1
|
Lamberg S, Brakenridge CJ, Dunstan DW, Finni T, Healy GN, Owen N, Pesola AJ. Electromyography of Sedentary Behavior: Identifying Potential for Cardiometabolic Risk Reduction. Med Sci Sports Exerc 2025; 57:11-22. [PMID: 39207854 DOI: 10.1249/mss.0000000000003544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Muscle activation during interruptions to prolonged sedentary time is a hypothesized mechanism underlying observed cardiometabolic benefits. We examined associations of quadriceps and hamstring muscle activity patterns with cardiometabolic risk markers and how these patterns varied between different sitting-interruption countermeasures. METHODS Electromyographic (EMG) data (shorts) were gathered for 1 to 2 d from healthy adults in a free-living study ( n = 172, age 40.9 ± 12.9, BMI 23.6 ± 1.3) and a laboratory-based study ( n = 12, age 47.0 ± 7.7, BMI 30.0 ± 4.7). Patterns examined were average EMG (aEMG;%EMG MVC ); EMG activity duration (% above signal baseline 3 μV); and usual (weighted medians) EMG activity bout amplitude (%EMG MVC ) and duration (s). In the free-living study, these were regressed against risk markers (waist, fat percentage, fasting plasma glucose, total cholesterol, high-density lipid cholesterol, low-density lipid cholesterol, triglycerides); in the laboratory study, EMG patterns for the muscle groups were compared between sitting and the active countermeasures. RESULTS In the free-living study, lower-extremity muscles displayed minimal overall activity, with hamstrings and quadriceps using only 2.6% and 2.0% of their capacity (%EMG MVC ), respectively, and being active for 30% and 25% of the time. Higher hamstring aEMG and EMG activity duration were beneficially associated with waist, high-density lipid cholesterol and fat percentage (duration only) and a longer quadriceps usual EMG activity bout duration was beneficially associated with fasting plasma glucose. In the laboratory study, compared with prolonged sitting, active seated or upright active-interruption countermeasures modified these EMG patterns; brief (6 min) walking and simple resistance activities (SRA) were more beneficial than was a bout of standing (30 min) with the SRAs being the only intervention that matched daily aEMG levels. CONCLUSIONS Upright and physically active interruptions to sitting appear to be required to increase the typically low muscle engagement observed in free-living contexts, promoting muscle activity patterns that may help ameliorate cardiometabolic risk.
Collapse
Affiliation(s)
| | | | | | - Taija Finni
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, FINLAND
| | - Genevieve N Healy
- The University of Queensland, School of Human Movement and Nutrition Sciences, Brisbane, QLD, AUSTRALIA
| | | | - Arto J Pesola
- Active Life Lab, South-Eastern Finland University of Applied Sciences, Mikkeli, FINLAND
| |
Collapse
|
2
|
Gao Y, Li QY, Finni T, Pesola AJ. Enhanced muscle activity during interrupted sitting improves glycemic control in overweight and obese men. Scand J Med Sci Sports 2024; 34:e14628. [PMID: 38629807 DOI: 10.1111/sms.14628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/19/2024]
Abstract
The efficacy of interrupting prolonged sitting may be influenced by muscle activity patterns. This study examined the effects of interrupting prolonged sitting time with different muscle activity patterns on continuously monitored postprandial glycemic response. Eighteen overweight and obese men (21.0 ± 1.2 years; 28.8 ± 2.2 kg/m2) participated in this randomized four-arm crossover study, including uninterrupted sitting for 8.5 h (SIT) and interruptions in sitting with matched energy expenditure and duration but varying muscle activity: 30-min walking at 4 km/h (ONE), sitting with 3-min walking at 4 km/h (WALK) or squatting (SQUAT) every 45 min for 10 times. Net incremental area under the curve (netiAUC) for glucose was compared between conditions. Quadriceps, hamstring, and gluteal muscles electromyogram (EMG) patterns including averaged muscle EMG amplitude (aEMG) and EMG activity duration were used to predict the effects on glucose netiAUC. Compared with SIT (10.2 mmol/L/h [95%CI 6.3 to 11.7]), glucose netiAUC was lower during sitting interrupted with any countermeasure (ONE 9.2 mmol/L/h [8.0 to 10.4], WALK 7.9 mmol/L/h [6.4 to 9.3], and SQUAT 7.9 mmol/L/h [6.4 to 9.3], all p < 0.05). Furthermore, WALK and SQUAT resulted in a lower glucose netiAUC compared with ONE (both p < 0.05). Only increased aEMG in quadriceps (-0.383 mmol/L/h [-0.581 to -0.184], p < 0.001) and gluteal muscles (-0.322 mmol/L/h [-0.593 to -0.051], p = 0.022) was associated with a reduction in postprandial glycemic response. Collectively, short, frequent walking or squatting breaks effectively enhance glycemic control in overweight and obese men compared to a single bout of walking within prolonged sitting. These superior benefits seem to be associated with increased muscle activity intensity in the targeted muscle groups during frequent transitions from sitting to activity.
Collapse
Affiliation(s)
- Ying Gao
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou, China
| | - Qing-Yang Li
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou, China
| | - Taija Finni
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Arto J Pesola
- Active Life Lab, South-Eastern Finland University of Applied Sciences, Mikkeli, Finland
| |
Collapse
|
3
|
Lin WS, Hsu TR. Revisiting the roles of glucose transporters in skeletal muscle physiology: is GLUT10 a novel player? Biochem Biophys Res Commun 2024; 696:149494. [PMID: 38219491 DOI: 10.1016/j.bbrc.2024.149494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/19/2023] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
Skeletal muscle is the largest metabolic tissue responsible for systemic glucose handling. Glucose uptake into skeletal tissue is highly dynamic and delicately regulated, in part through the controlled expression and subcellular trafficking of multiple types of glucose transporters. Although the roles of GLUT4 in skeletal muscle metabolism are well established, the physiological significance of other, seemingly redundant, glucose transporters remain incompletely understood. Nonetheless, recent studies have shed light on the roles of several glucose transporters, such as GLUT1 and GLUT10, in skeletal muscle. Mice experiments suggest that GLUT10 could be a novel player in skeletal muscle metabolism in the context of mechanical overload, which is in line with the meta-analytical results of gene expression changes after resistance exercise in humans. Herein we discuss the knowns, unknowns, and implications of these recent findings.
Collapse
Affiliation(s)
- Wei-Sheng Lin
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Ting-Rong Hsu
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
4
|
Peifer-Weiß L, Al-Hasani H, Chadt A. AMPK and Beyond: The Signaling Network Controlling RabGAPs and Contraction-Mediated Glucose Uptake in Skeletal Muscle. Int J Mol Sci 2024; 25:1910. [PMID: 38339185 PMCID: PMC10855711 DOI: 10.3390/ijms25031910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Impaired skeletal muscle glucose uptake is a key feature in the development of insulin resistance and type 2 diabetes. Skeletal muscle glucose uptake can be enhanced by a variety of different stimuli, including insulin and contraction as the most prominent. In contrast to the clearance of glucose from the bloodstream in response to insulin stimulation, exercise-induced glucose uptake into skeletal muscle is unaffected during the progression of insulin resistance, placing physical activity at the center of prevention and treatment of metabolic diseases. The two Rab GTPase-activating proteins (RabGAPs), TBC1D1 and TBC1D4, represent critical nodes at the convergence of insulin- and exercise-stimulated signaling pathways, as phosphorylation of the two closely related signaling factors leads to enhanced translocation of glucose transporter 4 (GLUT4) to the plasma membrane, resulting in increased cellular glucose uptake. However, the full network of intracellular signaling pathways that control exercise-induced glucose uptake and that overlap with the insulin-stimulated pathway upstream of the RabGAPs is not fully understood. In this review, we discuss the current state of knowledge on exercise- and insulin-regulated kinases as well as hypoxia as stimulus that may be involved in the regulation of skeletal muscle glucose uptake.
Collapse
Affiliation(s)
- Leon Peifer-Weiß
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225 Düsseldorf, Germany; (L.P.-W.); (H.A.-H.)
- German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, 85764 Neuherberg, Germany
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225 Düsseldorf, Germany; (L.P.-W.); (H.A.-H.)
- German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, 85764 Neuherberg, Germany
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225 Düsseldorf, Germany; (L.P.-W.); (H.A.-H.)
- German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, 85764 Neuherberg, Germany
| |
Collapse
|
5
|
Tsuneki H, Sugiyama M, Sato K, Ito H, Nagai S, Kon K, Wada T, Kobayashi N, Okada T, Toyooka N, Kawasaki M, Ito T, Otsubo R, Okuzaki D, Yasui T, Sasaoka T. Resting phase-administration of lemborexant ameliorates sleep and glucose tolerance in type 2 diabetic mice. Eur J Pharmacol 2023; 961:176190. [PMID: 37952563 DOI: 10.1016/j.ejphar.2023.176190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/23/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Sleep disorders are associated with increased risk of obesity and type 2 diabetes. Lemborexant, a dual orexin receptor antagonist (DORA), is clinically used to treat insomnia. However, the influence of lemborexant on sleep and glucose metabolism in type 2 diabetic state has remained unknown. In the present study, we investigated the effect of lemborexant in type 2 diabetic db/db mice exhibiting both sleep disruption and glucose intolerance. Single administration of lemborexant at the beginning of the light phase (i.e., resting phase) acutely increased total time spent in non-rapid eye movement (NREM) and REM sleep in db/db mice. Durations of NREM sleep-, REM sleep-, and wake-episodes were also increased by this administration. Daily resting-phase administration of lemborexant for 3-6 weeks improved glucose tolerance without changing body weight and glucose-stimulated insulin secretion in db/db mice. Similar improvement of glucose tolerance was caused by daily resting-phase administration of lemborexant in obese C57BL/6J mice fed high fat diet, whereas no such effect was observed in non-diabetic db/m+ mice. Diabetic db/db mice treated daily with lemborexant exhibited increased locomotor activity in the dark phase (i.e., awake phase), although they did not show any behavioral abnormality in the Y-maze, elevated plus maze, and forced swim tests. These results suggest that timely promotion of sleep by lemborexant improved the quality of wakefulness in association with increased physical activity during the awake phase, and these changes may underlie the amelioration of glucose metabolism under type 2 diabetic conditions.
Collapse
Affiliation(s)
- Hiroshi Tsuneki
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan; Department of Integrative Pharmacology, University of Toyama, Toyama, 930-0194, Japan.
| | - Masanori Sugiyama
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Kiyofumi Sato
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Hisakatsu Ito
- Department of Anesthesiology, University of Toyama, Toyama, 930-0194, Japan
| | - Sanaka Nagai
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Kanta Kon
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Tsutomu Wada
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Nao Kobayashi
- Graduate School of Pharma-Medical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Takuya Okada
- Graduate School of Pharma-Medical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Naoki Toyooka
- Graduate School of Pharma-Medical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Masashi Kawasaki
- Center for Liberal Arts and Sciences, Toyama Prefectural University, Imizu, Toyama, Japan
| | - Toshihiro Ito
- Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan
| | - Ryota Otsubo
- Laboratory of Infectious Diseases and Immunity, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan; Laboratory of Immunobiologics Evaluation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Teruhito Yasui
- Laboratory of Infectious Diseases and Immunity, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan; Laboratory of Immunobiologics Evaluation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan
| | - Toshiyasu Sasaoka
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|
6
|
Ghanemi A, Yoshioka M, St-Amand J. Secreted Protein Acidic and Rich in Cysteine ( SPARC)-Mediated Exercise Effects: Illustrative Molecular Pathways against Various Diseases. Diseases 2023; 11:diseases11010033. [PMID: 36810547 PMCID: PMC9944512 DOI: 10.3390/diseases11010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
The strong benefits of exercise, in addition to the development of both the therapeutic applications of physical activity and molecular biology tools, means that it has become very important to explore the underlying molecular patterns linking exercise and its induced phenotypic changes. Within this context, secreted protein acidic and rich in cysteine (SPARC) has been characterized as an exercise-induced protein that would mediate and induce some important effects of exercise. Herein, we suggest some underlying pathways to explain such SPARC-induced exercise-like effects. Such mechanistic mapping would not only allow us to understand the molecular processes of exercise and SPARC effects but would also highlight the potential to develop novel molecular therapies. These therapies would be based on mimicking the exercise benefits via either introducing SPARC or pharmacologically targeting the SPARC-related pathways to produce exercise-like effects. This is of a particular importance for those who do not have the ability to perform the required physical activity due to disabilities or diseases. The main objective of this work is to highlight selected potential therapeutic applications deriving from SPARC properties that have been reported in various publications.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada
| | - Mayumi Yoshioka
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada
| | - Jonny St-Amand
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada
- Correspondence: ; Tel.: +1-(418)-654-2296; Fax: +1-(418)-654-2761
| |
Collapse
|
7
|
Blackwell JA, Stanford KI. Exercise-induced intertissue communication: adipose tissue and the heart. CURRENT OPINION IN PHYSIOLOGY 2023; 31:100626. [PMID: 36588657 PMCID: PMC9802643 DOI: 10.1016/j.cophys.2022.100626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Exercise leads to numerous beneficial whole-body effects and can protect against the development of obesity, cardiometabolic, and neurodegenerative diseases. Recent studies have highlighted the importance of inter-organ crosstalk with a focus on secretory factors that mediate communication among organs, including adipose tissue and the heart. Studies investigating the effects of exercise on brown adipose tissue (BAT) and white adipose tissue (WAT) demonstrated that adipokines are released in response to exercise and act on the heart to decrease inflammation, alter gene expression, increase angiogenesis, and improve cardiac function. This review discusses the exercise-induced adaptations to BAT and WAT and how these adaptations affect heart health and function, while highlighting the importance of tissue crosstalk.
Collapse
Affiliation(s)
- Jade A. Blackwell
- Dorothy M. Davis Heart and Lung Research Institute; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Kristin I. Stanford
- Dorothy M. Davis Heart and Lung Research Institute; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH
| |
Collapse
|
8
|
Role of Skeletal Muscle in the Pathogenesis and Management of Type 2 Diabetes: A Special Focus on Asian Indians. J Indian Inst Sci 2023. [DOI: 10.1007/s41745-022-00349-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
9
|
Kuhnen G, Guedes Russomanno T, Murgia M, Pillon NJ, Schönfelder M, Wackerhage H. Genes Whose Gain or Loss of Function Changes Type 1, 2A, 2X, or 2B Muscle Fibre Proportions in Mice—A Systematic Review. Int J Mol Sci 2022; 23:ijms232112933. [PMID: 36361732 PMCID: PMC9658117 DOI: 10.3390/ijms232112933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 11/25/2022] Open
Abstract
Adult skeletal muscle fibres are classified as type 1, 2A, 2X, and 2B. These classifications are based on the expression of the dominant myosin heavy chain isoform. Muscle fibre-specific gene expression and proportions of muscle fibre types change during development and in response to exercise, chronic electrical stimulation, or inactivity. To identify genes whose gain or loss-of-function alters type 1, 2A, 2X, or 2B muscle fibre proportions in mice, we conducted a systematic review of transgenic mouse studies. The systematic review was conducted in accordance with the 2009 PRISMA guidelines and the PICO framework. We identified 25 “muscle fibre genes” (Akirin1, Bdkrb2, Bdnf, Camk4, Ccnd3, Cpt1a, Epas1, Esrrg, Foxj3, Foxo1, Il15, Mapk12, Mstn, Myod1, Ncor1, Nfatc1, Nol3, Ppargc1a, Ppargc1b, Sirt1, Sirt3, Thra, Thrb, Trib3, and Vgll2) whose gain or loss-of-function significantly changes type 1, 2A, 2X or 2B muscle fibre proportions in mice. The fact that 15 of the 25 muscle fibre genes are transcriptional regulators suggests that muscle fibre-specific gene expression is primarily regulated transcriptionally. A reanalysis of existing datasets revealed that the expression of Ppargc1a and Vgll2 increases and Mstn decreases after exercise, respectively. This suggests that these genes help to regulate the muscle fibre adaptation to exercise. Finally, there are many known DNA sequence variants of muscle fibre genes. It seems likely that such DNA sequence variants contribute to the large variation of muscle fibre type proportions in the human population.
Collapse
Affiliation(s)
- Gabryela Kuhnen
- Department of Sports and Health Sciences, Technical University of Munich, 80809 Munich, Germany
| | - Tiago Guedes Russomanno
- Department of Sports and Health Sciences, Technical University of Munich, 80809 Munich, Germany
| | - Marta Murgia
- Max Planck Institute, Martinsried, 82152 Munich, Germany
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi, 58/B, 35131 Padua, Italy
| | - Nicolas J Pillon
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Martin Schönfelder
- Department of Sports and Health Sciences, Technical University of Munich, 80809 Munich, Germany
| | - Henning Wackerhage
- Department of Sports and Health Sciences, Technical University of Munich, 80809 Munich, Germany
| |
Collapse
|