1
|
Hernández-Benítez JA, Santos-Ocampo BN, Rosas-Ramírez DG, Bautista-Hernández LA, Bautista-de Lucio VM, Pérez NO, Rodríguez-Tovar AV. The Effect of Temperature over the Growth and Biofilm Formation of the Thermotolerant Aspergillus flavus. J Fungi (Basel) 2025; 11:53. [PMID: 39852472 PMCID: PMC11766932 DOI: 10.3390/jof11010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Aspergillus flavus is a medically relevant fungus, particularly in tropical regions. Although its aflatoxin production and thermotolerance are well documented, its biofilm-forming ability has received less attention, despite being a key factor in the virulence of A. flavus as an opportunistic pathogen, which can significantly impact therapeutic outcomes. To investigate the influence of temperature on the growth and biofilm formation of an A. flavus isolate, we compared it on solid media with the reference strain A. flavus ATCC 22546 and documented morphological changes during conidial germination. We examined biofilm formation in both strains across different temperatures and evaluated the susceptibility of this A. flavus isolate to antifungal agents in both planktonic and biofilm form. Our results showed that the temperature can promote conidiation on solid media. Radial growth was highest at 28 °C, while the conidial count and density were favored at higher temperatures. Moreover, we determined that 37 °C was the optimal temperature for conidial germination and biofilm formation. We described four distinct phases in A. flavus biofilm development-initiation (0-12 h), consolidation (12-24 h), maturation (24-48 h), and dispersion (48-72 h)-with the notable presence of conidial heads at 42 °C. Carbohydrates and proteins constitute the primary components of the extracellular matrix. We observed an abundance of lipid droplets within the hyphae of the MMe18 strain biofilm. The mature biofilms demonstrated reduced susceptibility to amphotericin B and itraconazole, requiring higher inhibitory concentrations for both antifungals compared with their planktonic counterparts.
Collapse
Affiliation(s)
- José Alejandro Hernández-Benítez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. Carpio y Plan de Ayala s/n Col. Casco de Santo Tomás, Alcaldia Miguel Hidalgo, Mexico City C.P. 11340, Mexico; (J.A.H.-B.); (B.N.S.-O.)
| | - Brenda Nallely Santos-Ocampo
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. Carpio y Plan de Ayala s/n Col. Casco de Santo Tomás, Alcaldia Miguel Hidalgo, Mexico City C.P. 11340, Mexico; (J.A.H.-B.); (B.N.S.-O.)
| | - Daniel Genaro Rosas-Ramírez
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Circuito Exterior s/n, Ciudad Universitaria, Alcaldía Coyoacán, Mexico City C.P. 04510, Mexico;
| | - Luis Antonio Bautista-Hernández
- Unidad de Investigación del Instituto de Oftalmología, Fundación de Asistencia Privada Conde de Valenciana I.A.P., Chimalpopoca 14, Col. Obrera, Alcaldía Cuahutémoc, Mexico City C.P. 06800, Mexico; (L.A.B.-H.); (V.M.B.-d.L.)
| | - Víctor Manuel Bautista-de Lucio
- Unidad de Investigación del Instituto de Oftalmología, Fundación de Asistencia Privada Conde de Valenciana I.A.P., Chimalpopoca 14, Col. Obrera, Alcaldía Cuahutémoc, Mexico City C.P. 06800, Mexico; (L.A.B.-H.); (V.M.B.-d.L.)
| | - Néstor Octavio Pérez
- Departamento de Investigación y Desarrollo, Probiomed, S.A. de C.V., Cruce de Carreteras Acatzingo-Zumahuacan s/n, Tenancingo C.P. 52400, State of Mexico, Mexico
| | - Aída Verónica Rodríguez-Tovar
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. Carpio y Plan de Ayala s/n Col. Casco de Santo Tomás, Alcaldia Miguel Hidalgo, Mexico City C.P. 11340, Mexico; (J.A.H.-B.); (B.N.S.-O.)
| |
Collapse
|
2
|
Amari C, Carletti M, Yan S, Michaud M, Salvaing J. Lipid droplets degradation mechanisms from microalgae to mammals, a comparative overview. Biochimie 2024; 227:19-34. [PMID: 39299537 DOI: 10.1016/j.biochi.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/15/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Lipid droplets (LDs) are organelles composed of a hydrophobic core (mostly triacylglycerols and steryl esters) delineated by a lipid monolayer and found throughout the tree of life. LDs were seen for a long time as simple energy storage organelles but recent works highlighted their versatile roles in several fundamental cellular processes, particularly during stress response. LDs biogenesis occurs in the ER and their number and size can be dynamically regulated depending on their function, e.g. during development or stress. Understanding their biogenesis and degradation mechanisms is thus essential to better apprehend their roles. LDs degradation can occur in the cytosol by lipolysis or after their internalization into lytic compartments (e.g. vacuoles or lysosomes) using diverse mechanisms that depend on the considered organism, tissue, developmental stage or environmental condition. In this review, we summarize our current knowledge on the different LDs degradation pathways in several main phyla of model organisms, unicellular or pluricellular, photosynthetic or not (budding yeast, mammals, land plants and microalgae). We highlight the conservation of the main degradation pathways throughout evolution, but also the differences between organisms, or inside an organism between different organs. Finally, we discuss how this comparison can help to shed light on relationships between LDs degradation pathways and LDs functions.
Collapse
Affiliation(s)
- Chems Amari
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et Aux Energies Alternatives, IRIG, CEA-Grenoble, 17 Rue des Martyrs, 38000, Grenoble, France; Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Marta Carletti
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et Aux Energies Alternatives, IRIG, CEA-Grenoble, 17 Rue des Martyrs, 38000, Grenoble, France
| | - Siqi Yan
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et Aux Energies Alternatives, IRIG, CEA-Grenoble, 17 Rue des Martyrs, 38000, Grenoble, France
| | - Morgane Michaud
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et Aux Energies Alternatives, IRIG, CEA-Grenoble, 17 Rue des Martyrs, 38000, Grenoble, France
| | - Juliette Salvaing
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et Aux Energies Alternatives, IRIG, CEA-Grenoble, 17 Rue des Martyrs, 38000, Grenoble, France.
| |
Collapse
|
3
|
Obaseki E, Adebayo D, Bandyopadhyay S, Hariri H. Lipid droplets and fatty acid-induced lipotoxicity: in a nutshell. FEBS Lett 2024; 598:1207-1214. [PMID: 38281809 PMCID: PMC11126361 DOI: 10.1002/1873-3468.14808] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/02/2023] [Accepted: 01/04/2024] [Indexed: 01/30/2024]
Abstract
Lipid droplets (LDs) are fat storage organelles that are conserved from bacteria to humans. LDs are broken down to supply cells with fatty acids (FAs) that can be used as an energy source or membrane synthesis. An overload of FAs disrupts cellular functions and causes lipotoxicity. Thus, by acting as hubs for storing excess fat, LDs prevent lipotoxicity and preserve cellular homeostasis. LD synthesis and turnover have to be precisely regulated to maintain a balanced lipid distribution and allow for cellular adaptation during stress. Here, we discuss how prolonged exposure to excess lipids affects cellular functions, and the roles of LDs in buffering cellular stress focusing on lipotoxicity.
Collapse
Affiliation(s)
- Eseiwi Obaseki
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202 USA
| | - Daniel Adebayo
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202 USA
| | - Sumit Bandyopadhyay
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202 USA
| | - Hanaa Hariri
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202 USA
| |
Collapse
|
4
|
Egebjerg JM, Szomek M, Thaysen K, Juhl AD, Kozakijevic S, Werner S, Pratsch C, Schneider G, Kapishnikov S, Ekman A, Röttger R, Wüstner D. Automated quantification of vacuole fusion and lipophagy in Saccharomyces cerevisiae from fluorescence and cryo-soft X-ray microscopy data using deep learning. Autophagy 2024; 20:902-922. [PMID: 37908116 PMCID: PMC11062380 DOI: 10.1080/15548627.2023.2270378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/12/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
During starvation in the yeast Saccharomyces cerevisiae vacuolar vesicles fuse and lipid droplets (LDs) can become internalized into the vacuole in an autophagic process named lipophagy. There is a lack of tools to quantitatively assess starvation-induced vacuole fusion and lipophagy in intact cells with high resolution and throughput. Here, we combine soft X-ray tomography (SXT) with fluorescence microscopy and use a deep-learning computational approach to visualize and quantify these processes in yeast. We focus on yeast homologs of mammalian NPC1 (NPC intracellular cholesterol transporter 1; Ncr1 in yeast) and NPC2 proteins, whose dysfunction leads to Niemann Pick type C (NPC) disease in humans. We developed a convolutional neural network (CNN) model which classifies fully fused versus partially fused vacuoles based on fluorescence images of stained cells. This CNN, named Deep Yeast Fusion Network (DYFNet), revealed that cells lacking Ncr1 (ncr1∆ cells) or Npc2 (npc2∆ cells) have a reduced capacity for vacuole fusion. Using a second CNN model, we implemented a pipeline named LipoSeg to perform automated instance segmentation of LDs and vacuoles from high-resolution reconstructions of X-ray tomograms. From that, we obtained 3D renderings of LDs inside and outside of the vacuole in a fully automated manner and additionally measured droplet volume, number, and distribution. We find that ncr1∆ and npc2∆ cells could ingest LDs into vacuoles normally but showed compromised degradation of LDs and accumulation of lipid vesicles inside vacuoles. Our new method is versatile and allows for analysis of vacuole fusion, droplet size and lipophagy in intact cells.Abbreviations: BODIPY493/503: 4,4-difluoro-1,3,5,7,8-pentamethyl-4-bora-3a,4a-diaza-s-Indacene; BPS: bathophenanthrolinedisulfonic acid disodium salt hydrate; CNN: convolutional neural network; DHE; dehydroergosterol; npc2∆, yeast deficient in Npc2; DSC, Dice similarity coefficient; EM, electron microscopy; EVs, extracellular vesicles; FIB-SEM, focused ion beam milling-scanning electron microscopy; FM 4-64, N-(3-triethylammoniumpropyl)-4-(6-[4-{diethylamino} phenyl] hexatrienyl)-pyridinium dibromide; LDs, lipid droplets; Ncr1, yeast homolog of human NPC1 protein; ncr1∆, yeast deficient in Ncr1; NPC, Niemann Pick type C; NPC2, Niemann Pick type C homolog; OD600, optical density at 600 nm; ReLU, rectifier linear unit; PPV, positive predictive value; NPV, negative predictive value; MCC, Matthews correlation coefficient; SXT, soft X-ray tomography; UV, ultraviolet; YPD, yeast extract peptone dextrose.
Collapse
Affiliation(s)
- Jacob Marcus Egebjerg
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense M, Denmark
| | - Maria Szomek
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Katja Thaysen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Alice Dupont Juhl
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Suzana Kozakijevic
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Stephan Werner
- Department of X‑Ray Microscopy, Helmholtz-Zentrum Berlin, Germany and Humboldt-Universität zu Berlin, Institut für Physik, Berlin, Germany
| | - Christoph Pratsch
- Department of X‑Ray Microscopy, Helmholtz-Zentrum Berlin, Germany and Humboldt-Universität zu Berlin, Institut für Physik, Berlin, Germany
| | - Gerd Schneider
- Department of X‑Ray Microscopy, Helmholtz-Zentrum Berlin, Germany and Humboldt-Universität zu Berlin, Institut für Physik, Berlin, Germany
| | - Sergey Kapishnikov
- SiriusXT, 9A Holly Ave. Stillorgan Industrial Park, Blackrock, Co, Dublin, Ireland
| | - Axel Ekman
- Department of Biological and Environmental Science and Nanoscience Centre, University of Jyväskylä, Jyväskylä, Finland
| | - Richard Röttger
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense M, Denmark
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
5
|
Deng B, Kong W, Shen X, Han C, Zhao Z, Chen S, Zhou C, Bae-Jump V. The role of DGAT1 and DGAT2 in regulating tumor cell growth and their potential clinical implications. J Transl Med 2024; 22:290. [PMID: 38500157 PMCID: PMC10946154 DOI: 10.1186/s12967-024-05084-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/10/2024] [Indexed: 03/20/2024] Open
Abstract
Lipid metabolism is widely reprogrammed in tumor cells. Lipid droplet is a common organelle existing in most mammal cells, and its complex and dynamic functions in maintaining redox and metabolic balance, regulating endoplasmic reticulum stress, modulating chemoresistance, and providing essential biomolecules and ATP have been well established in tumor cells. The balance between lipid droplet formation and catabolism is critical to maintaining energy metabolism in tumor cells, while the process of energy metabolism affects various functions essential for tumor growth. The imbalance of synthesis and catabolism of fatty acids in tumor cells leads to the alteration of lipid droplet content in tumor cells. Diacylglycerol acyltransferase 1 and diacylglycerol acyltransferase 2, the enzymes that catalyze the final step of triglyceride synthesis, participate in the formation of lipid droplets in tumor cells and in the regulation of cell proliferation, migration and invasion, chemoresistance, and prognosis in tumor. Several diacylglycerol acyltransferase 1 and diacylglycerol acyltransferase 2 inhibitors have been developed over the past decade and have shown anti-tumor effects in preclinical tumor models and improvement of metabolism in clinical trials. In this review, we highlight key features of fatty acid metabolism and different paradigms of diacylglycerol acyltransferase 1 and diacylglycerol acyltransferase 2 activities on cell proliferation, migration, chemoresistance, and prognosis in tumor, with the hope that these scientific findings will have potential clinical implications.
Collapse
Affiliation(s)
- Boer Deng
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, People's Republic of China
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Weimin Kong
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, People's Republic of China
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xiaochang Shen
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, People's Republic of China
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Chao Han
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, People's Republic of China
| | - Ziyi Zhao
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, People's Republic of China
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Shuning Chen
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, People's Republic of China
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Chunxiao Zhou
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Victoria Bae-Jump
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
6
|
Yang X, Weng Q, Li X, Lu K, Wang L, Song K, Zhang C, Rahimnejad S. High water temperature raised the requirements of methionine for spotted seabass (Lateolabrax maculatus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:23-40. [PMID: 36322361 DOI: 10.1007/s10695-022-01136-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
This study evaluated the effects of dietary methionine level and rearing water temperature on growth, antioxidant capacity, methionine metabolism, and hepatocyte autophagy in spotted seabass (Lateolabrax maculatus). A factorial design was used with six methionine levels [0.64, 0.85, 1.11, 1.33, 1.58, and 1.76%] and two temperatures [moderate temperature (MT): 27 ℃, and high temperature (HT): 33 ℃]. The results revealed the significant effects of both dietary methionine level and water temperature on weight gain (WG) and feed efficiency (FE), and their interaction effect was found on WG (P < 0.05). In both water temperatures tested, fish WG increased with increasing methionine level up to 1.11% and decreased thereafter. The groups of fish reared at MT exhibited dramatically higher WG and FE than those kept at HT while an opposite trend was observed for feed intake. Liver antioxidant indices including reduced glutathione and malondialdehyde (MDA) concentrations, and catalase and superoxide dismutase (SOD) activities remarkably increased in the HT group compared to the MT group. Moreover, the lowest MDA concentration and the highest SOD activity were recorded at methionine levels between 1.11% and 0.85%, respectively, regardless of water temperatures. Expression of methionine metabolism-related key enzyme genes (mat2b, cbs, ms, and bhmt) in the liver was increased at moderate methionine levels, and higher expression levels were detected at MT compared to HT with the exception of ms gene relative expression. Relative expression of hepatocyte autophagy-related genes (pink1, atg5, mul1, foxo3) and hsp70 was upregulated by increasing methionine level up to a certain level and decreased thereafter and increasing water temperature led to significantly enhanced expression of hsp70. In summary, HT induced heat stress and reduced fish growth, and an appropriate dietary methionine level improved the antioxidant capacity and stress resistance of fish. A second-order polynomial regression analysis based on the WG suggested that the optimal dietary methionine level for maximum growth of spotted seabass is 1.22% of the diet at 27 ℃ and 1.26% of the diet at 33 ℃, then 1.37 g and 1.68 g dietary methionine intake is required for 100 g weight gain at 27 ℃ or 33 ℃, respectively.
Collapse
Affiliation(s)
- Xin Yang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, People's Republic of China
| | - Qinjiang Weng
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, People's Republic of China
| | - Xueshan Li
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, People's Republic of China
| | - Kangle Lu
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, People's Republic of China
| | - Ling Wang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, People's Republic of China
| | - Kai Song
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, People's Republic of China.
| | - Chunxiao Zhang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, People's Republic of China.
| | - Samad Rahimnejad
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| |
Collapse
|
7
|
Li T, Jin Y, Wu J, Ren Z. Beyond energy provider: multifunction of lipid droplets in embryonic development. Biol Res 2023; 56:38. [PMID: 37438836 DOI: 10.1186/s40659-023-00449-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/23/2023] [Indexed: 07/14/2023] Open
Abstract
Since the discovery, lipid droplets (LDs) have been recognized to be sites of cellular energy reserves, providing energy when necessary to sustain cellular life activities. Many studies have reported large numbers of LDs in eggs and early embryos from insects to mammals. The questions of how LDs are formed, what role they play, and what their significance is for embryonic development have been attracting the attention of researchers. Studies in recent years have revealed that in addition to providing energy for embryonic development, LDs in eggs and embryos also function to resist lipotoxicity, resist oxidative stress, inhibit bacterial infection, and provide lipid and membrane components for embryonic development. Removal of LDs from fertilized eggs or early embryos artificially leads to embryonic developmental arrest and defects. This paper reviews recent studies to explain the role and effect mechanisms of LDs in the embryonic development of several species and the genes involved in the regulation. The review contributes to understanding the embryonic development mechanism and provides new insight for the diagnosis and treatment of diseases related to embryonic developmental abnormalities.
Collapse
Affiliation(s)
- Tai Li
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, P. R. China
| | - Yi Jin
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, P. R. China
| | - Jian Wu
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, P. R. China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Zhuqing Ren
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, P. R. China.
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, China.
| |
Collapse
|
8
|
Ren W, Zhang Y, Zhu M, Liu Z, Lian S, Wang C, Li B, Liu N. The Phosphatase Cascade Nem1/Spo7-Pah1 Regulates Fungal Development, Lipid Homeostasis, and Virulence in Botryosphaeria dothidea. Microbiol Spectr 2023; 11:e0388122. [PMID: 37191532 PMCID: PMC10269782 DOI: 10.1128/spectrum.03881-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/28/2023] [Indexed: 05/17/2023] Open
Abstract
Protein phosphatase complex Nem1/Spo7 plays crucial roles in the regulation of various biological processes in eukaryotes. However, its biological functions in phytopathogenic fungi are not well understood. In this study, genome-wide transcriptional profiling analysis revealed that Nem1 was significantly upregulated during the infection process of Botryosphaeria dothidea, and we identified and characterized the phosphatase complex Nem1/Spo7 and its substrate Pah1 (a phosphatidic acid phosphatase) in B. dothidea. Nem1/Spo7 physically interacted with and dephosphorylated Pah1 to promote triacylglycerol (TAG) and subsequent lipid droplet (LD) synthesis. Moreover, the Nem1/Spo7-dependently dephosphorylated Pah1 functioned as a transcriptional repressor of the key nuclear membrane biosynthesis genes to regulate nuclear membrane morphology. In addition, phenotypic analyses showed that the phosphatase cascade Nem1/Spo7-Pah1 was involved in regulating mycelial growth, asexual development, stress responses, and virulence of B. dothidea. IMPORTANCE Botryosphaeria canker and fruit rot caused by the fungus Botryosphaeria dothidea is one of the most destructive diseases of apple worldwide. Our data indicated that the phosphatase cascade Nem1/Spo7-Pah1 plays important roles in the regulation of fungal growth, development, lipid homeostasis, environmental stress responses, and virulence in B. dothidea. The findings will contribute to the in-depth and comprehensive understanding of Nem1/Spo7-Pah1 in fungi and the development of target-based fungicides for disease management.
Collapse
Affiliation(s)
- Weichao Ren
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Yihan Zhang
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Meiqi Zhu
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Zequn Liu
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Sen Lian
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Caixia Wang
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Baohua Li
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Na Liu
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
9
|
Sengupta S, Pattanaik KP, Mishra S, Sonawane A. Epigenetic orchestration of host immune defences by Mycobacterium tuberculosis. Microbiol Res 2023; 273:127400. [PMID: 37196490 DOI: 10.1016/j.micres.2023.127400] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/09/2023] [Accepted: 05/02/2023] [Indexed: 05/19/2023]
Abstract
Being among the top 10 causes of adult deaths, tuberculosis (TB) disease is considered a major global public health concern to address. The human tuberculosis pathogen, Mycobacterium tuberculosis (Mtb), is an extremely competent and well-versed pathogen that promotes pathogenesis by evading the host immune systems through numerous tactics. Investigations revealed that Mtb could evade the host defense mechanisms by reconfiguring the host gene transcription and causing epigenetic changes. Although results indicate the link between epigenetics and disease manifestation in other bacterial infections, little is known regarding the kinetics of the epigenetic alterations in mycobacterial infection. This literature review discusses the studies in Mtb-induced epigenetic alterations inside the host and its contribution in the host immune evasion strategies. It also discusses how the Mtb-induced alterations could be used as 'epibiomarkers' to diagnose TB. Additionally, this review also discusses therapeutic interventions to be enhanced through remodification by 'epidrugs'.
Collapse
Affiliation(s)
- Srabasti Sengupta
- School of Biotechnology, Campus-11, KIIT Deemed to be University, Patia, Bhubaneswar 751024, India
| | - Kali Prasad Pattanaik
- School of Biotechnology, Campus-11, KIIT Deemed to be University, Patia, Bhubaneswar 751024, India
| | - Snehasish Mishra
- School of Biotechnology, Campus-11, KIIT Deemed to be University, Patia, Bhubaneswar 751024, India
| | - Avinash Sonawane
- Discipline of Biosciences and Biomedical Engineering, Indian Institutes of Technology Indore, Khandwa Road, Simrol, Indore 453552, India.
| |
Collapse
|
10
|
Liu L, Tang Y, Zhou Z, Huang Y, Zhang R, Lyu H, Xiao S, Guo D, Ali DW, Michalak M, Chen XZ, Zhou C, Tang J. Membrane Curvature: The Inseparable Companion of Autophagy. Cells 2023; 12:1132. [PMID: 37190041 PMCID: PMC10136490 DOI: 10.3390/cells12081132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Autophagy is a highly conserved recycling process of eukaryotic cells that degrades protein aggregates or damaged organelles with the participation of autophagy-related proteins. Membrane bending is a key step in autophagosome membrane formation and nucleation. A variety of autophagy-related proteins (ATGs) are needed to sense and generate membrane curvature, which then complete the membrane remodeling process. The Atg1 complex, Atg2-Atg18 complex, Vps34 complex, Atg12-Atg5 conjugation system, Atg8-phosphatidylethanolamine conjugation system, and transmembrane protein Atg9 promote the production of autophagosomal membranes directly or indirectly through their specific structures to alter membrane curvature. There are three common mechanisms to explain the change in membrane curvature. For example, the BAR domain of Bif-1 senses and tethers Atg9 vesicles to change the membrane curvature of the isolation membrane (IM), and the Atg9 vesicles are reported as a source of the IM in the autophagy process. The amphiphilic helix of Bif-1 inserts directly into the phospholipid bilayer, causing membrane asymmetry, and thus changing the membrane curvature of the IM. Atg2 forms a pathway for lipid transport from the endoplasmic reticulum to the IM, and this pathway also contributes to the formation of the IM. In this review, we introduce the phenomena and causes of membrane curvature changes in the process of macroautophagy, and the mechanisms of ATGs in membrane curvature and autophagosome membrane formation.
Collapse
Affiliation(s)
- Lei Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Yu Tang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Zijuan Zhou
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Yuan Huang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Rui Zhang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Hao Lyu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Shuai Xiao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Dong Guo
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Declan William Ali
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Cefan Zhou
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Jingfeng Tang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
11
|
Zhen Y, Stenmark H. Autophagosome Biogenesis. Cells 2023; 12:cells12040668. [PMID: 36831335 PMCID: PMC9954227 DOI: 10.3390/cells12040668] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Autophagy-the lysosomal degradation of cytoplasm-plays a central role in cellular homeostasis and protects cells from potentially harmful agents that may accumulate in the cytoplasm, including pathogens, protein aggregates, and dysfunctional organelles. This process is initiated by the formation of a phagophore membrane, which wraps around a portion of cytoplasm or cargo and closes to form a double-membrane autophagosome. Upon the fusion of the autophagosome with a lysosome, the sequestered material is degraded by lysosomal hydrolases in the resulting autolysosome. Several alternative membrane sources of autophagosomes have been proposed, including the plasma membrane, endosomes, mitochondria, endoplasmic reticulum, lipid droplets, hybrid organelles, and de novo synthesis. Here, we review recent progress in our understanding of how the autophagosome is formed and highlight the proposed role of vesicles that contain the lipid scramblase ATG9 as potential seeds for phagophore biogenesis. We also discuss how the phagophore is sealed by the action of the endosomal sorting complex required for transport (ESCRT) proteins.
Collapse
Affiliation(s)
- Yan Zhen
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, N-0379 Oslo, Norway
- Correspondence: (Y.Z.); (H.S.); Tel.: +47-22781911 (Y.Z.); +47-22781818 (H.S.)
| | - Harald Stenmark
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, N-0379 Oslo, Norway
- Correspondence: (Y.Z.); (H.S.); Tel.: +47-22781911 (Y.Z.); +47-22781818 (H.S.)
| |
Collapse
|
12
|
Danielli M, Perne L, Jarc Jovičić E, Petan T. Lipid droplets and polyunsaturated fatty acid trafficking: Balancing life and death. Front Cell Dev Biol 2023; 11:1104725. [PMID: 36776554 PMCID: PMC9911892 DOI: 10.3389/fcell.2023.1104725] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
Lipid droplets are fat storage organelles ubiquitously distributed across the eukaryotic kingdom. They have a central role in regulating lipid metabolism and undergo a dynamic turnover of biogenesis and breakdown to meet cellular requirements for fatty acids, including polyunsaturated fatty acids. Polyunsaturated fatty acids esterified in membrane phospholipids define membrane fluidity and can be released by the activity of phospholipases A2 to act as ligands for nuclear receptors or to be metabolized into a wide spectrum of lipid signaling mediators. Polyunsaturated fatty acids in membrane phospholipids are also highly susceptible to lipid peroxidation, which if left uncontrolled leads to ferroptotic cell death. On the one hand, lipid droplets act as antioxidant organelles that control polyunsaturated fatty acid storage in triglycerides in order to reduce membrane lipid peroxidation, preserve organelle function and prevent cell death, including ferroptosis. On the other hand, lipid droplet breakdown fine-tunes the delivery of polyunsaturated fatty acids into metabolic and signaling pathways, but unrestricted lipid droplet breakdown may also lead to the release of lethal levels of polyunsaturated fatty acids. Precise regulation of lipid droplet turnover is thus essential for polyunsaturated fatty acid distribution and cellular homeostasis. In this review, we focus on emerging aspects of lipid droplet-mediated regulation of polyunsaturated fatty acid trafficking, including the management of membrane lipid peroxidation, ferroptosis and lipid mediator signaling.
Collapse
Affiliation(s)
| | | | | | - Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
13
|
Schüssele DS, Haller PK, Haas ML, Hunter C, Sporbeck K, Proikas-Cezanne T. Autophagy profiling in single cells with open source CellProfiler-based image analysis. Autophagy 2023; 19:338-351. [PMID: 35435815 PMCID: PMC9809960 DOI: 10.1080/15548627.2022.2065617] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Single cell-based analysis of macroautophagy/autophagy is largely achieved through the use of fluorescence microscopy to detect autophagy-related proteins that associate with autophagic membranes and therefore can be quantified as fluorescent puncta. In this context, an automated analysis of the number and size of recognized puncta is preferable to a manual count, because more reliable results can be generated in a short time. Here we present a method for open source CellProfiler software-based analysis for quantitative autophagy assessments using GFP-tagged WIPI1 (WD repeat domain, phosphoinositide interacting 1) images acquired with Airyscan or confocal laser-scanning microscopy. The CellProfiler protocol is provided as a ready-to-use software pipeline, and the creation of this pipeline is detailed in both text and video formats. In addition, we provide CellProfiler pipelines for endogenous SQSTM1/p62 (sequestosome 1) or intracellular lipid droplet (LD) analysis, suitable to assess forms of selective autophagy. All protocols and software pipelines can be quickly and easily adapted for the use of alternative autophagy markers or cell types, and can also be used for high-throughput purposes.Abbreviations: AF Alexa Fluor ATG autophagy related BafA1 bafilomycin A1 BSA bovine serum albumin DAPI 4,6-diamidino-2-phenylindole DMEM Dulbecco's modified Eagle's medium DMSO dimethyl sulfoxide EDTA ethylenediaminetetraacetic acid EBSS Earle's balanced salt solution FBS fetal bovine serum GFP green fluorescent protein LD lipid droplet LSM laser scanning microscope MAP1LC3B microtubule associated protein 1 light chain 3 beta MTOR mechanistic target of rapamycin kinase PBS phosphate-buffered saline PIK3C3/VPS34 phosphatidylinositol 3-kinase catalytic subunit type 3 SQSTM1 sequestosome 1 TIFF tagged image file format U2OS U-2 OS cell line WIPI WD repeat domain, phosphoinositide interacting.
Collapse
Affiliation(s)
- David S. Schüssele
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Patricia K. Haller
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, Tübingen, Germany,International Max Planck Research School ‘From Molecules to Organisms’, Max Planck Institute for Developmental Biology and Eberhard Karls University Tübingen, Tübingen, Germany
| | - Maximilian L. Haas
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Catherine Hunter
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, Tübingen, Germany,International Max Planck Research School ‘From Molecules to Organisms’, Max Planck Institute for Developmental Biology and Eberhard Karls University Tübingen, Tübingen, Germany
| | - Katharina Sporbeck
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, Tübingen, Germany,International Max Planck Research School ‘From Molecules to Organisms’, Max Planck Institute for Developmental Biology and Eberhard Karls University Tübingen, Tübingen, Germany
| | - Tassula Proikas-Cezanne
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, Tübingen, Germany,International Max Planck Research School ‘From Molecules to Organisms’, Max Planck Institute for Developmental Biology and Eberhard Karls University Tübingen, Tübingen, Germany,CONTACT Tassula Proikas-Cezanne Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, D-72076Tübingen, Germany
| |
Collapse
|
14
|
Huang S, Liu Z, Cao W, Li H, Zhang W, Cui Y, Hu S, Luo M, Zhu Y, Zhao Q, Xie L, Gao C, Xiao S, Jiang L. The plant ESCRT component FREE1 regulates peroxisome-mediated turnover of lipid droplets in germinating Arabidopsis seedlings. THE PLANT CELL 2022; 34:4255-4273. [PMID: 35775937 PMCID: PMC9614499 DOI: 10.1093/plcell/koac195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/20/2022] [Indexed: 05/28/2023]
Abstract
Lipid droplets (LDs) stored during seed development are mobilized and provide essential energy and lipids to support seedling growth upon germination. Triacylglycerols (TAGs) are the main neutral lipids stored in LDs. The lipase SUGAR DEPENDENT 1 (SDP1), which hydrolyzes TAGs in Arabidopsis thaliana, is localized on peroxisomes and traffics to the LD surface through peroxisomal extension, but the underlying mechanism remains elusive. Here, we report a previously unknown function of a plant-unique endosomal sorting complex required for transport (ESCRT) component FYVE DOMAIN PROTEIN REQUIRED FOR ENDOSOMAL SORTING 1 (FREE1) in regulating peroxisome/SDP1-mediated LD turnover in Arabidopsis. We showed that LD degradation was impaired in germinating free1 mutant; moreover, the tubulation of SDP1- or PEROXIN 11e (PEX11e)-marked peroxisomes and the migration of SDP1-positive peroxisomes to the LD surface were altered in the free1 mutant. Electron tomography analysis showed that peroxisomes failed to form tubules to engulf LDs in free1, unlike in the wild-type. FREE1 interacted directly with both PEX11e and SDP1, suggesting that these interactions may regulate peroxisomal extension and trafficking of the lipase SDP1 to LDs. Taken together, our results demonstrate a pivotal role for FREE1 in LD degradation in germinating seedlings via regulating peroxisomal tubulation and SDP1 targeting.
Collapse
Affiliation(s)
- Shuxian Huang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, China
| | - Zhiqi Liu
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, China
| | - Wenhan Cao
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, China
| | - Hongbo Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou, 510631, China
| | - Wenxin Zhang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, China
| | - Yong Cui
- School of Life Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, 361102, China
| | - Shuai Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Mengqian Luo
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, China
| | - Ying Zhu
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, China
| | - Qiong Zhao
- School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Lijuan Xie
- College of Plant Protection, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou, 510631, China
| | - Shi Xiao
- School of Life Sciences, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, China
| | | |
Collapse
|
15
|
Bieber A, Capitanio C, Erdmann PS, Fiedler F, Beck F, Lee CW, Li D, Hummer G, Schulman BA, Baumeister W, Wilfling F. In situ structural analysis reveals membrane shape transitions during autophagosome formation. Proc Natl Acad Sci U S A 2022; 119:e2209823119. [PMID: 36122245 PMCID: PMC9522377 DOI: 10.1073/pnas.2209823119] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
Abstract
Autophagosomes are unique organelles that form de novo as double-membrane vesicles engulfing cytosolic material for destruction. Their biogenesis involves membrane transformations of distinctly shaped intermediates whose ultrastructure is poorly understood. Here, we combine cell biology, correlative cryo-electron tomography (cryo-ET), and extensive data analysis to reveal the step-by-step structural progression of autophagosome biogenesis at high resolution directly within yeast cells. The analysis uncovers an unexpectedly thin intermembrane distance that is dilated at the phagophore rim. Mapping of individual autophagic structures onto a timeline based on geometric features reveals a dynamical change of membrane shape and curvature in growing phagophores. Moreover, our tomograms show the organelle interactome of growing autophagosomes, highlighting a polar organization of contact sites between the phagophore and organelles, such as the vacuole and the endoplasmic reticulum (ER). Collectively, these findings have important implications for the contribution of different membrane sources during autophagy and for the forces shaping and driving phagophores toward closure without a templating cargo.
Collapse
Affiliation(s)
- Anna Bieber
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
| | - Cristina Capitanio
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
| | - Philipp S. Erdmann
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
- Human Technopole, 20157 Milan, Italy
| | - Fabian Fiedler
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, 60438 Frankfurt a. M., Germany
| | - Florian Beck
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
- CryoEM Technology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Chia-Wei Lee
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA 02115
| | - Delong Li
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, 60438 Frankfurt a. M., Germany
| | - Gerhard Hummer
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt a. M., Germany
- Institute of Biophysics, Goethe University Frankfurt, 60438 Frankfurt a. M., Germany
| | - Brenda A. Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
| | - Florian Wilfling
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, 60438 Frankfurt a. M., Germany
| |
Collapse
|
16
|
Morimoto Y, Saitoh S, Takayama Y. Growth conditions inducing G1 cell cycle arrest enhance lipid production in the oleaginous yeast Lipomyces starkeyi. J Cell Sci 2022; 135:276362. [PMID: 35833504 DOI: 10.1242/jcs.259996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/11/2022] [Indexed: 11/20/2022] Open
Abstract
Lipid droplets are cytoplasmic organelles that store lipids for energy and membrane synthesis. The oleaginous yeast Lipomyces starkeyi is one of the most promising lipid producers and has attracted attention as a biofuel source. It is known that the expansion of lipid droplets is enhanced under nutrient-poor conditions. Therefore, we prepared a novel nitrogen-depleted medium (N medium) in which to culture L. starkeyi cells. Lipid accumulation was rapidly induced, and this was reversed by the addition of ammonium. In this condition, cell proliferation stopped and cells with giant lipid droplets were arrested in G1 phase. We investigated whether cell cycle arrest at a specific phase is required for lipid accumulation. Lipid accumulation was repressed in hydroxyurea-synchronized S phase cells and was increased in nocodazole-arrested G2/M phase cells. Moreover, the enrichment of G1 phase cells by rapamycin induced massive lipid accumulation. From these results, we conclude that L. starkeyi cells store lipids from G2/M phase and then arrest cell proliferation in the subsequent G1 phase, where lipid accumulation is enhanced. Cell cycle control is an attractive approach for biofuel production.
Collapse
Affiliation(s)
| | - Shigeaki Saitoh
- Department of Cell Biology, Institute of Life Science, Kurume University, Fukuoka, Japan
| | - Yuko Takayama
- Department of Biosciences, Teikyo University, Tochigi, Japan.,Graduate School of Science and Engineering, Teikyo University, Tochigi, Japan
| |
Collapse
|
17
|
Xu C, Fan J. Links between autophagy and lipid droplet dynamics. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2848-2858. [PMID: 35560198 DOI: 10.1093/jxb/erac003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/06/2022] [Indexed: 06/15/2023]
Abstract
Autophagy is a catabolic process in which cytoplasmic components are delivered to vacuoles or lysosomes for degradation and nutrient recycling. Autophagy-mediated degradation of membrane lipids provides a source of fatty acids for the synthesis of energy-rich, storage lipid esters such as triacylglycerol (TAG). In eukaryotes, storage lipids are packaged into dynamic subcellular organelles, lipid droplets. In times of energy scarcity, lipid droplets can be degraded via autophagy in a process termed lipophagy to release fatty acids for energy production via fatty acid β-oxidation. On the other hand, emerging evidence suggests that lipid droplets are required for the efficient execution of autophagic processes. Here, we review recent advances in our understanding of metabolic interactions between autophagy and TAG storage, and discuss mechanisms of lipophagy. Free fatty acids are cytotoxic due to their detergent-like properties and their incorporation into lipid intermediates that are toxic at high levels. Thus, we also discuss how cells manage lipotoxic stresses during autophagy-mediated mobilization of fatty acids from lipid droplets and organellar membranes for energy generation.
Collapse
Affiliation(s)
- Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jilian Fan
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
18
|
Cai Y, Chen H, Tang X, Zhao J, Zhang H, Chen YQ, Chen W. The relationship between amino acid and lipid metabolism in oleaginous eukaryotic microorganism. Appl Microbiol Biotechnol 2022; 106:3405-3417. [PMID: 35503470 DOI: 10.1007/s00253-022-11931-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/30/2022]
Abstract
Amino acids are the building blocks of protein, promoting the balance between growth and lipid synthesis. However, the accumulation of microbial lipids involves multiple pathways, which requires the analysis of the global cellular metabolic network in which amino acid metabolism is involved. This review illustrates the dependence patterns of intracellular amino acids and lipids of oleaginous eukaryotic microorganisms in different environments and points out the contribution of amino acid metabolic precursors to the de novo synthesis of fatty acids. We emphasized the key role of amino acid metabolism in lipid remodeling and autophagy behavior and highlighted the regulatory effects of amino acids and their secondary metabolites as signal factors for microbial lipid synthesis. The application prospects of omics technology and genetic engineering technology in the field of microbial lipids are described. KEY POINTS: • Overview of microbial lipid synthesis mediated by amino acid metabolism • Insight into metabolic mechanisms founding multiple regulatory networks is provided • Description of microbial lipid homeostasis mediated by amino acid excitation signal.
Collapse
Affiliation(s)
- Yibo Cai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China. .,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China. .,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, People's Republic of China.
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, People's Republic of China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, 214122, People's Republic of China
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, People's Republic of China.,Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 5: , 27127, USA
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, People's Republic of China
| |
Collapse
|
19
|
Egea PF. Mechanisms of Non-Vesicular Exchange of Lipids at Membrane Contact Sites: Of Shuttles, Tunnels and, Funnels. Front Cell Dev Biol 2021; 9:784367. [PMID: 34912813 PMCID: PMC8667587 DOI: 10.3389/fcell.2021.784367] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Eukaryotic cells are characterized by their exquisite compartmentalization resulting from a cornucopia of membrane-bound organelles. Each of these compartments hosts a flurry of biochemical reactions and supports biological functions such as genome storage, membrane protein and lipid biosynthesis/degradation and ATP synthesis, all essential to cellular life. Acting as hubs for the transfer of matter and signals between organelles and throughout the cell, membrane contacts sites (MCSs), sites of close apposition between membranes from different organelles, are essential to cellular homeostasis. One of the now well-acknowledged function of MCSs involves the non-vesicular trafficking of lipids; its characterization answered one long-standing question of eukaryotic cell biology revealing how some organelles receive and distribute their membrane lipids in absence of vesicular trafficking. The endoplasmic reticulum (ER) in synergy with the mitochondria, stands as the nexus for the biosynthesis and distribution of phospholipids (PLs) throughout the cell by contacting nearly all other organelle types. MCSs create and maintain lipid fluxes and gradients essential to the functional asymmetry and polarity of biological membranes throughout the cell. Membrane apposition is mediated by proteinaceous tethers some of which function as lipid transfer proteins (LTPs). We summarize here the current state of mechanistic knowledge of some of the major classes of LTPs and tethers based on the available atomic to near-atomic resolution structures of several "model" MCSs from yeast but also in Metazoans; we describe different models of lipid transfer at MCSs and analyze the determinants of their specificity and directionality. Each of these systems illustrate fundamental principles and mechanisms for the non-vesicular exchange of lipids between eukaryotic membrane-bound organelles essential to a wide range of cellular processes such as at PL biosynthesis and distribution, lipid storage, autophagy and organelle biogenesis.
Collapse
Affiliation(s)
- Pascal F. Egea
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| |
Collapse
|
20
|
Interactions of Lipid Droplets with the Intracellular Transport Machinery. Int J Mol Sci 2021; 22:ijms22052776. [PMID: 33803444 PMCID: PMC7967230 DOI: 10.3390/ijms22052776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 02/27/2021] [Accepted: 02/27/2021] [Indexed: 12/16/2022] Open
Abstract
Historically, studies of intracellular membrane trafficking have focused on the secretory and endocytic pathways and their major organelles. However, these pathways are also directly implicated in the biogenesis and function of other important intracellular organelles, the best studied of which are peroxisomes and lipid droplets. There is a large recent body of work on these organelles, which have resulted in the introduction of new paradigms regarding the roles of membrane trafficking organelles. In this review, we discuss the roles of membrane trafficking in the life cycle of lipid droplets. This includes the complementary roles of lipid phase separation and proteins in the biogenesis of lipid droplets from endoplasmic reticulum (ER) membranes, and the attachment of mature lipid droplets to membranes by lipidic bridges and by more conventional protein tethers. We also discuss the catabolism of neutral lipids, which in part results from the interaction of lipid droplets with cytosolic molecules, but with important roles for both macroautophagy and microautophagy. Finally, we address their eventual demise, which involves interactions with the autophagocytotic machinery. We pay particular attention to the roles of small GTPases, particularly Rab18, in these processes.
Collapse
|