharm 2024; 664:124637. [PMID: 39182744 DOI: 10.1016/j.ijpharm.2024.124637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
Resveratrol, a stilbene, particularly trans-isomer, shows significant osteogenic potential but experiences high instability and poor bioavailability. However, cis-isomer (cRes) is not explored yet due to its instability. Our study investigates the osteoinductive potential of cRes for the first time by stabilizing it onto the surface of gold nanoparticles. cRes capped GNPs (cRGNPs) presented no toxic effects on the MC3T3-E1 cells with increased levels of alkaline phosphatase and calcium deposition. The nanoparticles presented a 2.6-fold increase in cell number compared to the control. The pro-migratory effect of the cRGNPs was also significantly higher (97.21 ± 0.99 % migration) in 4 days. The osteoinductivity was further confirmed by enhanced expression of osteoblastic genes like RUNX2, OPN, OCN, BMP, OPG, and Col1A. The stability provided to cRes upon conjugating to GNPs allowed exploration of its potential in aiding proliferation, migration, and differentiation of the pre-osteoblasts, which will be beneficial in repairing bone defects.
Collapse
Affiliation(s)
- Archita Gupta
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 8891692, Japan
| | - Ashok Kumar
- Department of Biological Science and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India; Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India; The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India; Centre of Excellence for Materials in Medicine, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India
| | - Sneha Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India.
| |
Collapse
|
2
|
Guo Q, Zhai Q, Ji P. The Role of Mitochondrial Homeostasis in Mesenchymal Stem Cell Therapy-Potential Implications in the Treatment of Osteogenesis Imperfecta. Pharmaceuticals (Basel) 2024; 17:1297. [PMID: 39458939 PMCID: PMC11510265 DOI: 10.3390/ph17101297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
Osteogenesis imperfecta (OI) is a hereditary disorder characterized by bones that are fragile and prone to breaking. The efficacy of existing therapies for OI is limited, and they are associated with potentially harmful side effects. OI is primarily due to a mutation of collagen type I and hence impairs bone regeneration. Mesenchymal stem cell (MSC) therapy is an attractive strategy to take advantage of the potential benefits of these multipotent stem cells to address the underlying molecular defects of OI by differentiating osteoblasts, paracrine effects, or immunomodulation. The maintenance of mitochondrial homeostasis is an essential component for improving the curative efficacy of MSCs in OI by affecting the differentiation, signaling, and immunomodulatory functions of MSCs. In this review, we highlight the MSC-based therapy pathway in OI and introduce the MSC regulation mechanism by mitochondrial homeostasis. Strategies aiming to modulate the metabolism and reduce the oxidative stress, as well as innovative strategies based on the use of compounds (resveratrol, NAD+, α-KG), antioxidants, and nanomaterials, are analyzed. These findings may enable the development of new strategies for the treatment of OI, ultimately resulting in improved patient outcomes.
Collapse
Affiliation(s)
- Qingling Guo
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China;
- Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China
| | - Qiming Zhai
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China;
- Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China
| | - Ping Ji
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China;
- Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China
| |
Collapse
|
3
|
Wu Y, Chen D, Li L. Morinda officinalis polysaccharide promotes the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells via microRNA-210-3p/scavenger receptor class A member 3. J Investig Med 2024; 72:370-382. [PMID: 38264863 DOI: 10.1177/10815589241229693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Morinda officinalis polysaccharide (MOP) is the bioactive ingredient extracted from the root of Morinda officinalis, and Morinda officinalis is applied to treat osteoporosis (OP). The purpose of this study was to determine the role of MOP on human bone marrow mesenchymal stem cells (hBMSCs) and the underlying mechanism. HBMSCs were isolated from bone marrow samples of patients with OP and treated with MOP. Quantitative real-time polymerase chain reaction was adopted to quantify the expression of microRNA-210-3p (miR-210-3p) and scavenger receptor class A member 3 (SCARA3) mRNA. Cell Counting Kit-8 assay was employed to detect cell viability; Terminal-deoxynucleotidyl Transferase Mediated Nick End Labeling assay and flow cytometry were adopted to detect apoptosis; Alkaline Phosphatase (ALP) activity assay kit was applied to detect ALP activity; Western blot was executed to quantify the expression levels of SCARA3, osteogenic and adipogenic differentiation markers. Ovariectomized rats were treated with MOP. Bone mineral density (BMD), serum tartrate-resistant acid phosphatase 5b (TRACP 5b), and N-telopeptide of type I collagen (NTx) levels were assessed by BMD detector and Enzyme-linked immunosorbent assay kits. It was revealed that MOP could promote hBMSCs' viability and osteogenic differentiation and inhibit apoptosis and adipogenic differentiation. MOP could also upregulate SCARA3 expression through repressing miR-210-3p expression. Treatment with MOP increased the BMD and decreased the TRACP 5b and NTx levels in ovariectomized rats. MOP may boost the osteogenic differentiation and inhibit adipogenic differentiation of hBMSCs by miR-210-3p/SCARA3 axis.
Collapse
Affiliation(s)
- Yue Wu
- Department of Thoracic Surgery, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Dan Chen
- Department of Rehabilitation, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Longguang Li
- Department of Rehabilitation, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
4
|
Jiang N, Tian X, Wang Q, Hao J, Jiang J, Wang H. Regulation Mechanisms and Maintenance Strategies of Stemness in Mesenchymal Stem Cells. Stem Cell Rev Rep 2024; 20:455-483. [PMID: 38010581 DOI: 10.1007/s12015-023-10658-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
Stemness pertains to the intrinsic ability of mesenchymal stem cells (MSCs) to undergo self-renewal and differentiate into multiple lineages, while simultaneously impeding their differentiation and preserving crucial differentiating genes in a state of quiescence and equilibrium. Owing to their favorable attributes, including uncomplicated isolation protocols, ethical compliance, and ease of procurement, MSCs have become a focal point of inquiry in the domains of regenerative medicine and tissue engineering. As age increases or ex vivo cultivation is prolonged, the functionality of MSCs decreases and their stemness gradually diminishes, thereby limiting their potential therapeutic applications. Despite the existence of several uncertainties surrounding the comprehension of MSC stemness, considerable advancements have been achieved in the clarification of the potential mechanisms that lead to stemness loss, as well as the associated strategies for stemness maintenance. This comprehensive review provides a systematic overview of the factors influencing the preservation of MSC stemness, the molecular mechanisms governing it, the strategies for its maintenance, and the therapeutic potential associated with stemness. Finally, we underscore the obstacles and prospective avenues in present investigations, providing innovative perspectives and opportunities for the preservation and therapeutic utilization of MSC stemness.
Collapse
Affiliation(s)
- Nizhou Jiang
- Central Hospital of Dalian University of Technology Department of Spine Surgery, Dalian, China
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiliang Tian
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Quanxiang Wang
- Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Jiayu Hao
- Central Hospital of Dalian University of Technology Department of Spine Surgery, Dalian, China
| | - Jian Jiang
- Central Hospital of Dalian University of Technology Department of Spine Surgery, Dalian, China.
| | - Hong Wang
- Central Hospital of Dalian University of Technology Department of Spine Surgery, Dalian, China.
| |
Collapse
|
5
|
Ge J, Yu YJ, Li JY, Li MY, Xia SM, Xue K, Wang SY, Yang C. Activating Wnt/β-catenin signaling by autophagic degradation of APC contributes to the osteoblast differentiation effect of soy isoflavone on osteoporotic mesenchymal stem cells. Acta Pharmacol Sin 2023; 44:1841-1855. [PMID: 36973541 PMCID: PMC10462682 DOI: 10.1038/s41401-023-01066-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/17/2023] [Indexed: 03/29/2023] Open
Abstract
The functional role of autophagy in regulating differentiation of bone marrow mesenchymal stem cells (MSCs) has been studied extensively, but the underlying mechanism remains largely unknown. The Wnt/β-catenin signaling pathway plays a pivotal role in the initiation of osteoblast differentiation of mesenchymal progenitor cells, and the stability of core protein β-catenin is tightly controlled by the APC/Axin/GSK-3β/Ck1α complex. Here we showed that genistein, a predominant soy isoflavone, stimulated osteoblast differentiation of MSCs in vivo and in vitro. Female rats were subjected to bilateral ovariectomy (OVX); four weeks after surgery the rats were orally administered genistein (50 mg·kg-1·d-1) for 8 weeks. The results showed that genistein administration significantly suppressed the bone loss and bone-fat imbalance, and stimulated bone formation in OVX rats. In vitro, genistein (10 nM) markedly activated autophagy and Wnt/β-catenin signaling pathway, and stimulated osteoblast differentiation in OVX-MSCs. Furthermore, we found that genistein promoted autophagic degradation of adenomatous polyposis coli (APC), thus initiated β-catenin-driven osteoblast differentiation. Notably, genistein activated autophagy through transcription factor EB (TFEB) rather than mammalian target of rapamycin (mTOR). These findings unveil the mechanism of how autophagy regulates osteogenesis in OVX-MSCs, which expands our understanding that such interplay could be employed as a useful therapeutic strategy for treating postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Jing Ge
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, 200001, China
| | - Ye-Jia Yu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, 200001, China
| | - Jia-Yi Li
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, 200001, China
| | - Meng-Yu Li
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, 200001, China
| | - Si-Mo Xia
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, 200001, China
| | - Ke Xue
- Department of Pastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China
| | - Shao-Yi Wang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, 200001, China.
| | - Chi Yang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, 200001, China.
| |
Collapse
|
6
|
Tomić N, Matić T, Filipović N, Mitić Ćulafić D, Boccacccini AR, Stevanović MM. Synthesis and characterization of innovative resveratrol nanobelt-like particles and assessment of their bioactivity, antioxidative and antibacterial properties. J Biomater Appl 2023:8853282231183109. [PMID: 37303075 DOI: 10.1177/08853282231183109] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recently, many studies have shown various beneficial effects of polyphenol resveratrol (Res) on human health. The most important of these effects include cardioprotective, neuroprotective, anti-cancer, anti-inflammatory, osteoinductive, and anti-microbial effects. Resveratrol has cis and trans isoforms, with the trans isoform being more stable and biologically active. Despite the results of in vitro experiments, resveratrol has limited potential for application in vivo due to its poor water solubility, sensitivity to oxygen, light, and heat, rapid metabolism, and therefore low bioavailability. The possible solution to overcome these limitations could be the synthesis of resveratrol in nanoparticle form. Accordingly, in this study, we have developed a simple, green solvent/non-solvent physicochemical method to synthesize stable, uniform, carrier-free resveratrol nanobelt-like particles (ResNPs) for applications in tissue engineering. UV-visible spectroscopy (UV-Vis) was used to identify the trans isoform of ResNPs which remained stable for at least 63 days. The additional qualitative analysis was performed by Fourier transform infrared spectroscopy (FTIR), while X-ray diffraction (XRD) determined the monoclinic structure of resveratrol with a significant difference in the intensity of diffraction peaks between commercial and nano-belt form. The morphology of ResNPs was evaluated by optical microscopy and field-emission scanning electron microscope (FE-SEM) that revealed a uniform nanobelt-like structure with an individual thickness of less than 1 μm. Bioactivity was confirmed using Artemia salina in vivo toxicity assay, while 2,2-diphenyl-1-picrylhydrazylhydrate (DPPH) reduction assay showed the good antioxidative potential of concentrations of 100 μg/ml and lower. Microdilution assay on several reference strains and clinical isolates showed promising antibacterial potential on Staphylococci, with minimal inhibitory concentration (MIC) being 800 μg/ml. Bioactive glass-based scaffolds were coated with ResNPs and characterized to confirm coating potential. All of the above make these particles a promising bioactive, easy-to-handle component in various biomaterial formulations.
Collapse
Affiliation(s)
- Nina Tomić
- Group for Biomedical Engineering and Nanobiotechnology, Institute of Technical Sciences of SASA, Belgrade, Serbia
| | - Tamara Matić
- Innovation Center of the Faculty of Technology and Metallurgy Ltd, Belgrade, Serbia
| | - Nenad Filipović
- Group for Biomedical Engineering and Nanobiotechnology, Institute of Technical Sciences of SASA, Belgrade, Serbia
| | | | - Aldo R Boccacccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Magdalena M Stevanović
- Group for Biomedical Engineering and Nanobiotechnology, Institute of Technical Sciences of SASA, Belgrade, Serbia
| |
Collapse
|
7
|
Xu X, Zhao L, Terry PD, Chen J. Reciprocal Effect of Environmental Stimuli to Regulate the Adipogenesis and Osteogenesis Fate Decision in Bone Marrow-Derived Mesenchymal Stem Cells (BM-MSCs). Cells 2023; 12:1400. [PMID: 37408234 PMCID: PMC10216952 DOI: 10.3390/cells12101400] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/02/2023] [Accepted: 05/12/2023] [Indexed: 07/07/2023] Open
Abstract
Mesenchymal stem cells derived from bone marrow (BM-MSCs) can differentiate into adipocytes and osteoblasts. Various external stimuli, including environmental contaminants, heavy metals, dietary, and physical factors, are shown to influence the fate decision of BM-MSCs toward adipogenesis or osteogenesis. The balance of osteogenesis and adipogenesis is critical for the maintenance of bone homeostasis, and the interruption of BM-MSCs lineage commitment is associated with human health issues, such as fracture, osteoporosis, osteopenia, and osteonecrosis. This review focuses on how external stimuli shift the fate of BM-MSCs towards adipogenesis or osteogenesis. Future studies are needed to understand the impact of these external stimuli on bone health and elucidate the underlying mechanisms of BM-MSCs differentiation. This knowledge will inform efforts to prevent bone-related diseases and develop therapeutic approaches to treat bone disorders associated with various pathological conditions.
Collapse
Affiliation(s)
- Xinyun Xu
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, USA
| | - Ling Zhao
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, USA
| | - Paul D. Terry
- Department of Medicine, Graduate School of Medicine, The University of Tennessee, Knoxville, TN 37920, USA;
| | - Jiangang Chen
- Department of Public Health, The University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
8
|
Li L, Wang B, Zhou X, Ding H, Sun C, Wang Y, Zhang F, Zhao J. METTL3-mediated long non-coding RNA MIR99AHG methylation targets miR-4660 to promote bone marrow mesenchymal stem cell osteogenic differentiation. Cell Cycle 2023; 22:476-493. [PMID: 36369887 PMCID: PMC9879177 DOI: 10.1080/15384101.2022.2125751] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/15/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Whether long non-coding RNA Mir-99a-Let-7c Cluster Host Gene (LncRNA MIR99AHG) is involved in osteoporosis (OP) remains vague, so we hereby center on its implication. Old C57BL/6J mice were injected with the silencing lentivirus of MIR99AHG and subjected to microCT analysis and immunohistochemistry on osteogenic cells. The osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) with or without transfection was determined by alkaline phosphatase (ALP) and Alizarin Red S staining. Total N(6)-methyladenosine (m6A) on the bone marrow mesenchymal stem cells (BMSCs) was quantified. The potential methylation site and the complementary binding sites with candidate microRNA (miR) were predicted via bioinformatic analyses, with the latter being confirmed via dual-luciferase reporter, RNA immunoprecipitation and RNA pull-down assays. Quantitative real-time PCR and Western blot were used for quantification assays. MIR99AHG was decreased during the osteogenic differentiation of BMSCs, where increased Osterix (OSX), Collagen, Type I, Alpha 1 (Col1A1), Osteocalcin (OCN) and RUNX Family Transcription Factor 2 (RUNX2) as well as more color-stained areas were found. Also, silencing MIR99AHG relieved the OP in mice and reduced the loss of osteogenic cells. M6A methylation in undifferentiated BMSCs was low and MIR99AHG overexpression abolished the effects of overexpressed METTL3 on promoting osteogenic differentiation. MiR-4660, which was downregulated in BMSCs without differentiation but increased during osteogenic differentiation, could bind with MIR99AHG. Furthermore, miR-4660 promoted osteogenic differentiation and reversed the effects of overexpressed MIR99AHG. The present study demonstrated that METTL3-mediated LncRNA MIR99AHG methylation enhanced the osteogenic differentiation of BMSCs via targeting miR-4660.
Collapse
Affiliation(s)
- Lintao Li
- Department of Orthopedic, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, China
| | - Beiyue Wang
- Department of Orthopedic, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, China
| | - Xing Zhou
- Department of Orthopedic, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, China
| | - Hao Ding
- Department of Orthopedic, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, China
| | - Chang Sun
- Department of Orthopedic, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, China
| | - Yicun Wang
- Department of Orthopedic, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, China
| | - Fan Zhang
- Department of Orthopaedic, Changzheng Hospital, Navy Military Medical University, Shanghai, China
| | - Jianning Zhao
- Department of Orthopedic, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, China
| |
Collapse
|
9
|
Xue HY, Liu MW, Yang G. Resveratrol suppresses lipopolysaccharide-mediated activation of osteoclast precursor RAW 264.7 cells by increasing miR-181a-5p expression. Int J Immunopathol Pharmacol 2023; 37:3946320231154995. [PMID: 36723677 PMCID: PMC9900163 DOI: 10.1177/03946320231154995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Resveratrol (Res) has anti-inflammation and antiosteoporosis functions. We evaluated the effect of Res on osteoclast differentiation by releasing inflammatory cytokines from osteoclast precursor RAW 264.7 cells stimulated by lipopolysaccharide (LPS). In the study, LPS (1 ng/L) was used to induce the Raw 264.7 inflammatory injury model in vitro. A total of 25 ng/mL M-CSF + 30 ng/mL RANKL or plus 1 μg/L LPS was used to induce osteoclastogenesis in the experiments. We utilized the Cell Counting Kit-8 assay to measure the relative cell survival of RAW 264.7 cells. Then, enzyme-linked immunosorbent assays were utilized to measure the abundance of inflammatory markers, such as interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), and IL-6. Subsequently, Western blot analysis was applied to assess the abundance of phosphorylated transforming growth factor beta-activated kinase 1 (P-TAK1) protein, TNF receptor-associated factor 6 (TRAF6), nuclear factor-κB inhibitor protein (IκB), phosphorylated IκB-α (P-IκB-α), and nuclear factor κB65 (NF-κB65). mRNA expression levels of miR-181a-5p, TRAF6, specific gene calcitonin receptor (CTR), activated T nuclear factor 1 (NFATC1), cathepsin K (CTSK), and matrix metalloproteinase (MMP)-9 were determined via a real-time polymerase chain reaction. Osteoclast bone resorption function was determined. Finally, tartrate-resistant acid phosphatase (TRAP) staining was performed.The results found that Compared with the model group, the degrees of expressions of supernatant inflammatory factors TNF-α, IL-1β, and IL-6 were substantially attenuated in the Res treatment group (p < 0.05). Furthermore, the extent of miR-181a-5p expression in the RAW 264.7 cells significantly increased, whereas P-IκB-α, P-TAK1, NF-κB65, and TRAF6 expressions significantly decreased in the Res treatment group as opposed to the model group (p < 0.05). The CTR, NFATC1, MMP-9, CTSK, and TRAP mRNA expression levels were substantially reduced during osteoclast differentiation and bone resorption in the Res treatment group.The results suggest that Res can reduce the RAW 264.7 cell differentiation into osteoclasts and relieve LPS-stimulated osteoporosis, and the underlying mechanism may be associated with the Res-inhibited activity of the TRAF6/TAK1 pathway through the increased miR-181a-5p expression.
Collapse
Affiliation(s)
- Hai-Yan Xue
- Trauma center,
The First
Hospital Affiliated of Kunming Medical
University, Kunming, China
| | - Ming-Wei Liu
- Department of Emergency,
The First
Hospital Affiliated of Kunming Medical
University, Kunming, China
| | - Guang Yang
- Trauma center,
The First
Hospital Affiliated of Kunming Medical
University, Kunming, China,Guang Yang, Trauma center, The First
Hospital Affiliated of Kunming Medical University, 295 Xichang Road, Wu Hua
District, Kunming 650032, China.
| |
Collapse
|
10
|
Lin T, Zhang Z, Wu J, Jiang H, Wang C, Ma J, Yin Y, Wang S, Gao R, Zhou X. A ROS/GAS5/SIRT1 reinforcing feedback promotes oxidative stress-induced adipogenesis in bone marrow-derived mesenchymal stem cells during osteoporosis. Int Immunopharmacol 2023; 114:109560. [PMID: 36538848 DOI: 10.1016/j.intimp.2022.109560] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/18/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND LincGAS5 have been reported to regulate the progression of osteoporosis (OP). However, the relationship between LincGAS5 and reactive oxygen species (ROS) in osteoporosis were still unclear. METHODS Bilateral ovariectomy (OVX) rat were established as OP model and verified by the Micro-computed tomography. The ROS level of BMSCs derived from OVX and control rat were detected by Immunofluorescence (IF) and flow cytometry. The role of GAS5, miR-23b-3p and SIRT1 on the osteogenic differentiation were dectected by ARS saining and ALP staining, while the The Oil Red O staining and flow cytometry (FCM) were hired to determine adipogenic differentiation of BMSCs under different treatment. The expression of GAS5,miR-23b-3p and SIRT1 in BMSCs was detected by RT-qPCR and the correlation among them was analyzed. In addition, Luciferase activity was used to detect whether miR-23b-3p combined with GAS5 and SIRT1 in OP mice BMSCs. RESULTS We established the OVX rat model and found higher ROS level in BMSCs isolated from OVX rats. Meanwhile, GAS5 was down-regulated by ROS and remarkably lowly expressed in OVX rat comparing with the negative control. We confirmed GAS5 inhibited adipogenesis and promoted osteoporosis progression. Mechanically, GAS5 bound with miR-23b-3p and suppressed its biological function. We also identified that miR-23b-3p bound with Sirtuin 1 (SIRT1) and decreased its stability. Furthermore, SIRT1 suppressed ROS production in BMSCs, which in turn un-regulated GAS5 expression through ROS-GAS5 axis. CONCLUSION We identified a negative feedback loop, ROS-GAS5-SIRT1, in osteoporosis progression. Our findings provided potential targets and biomarkers for osteoporosis prevention and treatment.
Collapse
Affiliation(s)
- Tao Lin
- Department of Orthopedics, Changzheng Hospital, Second Affiliated Hospital of Second Military Medical University, 415 Fengyang Road, Shanghai 200003, People's Republic of China.
| | - Zheng Zhang
- Department of Orthopedics, Changzheng Hospital, Second Affiliated Hospital of Second Military Medical University, 415 Fengyang Road, Shanghai 200003, People's Republic of China
| | - Jinhui Wu
- Department of Orthopedics, Changzheng Hospital, Second Affiliated Hospital of Second Military Medical University, 415 Fengyang Road, Shanghai 200003, People's Republic of China.
| | - Heng Jiang
- Department of Orthopedics, Changzheng Hospital, Second Affiliated Hospital of Second Military Medical University, 415 Fengyang Road, Shanghai 200003, People's Republic of China
| | - Ce Wang
- Department of Orthopedics, Changzheng Hospital, Second Affiliated Hospital of Second Military Medical University, 415 Fengyang Road, Shanghai 200003, People's Republic of China
| | - Jun Ma
- Department of Orthopedics, Changzheng Hospital, Second Affiliated Hospital of Second Military Medical University, 415 Fengyang Road, Shanghai 200003, People's Republic of China
| | - Yan Yin
- Zhangjiagang TCM Hospital, Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, Jiangsu Provence, People's Republic of China
| | - Suchun Wang
- Zhangjiagang TCM Hospital, Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, Jiangsu Provence, People's Republic of China
| | - Rui Gao
- Department of Orthopedics, Changzheng Hospital, Second Affiliated Hospital of Second Military Medical University, 415 Fengyang Road, Shanghai 200003, People's Republic of China.
| | - Xuhui Zhou
- Department of Orthopedics, Changzheng Hospital, Second Affiliated Hospital of Second Military Medical University, 415 Fengyang Road, Shanghai 200003, People's Republic of China.
| |
Collapse
|
11
|
Effects of Resveratrol, Curcumin and Quercetin Supplementation on Bone Metabolism—A Systematic Review. Nutrients 2022; 14:nu14173519. [PMID: 36079777 PMCID: PMC9459740 DOI: 10.3390/nu14173519] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Phenolic compounds are natural phytochemicals that have recently reported numerous health benefits. Resveratrol, curcumin, and quercetin have recently received the most attention among these molecules due to their documented antioxidant effects. The review aims to investigate the effects of these molecules on bone metabolism and their role in several diseases such as osteopenia and osteoporosis, bone tumours, and periodontitis. The PubMed/Medline, Web of Science, Google Scholar, Scopus, Cochrane Library, and Embase electronic databases were searched for papers in line with the study topic. According to an English language restriction, the screening period was from January 2012 to 3 July 2022, with the following Boolean keywords: (“resveratrol” AND “bone”); (“curcumin” AND “bone”); (“quercetin” AND “bone”). A total of 36 papers were identified as relevant to the purpose of our investigation. The studies reported the positive effects of the investigated phenolic compounds on bone metabolism and their potential application as adjuvant treatments for osteoporosis, bone tumours, and periodontitis. Furthermore, their use on the titanium surfaces of orthopaedic prostheses could represent a possible application to improve the osteogenic processes and osseointegration. According to the study findings, resveratrol, curcumin, and quercetin are reported to have a wide variety of beneficial effects as supplement therapies. The investigated phenolic compounds seem to positively mediate bone metabolism and osteoclast-related pathologies.
Collapse
|
12
|
Li W, Huang X, Yu W, Xu Y, Huang R, Park J, Moshaverinia A, Arora P, Chen C. Activation of Functional Somatic Stem Cells Promotes Endogenous Tissue Regeneration. J Dent Res 2022; 101:802-811. [PMID: 35114850 PMCID: PMC9218498 DOI: 10.1177/00220345211070222] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Periodontal ligament derived stem cells (PDLSCs) are capable of differentiating into multiple cell types and inducing a promising immunomodulation for tissue regeneration and disease treatment. However, it is still challenging to develop a practical approach to activate endogenous stem cells for tissue self-healing and regeneration. In this study, transcriptome analysis reveals that resveratrol promotes PDLSC stemness through activation of stem cell, osteoprogenitor, and chondroprogenitor markers. Self-renewal and multipotent differentiation abilities are also improved in resveratrol-treated PDLSCs. In addition, immunomodulation of PDLSCs is dramatically increased after resveratrol treatment. Mechanistically, we show that resveratrol activates ERK/WNT crosstalk through elevation of olfactory and growth factor signaling pathways to upregulate the expression levels of RUNX2 and FASL for osteogenesis and immunomodulation, respectively. By using a periodontitis animal model, administration of resveratrol partially rescues bone loss through activation of endogenous somatic stem cells and inhibition of inflammatory T-cell infiltration. Taken together, our findings identify a novel pharmacological approach to achieve autotherapies for endogenous tissue regeneration.
Collapse
Affiliation(s)
- W. Li
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - X. Huang
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - W. Yu
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Y. Xu
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - R. Huang
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - J. Park
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - A. Moshaverinia
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - P. Arora
- Early-Research Oral Care, Colgate-Palmolive Company, Piscataway, NJ, USA
| | - C. Chen
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center of Innovation and Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
13
|
Ekambaram R, Dharmalingam S. Design and development of biomimetic electrospun sulphonated polyether ether ketone nanofibrous scaffold for bone tissue regeneration applications: in vitro and in vivo study. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:947-975. [PMID: 34985405 DOI: 10.1080/09205063.2022.2025637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Bone defect restoration remains challenging in orthopedic medical practices. In this study an attempt is carried out to probe the use of new biomimetic SPEEK (sulfonated polyether ether ketone) based nanofibrous scaffold to deliver amine functionalized hydroxyapatite nanoparticles loaded resveratrol for its potent functionality in osteogenic differentiation. SPEEK polymer with reactive functional group SO3H was synthesized through process of sulphonation reaction. Amine functionalized nanoparticles with protonated amino groups revamp the molecular interaction by the formation of hydrogen bonds that in turn intensify the bioactivity of the nanofibrous scaffold. Osteoconductive functionalized nanohydroxyapatite enhances the cell proliferation and osteogenicity with improved cell attachment and spreading. The results of FT-IR, XRD, Carbon-Silica NMR and EDX analysis confirmed the amine functionalization of the hydroxyapatite nanoparticles. Surface morphological analysis of the fabricated nanofibers through SEM and AFM analysis shows vastly interconnected porous structure that mimics the bone extracellular matrix, which enhances the cell compatibility. Cell adhesion and live dead assay of the nanoscaffolds express less cytotoxicity. Mineralization and alkaline phosphatase assay establish the osteogenic differentiation of the nanofibrous scaffold. The in vitro biocompatibility studies reveal that the fabricated scaffold was osteo-compatible with MG63 cell lines. Hemocompatibility study further proved that the designed biomimetic nanofibrous scaffold was highly suitable for bone tissue engineering. The results of in vivo analysis in zebrafish model for the fabricated nanofibers demonstrated significant increase in the caudal fin regeneration indicating mineralization of osteoblast. Thus, the commending results obtained instigate the potentiality of the composite nanofibrous scaffold as an effective biomimetic substrate for bone tissue regeneration.
Collapse
|
14
|
Fehsel K, Christl J. Comorbidity of osteoporosis and Alzheimer's disease: Is `AKT `-ing on cellular glucose uptake the missing link? Ageing Res Rev 2022; 76:101592. [PMID: 35192961 DOI: 10.1016/j.arr.2022.101592] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 02/08/2023]
Abstract
Osteoporosis and Alzheimer's disease (AD) are both degenerative diseases. Osteoporosis often proceeds cognitive deficits, and multiple studies have revealed common triggers that lead to energy deficits in brain and bone. Risk factors for osteoporosis and AD, such as obesity, type 2 diabetes, aging, chemotherapy, vitamin deficiency, alcohol abuse, and apolipoprotein Eε4 and/or Il-6 gene variants, reduce cellular glucose uptake, and protective factors, such as estrogen, insulin, exercise, mammalian target of rapamycin inhibitors, hydrogen sulfide, and most phytochemicals, increase uptake. Glucose uptake is a fine-tuned process that depends on an abundance of glucose transporters (Gluts) on the cell surface. Gluts are stored in vesicles under the plasma membrane, and protective factors cause these vesicles to fuse with the membrane, resulting in presentation of Gluts on the cell surface. This translocation depends mainly on AKT kinase signaling and can be affected by a range of factors. Reduced AKT kinase signaling results in intracellular glucose deprivation, which causes endoplasmic reticulum stress and iron depletion, leading to activation of HIF-1α, the transcription factor necessary for higher Glut expression. The link between diseases and aging is a topic of growing interest. Here, we show that diseases that affect the same biochemical pathways tend to co-occur, which may explain why osteoporosis and/or diabetes are often associated with AD.
Collapse
|
15
|
Sekaran S, Thangavelu L. Re-appraising the role of flavonols, flavones and flavonones on osteoblasts and osteoclasts- A review on its molecular mode of action. Chem Biol Interact 2022; 355:109831. [PMID: 35120918 DOI: 10.1016/j.cbi.2022.109831] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/02/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022]
Abstract
Bone disorders have become a global concern illustrated with decreased bone mineral density and disruption in microarchitecture of natural bone tissue organization. Natural compounds that promote bone health by augmenting osteoblast functions and suppressing osteoclast functions has gained much attention and offer greater therapeutic value compared to conventional therapies. Amongst several plant-based molecules, flavonoids act as a major combatant in promoting bone health through their multi-faceted biological activities such as antioxidant, anti-inflammatory, and osteogenic properties. They protect bone loss by regulating the signalling cascades involved in osteoblast and osteoclast functions. Flavonoids augment osteoblastogenesis and inhibits osteoclastogenesis through their modulation of various signalling pathways. This review discusses the role of various flavonoids and their molecular mechanisms involved in maintaining bone health by regulating osteoblast and osteoclast functions.
Collapse
Affiliation(s)
- Saravanan Sekaran
- Centre for Trans-disciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute for Medical and Technical Sciences, Chennai, 600077, Tamil Nadu, India.
| | - Lakshmi Thangavelu
- Centre for Trans-disciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute for Medical and Technical Sciences, Chennai, 600077, Tamil Nadu, India
| |
Collapse
|
16
|
Wang Z, Li L, Gu W, Mao Y, Wang T. Resveratrol Reverses Osteogenic Decline of Bone Marrow Mesenchymal Stem Cells Via Upregulation of Yes-Associated Protein Expression in Inflammatory Environment. Stem Cells Dev 2021; 30:1202-1214. [PMID: 34598655 DOI: 10.1089/scd.2021.0195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Osteoporosis is an age-related bone disease, characterized by rapid boneloss, decreased bone mineral density (BMD), and consequent risk of fractures. The most prevalent form of clinically significant osteoporosis involves various inflammatory conditions, especially age-dependent osteoporosis and postmenopausal osteoporosis. Tumor necrosis factor-α (TNF-α), a pro-inflammatory cytokine, plays a critical role in the development of inflammatory, which also plays an important role in bone formation and bone loss during osteoporosis. In this report, we examined the effect of TNF-α on osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and its modulation by resveratrol (Res). We found that TNF-α can upregulate inflammatory cytokines, Il-6, Mmp-9, and Il-1β, and establish an inflammatory environment. High inflammatory cytokine expression significantly inhibited osteogenic differentiation of BMSCs by overactivating upstream Hippo kinases and decreasing the nuclear Yes-associated protein (YAP) signals. With Res treatment, decreasing inflammatory cytokine expression normalized Hippo/YAP signaling and effectively rescued YAP-mediated osteogenesis. Thus, through these studies, we present a mechanism by which TNF-α can affect BMSCs osteogenesis through modulation of Hippo/YAP signaling.
Collapse
Affiliation(s)
- Zihan Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Le Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Wenwen Gu
- Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Yuqi Mao
- Cardiovascular Disease Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Tao Wang
- Cardiovascular Disease Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| |
Collapse
|
17
|
Karimi-Soflou R, Mohseni-Vadeghani E, Karkhaneh A. Controlled release of resveratrol from a composite nanofibrous scaffold: Effect of resveratrol on antioxidant activity and osteogenic differentiation. J Biomed Mater Res A 2021; 110:21-30. [PMID: 34228402 DOI: 10.1002/jbm.a.37262] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/05/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022]
Abstract
Biocompatibility, mechanical strength, and osteogenesis properties of three-dimensional scaffolds are critical for bone tissue engineering. In addition, reactive oxygen species accumulate around bone defects and limit the activities of surrounding cells and bone formation. Therefore, the presence of an antioxidant in a bone tissue scaffold is also essential to address this issue. This study aimed to evaluate a composite nanofibrous scaffold similar to the natural extracellular matrix with antioxidant and osteogenic properties. To this end, polylactic acid (PLA)/organophilic montmorillonite (OMMT)/resveratrol (RSV) nanofibers were fabricated using the electrospinning method and characterized. RSV was used as an antioxidant, which promotes osteogenic differentiation, and OMMT was used as a mineral phase to increase the mechanical strength and control the release of RSV. The scaffolds' antioxidant activity was measured using DPPH assay and found 83.75% for PLA/OMMT/RSV nanofibers. The mechanical strength was increased by adding OMMT to the neat PLA. The biocompatibility of the scaffolds was investigated using an MTT assay, and the results did not show any toxic effects on human adipose mesenchymal stem cells (hASCs). Moreover, the Live/Dead assay indicated the appropriate distribution of live cells after 5 days. Cell culture results displayed that hASCs could adhere and spread on the surface of composite nanofibers. Meanwhile, the level of alkaline phosphatase, osteocalcin, and osteopontin was increased for hASCs cultured on the PLA/OMMT/RSV nanofibrous scaffold. Therefore, this study concludes that the RSV-loaded composite nanofibers with antioxidant and osteogenesis properties and appropriate mechanical strength can be introduced for bone tissue regeneration applications.
Collapse
Affiliation(s)
- Reza Karimi-Soflou
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Elham Mohseni-Vadeghani
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Akbar Karkhaneh
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
18
|
Jin H, Du J, Ren H, Yang G, Wang W, Du J. Astragaloside IV protects against iron loading-induced abnormal differentiation of bone marrow mesenchymal stem cells (BMSCs). FEBS Open Bio 2021; 11:1223-1236. [PMID: 33445204 PMCID: PMC8016140 DOI: 10.1002/2211-5463.13082] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/21/2020] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
Iron loading has been reported to be a common stress in the development of cells, and this might be related to bone loss and osteoporosis. Astragaloside IV (ASI‐IV), a pure compound derived from Radix Astragali, has been reported to exhibit cardioprotective, anti‐inflammatory, antioxidant, antiasthmatic and anticancer effects. The aim of this study was to investigate whether ASI‐IV could reverse iron loading‐induced inhibition of cell viability, proliferation, pluripotency and osteogenesis and promote adipogenesis of bone marrow mesenchymal stem cells (BMSCs). Ferric ammonium citrate (FAC) was used to stimulate iron loading conditions. ASI‐IV was observed to ameliorate the FAC‐induced reduction of cell viability, proliferation, pluripotency and osteogenesis of BMSCs. In addition, ASI‐IV could block the increased adipogenesis of BMSCs after FAC treatment. We intraperitoneally injected mice with 250 mg·kg−1 iron dextran, with or without ASI‐IV (40 mg·kg−1), for 4 weeks. ASI‐IV inhibited the iron loading‐induced bone loss of these mice. Furthermore, ASI‐IV played a protective role in iron loading‐induced abnormal differentiation of BMSCs by regulating iron homeostasis and metabolism. In summary, our study suggesteds that ASI‐IV might have potentials for development into a novel therapeutic strategy for the treatment of iron loading‐induced abnormal differentiation of BMSCs and osteoporosis.
Collapse
Affiliation(s)
- Hui Jin
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, China
| | - Jianyang Du
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, China
| | - Huan Ren
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, China
| | - Guofu Yang
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, China
| | - Wenbo Wang
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, China
| | - Jianyang Du
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, China
| |
Collapse
|
19
|
Targeting reactive oxygen species in stem cells for bone therapy. Drug Discov Today 2021; 26:1226-1244. [PMID: 33684524 DOI: 10.1016/j.drudis.2021.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/04/2020] [Accepted: 03/02/2021] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) have emerged as key players in regulating the fate and function of stem cells from both non-hematopoietic and hematopoietic lineages in bone marrow, and thus affect the osteoblastogenesis-osteoclastogenesis balance and bone homeostasis. Accumulating evidence has linked ROS and associated oxidative stress with the progression of bone disorders, and ROS-based therapeutic strategies have appeared to achieve favorable outcomes in bone. We review current knowledge of the multifactorial roles and mechanisms of ROS as a target in bone pathology. In addition, we discuss emerging ROS-based therapeutic strategies that show potential for bone therapy. Finally, we highlight the opportunities and challenges facing ROS-targeted stem cell therapeutics for improving bone health.
Collapse
|
20
|
Zou J, Du J, Tu H, Chen H, Cong K, Bi Z, Sun J. Resveratrol benefits the lineage commitment of bone marrow mesenchymal stem cells into osteoblasts via miR-320c by targeting Runx2. J Tissue Eng Regen Med 2021; 15:347-360. [PMID: 33481337 DOI: 10.1002/term.3176] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 11/07/2022]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) are a potential source of osteoblasts and have been widely used in clinical therapies due to their pluripotency. Recent publications have found that resveratrol (RSVL) played a crucial role in the proliferation and differentiation of BMSCs; however, the underlying molecular mechanism of RSVL-induced BMSCs osteogenic differentiation needs to be fully elucidated. The objective of this study was to explore functions of miRNAs in the RSVL-treated BMSCs and its effects on the differentiation potentials of BMSCs. The findings demonstrated that RSVL enhanced the osteogenesis and suppressed the adipogenesis of BMSCs in a dose-dependent manner. Besides, a novel regulatory axis containing miR-320c, and its target Runx2 was found during the differentiation process of BMSCs under RSVL treatment. Increase of miR-320c reduced the osteogenic potential of BMSCs, while knockdown of miR-320c played a positive role in the osteogenesis of BMSCs. In contrast, overexpression of miR-320c accelerated the adipogenic differentiation, while knockdown of miR-320c restrained the adipogenic differentiation of BMSCs. The results confirmed that Runx2 might be the direct target of miR-320c in RSVL-promoted osteogenic differentiation of BMSCs. This study revealed that RSVL might be used for the treatment of bone loss related diseases and miR-320c could be regarded as a novel and potential target to regulate the biological functions of BMSCs.
Collapse
Affiliation(s)
- Jilong Zou
- Department of Orthopaedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jianyang Du
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hualei Tu
- Department of Burn, The Fifth Hospital in Harbin, Harbin, China
| | - Hongjun Chen
- Department of Orthopaedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kai Cong
- Department of Orthopaedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhenggang Bi
- Department of Orthopaedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiabing Sun
- Department of Orthopaedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
21
|
Hung HS, Yu AYH, Hsieh SC, Kung ML, Huang HY, Fu RH, Yeh CA, Hsu SH. Enhanced Biocompatibility and Differentiation Capacity of Mesenchymal Stem Cells on Poly(dimethylsiloxane) by Topographically Patterned Dopamine. ACS APPLIED MATERIALS & INTERFACES 2020; 12:44393-44406. [PMID: 32697572 DOI: 10.1021/acsami.0c05747] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Controlling the behavior of mesenchymal stem cells (MSCs) through topographic patterns is an effective approach for stem cell studies. We, herein, reported a facile method to create a dopamine (DA) pattern on poly(dimethylsiloxane) (PDMS). The topography of micropatterned DA was produced on PDMS after plasma treatment. The grid-topographic-patterned surface of PDMS-DA (PDMS-DA-P) was measured for adhesion force and Young's modulus by atomic force microscopy. The surface of PDMS-DA-P demonstrated less stiff and more elastic characteristics compared to either nonpatterned PDMS-DA or PDMS. The PDMS-DA-P evidently enhanced the differentiation of MSCs into various tissue cells, including nerve, vessel, bone, and fat. We further designed comprehensive experiments to investigate adhesion, proliferation, and differentiation of MSCs in response to PDMS-DA-P and showed that the DA-patterned surface had good biocompatibility and did not activate macrophages or platelets in vitro and had low foreign body reaction in vivo. Besides, it protected MSCs from apoptosis as well as excessive reactive oxygen species (ROS) generation. Particularly, the patterned surface enhanced the differentiation capacity of MSCs toward neural and endothelial cells. The stromal cell-derived factor-1α/CXantiCR4 pathway may be involved in mediating the self-recruitment and promoting the differentiation of MSCs. These findings support the potential application of PDMS-DA-P in either cell treatment or tissue repair.
Collapse
Affiliation(s)
- Huey-Shan Hung
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan, R.O.C
- Translational Medicine Research, China Medical University Hospital, Taichung 40402, Taiwan, R.O.C
| | - Alex Yang-Hao Yu
- Ministry of Health & Welfare, Changhua Hospital, Changhua 51341, Taiwan, R.O.C
| | - Shu-Chen Hsieh
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, R.O.C
| | - Mei-Lang Kung
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan, R.O.C
| | - Hsiu-Yuan Huang
- Department of Cosmeceutics and Graduate Institute of Cosmeceutics, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Ru-Huei Fu
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan, R.O.C
- Translational Medicine Research, China Medical University Hospital, Taichung 40402, Taiwan, R.O.C
| | - Chun-An Yeh
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan, R.O.C
| |
Collapse
|
22
|
Wang R, Bao B, Bao C, Wang S, Ur Rahman S, Hou C, Elango J, Wu W. Resveratrol and Celastrol Loaded Collagen Dental Implants Regulate Periodontal Ligament Fibroblast Growth and Osteoclastogenesis of Bone Marrow Macrophages. Chem Biodivers 2020; 17:e2000295. [PMID: 32649040 DOI: 10.1002/cbdv.202000295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022]
Abstract
Collagen is widely used for dental therapy in several ways such as films, 3D matrix, and composites, besides traditional Chinese medicine (TCM), has been used in tissue regeneration and wound healing application for centuries. Hence, the present study was targeted for the first time to fabricate collagen film with TCM such as resveratrol and celastrol in order to investigate the human periodontal ligament fibroblasts (HPLF) growth and bone marrow macrophages (BMM) derived osteoclastogenesis. Further, the physicochemical, mechanical and biological activities of collagen-TCM films crosslinked by glycerol and EDC-NHS (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide-N-hydroxysulfosuccinimide) were investigated. Collagen film characterization was significantly regulated by the nature of plasticizers like hydrophobic and degree of polarity. Interestingly, the collagen film's denaturation temperature was increased by EDC-NHS than glycerol. FT-IR data confirmed the functional group changes due to chemical interaction of collagen with TCM. Morphological changes of HPLF cells cultured in control and collagen films were observed by SEM. Importantly, the addition of resveratrol upregulated the proliferation of HPLF cells, while osteoclastogenesis of BMM cells treated with mCSF-RANKL was significantly downregulated by celastrol. Accordingly, the collagen-TCM film could be an interesting material for dental regeneration, and especially it is a therapeutic target to restrain the elevated bone resorption during osteoporosis.
Collapse
Affiliation(s)
- Ruijie Wang
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, P. R. China
| | - Bin Bao
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, P. R. China
| | - Chunling Bao
- East Branch of Shanghai Sixth People's Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, 201306, P. R. China
| | - Shujun Wang
- Jiangsu Ocean University, Lianyungang, 222005, P. R. China
| | - Saeed Ur Rahman
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Punjab, 54000, Pakistan
| | - Chunyu Hou
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, P. R. China
| | - Jeevithan Elango
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, P. R. China
| | - Wenhui Wu
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, P. R. China.,National R&D Branch Center for Freshwater Aquatic Products Processing Technology, Shanghai, Shanghai, 201306, P. R. China
| |
Collapse
|
23
|
Moon DK, Kim BG, Lee AR, In Choe Y, Khan I, Moon KM, Jeon RH, Byun JH, Hwang SC, Woo DK. Resveratrol can enhance osteogenic differentiation and mitochondrial biogenesis from human periosteum-derived mesenchymal stem cells. J Orthop Surg Res 2020; 15:203. [PMID: 32493422 PMCID: PMC7268497 DOI: 10.1186/s13018-020-01684-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023] Open
Abstract
Background Osteoporosis is a metabolic bone disorder that leads to low bone mass and microstructural deterioration of bone tissue and increases bone fractures. Resveratrol, a natural polyphenol compound, has pleiotropic effects including anti-oxidative, anti-aging, and anti-cancer effects. Resveratrol also has roles in increasing osteogenesis and in upregulating mitochondrial biogenesis of bone marrow-derived mesenchymal stem cells (BM-MSCs). However, it is still unclear that resveratrol can enhance osteogenic differentiation or mitochondrial biogenesis of periosteum-derived MSCs (PO-MSCs), which play key roles in bone tissue maintenance and fracture healing. Thus, in order to test a possible preventive or therapeutic effect of resveratrol on osteoporosis, this study investigated the effects of resveratrol treatments on osteogenic differentiation and mitochondrial biogenesis of PO-MSCs. Methods The optimal doses of resveratrol treatment on PO-MSCs were determined by cell proliferation and viability assays. Osteogenic differentiation of PO-MSCs under resveratrol treatment was assessed by alkaline phosphatase activities (ALP, an early biomarker of osteogenesis) as well as by extracellular calcium deposit levels (a late biomarker). Mitochondrial biogenesis during osteogenic differentiation of PO-MSCs was measured by quantifying both mitochondrial mass and mitochondrial DNA (mtDNA) contents. Results Resveratrol treatments above 10 μM seem to have negative effects on cell proliferation and viability of PO-MSCs. Resveratrol treatment (at 5 μM) on PO-MSCs during osteogenic differentiation increased both ALP activities and calcium deposits compared to untreated control groups, demonstrating an enhancing effect of resveratrol on osteogenesis. In addition, resveratrol treatment (at 5 μM) during osteogenic differentiation of PO-MSCs increased both mitochondrial mass and mtDNA copy numbers, indicating that resveratrol can bolster mitochondrial biogenesis in the process of PO-MSC osteogenic differentiation. Conclusion Taken together, the findings of this study describe the roles of resveratrol in promoting osteogenesis and mitochondrial biogenesis of human PO-MSCs suggesting a possible application of resveratrol as a supplement for osteoporosis and/or osteoporotic fractures.
Collapse
Affiliation(s)
- Dong Kyu Moon
- Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Gyeongsang National University Hospital, Gyeongsang National University, Jinju, Republic of Korea
| | - Bo Gyu Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - A Ram Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Yeong In Choe
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Imran Khan
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Kyoung Mi Moon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Ryoung-Hoon Jeon
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University, Jinju, Republic of Korea
| | - Sun-Chul Hwang
- Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Gyeongsang National University Hospital, Gyeongsang National University, Jinju, Republic of Korea.
| | - Dong Kyun Woo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea.
| |
Collapse
|
24
|
Anti-aging Effects of Calorie Restriction (CR) and CR Mimetics based on the Senoinflammation Concept. Nutrients 2020; 12:nu12020422. [PMID: 32041168 PMCID: PMC7071238 DOI: 10.3390/nu12020422] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammation, a pervasive feature of the aging process, is defined by a continuous, multifarious, low-grade inflammatory response. It is a sustained and systemic phenomenon that aggravates aging and can lead to age-related chronic diseases. In recent years, our understanding of age-related chronic inflammation has advanced through a large number of investigations on aging and calorie restriction (CR). A broader view of age-related inflammation is the concept of senoinflammation, which has an outlook beyond the traditional view, as proposed in our previous work. In this review, we discuss the effects of CR on multiple phases of proinflammatory networks and inflammatory signaling pathways to elucidate the basic mechanism underlying aging. Based on studies on senoinflammation and CR, we recognized that senescence-associated secretory phenotype (SASP), which mainly comprises cytokines and chemokines, was significantly increased during aging, whereas it was suppressed during CR. Further, we recognized that cellular metabolic pathways were also dysregulated in aging; however, CR mimetics reversed these effects. These results further support and enhance our understanding of the novel concept of senoinflammation, which is related to the metabolic changes that occur in the aging process. Furthermore, a thorough elucidation of the effect of CR on senoinflammation will reveal key insights and allow possible interventions in aging mechanisms, thus contributing to the development of new therapies focused on improving health and longevity.
Collapse
|
25
|
Li J, Xin Z, Cai M. The role of resveratrol in bone marrow-derived mesenchymal stem cells from patients with osteoporosis. J Cell Biochem 2019; 120:16634-16642. [PMID: 31106448 PMCID: PMC6767769 DOI: 10.1002/jcb.28922] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/01/2019] [Accepted: 03/15/2019] [Indexed: 02/06/2023]
Abstract
The aim of the present study was to investigate the effects of resveratrol on BMSCs from patients with osteoporosis. The cell viability and proliferation of BMSCs after treatment with different concentrations of resveratrol was respectively observed by MTT assay and EdU staining. The apoptosis was assessed using by TUNEL staining and the pluripotency was analyzed by quantitative reverse transcription‐PCR (qRT‐PCR). The osteogenic differentiation and adipogenic differentiation were determined by alkaline phosphatase (ALP) staining, alizarin red S (ARS) staining, oil red O (ORO) staining and qRT‐PCR analysis. MTT assay showed that Res at 40, 80, 100 μM markedly improved the cell proliferation of BMSCs from patients with osteoporosis. EdU staining indicated that Res treatment significantly accelerated the proliferation of BMSCs. In addition, the results of TUNEL staining revealed that Res at 40, 80, 100 μM inhibited the osteoporosis‐related apoptosis of BMSCs. qRT‐PCR analysis explored that Res treatment played a positive role in the pluripotency in BMSCs. ALP, ARS staining and qRT‐PCR demonstrated that Res promoted the differentiation of BMSCs into osteoblasts, especially at 80 μM. ORO staining and qRT‐PCR analysis proved that treatment of Res inhibited the adipogenesis of BMSCs isolated from patients with osteoporosis. Our findings suggested that Res can play a vital role in the cell viability, proliferation, apoptosis, pluripotency, osteogenesis and adipogenesis of BMSCs. And Res might be an efficient therapeutic approach for treating patients with osteoporosis.
Collapse
Affiliation(s)
- Jing Li
- Drug Clinical Trial Institution Office, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Zhaoxu Xin
- Department of Orthopedics, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Mingjun Cai
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
| |
Collapse
|