1
|
Kihn KC, Purdy O, Lowe V, Slachtova L, Smith AK, Shapiro P, Deredge DJ. Integration of Hydrogen-Deuterium Exchange Mass Spectrometry with Molecular Dynamics Simulations and Ensemble Reweighting Enables High Resolution Protein-Ligand Modeling. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2714-2728. [PMID: 39254669 DOI: 10.1021/jasms.4c00202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Hydrogen-Deuterium exchange mass spectrometry's (HDX-MS) utility in identifying and characterizing protein-small molecule interaction sites has been established. The regions that are seen to be protected from exchange upon ligand binding indicate regions that may be interacting with the ligand, giving a qualitative understanding of the ligand binding pocket. However, quantitatively deriving an accurate high-resolution structure of the protein-ligand complex from the HDX-MS data remains a challenge, often limiting its use in applications such as small molecule drug design. Recent efforts have focused on the development of methods to quantitatively model Hydrogen-Deuterium exchange (HDX) data from computationally modeled structures to garner atomic level insights from peptide-level resolution HDX-MS. One such method, HDX ensemble reweighting (HDXer), employs maximum entropy reweighting of simulated HDX data to experimental HDX-MS to model structural ensembles. In this study, we implement and validate a workflow which quantitatively leverages HDX-MS data to accurately model protein-small molecule ligand interactions. To that end, we employ a strategy combining computational protein-ligand docking, molecular dynamics simulations, HDXer, and dimensional reduction and clustering approaches to extract high-resolution drug binding poses that most accurately conform with HDX-MS data. We apply this workflow to model the interaction of ERK2 and FosA with small molecule compounds and inhibitors they are known to bind. In five out of six of the protein-ligand pairs tested, the HDX derived protein-ligand complexes result in a ligand root-mean-square deviation (RMSD) within 2.5 Å of the known crystal structure ligand.
Collapse
Affiliation(s)
- Kyle C Kihn
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Olivia Purdy
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Vincent Lowe
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Lenka Slachtova
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University in Prague, Prague 116 36, Czech Republic
| | - Ally K Smith
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Paul Shapiro
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Daniel J Deredge
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| |
Collapse
|
2
|
Chen X, Xu S, Chu B, Guo J, Zhang H, Sun S, Song L, Feng XQ. Applying Spatiotemporal Modeling of Cell Dynamics to Accelerate Drug Development. ACS NANO 2024; 18:29311-29336. [PMID: 39420743 DOI: 10.1021/acsnano.4c12599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cells act as physical computational programs that utilize input signals to orchestrate molecule-level protein-protein interactions (PPIs), generating and responding to forces, ultimately shaping all of the physiological and pathophysiological behaviors. Genome editing and molecule drugs targeting PPIs hold great promise for the treatments of diseases. Linking genes and molecular drugs with protein-performed cellular behaviors is a key yet challenging issue due to the wide range of spatial and temporal scales involved. Building predictive spatiotemporal modeling systems that can describe the dynamic behaviors of cells intervened by genome editing and molecular drugs at the intersection of biology, chemistry, physics, and computer science will greatly accelerate pharmaceutical advances. Here, we review the mechanical roles of cytoskeletal proteins in orchestrating cellular behaviors alongside significant advancements in biophysical modeling while also addressing the limitations in these models. Then, by integrating generative artificial intelligence (AI) with spatiotemporal multiscale biophysical modeling, we propose a computational pipeline for developing virtual cells, which can simulate and evaluate the therapeutic effects of drugs and genome editing technologies on various cell dynamic behaviors and could have broad biomedical applications. Such virtual cell modeling systems might revolutionize modern biomedical engineering by moving most of the painstaking wet-laboratory effort to computer simulations, substantially saving time and alleviating the financial burden for pharmaceutical industries.
Collapse
Affiliation(s)
- Xindong Chen
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- BioMap, Beijing 100144, China
| | - Shihao Xu
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Bizhu Chu
- School of Pharmacy, Shenzhen University, Shenzhen 518055, China
- Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jing Guo
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen 361000, China
| | - Huikai Zhang
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Shuyi Sun
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Le Song
- BioMap, Beijing 100144, China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Wu H, Wu L, Luo L, Wu YT, Zhang QX, Li HY, Zhang BF. Quercetin inhibits mitophagy-mediated apoptosis and inflammatory response by targeting the PPARγ/PGC-1α/NF-κB axis to improve acute liver failure. Int Immunopharmacol 2024; 143:113444. [PMID: 39454407 DOI: 10.1016/j.intimp.2024.113444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/07/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Reactive oxygen species (ROS) from mitochondrial dysfunction are critical in triggering apoptosis and inflammation in acute liver failure (ALF). Quercetin (QUE), an antioxidant, is renowned for its therapeutic effects onliverdiseases. There are no studies on whether QUE regulates mitophagy level in hepatocytes to inhibit ALF. OBJECTIVE This study investigates QUE's protective effects on ALF and elucidates the mechanisms involved. METHODS The ALF and hepatocyte inflammatory injury model was established using LPS and D-Galn. To predict potential targets and mechanisms of QUE in ALF treatment, transcriptomics, network pharmacology, molecular docking techniques, and ChIP were employed. The expression level related to mitophagy, apoptosis, and signaling pathways were detected by CCK8, IHC, IF staining, TUNEL, RT-qPCR, TEM, Western blotting, ELISA, and flow cytometry. RESULTS Network pharmacology and transcriptomics revealed common targets between QUE and ALF. Enrichment analysis showed that the anti-ALF targets of QUE were significantly associated with mitochondria and NF-κB-related pathways. Subsequent experiments showed that QUE pretreatment significantly alleviated the loss of hepatocyte viability, enhanced mitochondrial membrane potential, activated mitophagy, and promoted the clearance of damaged mitochondria, thereby reducing ROS accumulation, significantly reducing cell apoptosis and inflammatory responses, reducing ALT and AST levels, and improving liver tissue pathology. Mechanistically, molecular docking, DARTS, and CETSA analyses confirmed that QUE directly binds to the PPARγ molecule, which reduced binding to IκB and significantly inhibit the NF-κB pathway to exert its protective effects. CONCLUSION In short, our results provide the first evidence that QUE improves acute liver failure by promoting mitophagy through regulating the PPARγ/PGC-1α/NF-κB axis and inhibiting apoptosis and inflammatory responses mediated by mitochondrial dysfunction, which provides evidence for the potential of QUE in the treatment of ALF.
Collapse
Affiliation(s)
- Huan Wu
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Long Wu
- Department of Anus and Intestinal Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Li Luo
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Ye-Ting Wu
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Qing-Xiu Zhang
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Hai-Yang Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Bao-Fang Zhang
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
4
|
Cao AB, Devant P, Wang C, Sun M, Kennedy SN, Ruan J, Kagan JC. LPS binding caspase activation and recruitment domains (CARDs) are bipartite lipid binding modules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617105. [PMID: 39416091 PMCID: PMC11482759 DOI: 10.1101/2024.10.07.617105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Caspase-11 is an innate immune pattern recognition receptor (PRR) that detects cytosolic bacterial lipopolysaccharides (LPS) through its caspase activation and recruitment domain (CARD), triggering inflammatory cell death known as pyroptosis. Caspase-11 also detects eukaryotic (i.e. self) lipids. This observation raises the question of whether common or distinct mechanisms govern the interactions with self and nonself lipids. In this study, using biochemical, computational, and cell-based assays, we report that the caspase-11 CARD functions as a bipartite lipid-binding module. Distinct regions within the CARD bind to phosphate groups and long acyl chains of self and nonself lipids. Self-lipid binding capability is conserved across numerous caspase-11 homologs and orthologs. The symmetry in self and nonself lipid detection mechanisms enabled us to engineer an LPS-binding domain de novo, using an ancestral CARD-like domain present in the fish Amphilophus citrinellus. These findings offer critical insights into the molecular basis of LPS recognition by caspase-11 and highlight the fundamental and likely inseparable relationship between self and nonself discrimination.
Collapse
Affiliation(s)
- Anh B. Cao
- Division of Gastroenterology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Pascal Devant
- Division of Gastroenterology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Chengliang Wang
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Mengyu Sun
- Division of Gastroenterology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Stephanie N. Kennedy
- Division of Gastroenterology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Jianbin Ruan
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Jonathan C. Kagan
- Division of Gastroenterology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
5
|
Abbott GW, Manville RW. Discovery of a potent, Kv7.3-selective potassium channel opener from a Polynesian traditional botanical anticonvulsant. Commun Chem 2024; 7:233. [PMID: 39390220 PMCID: PMC11467302 DOI: 10.1038/s42004-024-01318-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
Plants remain an important source of biologically active small molecules with high therapeutic potential. The voltage-gated potassium (Kv) channel formed by Kv7.2/3 (KCNQ2/3) heteromers is a major target for anticonvulsant drug development. Here, we screened 1444 extracts primarily from plants collected in California and the US Virgin Islands, for their ability to activate Kv7.2/3 but not inhibit Kv1.3, to select against tannic acid being the active component. We validated the 7 strongest hits, identified Thespesia populnea (miro, milo, portia tree) as the most promising, then discovered its primary active metabolite to be gentisic acid (GA). GA highly potently activated Kv7.2/3 (EC50, 2.8 nM). GA is, uniquely to our knowledge, 100% selective for Kv7.3 versus other Kv7 homomers; it requires S5 residue Kv7.3-W265 for Kv7.2/3 activation, and it ameliorates pentylenetetrazole-induced seizures in mice. Structure-activity studies revealed that the FDA-approved vasoprotective drug calcium dobesilate, a GA analog, is a previously unrecognized Kv7.2/3 channel opener. Also an active aspirin metabolite, GA provides a molecular rationale for the use of T. populnea as an anticonvulsant in Polynesian indigenous medicine and presents novel pharmacological prospects for potent, isoform-selective, therapeutic Kv7 channel activation.
Collapse
Affiliation(s)
- Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA.
| | - Rían W Manville
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
6
|
Huynh DTN, Nguyen HT, Hsieh CM. Taiwan Chingguan Yihau may improve post-COVID-19 respiratory complications through PI3K/AKT, HIF-1, and TNF signaling pathways revealed by network pharmacology analysis. Mol Divers 2024:10.1007/s11030-024-10993-8. [PMID: 39382736 DOI: 10.1007/s11030-024-10993-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/14/2024] [Indexed: 10/10/2024]
Abstract
The emergence of new SARS-CoV-2 variants with a higher contagious capability and faster transmissible speed has imposed an incessant menace on global health and the economy. The SARS-CoV-2 infection might reoccur and last much longer than expected. Thence, there is a high possibility that COVID-19 can cause long-term health problems. This condition needs to be investigated thoroughly, especially the post-COVID-19 complications. Respiratory tract disorders are common and typical complications after recovery. Until now, there has been a lack of data on specialized therapeutic medicine for post-COVID-19 complications. The clinical efficacy of NRICM101 has been demonstrated in hospitalized COVID-19 patients. This herbal medicine may also be a promising therapy for post-COVID-19 complications, thanks to its phytochemical constituents. The potential pharmacological mechanisms of NRICM101 in treating post-COVID-19 respiratory complications were investigated using network pharmacology combined with molecular docking, and the results revealed that NRICM101 may exert a beneficial effect through the three primary pathways: PI3K/AKT, HIF-1, and TNF signaling pathways. Flavonoids (especially quercetin) have a predominant role and synergize with other active compounds to produce therapeutic effectiveness. Most of the main active compounds exist in three chief herbal ingredients, including Liquorice root (Glycyrrhiza glabra), Scutellaria root (Scutellaria baicalensis), and Mulberry leaf (Morus alba). To our knowledge, this is the first study of the NRICM101 effect on post-COVID-19 respiratory complications. Our findings may provide a better understanding of the potential mechanisms of NRICM101 in treating SARS-CoV-2 infection and regulating the immunoinflammatory response to improve post-COVID-19 respiratory complications.
Collapse
Affiliation(s)
- Dung Tam Nguyen Huynh
- College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
- Can Tho University of Medicine and Pharmacy, Can Tho City, 94117, Vietnam
| | - Hien Thi Nguyen
- Department of Nutrition and Food Safety, Faculty of Public Health, Can Tho University of Medicine and Pharmacy, Can Tho City, 94117, Vietnam
| | - Chien-Ming Hsieh
- College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
7
|
Chingizova EA, Yurchenko EA, Chingizov AR, Klimovich AA, Pislyagin EA, Menchinskaya ES, Kuzmich AS, Trinh PTH, Ngoc NTD, Van TTT, Guzhova IV, Aminin DL, Yurchenko AN. The Effects of Marine Fungal Asterripeptides A-C on In Vitro and In Vivo Staphylococcus aureus Skin Infection. Pharmaceuticals (Basel) 2024; 17:1345. [PMID: 39458986 PMCID: PMC11514584 DOI: 10.3390/ph17101345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Objectives: This study aimed to investigate the in vitro and in vivo antibacterial and cytoprotective activities of marine fungal tripeptide derivatives with cinnamic acid moiety asterripeptides A-C (1-3). Methods: The antimicrobial and antibiofilm activities of asterripeptides A-C were tested using the Staphylococcus aureus ATCC 21027 strain. Human HaCaT keratinocytes infected with S. aureus were used for the in vitro investigation of the various aspects of the influence of asterripeptides A-C by lumino- and fluorospectrometry, ELISA, flow cytometry, Western blotting, and microscopy techniques. In the in vivo experiments, mice with burns and scalped S. aureus-infected wounds were used according to ethical committee resolution. Results: Asterripeptides A-C (10 µM) inhibited S. aureus growth and biofilm formation. Asterripeptides A-C increased the viability, proliferation, and migration of S. aureus-infected HaCaT cells and reduced the release of reactive oxygen species (ROS), NO, TNF-α, and IL-18. Asterripeptides A-C protected HaCaT cells against TNF-α-induced inflammation, decreased the transcriptional level of NF-κB in JB6 Cl41 cells, and increased the protein levels of Nrf2 and glutathione synthetase in HaCaT cells. More active asterripeptide C was tested in in vivo burn wounds and S. aureus-infected incised wounds. Asterripeptide C significantly enhanced wound healing, normalized cytokine levels and profiles of peripheral blood samples, and decreased S. aureus contamination of wounds and blood in mice with infected incised wounds. Conclusions: Taken together, these results confirm the dual antibacterial and Nrf2-dependent anti-inflammatory activities of asterripeptides A-C in in vitro and in vivo assays.
Collapse
Affiliation(s)
- Ekaterina A. Chingizova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (E.A.C.); (E.A.P.); (A.N.Y.)
| | - Ekaterina A. Yurchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (E.A.C.); (E.A.P.); (A.N.Y.)
| | - Artur R. Chingizov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (E.A.C.); (E.A.P.); (A.N.Y.)
| | - Anna A. Klimovich
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (E.A.C.); (E.A.P.); (A.N.Y.)
| | - Evgeny A. Pislyagin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (E.A.C.); (E.A.P.); (A.N.Y.)
| | - Ekaterina S. Menchinskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (E.A.C.); (E.A.P.); (A.N.Y.)
| | - Aleksandra S. Kuzmich
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (E.A.C.); (E.A.P.); (A.N.Y.)
| | - Phan Thi Hoai Trinh
- Nhatrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, Nha Trang 650000, Vietnam; (P.T.H.T.)
| | - Ngo Thi Duy Ngoc
- Nhatrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, Nha Trang 650000, Vietnam; (P.T.H.T.)
| | - Tran Thi Thanh Van
- Nhatrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, Nha Trang 650000, Vietnam; (P.T.H.T.)
| | - Irina V. Guzhova
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave., 4, 194064 St. Petersburg, Russia;
| | - Dmitry L. Aminin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (E.A.C.); (E.A.P.); (A.N.Y.)
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Anton N. Yurchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (E.A.C.); (E.A.P.); (A.N.Y.)
| |
Collapse
|
8
|
Papadopoulos MGE, Perhal AF, Medel-Lacruz B, Ladurner A, Selent J, Dirsch VM, Kolb P. Discovery and characterization of small-molecule TGR5 ligands with agonistic activity. Eur J Med Chem 2024; 276:116616. [PMID: 38996653 DOI: 10.1016/j.ejmech.2024.116616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/15/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024]
Abstract
The Takeda G protein-coupled receptor 5 (TGR5) is activated endogenously by primary and secondary bile acids. This receptor is considered a candidate target for addressing inflammatory and metabolic disorders. We have targeted TGR5 with structure-based methods for ligand finding using the recently solved experimental structures, as well as structures obtained from molecular dynamics simulations. Through addressing the orthosteric as well as a putative allosteric site, we identified agonists and positive allosteric modulators. While the predicted binding locations were not in line with their efficacy, our work contributes activating small-molecule ligands that we have thoroughly characterized in vitro.
Collapse
Affiliation(s)
| | - Alexander F Perhal
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Brian Medel-Lacruz
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences, Hospital del Mar Medical Research Institute (IMIM), Pompeu Fabra University (UPF), Barcelona, Spain
| | - Angela Ladurner
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences, Hospital del Mar Medical Research Institute (IMIM), Pompeu Fabra University (UPF), Barcelona, Spain
| | - Verena M Dirsch
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Peter Kolb
- Department of Pharmaceutical Chemistry, University of Marburg, Marburg, Germany.
| |
Collapse
|
9
|
Karak M, Acosta JAM, Cortez-Hernandez HF, Cardona JL, Forlani G, Barbosa LCA. Natural Rubrolides and Their Synthetic Congeners as Inhibitors of the Photosynthetic Electron Transport Chain. JOURNAL OF NATURAL PRODUCTS 2024; 87:2272-2280. [PMID: 39240232 PMCID: PMC11443480 DOI: 10.1021/acs.jnatprod.4c00714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Rubrolides are a family of naturally occurring 5-benzylidenebutenolides, which generally contain brominated phenol groups, and nearly half of them also present a chlorine attached to the butenolide core. Seven natural rubrolides were previously synthesized. When these compounds were tested against the model plant Raphanus sativus, six were found to exert a slight inhibition on plant growth. Aiming to exploit their scaffold as a model for the synthesis of new compounds targeting photosynthesis, nine new rubrolide analogues were prepared. The synthesis was accomplished in 2-4 steps with a 10-39% overall yield from 3,4-dichlorofuran-2(5H)-one. All compounds were evaluated for their ability to inhibit the whole Hill reaction or excluding photosystem I (PSI). Several natural rubrolides and their analogues displayed good inhibitory potential (IC50 = 2-8 μM). Molecular docking studies on the photosystem II-light harvesting complex II (PSII-LHCII supercomplex) binding site were also performed. Overall, data support the use of rubrolides as a model for the development of new active principles targeting the photosynthetic electron transport chain to be used as herbicides.
Collapse
Affiliation(s)
- Milandip Karak
- Department
of Chemistry, Universidade Federal de Minas
Gerais, Av. Pres. Antônio Carlos, 6627, Campus Pampulha, CEP 31270-901 Belo Horizonte, MG, Brazil
| | - Jaime A. M. Acosta
- Department
of Chemistry, Universidade Federal de Minas
Gerais, Av. Pres. Antônio Carlos, 6627, Campus Pampulha, CEP 31270-901 Belo Horizonte, MG, Brazil
| | - Héctor F. Cortez-Hernandez
- School
of Chemical Technology, Faculty of Technology, Universidad Tecnológica de Pereira, Carrera 27 #10-02, Barrio Álamos,
Código, 660003 Pereira, Risaralda, Colombia
| | - Johnny L. Cardona
- School
of Chemical Technology, Faculty of Technology, Universidad Tecnológica de Pereira, Carrera 27 #10-02, Barrio Álamos,
Código, 660003 Pereira, Risaralda, Colombia
| | - Giuseppe Forlani
- Department
of Life Science and Biotechnology, Università
di Ferrara, via L. Borsari 46, I-44121 Ferrara, Italy
| | - Luiz C. A. Barbosa
- Department
of Chemistry, Universidade Federal de Minas
Gerais, Av. Pres. Antônio Carlos, 6627, Campus Pampulha, CEP 31270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
10
|
Chingizova EA, Chingizov AR, Menchinskaya ES, Pislyagin EA, Kuzmich AS, Leshchenko EV, Borkunov GV, Guzhova IV, Aminin DL, Yurchenko EA. The influence of marine fungal meroterpenoid meroantarctine A toward HaCaT keratinocytes infected with Staphylococcus aureus. J Antibiot (Tokyo) 2024:10.1038/s41429-024-00771-x. [PMID: 39256545 DOI: 10.1038/s41429-024-00771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/17/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024]
Abstract
A new biological activity was discovered for marine fungal meroterpenoid meroantarctine A with unique 6/5/6/6 polycyclic system. It was found that meroantarctine A can significantly reduce biofilm formation by Staphylococcus aureus with an IC50 of 9.2 µM via inhibition of sortase A activity. Co-cultivation of HaCaT keratinocytes with a S. aureus suspension was used as an in vitro model of skin infection. Treatment of S. aureus-infected HaCaT cells with meroantarctine A at 10 µM caused a reduction in the production of TNF-α, IL-18, NO, and ROS, as well as LDH release and caspase 1 activation in these cells and, finally, recovered the proliferation and migration of HaCaT cells in an in vitro wound healing assay up to the control level. Thus, meroantarctine A is a new promising antibiofilm compound which can effective against S. aureus caused skin infection.
Collapse
Affiliation(s)
- Ekaterina A Chingizova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, 690022, Vladivostok, Russia.
| | - Artur R Chingizov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, 690022, Vladivostok, Russia
| | | | - Evgeny A Pislyagin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, 690022, Vladivostok, Russia
| | - Aleksandra S Kuzmich
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, 690022, Vladivostok, Russia
| | - Elena V Leshchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, 690022, Vladivostok, Russia
| | - Gleb V Borkunov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, 690022, Vladivostok, Russia
| | | | - Dmitry L Aminin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, 690022, Vladivostok, Russia
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, 80708, Kaohsiung, Taiwan
| | - Ekaterina A Yurchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, 690022, Vladivostok, Russia.
| |
Collapse
|
11
|
Arabestani MR, Saadat M, Taherkhani A. Antibiotic resistance challenge: evaluating anthraquinones as rifampicin monooxygenase inhibitors through integrated bioinformatics analysis. Genomics Inform 2024; 22:13. [PMID: 39232833 PMCID: PMC11375879 DOI: 10.1186/s44342-024-00015-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 07/23/2024] [Indexed: 09/06/2024] Open
Abstract
OBJECTIVE Antibiotic resistance poses a pressing and crucial global public health challenge, leading to significant clinical and health-related consequences. Substantial evidence highlights the pivotal involvement of rifampicin monooxygenase (RIFMO) in the context of antibiotic resistance. Hence, inhibiting RIFMO could offer potential in the treatment of various infections. Anthraquinones, a group of organic compounds, have shown promise in addressing tuberculosis. This study employed integrated bioinformatics approaches to evaluate the potential inhibitory effects of a selection of anthraquinones on RIFMO. The findings were subsequently compared with those of rifampicin (RIF), serving as a positive control inhibitor. METHODS The AutoDock 4.0 tool assessed the binding free energy between 21 anthraquinones and the RIFMO catalytic cleft. The ligands were ranked based on the most favorable scores derived from ΔGbinding. The docking analyses for the highest-ranked anthraquinone and RIF underwent a cross-validation process. This validation procedure utilized the SwissDock server and the Schrödinger Maestro docking software. Molecular dynamics simulations were conducted to scrutinize the stability of the backbone atoms in free RIFMO, RIFMO-RIF, and RIFMO complexed with the top-ranked anthraquinone throughout a 100-ns computer simulation. The Discovery Studio Visualizer tool visualized interactions between RIFMO residues and ligands. An evaluation of the pharmacokinetics and toxicity profiles of the tested compounds was also conducted. RESULTS Five anthraquinones were indicated with ΔGbinding scores less than - 10 kcal/mol. Hypericin emerged as the most potent RIFMO inhibitor, boasting a ΔGbinding score and inhibition constant value of - 12.11 kcal/mol and 798.99 pM, respectively. The agreement across AutoDock 4.0, SwissDock, and Schrödinger Maestro results highlighted hypericin's notable binding affinity to the RIFMO catalytic cleft. The RIFMO-hypericin complex achieved stability after a 70-ns computer simulation, exhibiting a root-mean-square deviation of 0.55 nm. Oral bioavailability analysis revealed that all anthraquinones except hypericin, sennidin A, and sennidin B may be suitable for oral administration. Furthermore, the carcinogenicity prediction analysis indicated a favorable safety profile for all examined anthraquinones. CONCLUSION Inhibiting RIFMO, particularly with anthraquinones such as hypericin, holds promise as a potential therapeutic strategy for infectious diseases.
Collapse
Affiliation(s)
- Mohammad Reza Arabestani
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoumeh Saadat
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Taherkhani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
12
|
Garg M, Sharma D, Kaur G, Rawat J, Goyal B, Kumar S, Kumar R. Factor defining the effects of tetraalkylammonium chloride on stability, folding, and dynamics of horse cytochrome c. Int J Biol Macromol 2024; 276:133713. [PMID: 38986993 DOI: 10.1016/j.ijbiomac.2024.133713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
This article describes the molecular mechanism by which tetraalkylammonium chloride ([R4N]Cl: R- = methyl (Me), ethyl (Et), propyl (Pr),butyl (Bu)) modulates the stability, folding, and dynamics of cytochrome c (Cyt c). Analysis of [R4N]Cl effects on thermal/chemical denaturations, millisecond refolding/unfolding kinetics, and slow CO-association kinetics of Cyt c without and with denaturant providing some significant results: (i) [R4N]Cl decreasing the unfolding free energy estimated by thermodynamic and kinetic analysis of thermal/chemical denaturation curves and kinetic chevrons (Log kobs-[GdmCl]) of Cyt c, respectively (ii) hydrophobicity of R-group of [R4N]Cl, preferential inclusion of [R4N]Cl at the protein surface, and destabilizing enthalpic attractive interactions of [Me4N]Cl and steric entropic interactions of [Et4N]Cl,[Pr4N]Cl and [Bu4N]Cl with protein contribute to [R4N]Cl-induced decrease thermodynamic stability of Cyt c (iii) [R4N]Cl exhibits an additive effect with denaturant to decrease thermodynamic stability and refolding rates of Cyt c (iv) low concentrations of [R4N]Cl (≤ 0.5 M) constrain the motional dynamics while the higher concentrations (>0.75 M [R4N]Cl) enhance the structural-fluctuations that denture protein (v) hydrophobicity of R-group of [R4N]Cl alters the [denaturant]-dependent conformational stability, refolding-unfolding kinetics, and CO-association kinetics of Cyt c. Furthermore, the MD simulations depicted that the addition of 1.0 M of [R4N]Cl increased the conformational fluctuations in Cyt c leading to decreased structural stability in the order [Me4N]Cl < [Et4N]Cl < [Pr4N]Cl < [Bu4N]Cl consistent with the experimental results.
Collapse
Affiliation(s)
- Mansi Garg
- Department of Chemistry, Central University of Punjab, Bathinda 151001, India
| | - Deepak Sharma
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Sector 39A, Academy of Scientific & Innovative Research, Chandigarh, India
| | - Gurmeet Kaur
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Jayanti Rawat
- Department of Chemistry, Central University of Punjab, Bathinda 151001, India
| | - Bhupesh Goyal
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Sumit Kumar
- Department of Chemistry, Central University of Punjab, Bathinda 151001, India
| | - Rajesh Kumar
- Department of Chemistry, Central University of Punjab, Bathinda 151001, India.
| |
Collapse
|
13
|
Tabakmakher KM, Makarieva TN, Sabutski YE, Kokoulin MS, Menshov AS, Popov RS, Guzii AG, Shubina LK, Chingizova EA, Chingizov AR, Yurchenko EA, Fedorov SN, Grebnev BB, von Amsberg G, Dyshlovoy SA, Ivanchina NV, Dmitrenok PS. Stonikacidin A, an Antimicrobial 4-Bromopyrrole Alkaloid Containing L-Idonic Acid Core from the Northwestern Pacific Marine Sponge Lissodendoryx papillosa. Mar Drugs 2024; 22:396. [PMID: 39330277 PMCID: PMC11432817 DOI: 10.3390/md22090396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
Stonikacidin A (1), the first representative of a new class of 4-bromopyrrole alkaloids containing an aldonic acid core, was isolated from the marine sponge Lissodendoryx papillosa. The compound is named in honor of Prof. Valentin A. Stonik, who is one of the outstanding investigators in the field of marine natural chemistry. The structure of 1 was determined using NMR, MS analysis, and chemical correlations. The L-idonic acid core was established by the comparison of GC, NMR, MS, and optical rotation data of methyl-pentaacetyl-aldonates obtained from the hydrolysis products of 1 and standard hexoses. The L-form of the idonic acid residue in 1 was confirmed by GC analysis of pentaacetate of (S)-2-butyl ester of the hydrolysis product from 1 and compared with corresponding derivatives of L- and D-idonic acids. The biosynthetic pathway for stonikacidin A (1) was proposed. The alkaloid 1 inhibited the growth of Staphylococcus aureus and Escherichia coli test strains, as well as affected the formation of S. aureus and E. coli biofilms. Compound 1 inhibited the activity of sortase A. Molecular docking data showed that stonikacidin A (1) can bind with sortase A due to the interactions between its bromine atoms and some amino acid residues of the enzyme.
Collapse
Affiliation(s)
- Kseniya M. Tabakmakher
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (K.M.T.); (Y.E.S.); (M.S.K.); (A.S.M.); (R.S.P.); (A.G.G.); (L.K.S.); (E.A.C.); (A.R.C.); (E.A.Y.); (S.N.F.); (B.B.G.); (N.V.I.); (P.S.D.)
| | - Tatyana N. Makarieva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (K.M.T.); (Y.E.S.); (M.S.K.); (A.S.M.); (R.S.P.); (A.G.G.); (L.K.S.); (E.A.C.); (A.R.C.); (E.A.Y.); (S.N.F.); (B.B.G.); (N.V.I.); (P.S.D.)
| | - Yuri E. Sabutski
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (K.M.T.); (Y.E.S.); (M.S.K.); (A.S.M.); (R.S.P.); (A.G.G.); (L.K.S.); (E.A.C.); (A.R.C.); (E.A.Y.); (S.N.F.); (B.B.G.); (N.V.I.); (P.S.D.)
| | - Maxim S. Kokoulin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (K.M.T.); (Y.E.S.); (M.S.K.); (A.S.M.); (R.S.P.); (A.G.G.); (L.K.S.); (E.A.C.); (A.R.C.); (E.A.Y.); (S.N.F.); (B.B.G.); (N.V.I.); (P.S.D.)
| | - Alexander S. Menshov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (K.M.T.); (Y.E.S.); (M.S.K.); (A.S.M.); (R.S.P.); (A.G.G.); (L.K.S.); (E.A.C.); (A.R.C.); (E.A.Y.); (S.N.F.); (B.B.G.); (N.V.I.); (P.S.D.)
| | - Roman S. Popov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (K.M.T.); (Y.E.S.); (M.S.K.); (A.S.M.); (R.S.P.); (A.G.G.); (L.K.S.); (E.A.C.); (A.R.C.); (E.A.Y.); (S.N.F.); (B.B.G.); (N.V.I.); (P.S.D.)
| | - Alla G. Guzii
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (K.M.T.); (Y.E.S.); (M.S.K.); (A.S.M.); (R.S.P.); (A.G.G.); (L.K.S.); (E.A.C.); (A.R.C.); (E.A.Y.); (S.N.F.); (B.B.G.); (N.V.I.); (P.S.D.)
| | - Larisa K. Shubina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (K.M.T.); (Y.E.S.); (M.S.K.); (A.S.M.); (R.S.P.); (A.G.G.); (L.K.S.); (E.A.C.); (A.R.C.); (E.A.Y.); (S.N.F.); (B.B.G.); (N.V.I.); (P.S.D.)
| | - Ekaterina A. Chingizova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (K.M.T.); (Y.E.S.); (M.S.K.); (A.S.M.); (R.S.P.); (A.G.G.); (L.K.S.); (E.A.C.); (A.R.C.); (E.A.Y.); (S.N.F.); (B.B.G.); (N.V.I.); (P.S.D.)
| | - Artur R. Chingizov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (K.M.T.); (Y.E.S.); (M.S.K.); (A.S.M.); (R.S.P.); (A.G.G.); (L.K.S.); (E.A.C.); (A.R.C.); (E.A.Y.); (S.N.F.); (B.B.G.); (N.V.I.); (P.S.D.)
| | - Ekaterina A. Yurchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (K.M.T.); (Y.E.S.); (M.S.K.); (A.S.M.); (R.S.P.); (A.G.G.); (L.K.S.); (E.A.C.); (A.R.C.); (E.A.Y.); (S.N.F.); (B.B.G.); (N.V.I.); (P.S.D.)
| | - Sergey N. Fedorov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (K.M.T.); (Y.E.S.); (M.S.K.); (A.S.M.); (R.S.P.); (A.G.G.); (L.K.S.); (E.A.C.); (A.R.C.); (E.A.Y.); (S.N.F.); (B.B.G.); (N.V.I.); (P.S.D.)
| | - Boris B. Grebnev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (K.M.T.); (Y.E.S.); (M.S.K.); (A.S.M.); (R.S.P.); (A.G.G.); (L.K.S.); (E.A.C.); (A.R.C.); (E.A.Y.); (S.N.F.); (B.B.G.); (N.V.I.); (P.S.D.)
| | - Gunhild von Amsberg
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum–University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (G.v.A.); (S.A.D.)
- Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Sergey A. Dyshlovoy
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum–University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (G.v.A.); (S.A.D.)
| | - Natalia V. Ivanchina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (K.M.T.); (Y.E.S.); (M.S.K.); (A.S.M.); (R.S.P.); (A.G.G.); (L.K.S.); (E.A.C.); (A.R.C.); (E.A.Y.); (S.N.F.); (B.B.G.); (N.V.I.); (P.S.D.)
| | - Pavel S. Dmitrenok
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (K.M.T.); (Y.E.S.); (M.S.K.); (A.S.M.); (R.S.P.); (A.G.G.); (L.K.S.); (E.A.C.); (A.R.C.); (E.A.Y.); (S.N.F.); (B.B.G.); (N.V.I.); (P.S.D.)
| |
Collapse
|
14
|
Manville RW, Yoshimura RF, Yeromin AV, Hogenkamp D, van der Horst J, Zavala A, Chinedu S, Arena G, Lasky E, Fisher M, Tracy CR, Othy S, Jepps TA, Cahalan MD, Abbott GW. Polymodal K + channel modulation contributes to dual analgesic and anti-inflammatory actions of traditional botanical medicines. Commun Biol 2024; 7:1059. [PMID: 39198706 PMCID: PMC11358443 DOI: 10.1038/s42003-024-06752-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
Pain and inflammation contribute immeasurably to reduced quality of life, yet modern analgesic and anti-inflammatory therapeutics can cause dependence and side effects. Here, we screened 1444 plant extracts, prepared primarily from native species in California and the United States Virgin Islands, against two voltage-gated K+ channels - T-cell expressed Kv1.3 and nociceptive-neuron expressed Kv7.2/7.3. A subset of extracts both inhibits Kv1.3 and activates Kv7.2/7.3 at hyperpolarized potentials, effects predicted to be anti-inflammatory and analgesic, respectively. Among the top dual hits are witch hazel and fireweed; polymodal modulation of multiple K+ channel types by hydrolysable tannins contributes to their dual anti-inflammatory, analgesic actions. In silico docking and mutagenesis data suggest pore-proximal extracellular linker sequence divergence underlies opposite effects of hydrolysable tannins on different Kv1 isoforms. The findings provide molecular insights into the enduring, widespread medicinal use of witch hazel and fireweed and demonstrate a screening strategy for discovering dual anti-inflammatory, analgesic small molecules.
Collapse
Affiliation(s)
- Rían W Manville
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Ryan F Yoshimura
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Andriy V Yeromin
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Derk Hogenkamp
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Jennifer van der Horst
- Department of Biomedical Sciences, Vascular Biology Group, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Angel Zavala
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Sonia Chinedu
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Grey Arena
- Redwood Creek Vegetation Team, National Park Service, Sausalito, CA, USA
| | - Emma Lasky
- Redwood Creek Vegetation Team, National Park Service, Sausalito, CA, USA
| | - Mark Fisher
- Philip L. Boyd Deep Canyon Desert Research Center, University of California Natural Reserve System, Indian Wells, CA, USA
| | - Christopher R Tracy
- Philip L. Boyd Deep Canyon Desert Research Center, University of California Natural Reserve System, Indian Wells, CA, USA
| | - Shivashankar Othy
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Thomas A Jepps
- Department of Biomedical Sciences, Vascular Biology Group, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Michael D Cahalan
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA.
| |
Collapse
|
15
|
Panmanee J, Charoensutthivarakul S, Cheng CW, Promthep K, Mukda S, Prasertporn T, Nopparat C, Teerapo K, Supcharoen P, Petchyam N, Chetsawang B, Govitrapong P, Phanchana M. A Complex Interplay Between Melatonin and RORβ: RORβ is Unlikely a Putative Receptor for Melatonin as Revealed by Biophysical Assays. Mol Neurobiol 2024:10.1007/s12035-024-04395-y. [PMID: 39105871 DOI: 10.1007/s12035-024-04395-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 07/12/2024] [Indexed: 08/07/2024]
Abstract
A nuclear retinoic acid receptor (RAR)-related orphan receptor β (RORβ) is strictly expressed in the brain, particularly in the pineal gland where melatonin is primarily synthesized and concentrated. The controversial issues regarding the direct interaction of melatonin toward ROR receptors have prompted us to investigate the potential melatonin binding sites on different ROR isoforms. We adopted computational and biophysical approaches to investigate the potential of melatonin as the ligand for RORs, in particular RORβ. Herein, possible melatonin binding sites were predicted by molecular docking on human RORs. The results showed that melatonin might be able to bind within the ligand-binding domain (LBD) of all RORs, despite their difference in sequence homology. The predicted melatonin binding scores were comparable to binding energies with respect to those of melatonin interaction to the well-characterized membrane receptors, MT1 and MT2. Although the computational analyses suggested the binding potential of melatonin to the LBD of RORβ, biophysical validation failed to confirm the binding. Melatonin was unable to alter the stability of human RORβ as shown by the unaltered melting temperatures upon melatonin administration in differential scanning fluorometry (DSF). A thermodynamic isothermal titration calorimetry (ITC) profile showed that melatonin did not interact with human RORβ in solutions, even in the presence of SRC-1 co-activator peptide. Although the direct interaction between the LBD of RORβ could not be established, RORα and RORβ gene expressions were increased upon 24 h treatment with μM-range melatonin. Our data, thus, support the studies that the nuclear effects of melatonin may not be directly mediated via its interaction with the RORβ. These findings warrant further investigation on how melatonin interacts with ROR signaling and urge the melatonin research community for a paradigm shift in the direct interaction of melatonin toward RORs. The quest to identify nuclear receptors for melatonin in neuronal cells remains valid for the community to achieve.
Collapse
Affiliation(s)
- Jiraporn Panmanee
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Sitthivut Charoensutthivarakul
- Innovative Molecular Discovery Laboratory (iMOD), School of Bioinnovation and Bio-Based Product Intelligence, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Chew Weng Cheng
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - Kornkanok Promthep
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Sujira Mukda
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Tanya Prasertporn
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Chutikorn Nopparat
- Innovative Learning Center, Srinakharinwirot University, Sukhumvit 23, Bangkok, 10110, Thailand
| | - Kittitat Teerapo
- Mahidol University-Frontier Research Facility (MU-FRF), Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Promsup Supcharoen
- Mahidol University-Frontier Research Facility (MU-FRF), Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Nopphon Petchyam
- Center for Advanced Therapeutics, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Banthit Chetsawang
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Piyarat Govitrapong
- Chulabhorn Graduate Institute, Kamphaeng Phet 6 Road, Lak Si, Bangkok, 10210, Thailand
| | - Matthew Phanchana
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
16
|
Zúñiga-Hernández SR, García-Iglesias T, Macías-Carballo M, Pérez-Larios A, Gutiérrez-Mercado YK, Camargo-Hernández G, Rodríguez-Razón CM. A Bioinformatic Assay of Quercetin in Gastric Cancer. Int J Mol Sci 2024; 25:7934. [PMID: 39063176 PMCID: PMC11277512 DOI: 10.3390/ijms25147934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Gastric cancer (GC) remains a significant global health challenge, with high mortality rates, especially in developing countries. Current treatments are invasive and have considerable risks, necessitating the exploration of safer alternatives. Quercetin (QRC), a flavonoid present in various plants and foods, has demonstrated multiple health benefits, including anticancer properties. This study investigated the therapeutic potential of QRC in the treatment of GC. We utilized advanced molecular techniques to assess the impact of QRC on GC cells, examining its effects on cellular pathways and gene expression. Our findings indicate that QRC significantly inhibits GC cell proliferation and induces apoptosis, suggesting its potential as a safer therapeutic option for GC treatment. Further research is required to validate these results and explore the clinical applications of QRC in cancer therapy.
Collapse
Affiliation(s)
- Sergio Raúl Zúñiga-Hernández
- Departamento de Ciencias de la Salud, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico
| | - Trinidad García-Iglesias
- Instituto de Investigación de Cáncer en la Infancia y Adolescencia, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Guadalajara 44340, Mexico;
| | - Monserrat Macías-Carballo
- Laboratorio de Biociencias, Departamento de Clínicas, Centro Universitario de los Altos, Tepatitlán de Morelos 47620, Mexico;
| | - Alejandro Pérez-Larios
- Laboratorio de Nanomateriales, Agua y Energia, Departamento de Ingenierias, Centro Universitario de los Altos, Tepatitlán de Morelos 47620, Mexico;
| | - Yanet Karina Gutiérrez-Mercado
- Laboratorio Biotecnológico de Investigación y Diagnóstico, Departamento de Clínicas, Centro Universitario de los Altos, Tepatitlán de Morelos 47620, Mexico;
| | - Gabriela Camargo-Hernández
- Instituto de Investigación en Ciencias Médicas, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico;
| | - Christian Martín Rodríguez-Razón
- Laboratorio de Experimentación Animal (Bioterio), Departamento de Ciencias de la Salud, Centro Universitario de los Altos, Tepatitlán de Morelos 47620, Mexico
| |
Collapse
|
17
|
Kataria A, Srivastava A, Singh DD, Haque S, Han I, Yadav DK. Systematic computational strategies for identifying protein targets and lead discovery. RSC Med Chem 2024; 15:2254-2269. [PMID: 39026640 PMCID: PMC11253860 DOI: 10.1039/d4md00223g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/10/2024] [Indexed: 07/20/2024] Open
Abstract
Computational algorithms and tools have retrenched the drug discovery and development timeline. The applicability of computational approaches has gained immense relevance owing to the dramatic surge in the structural information of biomacromolecules and their heteromolecular complexes. Computational methods are now extensively used in identifying new protein targets, druggability assessment, pharmacophore mapping, molecular docking, the virtual screening of lead molecules, bioactivity prediction, molecular dynamics of protein-ligand complexes, affinity prediction, and for designing better ligands. Herein, we provide an overview of salient components of recently reported computational drug-discovery workflows that includes algorithms, tools, and databases for protein target identification and optimized ligand selection.
Collapse
Affiliation(s)
- Arti Kataria
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH) Hamilton MT 59840 USA
| | - Ankit Srivastava
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH) Hamilton MT 59840 USA
| | - Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan Jaipur India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University Jazan-45142 Saudi Arabia
| | - Ihn Han
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical & Biological Physics, Kwangwoon University Seoul 01897 Republic of Korea +82 32 820 4948
| | - Dharmendra Kumar Yadav
- Department of Biologics, College of Pharmacy, Gachon University Hambakmoeiro 191, Yeonsu-gu Incheon 21924 Republic of Korea
| |
Collapse
|
18
|
Bugnon M, Röhrig UF, Goullieux M, Perez MS, Daina A, Michielin O, Zoete V. SwissDock 2024: major enhancements for small-molecule docking with Attracting Cavities and AutoDock Vina. Nucleic Acids Res 2024; 52:W324-W332. [PMID: 38686803 PMCID: PMC11223881 DOI: 10.1093/nar/gkae300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/19/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024] Open
Abstract
Drug discovery aims to identify potential therapeutic compounds capable of modulating the activity of specific biological targets. Molecular docking can efficiently support this process by predicting binding interactions between small molecules and macromolecular targets and potentially accelerating screening campaigns. SwissDock is a computational tool released in 2011 as part of the SwissDrugDesign project, providing a free web-based service for small-molecule docking after automatized preparation of ligands and targets. Here, we present the latest version of SwissDock, in which EADock DSS has been replaced by two state-of-the-art docking programs, i.e. Attracting Cavities and AutoDock Vina. AutoDock Vina provides faster docking predictions, while Attracting Cavities offers more accurate results. Ligands can be imported in various ways, including as files, SMILES notation or molecular sketches. Targets can be imported as PDB files or identified by their PDB ID. In addition, advanced search options are available both for ligands and targets, giving users automatized access to widely-used databases. The web interface has been completely redesigned for interactive submission and analysis of docking results. Moreover, we developed a user-friendly command-line access which, in addition to all options of the web site, also enables covalent ligand docking with Attracting Cavities. The new version of SwissDock is freely available at https://www.swissdock.ch/.
Collapse
Affiliation(s)
- Marine Bugnon
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Ute F Röhrig
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Mathilde Goullieux
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Marta A S Perez
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Antoine Daina
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Olivier Michielin
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
- Department of Oncology, Geneva University Hospital (HUG), CH-1205 Geneva, Switzerland
| | - Vincent Zoete
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
- Department of Oncology UNIL-CHUV, Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
19
|
Abaffy T, Fu O, Harume-Nagai M, Goldenberg JM, Kenyon V, Kenakin T. Intracellular Allosteric Antagonist of the Olfactory Receptor OR51E2. Mol Pharmacol 2024; 106:21-32. [PMID: 38719475 PMCID: PMC11187688 DOI: 10.1124/molpharm.123.000843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/16/2024] [Indexed: 06/20/2024] Open
Abstract
Olfactory receptors are members of class A (rhodopsin-like) family of G protein-coupled receptors (GPCRs). Their expression and function have been increasingly studied in nonolfactory tissues, and many have been identified as potential therapeutic targets. In this manuscript, we focus on the discovery of novel ligands for the olfactory receptor family 51 subfamily E2 (OR51E2). We performed an artificial intelligence-based virtual drug screen of a ∼2.2 million small molecule library. Cell-based functional assay identified compound 80 (C80) as an antagonist and inverse agonist, and detailed pharmacological analysis revealed C80 acts as a negative allosteric modulator by significantly decreasing the agonist efficacy, while having a minimal effect on receptor affinity for agonist. C80 binds to an allosteric binding site formed by a network of nine residues localized in the intracellular parts of transmembrane domains 3, 5, 6, 7, and H8, which also partially overlaps with a G protein binding site. Mutational experiments of residues involved in C80 binding uncovered the significance of the C2406.37 position in blocking the activation-related conformational change and keeping the receptor in the inactive form. Our study provides a mechanistic understanding of the negative allosteric action of C80 on agonist-ctivated OR51E2. We believe the identification of the antagonist of OR51E2 will enable a multitude of studies aiming to determine the functional role of this receptor in specific biologic processes. SIGNIFICANCE STATEMENT: OR51E2 has been implicated in various biological processes, and its antagonists that can effectively modulate its activity have therapeutic potential. Here we report the discovery of a negative allosteric modulator of OR51E2 and provide a mechanistic understanding of its action. We demonstrate that this modulator has an inhibitory effect on the efficacy of the agonist for the receptor and reveal a network of nine residues that constitute its binding pocket, which also partially overlaps with the G protein binding site.
Collapse
Affiliation(s)
- Tatjana Abaffy
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina (T.A., O.F.); Columbia Center for Human Development/Columbia Center for Stem Cell Therapies Department, Columbia University, New York (M.H.-N.); Chemistry Department, School of Math and Science at the United States Naval Academy, Annapolis, Maryland (J.M.G.); Atomwise Inc., San Francisco, California (J.M.G., V.K.); and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (T.K.)
| | - Olivia Fu
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina (T.A., O.F.); Columbia Center for Human Development/Columbia Center for Stem Cell Therapies Department, Columbia University, New York (M.H.-N.); Chemistry Department, School of Math and Science at the United States Naval Academy, Annapolis, Maryland (J.M.G.); Atomwise Inc., San Francisco, California (J.M.G., V.K.); and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (T.K.)
| | - Maira Harume-Nagai
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina (T.A., O.F.); Columbia Center for Human Development/Columbia Center for Stem Cell Therapies Department, Columbia University, New York (M.H.-N.); Chemistry Department, School of Math and Science at the United States Naval Academy, Annapolis, Maryland (J.M.G.); Atomwise Inc., San Francisco, California (J.M.G., V.K.); and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (T.K.)
| | - Josh M Goldenberg
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina (T.A., O.F.); Columbia Center for Human Development/Columbia Center for Stem Cell Therapies Department, Columbia University, New York (M.H.-N.); Chemistry Department, School of Math and Science at the United States Naval Academy, Annapolis, Maryland (J.M.G.); Atomwise Inc., San Francisco, California (J.M.G., V.K.); and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (T.K.)
| | - Victor Kenyon
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina (T.A., O.F.); Columbia Center for Human Development/Columbia Center for Stem Cell Therapies Department, Columbia University, New York (M.H.-N.); Chemistry Department, School of Math and Science at the United States Naval Academy, Annapolis, Maryland (J.M.G.); Atomwise Inc., San Francisco, California (J.M.G., V.K.); and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (T.K.)
| | - Terry Kenakin
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina (T.A., O.F.); Columbia Center for Human Development/Columbia Center for Stem Cell Therapies Department, Columbia University, New York (M.H.-N.); Chemistry Department, School of Math and Science at the United States Naval Academy, Annapolis, Maryland (J.M.G.); Atomwise Inc., San Francisco, California (J.M.G., V.K.); and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (T.K.)
| |
Collapse
|
20
|
Bae DH, Bae H, Yu HS, Dorjsembe B, No YH, Kim T, Kim NH, Kim JW, Kim J, Lee BS, Kim YJ, Park S, Khaleel ZH, Sa DH, Lee EC, Lee J, Ham J, Kim JC, Kim YH. Peptide-Drug Conjugate with Statistically Designed Transcellular Peptide for Psoriasis-Like Inflammation. Adv Healthc Mater 2024; 13:e2303480. [PMID: 38421096 DOI: 10.1002/adhm.202303480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Peptide-drug conjugates (PDCs) are a promising class of drug delivery systems that utilize covalently conjugated carrier peptides with therapeutic agents. PDCs offer several advantages over traditional drug delivery systems including enhanced target engagement, improved bioavailability, and increased cell permeability. However, the development of efficient transcellular peptides capable of effectively transporting drugs across biological barriers remains an unmet need. In this study, physicochemical criteria based on cell-penetrating peptides are employed to design transcellular peptides derived from an antimicrobial peptides library. Among the statistically designed transcellular peptides (SDTs), SDT7 exhibits higher skin permeability, faster kinetics, and improved cell permeability in human keratinocyte cells compared to the control peptide. Subsequently, it is found that 6-Paradol (PAR) exhibits inhibitory activity against phosphodiesterase 4, which can be utilized for an anti-inflammatory PDC. The transcellular PDC (SDT7-conjugated with PAR, named TM5) is evaluated in mouse models of psoriasis, exhibiting superior therapeutic efficacy compared to PAR alone. These findings highlight the potential of transcellular PDCs (TDCs) as a promising approach for the treatment of inflammatory skin disorders.
Collapse
Affiliation(s)
- Do Hyun Bae
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
| | - Hayeon Bae
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Hyung-Seok Yu
- Natural Products Research Institute, Korea Institute of Science and Technology (KIST), Gangneung, 25451, Republic of Korea
| | - Banzragch Dorjsembe
- Natural Products Research Institute, Korea Institute of Science and Technology (KIST), Gangneung, 25451, Republic of Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Young Hyun No
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Taejung Kim
- Natural Products Research Institute, Korea Institute of Science and Technology (KIST), Gangneung, 25451, Republic of Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Nam Hyeong Kim
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jin-Woo Kim
- Natural Products Research Institute, Korea Institute of Science and Technology (KIST), Gangneung, 25451, Republic of Korea
| | - Jiyool Kim
- Natural Products Research Institute, Korea Institute of Science and Technology (KIST), Gangneung, 25451, Republic of Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Bok-Soo Lee
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Ye Ji Kim
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Seongchan Park
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Zinah Hilal Khaleel
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Deok Hyang Sa
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Eui-Chul Lee
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jaecheol Lee
- School of Pharmacy, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Department of Biopharmaceutical Convergence, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- IMNEWRUN Inc., Suwon, 16419, Republic of Korea
| | - Jungyeob Ham
- Natural Products Research Institute, Korea Institute of Science and Technology (KIST), Gangneung, 25451, Republic of Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Jin-Chul Kim
- Natural Products Research Institute, Korea Institute of Science and Technology (KIST), Gangneung, 25451, Republic of Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Yong Ho Kim
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- IMNEWRUN Inc., Suwon, 16419, Republic of Korea
- Department of Nano Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
21
|
DeAndrés-Gil C, Moreno-Pérez AJ, Villoslada-Valbuena M, Halsey K, Martínez-Force E, Garcés R, Kurup S, Beaudoin F, Salas JJ, Venegas-Calerón M. Characterisation of fatty acyl reductases of sunflower (Helianthus annuus L.) seed. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 341:111992. [PMID: 38301931 DOI: 10.1016/j.plantsci.2024.111992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/02/2024] [Accepted: 01/14/2024] [Indexed: 02/03/2024]
Abstract
Long and very long chain fatty alcohols are produced from their corresponding acyl-CoAs through the activity of fatty acyl reductases (FARs). Fatty alcohols are important components of the cuticle that protects aerial plant organs, and they are metabolic intermediates in the synthesis of the wax esters in the hull of sunflower (Helianthus annuus) seeds. Genes encoding 4 different FARs (named HaFAR2, HaFAR3, HaFAR4 and HaFAR5) were identified using BLAST, and studies showed that four of the genes were expressed in seed hulls. In this study, the structure and location of sunflower FAR proteins were determined. They were also expressed exogenously in Saccharomyces cerevisiae to evaluate their substrate specificity based on the fatty alcohols synthesized by the transformed yeasts. Three of the four enzymes tested showed activity in yeast. HaFAR3 produced C18, C20 and C22 saturated alcohols, whereas HaFAR4 and HaFAR5 produced C24 and C26 saturated alcohols. The involvement of these genes in the synthesis of sunflower seed wax esters was addressed by considering the results obtained.
Collapse
Affiliation(s)
| | - Antonio J Moreno-Pérez
- Instituto de la Grasa (CSIC), Ctra. Utrera Km 1, Building 46, 41013 Sevilla, Spain; Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | | | - Kirstie Halsey
- Plant Sciences Department, Rothamsted Research, Harpenden, United Kingdom
| | | | - Rafael Garcés
- Instituto de la Grasa (CSIC), Ctra. Utrera Km 1, Building 46, 41013 Sevilla, Spain
| | - Smita Kurup
- Plant Sciences Department, Rothamsted Research, Harpenden, United Kingdom
| | - Frédéric Beaudoin
- Plant Sciences Department, Rothamsted Research, Harpenden, United Kingdom
| | - Joaquín J Salas
- Instituto de la Grasa (CSIC), Ctra. Utrera Km 1, Building 46, 41013 Sevilla, Spain
| | | |
Collapse
|
22
|
Ebrahimi M, Alijanianzadeh M. Evaluation of the interaction between potent small molecules against the Nipah virus Glycoprotein in Malaysia and Bangladesh strains, accompanied by the human Ephrin-B2 and Ephrin-B3 receptors; a simulation approach. Mol Divers 2024; 28:851-874. [PMID: 36808582 PMCID: PMC9939871 DOI: 10.1007/s11030-023-10624-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/10/2023] [Indexed: 02/23/2023]
Abstract
Malaysia reported the first human case of Nipah virus (NiV) in late September 1998 with encephalitis and respiratory symptoms. As a result of viral genomic mutations, two main strains (NiV-Malaysia and NiV-Bangladesh) have spread around the world. There are no licensed molecular therapeutics available for this biosafety level 4 pathogen. NiV attachment glycoprotein plays a critical role in viral transmission through its human receptors (Ephrin-B2 and Ephrin-B3), so identifying small molecules that can be repurposed to inhibit them is crucial to developing anti-NiV drugs. Consequently, in this study annealing simulations, pharmacophore modeling, molecular docking, and molecular dynamics were used to evaluate seven potential drugs (Pemirolast, Nitrofurantoin, Isoniazid Pyruvate, Eriodictyol, Cepharanthine, Ergoloid, and Hypericin) against NiV-G, Ephrin-B2, and Ephrin-B3 receptors. Based on the annealing analysis, Pemirolast for efnb2 protein and Isoniazid Pyruvate for efnb3 receptor were repurposed as the most promising small molecule candidates. Furthermore, Hypericin and Cepharanthine, with notable interaction values, are the top Glycoprotein inhibitors in Malaysia and Bangladesh strains, respectively. In addition, docking calculations revealed that their binding affinity scores are related to efnb2-pem (- 7.1 kcal/mol), efnb3-iso (- 5.8 kcal/mol), gm-hyp (- 9.6 kcal/mol), gb-ceph (- 9.2 kcal/mol). Finally, our computational research minimizes the time-consuming aspects and provides options for dealing with any new variants of Nipah virus that might emerge in the future.
Collapse
Affiliation(s)
- Maryam Ebrahimi
- Department of Plant Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mahdi Alijanianzadeh
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| |
Collapse
|
23
|
Uflewski M, Rindfleisch T, Korkmaz K, Tietz E, Mielke S, Correa Galvis V, Dünschede B, Luzarowski M, Skirycz A, Schwarzländer M, Strand DD, Hertle AP, Schünemann D, Walther D, Thalhammer A, Wolff M, Armbruster U. The thylakoid proton antiporter KEA3 regulates photosynthesis in response to the chloroplast energy status. Nat Commun 2024; 15:2792. [PMID: 38555362 PMCID: PMC10981695 DOI: 10.1038/s41467-024-47151-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/19/2024] [Indexed: 04/02/2024] Open
Abstract
Plant photosynthesis contains two functional modules, the light-driven reactions in the thylakoid membrane and the carbon-fixing reactions in the chloroplast stroma. In nature, light availability for photosynthesis often undergoes massive and rapid fluctuations. Efficient and productive use of such variable light supply requires an instant crosstalk and rapid synchronization of both functional modules. Here, we show that this communication involves the stromal exposed C-terminus of the thylakoid K+-exchange antiporter KEA3, which regulates the ΔpH across the thylakoid membrane and therefore pH-dependent photoprotection. By combining in silico, in vitro, and in vivo approaches, we demonstrate that the KEA3 C-terminus senses the energy state of the chloroplast in a pH-dependent manner and regulates transport activity in response. Together our data pinpoint a regulatory feedback loop by which the stromal energy state orchestrates light capture and photoprotection via multi-level regulation of KEA3.
Collapse
Affiliation(s)
- Michał Uflewski
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam, D-14476, Germany
| | - Tobias Rindfleisch
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam, D-14476, Germany
- Department of Physical Biochemistry, University of Potsdam, D-14476, Potsdam, Germany
- Computational Biology Unit, Department of Chemistry, University of Bergen, Bergen, Norway
| | - Kübra Korkmaz
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam, D-14476, Germany
| | - Enrico Tietz
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam, D-14476, Germany
| | - Sarah Mielke
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam, D-14476, Germany
| | - Viviana Correa Galvis
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam, D-14476, Germany
| | - Beatrix Dünschede
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, D-44780, Bochum, Germany
| | - Marcin Luzarowski
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam, D-14476, Germany
| | - Aleksandra Skirycz
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam, D-14476, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology (IBBP), Universität Münster, Schlossplatz 8, D-48143, Münster, Germany
| | - Deserah D Strand
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam, D-14476, Germany
| | - Alexander P Hertle
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam, D-14476, Germany
| | - Danja Schünemann
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, D-44780, Bochum, Germany
| | - Dirk Walther
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam, D-14476, Germany
| | - Anja Thalhammer
- Department of Physical Biochemistry, University of Potsdam, D-14476, Potsdam, Germany
| | - Martin Wolff
- Department of Physical Biochemistry, University of Potsdam, D-14476, Potsdam, Germany
| | - Ute Armbruster
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam, D-14476, Germany.
- Molecular Photosynthesis, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany.
- CEPLAS - Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany.
| |
Collapse
|
24
|
Zuo Y, Chen C, Liu F, Hu H, Dong S, Shen Q, Zeng J, Huang L, Liao X, Cao Z, Zhong Z, Lu H, Chen J. Pinoresinol diglucoside mitigates dexamethasone-induced osteoporosis and chondrodysplasia in zebrafish. Toxicol Appl Pharmacol 2024; 484:116884. [PMID: 38442791 DOI: 10.1016/j.taap.2024.116884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND The global increase in the aging population has led to a higher incidence of osteoporosis among the elderly. OBJECTIVE This study aimed to evaluate the protective properties of pinoresinol diglucoside (PDG), an active constituent of Eucommia ulmoides, against dexamethasone-induced osteoporosis and chondrodysplasia. METHODS A zebrafish model of osteoporosis was established by exposing larval zebrafish to dexamethasone. The impact of PDG on bone mineralization was assessed through alizarin red and calcein staining. Alkaline phosphatase activity was quantified to evaluate osteoblast function. The influence of PDG on chondrogenesis was estimated using alcian blue staining. Fluorescence imaging and motor behavior analysis were employed to assess the protective effect of PDG on the structure and function of dexamethasone-induced skeletal teratogenesis. qPCR determined the expression of osteogenesis and Wnt signaling-related genes. Molecular docking was used to assess the potential interactions between PDG and Wnt receptors. RESULTS PDG significantly increased bone mineralization and corrected spinal curvature and cartilage malformations in the zebrafish model. Furthermore, PDG enhanced swimming abilities compared to the model group. PDG mitigated dexamethasone-induced skeletal abnormalities in zebrafish by upregulating Wnt signaling, showing potential interaction with Wnt receptors FZD2 and FZD5. CONCLUSION PDG mitigates dexamethasone-induced osteoporosis and chondrodysplasia by promoting bone formation and activating Wnt signaling.
Collapse
Affiliation(s)
- Yuhua Zuo
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325003, China
| | - Chao Chen
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China; Department of Epidemiology, School of Public Health and General Medicine, Tongji University, School of Medicine, Shanghai 200092, China
| | - Fasheng Liu
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji'an 343009, Jiangxi, China
| | - Hongmei Hu
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China; Department of Epidemiology, School of Public Health and General Medicine, Tongji University, School of Medicine, Shanghai 200092, China
| | - Si Dong
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji'an 343009, Jiangxi, China
| | - Qinyuan Shen
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji'an 343009, Jiangxi, China
| | - Junquan Zeng
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji'an 343009, Jiangxi, China
| | - Ling Huang
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji'an 343009, Jiangxi, China
| | - Xinjun Liao
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji'an 343009, Jiangxi, China
| | - Zigang Cao
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji'an 343009, Jiangxi, China
| | - Zilin Zhong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China; Department of Epidemiology, School of Public Health and General Medicine, Tongji University, School of Medicine, Shanghai 200092, China
| | - Huiqiang Lu
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji'an 343009, Jiangxi, China.
| | - Jianjun Chen
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325003, China; Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China; Department of Epidemiology, School of Public Health and General Medicine, Tongji University, School of Medicine, Shanghai 200092, China.
| |
Collapse
|
25
|
Roterman I, Konieczny L, Stapor K, Słupina M. Hydrophobicity-Based Force Field In Enzymes. ACS OMEGA 2024; 9:8188-8203. [PMID: 38405467 PMCID: PMC10882594 DOI: 10.1021/acsomega.3c08728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/05/2024] [Accepted: 01/25/2024] [Indexed: 02/27/2024]
Abstract
The biocatalysis process takes place with the participation of enzymes, which, depending on the reaction carried out, require, apart from the appropriate arrangement of catalytic residues, an appropriate external force field. It is generated by the protein body. The relatively small size of the part directly involved in the process itself is supported by the presence of an often complex structure of the protein body, the purpose of which is to provide an appropriate local force field, eliminating the influence of water. Very often, the large size of the enzyme is an expression of the complex form of this field. In this paper, a comparative analysis of arbitrarily selected enzymes, representatives of different enzyme classes, was carried out, focusing on the measurement of the diversity of the force field provided by a given protein. This analysis was based on the fuzzy oil drop model (FOD) and its modified version (FOD-M), which takes into account the participation of nonaqueous external factors in shaping the structure and thus the force field within the protein. The degree and type of ordering of the hydrophobicity distribution in the protein molecule is the result of the influence of the environment but also the supplier of the local environment for a given process, including the catalysis process in particular. Determining the share of a nonaqueous environment is important due to the ubiquity of polar water, whose participation in processes with high specificity requires control. It can be assumed that some enzymes in their composition have a permanently built-in part, the role of which is reduced to that of a permanent chaperone. It provides a specific external force field needed for the process. The proposed model, generalized to other types of proteins, may also provide a form of recording the environment model for the simulation of the in silico protein folding process, taking into account the impact of its differentiation.
Collapse
Affiliation(s)
- Irena Roterman
- Department
of Bioinformatics and Telemedicine, Jagiellonian
University—Medical College, Medyczna 7, 30-688 Kraków, Poland
| | - Leszek Konieczny
- Chair
of Medical Biochemistry, Jagiellonian University—Medical
College, Kopernika 7, 31-034 Kraków, Poland
| | - Katarzyna Stapor
- Faculty
of Automatic, Electronics and Computer Science, Department of Applied
Informatics, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | - Mateusz Słupina
- ALSTOM
ZWUS Sp. z o.o, Modelarska
12, 40-142 Katowice, Poland
| |
Collapse
|
26
|
Khatoon H, Abdul Malek E, Faudzi SM, Rukayadi Y. Synthesis of a Series of Quinoxaline Derivatives and Their Antibacterial Effectiveness Against Pathogenic Bacteria. ChemistrySelect 2024; 9. [DOI: 10.1002/slct.202305073] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/24/2024] [Indexed: 08/18/2024]
Abstract
AbstractThe pharmacological importance of quinoxaline derivatives in antibacterial research is well recognized. This study focuses on the synthesis of new 2,3‐dichloroquinoxaline derivatives containing thioether/ether groups to explore their potential as potent antibacterial agents against various pathogenic bacteria. Most of the compounds exhibited significant antibacterial properties comparable to the standard drug chlorhexidine (CHX). The derivatives of 2‐chloro‐3‐(arylthiol)quinoxaline demonstrated efficacy against Escherichia coli with minimum inhibitory concentrations (MIC) of 2.5 mg/mL and minimum bactericidal concentrations (MBC) of 2.5 to 5.0 mg/mL. These derivatives also showed similar sensitivity to Bacillus pumilus. In addition, molecular docking simulations were performed to investigate the interaction between the synthesized compounds and the DNA gyrase protein (PDB ID: 1KZN), a target for antibiotics. Among the synthesized compounds, 2,3‐bis(3‐nitrophenoxy)quinoxaline exhibited the most favourable docking score of −8.36 kcal/mol, with a binding affinity comparable to that of the reference ligand clorobiocin (−9.3 kcal/mol).
Collapse
Affiliation(s)
- Hena Khatoon
- Department of Chemistry Faculty of Science Universiti Putra Malaysia Serdang 43400 Selangor Malaysia
| | - Emilia Abdul Malek
- Department of Chemistry Faculty of Science Universiti Putra Malaysia Serdang 43400 Selangor Malaysia
- Integrated Chemical BioPhysics Research Faculty of Science Universiti Putra Malaysia, Serdang 43400 Selangor Malaysia
| | - Siti Munirah Faudzi
- Department of Chemistry Faculty of Science Universiti Putra Malaysia Serdang 43400 Selangor Malaysia
- Department of Food Science Faculty of Food Science and technology Universiti Putra Malaysia Serdang 434000 Selangor Malaysia
| | - Yaya Rukayadi
- Department of Food Science Faculty of Food Science and technology Universiti Putra Malaysia Serdang 434000 Selangor Malaysia
- Natural Medicines and Product Research Laboratory Institute of Bioscience Universiti Putra Malaysia, Serdang 43400 Selangor Malaysia
| |
Collapse
|
27
|
John MS, Chinnappan M, Artami M, Bhattacharya M, Keogh RA, Kavanaugh J, Sharma T, Horswill AR, Harris-Tryon TA. Androgens at the skin surface regulate S. aureus pathogenesis through the activation of agr quorum sensing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.10.579753. [PMID: 38370751 PMCID: PMC10871326 DOI: 10.1101/2024.02.10.579753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Staphylococcus aureus, the most frequent cause of skin infections, is more common in men than women and selectively colonizes the skin during inflammation. Yet, the specific cues that drive infection in these settings remain unclear. Here we show that the host androgens testosterone and dihydrotestosterone promote S. aureus pathogenesis and skin infection. Without the secretion of these hormones, skin infection in vivo is limited. Testosterone activates S. aureus virulence in a concentration dependent manner through stimulation of the agr quorum sensing system, with the capacity to circumvent other inhibitory signals in the environment. Taken together, our work defines a previously uncharacterized inter-kingdom signal between the skin and the opportunistic pathogen S. aureus and identifies the mechanism of sex-dependent differences in S. aureus skin infection. One-Sentence Summary Testosterone promotes S. aureus pathogenesis through activation of the agr quorum sensing system.
Collapse
|
28
|
Sankar TV, Saharay M, Santhosh D, Menon S, Raran-Kurussi S, Padmasree K. Biomolecular interaction of purified recombinant Arabidopsis thaliana's alternative oxidase 1A with TCA cycle metabolites: Biophysical and molecular docking studies. Int J Biol Macromol 2024; 258:128814. [PMID: 38114006 DOI: 10.1016/j.ijbiomac.2023.128814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 11/08/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
In higher plants, the mitochondrial alternative oxidase (AOX) pathway plays an essential role in maintaining the TCA cycle/cellular carbon and energy balance under various physiological and stress conditions. Though the activation of AOX pathway upon exogenous addition of α-ketoacids/TCA cycle metabolites [pyruvate, α-ketoglutarate (α-KG), oxaloacetic acid (OAA), succinate and malic acid] to isolated mitochondria is known, the molecular mechanism of interaction of these metabolites with AOX protein is limited. The present study is designed to understand the biomolecular interaction of pure recombinant Arabidopsis thaliana AOX1A with TCA cycle metabolites under in vitro conditions using various biophysical and molecular docking studies. The binding of α-KG, fumaric acid and OAA to rAtAOX1A caused conformational change in the microenvironment of tryptophan residues as evidenced by red shift in the synchronous fluorescence spectra (∆λ = 60 nm). Besides, a decrease in conventional fluorescence emission spectra, tyrosine specific synchronous fluorescence spectra (∆λ = 15 nm) and α-helical content of CD spectra revealed the conformation changes in rAtAOX1A structure associated with binding of various TCA cycle metabolites. Further, surface plasmon resonance (SPR) and microscale thermophoresis (MST) studies revealed the binding affinity, while docking studies identified binding pocket residues, respectively, for these metabolites on rAtAOX1A.
Collapse
Affiliation(s)
- Tadiboina Veera Sankar
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, India
| | - Moumita Saharay
- Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, India
| | - Dharawath Santhosh
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, India
| | - Saji Menon
- Senior Field Application Scientist, Nanotemper Technologies GmbH, India
| | - Sreejith Raran-Kurussi
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad, 500107, India
| | - Kollipara Padmasree
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, India.
| |
Collapse
|
29
|
Pearson AN, Incha MR, Ho CN, Schmidt M, Roberts JB, Nava AA, Keasling JD. Characterization and Diversification of AraC/XylS Family Regulators Guided by Transposon Sequencing. ACS Synth Biol 2024; 13:206-219. [PMID: 38113125 DOI: 10.1021/acssynbio.3c00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
In this study, we explored the development of engineered inducible systems. Publicly available data from previous transposon sequencing assays were used to identify regulators of metabolism in Pseudomonas putida KT2440. For AraC family regulators (AFRs) represented in these data, we posited AFR/promoter/inducer groupings. Twelve promoters were characterized for a response to their proposed inducers in P. putida, and the resultant data were used to create and test nine two-plasmid sensor systems in Escherichia coli. Several of these were further developed into a palette of single-plasmid inducible systems. From these experiments, we observed an unreported inducer response from a previously characterized AFR, demonstrated that the addition of a P. putida transporter improved the sensor dynamics of an AFR in E. coli, and identified an uncharacterized AFR with a novel potential inducer specificity. Finally, targeted mutations in an AFR, informed by structural predictions, enabled the further diversification of these inducible plasmids.
Collapse
Affiliation(s)
- Allison N Pearson
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, United States
| | - Matthew R Incha
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, United States
| | - Cindy N Ho
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Matthias Schmidt
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Institute of Applied Microbiology-iAMB, Aachen Biology and Biotechnology-ABBt, RWTH Aachen University, Aachen 52062, Germany
| | - Jacob B Roberts
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Joint Program in Bioengineering, University of California, Berkeley/San Francisco, California 94720, United States
| | - Alberto A Nava
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Jay D Keasling
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Joint Program in Bioengineering, University of California, Berkeley/San Francisco, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, United States
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
- Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institutes for Advanced Technologies, Shenzhen 518055, China
| |
Collapse
|
30
|
Bharadwaj P, Shet SM, Bisht M, Sarkar DK, Franklin G, Sanna Kotrappanavar N, Mondal D. Suitability of Adenosine Derivatives in Improving the Activity and Stability of Cytochrome c under Stress: Insights into the Effect of Phosphate Groups. J Phys Chem B 2024; 128:86-95. [PMID: 38127495 PMCID: PMC10788901 DOI: 10.1021/acs.jpcb.3c05996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/16/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
It is well known that adenosine and its phosphate derivatives play a crucial role in biological phenomena such as apoptosis and cell signaling and act as the energy currency of the cell. Although their interactions with various proteins and enzymes have been described, the focus of this work is to demonstrate the effect of the phosphate group on the activity and stability of the native heme metalloprotein cytochrome c (Cyt c), which is important from both biological and industrial aspects. In situ and in silico characterizations are used to correlate the relationship between the binding affinity of adenosine and its phosphate groups with unfolding behavior, corresponding peroxidase activities, and stability factors. Interaction of adenosine (ADN), adenosine monophosphate (AMP), adenosine 5'-diphosphate (ADP), and adenosine 5'-triphosphate (ATP) with Cyt c increases peroxidase-like activity by up to 1.8-6.5-fold compared to native Cyt c. This activity is significantly maintained even after multiple stress conditions such as oxidative stress and the presence of a chaotropic agent such as guanidine hydrochloride (GuHCl). With binding affinities on the order of ADN < AMP < ADP < ATP, adenosine derivatives were found to stabilize Cyt c by varying the secondary structural features of the protein. Thus, in addition to being a fundamental study, the current work also proposes a way of stabilizing protein systems to be used for real-time biocatalytic applications.
Collapse
Affiliation(s)
- Pranav Bharadwaj
- Centre
for Nano and Material Sciences, Jain University, Bangalore 562112, India
- Institute
of Plant Genetics (IPG), Polish Academy
of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
| | - Sachin M. Shet
- Centre
for Nano and Material Sciences, Jain University, Bangalore 562112, India
| | - Meena Bisht
- Institute
of Plant Genetics (IPG), Polish Academy
of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
| | - Dheeraj Kumar Sarkar
- Laboratory
of Biomolecular Interactions and Transport, Department of Gene Expression,
Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
- International
Institute of Molecular and Cell Biology in Warsaw, Ks Trojdena 4, 02-109 Warsaw, Poland
| | - Gregory Franklin
- Institute
of Plant Genetics (IPG), Polish Academy
of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
| | - Nataraj Sanna Kotrappanavar
- Centre
for Nano and Material Sciences, Jain University, Bangalore 562112, India
- School of
Polymer Science and Engineering, Chonnam
National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| | - Dibyendu Mondal
- Centre
for Nano and Material Sciences, Jain University, Bangalore 562112, India
- Institute
of Plant Genetics (IPG), Polish Academy
of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
| |
Collapse
|
31
|
Wang DD, Wu W, Wang R. Structure-based, deep-learning models for protein-ligand binding affinity prediction. J Cheminform 2024; 16:2. [PMID: 38173000 PMCID: PMC10765576 DOI: 10.1186/s13321-023-00795-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/10/2023] [Indexed: 01/05/2024] Open
Abstract
The launch of AlphaFold series has brought deep-learning techniques into the molecular structural science. As another crucial problem, structure-based prediction of protein-ligand binding affinity urgently calls for advanced computational techniques. Is deep learning ready to decode this problem? Here we review mainstream structure-based, deep-learning approaches for this problem, focusing on molecular representations, learning architectures and model interpretability. A model taxonomy has been generated. To compensate for the lack of valid comparisons among those models, we realized and evaluated representatives from a uniform basis, with the advantages and shortcomings discussed. This review will potentially benefit structure-based drug discovery and related areas.
Collapse
Affiliation(s)
- Debby D Wang
- School of Science and Technology, Hong Kong Metropolitan University, 81 Chung Hau Sreet, Ho Man Tin, Hong Kong, China
| | - Wenhui Wu
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
- Guangdong Key Laboratory of Intelligent Information Processing, Shenzhen University, Shenzhen, 518060, China
| | - Ran Wang
- School of Mathematical Science, Shenzhen University, Shenzhen, 518060, China.
- Guangdong Key Laboratory of Intelligent Information Processing, Shenzhen University, Shenzhen, 518060, China.
- Shenzhen Key Laboratory of Advanced Machine Learning and Applications, Shenzhen University, Shenzhen , 518060, China.
| |
Collapse
|
32
|
Khatoon H, Abdul Malek E, Mohd Faudzi SM, Khan T, Shabbir Ahmed O. Synthesis of quinoxaline derivatives using different solvent systems, their potent antibacterial activities and molecular docking. RESULTS IN CHEMISTRY 2024; 7:101389. [DOI: 10.1016/j.rechem.2024.101389] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2024] Open
|
33
|
Poonsiri T, Dell’Accantera D, Loconte V, Casnati A, Cervoni L, Arcovito A, Benini S, Ferrari A, Cipolloni M, Cacioni E, De Franco F, Giacchè N, Rinaldo S, Folli C, Sansone F, Berni R, Cianci M. 3-O-Methyltolcapone and Its Lipophilic Analogues Are Potent Inhibitors of Transthyretin Amyloidogenesis with High Permeability and Low Toxicity. Int J Mol Sci 2023; 25:479. [PMID: 38203650 PMCID: PMC10779086 DOI: 10.3390/ijms25010479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
Transthyretin (TTR) is an amyloidogenic homotetramer involved in the transport of thyroxine in blood and cerebrospinal fluid. To date, more than 130 TTR point mutations are known to destabilise the TTR tetramer, leading to its extracellular pathological aggregation accumulating in several organs, such as heart, peripheral and autonomic nerves, and leptomeninges. Tolcapone is an FDA-approved drug for Parkinson's disease that has been repurposed as a TTR stabiliser. We characterised 3-O-methyltolcapone and two newly synthesized lipophilic analogues, which are expected to be protected from the metabolic glucuronidation that is responsible for the lability of tolcapone in the organism. Immunoblotting assays indicated the high degree of TTR stabilisation, coupled with binding selectivity towards TTR in diluted plasma of 3-O-methyltolcapone and its lipophilic analogues. Furthermore, in vitro toxicity data showed their several-fold improved neuronal and hepatic safety compared to tolcapone. Calorimetric and structural data showed that both T4 binding sites of TTR are occupied by 3-O-methyltolcapone and its lipophilic analogs, consistent with an effective TTR tetramer stabilisation. Moreover, in vitro permeability studies showed that the three compounds can effectively cross the blood-brain barrier, which is a prerequisite for the inhibition of TTR amyloidogenesis in the cerebrospinal fluid. Our data demonstrate the relevance of 3-O-methyltolcapone and its lipophilic analogs as potent inhibitors of TTR amyloidogenesis.
Collapse
Affiliation(s)
- Thanalai Poonsiri
- Bioorganic Chemistry and Bio-Crystallography Laboratory (B2Cl), Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano, 39100 Bolzano, Italy; (T.P.); (S.B.)
| | - Davide Dell’Accantera
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/a, 43124 Parma, Italy; (D.D.); (A.C.); (F.S.); (R.B.)
| | - Valentina Loconte
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA;
- Lawrence Berkeley National Laboratory, Molecular Biophysics and Integrated Bioimaging Division, Berkeley, CA 94720, USA
| | - Alessandro Casnati
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/a, 43124 Parma, Italy; (D.D.); (A.C.); (F.S.); (R.B.)
| | - Laura Cervoni
- Department of Biochemical Sciences, University of Rome “La Sapienza”, P.le Aldo Moro 5, 00185 Rome, Italy; (L.C.); (S.R.)
| | - Alessandro Arcovito
- Department of Biotechnological Sciences and Intensive Care, Catholic University of Sacred Heart, Largo F. Vito 1, 00168 Rome, Italy;
- Fondazione Policlinico Universitario A. Gemelli—IRCCS, 00168 Rome, Italy
| | - Stefano Benini
- Bioorganic Chemistry and Bio-Crystallography Laboratory (B2Cl), Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano, 39100 Bolzano, Italy; (T.P.); (S.B.)
| | - Alberto Ferrari
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (A.F.); (C.F.)
| | - Marco Cipolloni
- TES Pharma S.r.l., Via P. Togliatti 20, Corciano, 06073 Perugia, Italy; (M.C.); (E.C.); (F.D.F.); (N.G.)
| | - Elisa Cacioni
- TES Pharma S.r.l., Via P. Togliatti 20, Corciano, 06073 Perugia, Italy; (M.C.); (E.C.); (F.D.F.); (N.G.)
| | - Francesca De Franco
- TES Pharma S.r.l., Via P. Togliatti 20, Corciano, 06073 Perugia, Italy; (M.C.); (E.C.); (F.D.F.); (N.G.)
| | - Nicola Giacchè
- TES Pharma S.r.l., Via P. Togliatti 20, Corciano, 06073 Perugia, Italy; (M.C.); (E.C.); (F.D.F.); (N.G.)
| | - Serena Rinaldo
- Department of Biochemical Sciences, University of Rome “La Sapienza”, P.le Aldo Moro 5, 00185 Rome, Italy; (L.C.); (S.R.)
| | - Claudia Folli
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (A.F.); (C.F.)
| | - Francesco Sansone
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/a, 43124 Parma, Italy; (D.D.); (A.C.); (F.S.); (R.B.)
| | - Rodolfo Berni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/a, 43124 Parma, Italy; (D.D.); (A.C.); (F.S.); (R.B.)
| | - Michele Cianci
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
34
|
Spidlova P, Sokolova E, Pavlik P. Bacteriophage SPO1 protein Gp46 suppresses functions of HU protein in Francisella tularensis. Front Microbiol 2023; 14:1330109. [PMID: 38156016 PMCID: PMC10753183 DOI: 10.3389/fmicb.2023.1330109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
The nucleoid-associated protein HU is a common bacterial transcription factor, whose role in pathogenesis and virulence has been described in many bacteria. Our recent studies showed that the HU protein is an indispensable virulence factor in the human pathogenic bacterium Francisella tularensis, a causative agent of tularemia disease, and that this protein can be a key target in tularemia treatment or vaccine development. Here, we show that Francisella HU protein is inhibited by Gp46, a protein of Bacillus subtilis bacteriophage SPO1. We predicted that Gp46 could occupy the F. tularensis HU protein DNA binding site, and subsequently confirmed the ability of Gp46 to abolish the DNA-binding capacity of HU protein. Next, we showed that the growth of Francisella wild-type strain expressing Gp46 in trans corresponded to that of a deletion mutant strain lacking the HU protein. Similarly, the efficiency of intracellular proliferation in mouse macrophages resembled that of the deletion mutant strain, but not that of the wild-type strain. These results, in combination with findings from a recent study on Gp46, enabled us to confirm that Gp46 could be a universal inhibitor of HU proteins among bacterial species.
Collapse
Affiliation(s)
- Petra Spidlova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Eliska Sokolova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
- Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Pavla Pavlik
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| |
Collapse
|
35
|
Bugnon M, Goullieux M, Röhrig UF, Perez MAS, Daina A, Michielin O, Zoete V. SwissParam 2023: A Modern Web-Based Tool for Efficient Small Molecule Parametrization. J Chem Inf Model 2023; 63:6469-6475. [PMID: 37853543 PMCID: PMC10649791 DOI: 10.1021/acs.jcim.3c01053] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Indexed: 10/20/2023]
Abstract
Most steps of drug discovery are now routinely supported and accelerated by computer-aided drug design tools. Among them, structure-based approaches use the three-dimensional structure of the targeted biomacromolecule as a major source of information. When it comes to calculating the interactions of small molecules with proteins using the equations of molecular mechanics, topologies, atom typing, and force field parameters are required. However, generating parameters for small molecules remains challenging due to the large number of existing chemical groups. The SwissParam web tool was first released in 2011 with the aim of generating parameters and topologies for small molecules based on the Merck molecular force field (MMFF) while being compatible with the CHARMM22/27 force field. Here, we present an updated version of SwissParam, providing various new features, including the possibility to setup covalent ligands. Molecules can now be imported from different file formats or via a molecular sketcher. The MMFF-based approach has been updated to provide parameters and topologies compatible with the CHARMM36 force field. An option was added to generate small molecule parametrizations following the CHARMM General Force Field via the multipurpose atom-typer for CHARMM (MATCH) approach. Additionally, SwissParam now generates information on probable alternative tautomers and protonation states of the query molecule so that the user can consider all microspecies relevant to its compound. The new version of SwissParam is freely available at www.swissparam.ch and can also be accessed through a newly implemented command-line interface.
Collapse
Affiliation(s)
- Marine Bugnon
- Molecular
Modeling Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Mathilde Goullieux
- Molecular
Modeling Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Ute F. Röhrig
- Molecular
Modeling Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Marta A. S. Perez
- Molecular
Modeling Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Antoine Daina
- Molecular
Modeling Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Olivier Michielin
- Molecular
Modeling Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
- Department
of Oncology, Geneva University Hospital
(HUG), CH-1205 Genève, Switzerland
| | - Vincent Zoete
- Molecular
Modeling Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
- Department
of Oncology UNIL-CHUV, Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
36
|
Yurchenko AN, Zhuravleva OI, Khmel OO, Oleynikova GK, Antonov AS, Kirichuk NN, Chausova VE, Kalinovsky AI, Berdyshev DV, Kim NY, Popov RS, Chingizova EA, Chingizov AR, Isaeva MP, Yurchenko EA. New Cyclopiane Diterpenes and Polyketide Derivatives from Marine Sediment-Derived Fungus Penicillium antarcticum KMM 4670 and Their Biological Activities. Mar Drugs 2023; 21:584. [PMID: 37999408 PMCID: PMC10672241 DOI: 10.3390/md21110584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Two new cyclopiane diterpenes and a new cladosporin precursor, together with four known related compounds, were isolated from the marine sediment-derived fungus Penicillium antarcticum KMM 4670, which was re-identified based on phylogenetic inference from ITS, BenA, CaM, and RPB2 gene regions. The absolute stereostructures of the isolated cyclopianes were determined using modified Mosher's method and quantum chemical calculations of the ECD spectra. The isolation from the natural source of two biosynthetic precursors of cladosporin from a natural source has been reported for the first time. The antimicrobial activities of the isolated compounds against Staphylococcus aureus, Escherichia coli, and Candida albicans as well as the inhibition of staphylococcal sortase A activity were investigated. Moreover, the cytotoxicity of the compounds to mammalian cardiomyocytes H9c2 was studied. As a result, new cyclopiane diterpene 13-epi-conidiogenone F was found to be a sortase A inhibitor and a promising anti-staphylococcal agent.
Collapse
Affiliation(s)
- Anton N. Yurchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Russky Island, Vladivostok 690022, Russia; (O.I.Z.); (A.S.A.); (N.N.K.); (V.E.C.); (A.I.K.); (D.V.B.); (N.Y.K.); (R.S.P.); (E.A.C.); (A.R.C.); (M.P.I.)
| | - Olesya I. Zhuravleva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Russky Island, Vladivostok 690022, Russia; (O.I.Z.); (A.S.A.); (N.N.K.); (V.E.C.); (A.I.K.); (D.V.B.); (N.Y.K.); (R.S.P.); (E.A.C.); (A.R.C.); (M.P.I.)
- Institute of High Technologies and Advanced Materials, Far Eastern Federal University, 10 Ajax Bay, Russky Island, Vladivostok 690922, Russia;
| | - Olga O. Khmel
- Institute of High Technologies and Advanced Materials, Far Eastern Federal University, 10 Ajax Bay, Russky Island, Vladivostok 690922, Russia;
| | - Galina K. Oleynikova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Russky Island, Vladivostok 690022, Russia; (O.I.Z.); (A.S.A.); (N.N.K.); (V.E.C.); (A.I.K.); (D.V.B.); (N.Y.K.); (R.S.P.); (E.A.C.); (A.R.C.); (M.P.I.)
| | - Alexandr S. Antonov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Russky Island, Vladivostok 690022, Russia; (O.I.Z.); (A.S.A.); (N.N.K.); (V.E.C.); (A.I.K.); (D.V.B.); (N.Y.K.); (R.S.P.); (E.A.C.); (A.R.C.); (M.P.I.)
| | - Natalya N. Kirichuk
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Russky Island, Vladivostok 690022, Russia; (O.I.Z.); (A.S.A.); (N.N.K.); (V.E.C.); (A.I.K.); (D.V.B.); (N.Y.K.); (R.S.P.); (E.A.C.); (A.R.C.); (M.P.I.)
| | - Viktoria E. Chausova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Russky Island, Vladivostok 690022, Russia; (O.I.Z.); (A.S.A.); (N.N.K.); (V.E.C.); (A.I.K.); (D.V.B.); (N.Y.K.); (R.S.P.); (E.A.C.); (A.R.C.); (M.P.I.)
| | - Anatoly I. Kalinovsky
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Russky Island, Vladivostok 690022, Russia; (O.I.Z.); (A.S.A.); (N.N.K.); (V.E.C.); (A.I.K.); (D.V.B.); (N.Y.K.); (R.S.P.); (E.A.C.); (A.R.C.); (M.P.I.)
| | - Dmitry V. Berdyshev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Russky Island, Vladivostok 690022, Russia; (O.I.Z.); (A.S.A.); (N.N.K.); (V.E.C.); (A.I.K.); (D.V.B.); (N.Y.K.); (R.S.P.); (E.A.C.); (A.R.C.); (M.P.I.)
| | - Natalya Y. Kim
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Russky Island, Vladivostok 690022, Russia; (O.I.Z.); (A.S.A.); (N.N.K.); (V.E.C.); (A.I.K.); (D.V.B.); (N.Y.K.); (R.S.P.); (E.A.C.); (A.R.C.); (M.P.I.)
| | - Roman S. Popov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Russky Island, Vladivostok 690022, Russia; (O.I.Z.); (A.S.A.); (N.N.K.); (V.E.C.); (A.I.K.); (D.V.B.); (N.Y.K.); (R.S.P.); (E.A.C.); (A.R.C.); (M.P.I.)
| | - Ekaterina A. Chingizova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Russky Island, Vladivostok 690022, Russia; (O.I.Z.); (A.S.A.); (N.N.K.); (V.E.C.); (A.I.K.); (D.V.B.); (N.Y.K.); (R.S.P.); (E.A.C.); (A.R.C.); (M.P.I.)
| | - Artur R. Chingizov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Russky Island, Vladivostok 690022, Russia; (O.I.Z.); (A.S.A.); (N.N.K.); (V.E.C.); (A.I.K.); (D.V.B.); (N.Y.K.); (R.S.P.); (E.A.C.); (A.R.C.); (M.P.I.)
| | - Marina P. Isaeva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Russky Island, Vladivostok 690022, Russia; (O.I.Z.); (A.S.A.); (N.N.K.); (V.E.C.); (A.I.K.); (D.V.B.); (N.Y.K.); (R.S.P.); (E.A.C.); (A.R.C.); (M.P.I.)
| | - Ekaterina A. Yurchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Russky Island, Vladivostok 690022, Russia; (O.I.Z.); (A.S.A.); (N.N.K.); (V.E.C.); (A.I.K.); (D.V.B.); (N.Y.K.); (R.S.P.); (E.A.C.); (A.R.C.); (M.P.I.)
| |
Collapse
|
37
|
Iannucci A, Zhu J, Antonielli L, Ayari A, Nasri-Ammar K, Knoll W, Pelosi P, Dani FR. Chemosensory proteins as putative semiochemical carriers in the desert isopod Hemilepistus reaumurii. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 162:104012. [PMID: 37743031 DOI: 10.1016/j.ibmb.2023.104012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 09/26/2023]
Abstract
The order Isopoda contains both aquatic and terrestrial species, among which Hemilepistus reaumurii, which lives in arid environments and is the most adapted to terrestrial life. Olfaction has been deeply investigated in insects while it has received very limited attention in other arthropods, particularly in terrestrial crustaceans. In insects, soluble proteins belonging to two main families, Odorant Binding Proteins (OBPs) and Chemosensory Proteins (CSPs), are contained in the olfactory sensillar lymph and are suggested to act as carriers of hydrophobic semiochemicals to or from membrane-bound olfactory receptors. Other protein families, namely Nieman-Pick type 2 (NPC2) and Lipocalins (LCNs) have been also reported as putative odorant carriers in insects and other arthropod clades. In this study, we have sequenced and analysed the transcriptomes of antennae and of the first pair of legs of H. reaumurii focusing on soluble olfactory proteins. Interestingly, we have found 13 genes encoding CSPs, whose sequences differ from those of the other arthropod clades, including non-isopod crustaceans, for the presence of two additional cysteine residues, besides the four conserved ones. Binding assays on two of these proteins showed strong affinities for fatty acids and long-chain unsaturated esters and aldehydes, putative semiochemicals for this species.
Collapse
Affiliation(s)
- Alessio Iannucci
- Department of Biology, University of Firenze, 50019, Firenze, Italy; National Biodiversity Future Center, 90133, Palermo, Italy
| | - Jiao Zhu
- AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, Bioresources Unit, 3430 Tulln, Austria
| | - Livio Antonielli
- AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, Bioresources Unit, 3430 Tulln, Austria
| | - Anas Ayari
- Université Tunis El Manar, Faculté des Sciences de Tunis, Unité de Recherche de Bio-Ecologie et Systématique Evolutive, 2092, Tunis, Tunisia
| | - Karima Nasri-Ammar
- Université Tunis El Manar, Faculté des Sciences de Tunis, Unité de Recherche de Bio-Ecologie et Systématique Evolutive, 2092, Tunis, Tunisia
| | - Wolfgang Knoll
- AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, Bioresources Unit, 3430 Tulln, Austria
| | - Paolo Pelosi
- AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, Bioresources Unit, 3430 Tulln, Austria
| | - Francesca Romana Dani
- Department of Biology, University of Firenze, 50019, Firenze, Italy; National Biodiversity Future Center, 90133, Palermo, Italy.
| |
Collapse
|
38
|
Chinellato M, Gasparotto M, Quarta S, Ruvoletto M, Biasiolo A, Filippini F, Spiezia L, Cendron L, Pontisso P. 1-Piperidine Propionic Acid as an Allosteric Inhibitor of Protease Activated Receptor-2. Pharmaceuticals (Basel) 2023; 16:1486. [PMID: 37895957 PMCID: PMC10610151 DOI: 10.3390/ph16101486] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
In the last decades, studies on the inflammatory signaling pathways in multiple pathological contexts have revealed new targets for novel therapies. Among the family of G-protein-coupled Proteases Activated Receptors, PAR2 was identified as a driver of the inflammatory cascade in many pathologies, ranging from autoimmune disease to cancer metastasis. For this reason, many efforts have been focused on the development of potential antagonists of PAR2 activity. This work focuses on a small molecule, 1-Piperidine Propionic Acid (1-PPA), previously described to be active against inflammatory processes, but whose target is still unknown. Stabilization effects observed by cellular thermal shift assay coupled to in-silico investigations, including molecular docking and molecular dynamics simulations, suggested that 1-PPA binds PAR2 in an allosteric pocket of the receptor inactive conformation. Functional studies revealed the antagonist effects on MAPKs signaling and on platelet aggregation, processes mediated by PAR family members, including PAR2. Since the allosteric pocket binding 1-PPA is highly conserved in all the members of the PAR family, the evidence reported here suggests that 1-PPA could represent a promising new small molecule targeting PARs with antagonistic activity.
Collapse
Affiliation(s)
- Monica Chinellato
- Department of Medicine, University of Padova, 35121 Padova, Italy; (M.C.); (S.Q.); (M.R.); (A.B.)
| | - Matteo Gasparotto
- Department of Biology, University of Padova, 35121 Padova, Italy; (M.G.); (F.F.); (L.C.)
| | - Santina Quarta
- Department of Medicine, University of Padova, 35121 Padova, Italy; (M.C.); (S.Q.); (M.R.); (A.B.)
| | - Mariagrazia Ruvoletto
- Department of Medicine, University of Padova, 35121 Padova, Italy; (M.C.); (S.Q.); (M.R.); (A.B.)
| | - Alessandra Biasiolo
- Department of Medicine, University of Padova, 35121 Padova, Italy; (M.C.); (S.Q.); (M.R.); (A.B.)
| | - Francesco Filippini
- Department of Biology, University of Padova, 35121 Padova, Italy; (M.G.); (F.F.); (L.C.)
| | - Luca Spiezia
- Department of Medicine, University of Padova, 35121 Padova, Italy; (M.C.); (S.Q.); (M.R.); (A.B.)
| | - Laura Cendron
- Department of Biology, University of Padova, 35121 Padova, Italy; (M.G.); (F.F.); (L.C.)
| | - Patrizia Pontisso
- Department of Medicine, University of Padova, 35121 Padova, Italy; (M.C.); (S.Q.); (M.R.); (A.B.)
| |
Collapse
|
39
|
Zhang DW, Xu XS, Zhou R, Fu Z. Modulation of HIV-1 capsid multimerization by sennoside A and sennoside B via interaction with the NTD/CTD interface in capsid hexamer. Front Microbiol 2023; 14:1270258. [PMID: 37817748 PMCID: PMC10561090 DOI: 10.3389/fmicb.2023.1270258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/11/2023] [Indexed: 10/12/2023] Open
Abstract
Small molecules that bind to the pocket targeted by a peptide, termed capsid assembly inhibitor (CAI), have shown antiviral effects with unique mechanisms of action. We report the discovery of two natural compounds, sennoside A (SA) and sennoside B (SB), derived from medicinal plants that bind to this pocket in the C-terminal domain of capsid (CA CTD). Both SA and SB were identified via a drug-screening campaign that utilized a time-resolved fluorescence resonance energy transfer assay. They inhibited the HIV-1 CA CTD/CAI interaction at sub-micromolar concentrations of 0.18 μM and 0.08 μM, respectively. Mutation of key residues (including Tyr 169, Leu 211, Asn 183, and Glu 187) in the CA CTD decreased their binding affinity to the CA monomer, from 1.35-fold to 4.17-fold. Furthermore, both compounds induced CA assembly in vitro and bound directly to the CA hexamer, suggesting that they interact with CA beyond the CA CTD. Molecular docking showed that both compounds were bound to the N-terminal domain (NTD)/CTD interface between adjacent protomers within the CA hexamer. SA established a hydrogen-bonding network with residues N57, V59, Q63, K70, and N74 of CA1-NTD and Q179 of CA2-CTD. SB formed hydrogen bonds with the N53, N70, and N74 residues of CA1-NTD, and the A177and Q179 residues of CA2-CTD. Both compounds, acting as glue, can bring αH4 in the NTD and αH9 in the CTD of the NTD/CTD interface close to each other. Collectively, our research indicates that SA and SB, which enhance CA assembly, could serve as novel chemical tools to identify agents that modulate HIV-1 CA assembly. These natural compounds may potentially lead to the development of new antiviral therapies with unique mechanisms of action.
Collapse
Affiliation(s)
- Da-Wei Zhang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Xiao-Shuang Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Rui Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiguo Fu
- Department of Orthopedics, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, China
| |
Collapse
|
40
|
Barik S, Dash AK, Saharay M. Immobilization of Cellulase Enzymes on Single-Walled Carbon Nanotubes for Recycling of Enzymes and Better Yield of Bioethanol Using Computer Simulations. J Chem Inf Model 2023; 63:5192-5203. [PMID: 37590465 DOI: 10.1021/acs.jcim.3c00553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
The utilization of microbial cellulase enzymes for transforming plant biomass into biofuel or bioethanol, which can serve as a substitute for fossil fuel, is a subject of growing interest. Nonetheless, large-scale production of biofuel using cellulases is not economically feasible as the extraction of these enzymes from diverse microorganisms is an expensive process. To address this issue, immobilizing the enzyme to a substrate material, e.g., carbon nanotubes (CNTs), to recycle without a significant decline in its catalytic activity is a promising solution. Due to the hydrophobic nature of CNTs, we employed molecular docking and network analysis methodologies to identify potential CNT-binding sites on the outer surface of a wild-type cellulase enzyme, CelS. Classical molecular dynamics simulations of CNT-bound CelS through one of the selected binding sites resulted in negligible changes in the secondary structure of the enzyme and its catalytic domain, implying the least possible effect on the catalytic activity post-immobilization. Furthermore, our study reveals that while the unfolding near the CNT-binding region in CelS is more pronounced when the enzyme is interacting with a wider CNT, resulting in enhanced contact area and improved binding affinity, its impact on the overall CelS structure is relatively less significant when compared to thinner CNTs. Particularly, CNTs of diameter ∼12 Å can serve as a favorable option for substrate materials in cellulase immobilization. Our study also provides critical insights into the binding mechanisms between cellulase and CNTs, which could lead to the development of more efficient biocatalysts for biofuel production.
Collapse
Affiliation(s)
- Shubhashree Barik
- Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad 500046, Telangana, India
| | - Akarsh Kumar Dash
- Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad 500046, Telangana, India
| | - Moumita Saharay
- Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad 500046, Telangana, India
| |
Collapse
|
41
|
Zhuravleva OI, Chingizova EA, Oleinikova GK, Starnovskaya SS, Antonov AS, Kirichuk NN, Menshov AS, Popov RS, Kim NY, Berdyshev DV, Chingizov AR, Kuzmich AS, Guzhova IV, Yurchenko AN, Yurchenko EA. Anthraquinone Derivatives and Other Aromatic Compounds from Marine Fungus Asteromyces cruciatus KMM 4696 and Their Effects against Staphylococcus aureus. Mar Drugs 2023; 21:431. [PMID: 37623712 PMCID: PMC10455474 DOI: 10.3390/md21080431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
New anthraquinone derivatives acruciquinones A-C (1-3), together with ten known metabolites, were isolated from the obligate marine fungus Asteromyces cruciatus KMM 4696. Acruciquinone C is the first member of anthraquinone derivatives with a 6/6/5 backbone. The structures of isolated compounds were established based on NMR and MS data. The absolute stereoconfigurations of new acruciquinones A-C were determined using ECD and quantum chemical calculations (TDDFT approach). A plausible biosynthetic pathway of the novel acruciquinone C was proposed. Compounds 1-4 and 6-13 showed a significant antimicrobial effects against Staphylococcus aureus growth, and acruciquinone A (1), dendryol B (4), coniothyrinone B (7), and ω-hydroxypachybasin (9) reduced the activity of a key staphylococcal enzyme, sortase A. Moreover, the compounds, excluding 4, inhibited urease activity. We studied the effects of anthraquinones 1, 4, 7, and 9 and coniothyrinone D (6) in an in vitro model of skin infection when HaCaT keratinocytes were cocultivated with S. aureus. Anthraquinones significantly reduce the negative impact of S. aureus on the viability, migration, and proliferation of infected HaCaT keratinocytes, and acruciquinone A (1) revealed the most pronounced effect.
Collapse
Affiliation(s)
- Olesya I. Zhuravleva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia; (O.I.Z.); (E.A.C.)
- Institute of High Technologies and Advanced Materials, Far Eastern Federal University, 10 Ajax Bay, Russky Island, Vladivostok 690922, Russia
| | - Ekaterina A. Chingizova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia; (O.I.Z.); (E.A.C.)
| | - Galina K. Oleinikova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia; (O.I.Z.); (E.A.C.)
| | - Sofya S. Starnovskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia; (O.I.Z.); (E.A.C.)
| | - Alexandr S. Antonov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia; (O.I.Z.); (E.A.C.)
| | - Natalia N. Kirichuk
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia; (O.I.Z.); (E.A.C.)
| | - Alexander S. Menshov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia; (O.I.Z.); (E.A.C.)
| | - Roman S. Popov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia; (O.I.Z.); (E.A.C.)
| | - Natalya Yu. Kim
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia; (O.I.Z.); (E.A.C.)
| | - Dmitrii V. Berdyshev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia; (O.I.Z.); (E.A.C.)
| | - Artur R. Chingizov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia; (O.I.Z.); (E.A.C.)
| | - Alexandra S. Kuzmich
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia; (O.I.Z.); (E.A.C.)
| | - Irina V. Guzhova
- Institute of Cytology Russian Academy of Sciences, Tikhoretskiy Ave. 4, St. Petersburg 194064, Russia;
| | - Anton N. Yurchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia; (O.I.Z.); (E.A.C.)
| | - Ekaterina A. Yurchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia; (O.I.Z.); (E.A.C.)
| |
Collapse
|
42
|
Wu CC, Chen MS, Lee TY, Cheng YJ, Tsou HH, Huang TS, Cho DY, Chen JY. Screening and identification of emodin as an EBV DNase inhibitor to prevent its biological functions. Virol J 2023; 20:148. [PMID: 37443068 PMCID: PMC10339607 DOI: 10.1186/s12985-023-02107-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND The Epstein-Barr virus (EBV) is a prevalent oncovirus associated with a variety of human illnesses. BGLF5, an EBV DNase with alkaline nuclease (AN) activity, plays important roles in the viral life cycle and progression of human malignancies and has been suggested as a possible diagnostic marker and target for cancer therapy. Methods used conventionally for the detection of AN activity, radioactivity-based nuclease activity assay and DNA digestion detection by gel electrophoresis, are not suitable for screening AN inhibitors; the former approach is unsafe, and the latter is complicated. In the present study, a fluorescence-based nuclease activity assay was used to screen several natural compounds and identify an EBV DNase inhibitor. RESULTS Fluorescence-based nuclease activity assays, in which the DNA substrate is labelled with PicoGreen dye, are cheaper, safer, and easier to perform. Herein, the results of the fluorescence-based nuclease activity assay were consistent with the results of the two conventional methods. In addition, the PicoGreen-labelling method was applied for the biochemical characterisation of viral nucleases. Using this approach, we explored EBV DNase inhibitors. After several rounds of screening, emodin, an anthraquinone derivative, was found to possess significant anti-EBV DNase activity. We verified the efficacy of emodin using the conventional DNA-cleavage assay. Furthermore, using comet assay and micronucleus formation detection, we confirmed that emodin can inhibit DNase-induced DNA damage and genomic instability. Additionally, emodin treatment inhibited EBV production. CONCLUSIONS Using a PicoGreen-mediated nuclease activity assay, we successfully demonstrated that emodin has the potential to inhibit EBV DNase nuclease activity. Emodin also inhibits EBV DNase-related biological functions, suggesting that it is a potential inhibitor of EBV DNase.
Collapse
Affiliation(s)
- Chung-Chun Wu
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, No. 2, Yude Rd., North Dist, Taichung City, 40447, Taiwan.
| | - Mei-Shu Chen
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli County, Taiwan
| | - Ting-Ying Lee
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, No. 2, Yude Rd., North Dist, Taichung City, 40447, Taiwan
| | - Yu-Jhen Cheng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Hsiao-Hui Tsou
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Tze-Sing Huang
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli County, Taiwan
| | - Der-Yang Cho
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, No. 2, Yude Rd., North Dist, Taichung City, 40447, Taiwan
| | - Jen-Yang Chen
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli County, Taiwan.
| |
Collapse
|
43
|
Geana EI, Ciucure CT, Tamaian R, Marinas IC, Gaboreanu DM, Stan M, Chitescu CL. Antioxidant and Wound Healing Bioactive Potential of Extracts Obtained from Bark and Needles of Softwood Species. Antioxidants (Basel) 2023; 12:1383. [PMID: 37507922 PMCID: PMC10376860 DOI: 10.3390/antiox12071383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Interest in the extraction of phytochemical bioactive compounds, especially polyphenols from biomass, has recently increased due to their valuable biological potential as natural sources of antioxidants, which could be used in a wide range of applications, from foods and pharmaceuticals to green polymers and bio-based materials. The present research study aimed to provide a comprehensive chemical characterization of the phytochemical composition of forest biomass (bark and needles) of softwood species (Picea abies L., H. Karst., and Abies alba Mill.) and to investigate their in vitro antioxidant and antimicrobial activities to assess their potential in treating and healing infected chronic wounds. The DPPH radical-scavenging method and P-LD were used for a mechanistic explanation of the biomolecular effects of the investigated bioactive compounds. (+)-Catechin, epicatechin, rutin, myricetin, 4 hydroxybenzoic and p-cumaric acids, kaempherol, and apigenin were the main quantified polyphenols in coniferous biomass (in quantities around 100 µg/g). Also, numerous phenolic acids, flavonoids, stilbenes, terpenes, lignans, secoiridoids, and indanes with antioxidant, antimicrobial, anti-inflammatory, antihemolytic, and anti-carcinogenic potential were identified. The Abies alba needle extract was more toxic to microbial strains than the eukaryotic cells that provide its active wound healing principles. In this context, developing industrial upscaling strategies is imperative for the long-term success of biorefineries and incorporating them as part of a circular bio-economy.
Collapse
Affiliation(s)
- Elisabeta-Irina Geana
- National Research and Development Institute for Cryogenics and Isotopic Technologies, 240050 Ramnicu Valcea, Romania;
| | - Corina Teodora Ciucure
- National Research and Development Institute for Cryogenics and Isotopic Technologies, 240050 Ramnicu Valcea, Romania;
| | - Radu Tamaian
- National Research and Development Institute for Cryogenics and Isotopic Technologies, 240050 Ramnicu Valcea, Romania;
| | - Ioana Cristina Marinas
- Department of Microbiology and Biochemistry, Research Institute of the University of Bucharest-ICUB, 050567 Bucharest, Romania; (D.M.G.); (M.S.)
| | - Diana Mădălina Gaboreanu
- Department of Microbiology and Biochemistry, Research Institute of the University of Bucharest-ICUB, 050567 Bucharest, Romania; (D.M.G.); (M.S.)
- National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania
| | - Miruna Stan
- Department of Microbiology and Biochemistry, Research Institute of the University of Bucharest-ICUB, 050567 Bucharest, Romania; (D.M.G.); (M.S.)
| | - Carmen Lidia Chitescu
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania;
| |
Collapse
|
44
|
Ortiz C, Breuning M, Robledo S, Echeverri F, Vargas E, Quiñones W. Biological activities of 4H-thiochromen-4-one 1,1-dioxide derivatives against tropical disease parasites: A target-based drug design approach. Heliyon 2023; 9:e17801. [PMID: 37483711 PMCID: PMC10362183 DOI: 10.1016/j.heliyon.2023.e17801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/12/2023] [Accepted: 06/28/2023] [Indexed: 07/25/2023] Open
Abstract
A promising strategy for developing novel therapies against tropical diseases, including malaria, leishmaniasis, and trypanosomiasis, is to detect biological targets such as trypanothione reductase, a vital parasite enzyme that regulates oxidative stress. This enzyme is highly selective and conserved in the Trypanosotidae family and has an ortholog in the Plasmodium genus. Previous studies have established that an isosteric replacement of naphthoquinone's carbonyl group with a sulfone group leads to compounds with high bioactivity and selectivity (half-maximal inhibitory concentration = 3 μM against intracellular amastigotes of L. panamensis, selectivity index = 153 over monocytes U-937). In this study, we analyzed the reactive oxygen species (ROS) levels of parasites through indirect measurements of the tryparedoxin system after treatment with these isosteric compounds. This strategy proved that a significant increase in the ROS levels and strong mitochondrial perturbation led to the death of parasites due to cell homeostatic imbalance, confirming the compounds' effectiveness in disrupting this important metabolic pathway. To improve understanding of the parasite-molecule interaction, 27 new compounds were synthesized and assessed against parasites of the three principal tropical diseases (malaria, leishmaniasis, and trypanosomiasis), displaying an EC50 below 10 μM and good correlation with in-silico studies, indicating that the 4H-thiochromen-4-one 1,1-dioxide core is a special allosteric modulator. It can interact in the binding pocket through key amino acids like Ser-14, Leu-17, Trp-21, Ser-109, Tyr-110, and Met-113, leading to interhelical disruption.
Collapse
Affiliation(s)
- Cristian Ortiz
- Facultad de Ciencias Exactas Y Naturales, Universidad de Antioquia, Colombia
| | - Matthias Breuning
- Fakultät für Biologie, Chemie und Geowissenschaften, Universität Bayreuth, Germany
| | - Sara Robledo
- Facultad de Medicina, Universidad de Antioquia, Colombia
| | - Fernando Echeverri
- Facultad de Ciencias Exactas Y Naturales, Universidad de Antioquia, Colombia
| | - Esteban Vargas
- Facultad de Ciencias Exactas Y Naturales, Universidad de Antioquia, Colombia
| | - Wiston Quiñones
- Facultad de Ciencias Exactas Y Naturales, Universidad de Antioquia, Colombia
| |
Collapse
|
45
|
Sherwood AV, Rivera-Rangel LR, Ryberg LA, Larsen HS, Anker KM, Costa R, Vågbø CB, Jakljevič E, Pham LV, Fernandez-Antunez C, Indrisiunaite G, Podolska-Charlery A, Grothen JER, Langvad NW, Fossat N, Offersgaard A, Al-Chaer A, Nielsen L, Kuśnierczyk A, Sølund C, Weis N, Gottwein JM, Holmbeck K, Bottaro S, Ramirez S, Bukh J, Scheel TKH, Vinther J. Hepatitis C virus RNA is 5'-capped with flavin adenine dinucleotide. Nature 2023; 619:811-818. [PMID: 37407817 PMCID: PMC7616780 DOI: 10.1038/s41586-023-06301-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/08/2023] [Indexed: 07/07/2023]
Abstract
RNA viruses have evolved elaborate strategies to protect their genomes, including 5' capping. However, until now no RNA 5' cap has been identified for hepatitis C virus1,2 (HCV), which causes chronic infection, liver cirrhosis and cancer3. Here we demonstrate that the cellular metabolite flavin adenine dinucleotide (FAD) is used as a non-canonical initiating nucleotide by the viral RNA-dependent RNA polymerase, resulting in a 5'-FAD cap on the HCV RNA. The HCV FAD-capping frequency is around 75%, which is the highest observed for any RNA metabolite cap across all kingdoms of life4-8. FAD capping is conserved among HCV isolates for the replication-intermediate negative strand and partially for the positive strand. It is also observed in vivo on HCV RNA isolated from patient samples and from the liver and serum of a human liver chimeric mouse model. Furthermore, we show that 5'-FAD capping protects RNA from RIG-I mediated innate immune recognition but does not stabilize the HCV RNA. These results establish capping with cellular metabolites as a novel viral RNA-capping strategy, which could be used by other viruses and affect anti-viral treatment outcomes and persistence of infection.
Collapse
Affiliation(s)
- Anna V Sherwood
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Lizandro R Rivera-Rangel
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Line A Ryberg
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Helena S Larsen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Klara M Anker
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Rui Costa
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Cathrine B Vågbø
- Proteomics and Modomics Experimental Core (PROMEC), Norwegian University of Science and Technology and the Central Norway Regional Health Authority, Trondheim, Norway
| | - Eva Jakljevič
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Long V Pham
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Carlota Fernandez-Antunez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Gabriele Indrisiunaite
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Agnieszka Podolska-Charlery
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Julius E R Grothen
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Nicklas W Langvad
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Nicolas Fossat
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Anna Offersgaard
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Amal Al-Chaer
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Louise Nielsen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Anna Kuśnierczyk
- Proteomics and Modomics Experimental Core (PROMEC), Norwegian University of Science and Technology and the Central Norway Regional Health Authority, Trondheim, Norway
| | - Christina Sølund
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen N, Denmark
| | - Nina Weis
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen N, Denmark
| | - Judith M Gottwein
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Kenn Holmbeck
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Sandro Bottaro
- Section for Biomolecular Sciences, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark.
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark.
| | - Troels K H Scheel
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark.
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark.
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA.
| | - Jeppe Vinther
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N, Denmark.
| |
Collapse
|
46
|
Kesharwani S, Raj P, Paul A, Roy K, Bhanot A, Mehta A, Gopal A, Varshney U, Gopal B, Sundriyal S. Crystal structures of non-uracil ring fragments in complex with Mycobacterium tuberculosis uracil DNA glycosylase (MtUng) as a starting point for novel inhibitor design: A case study with the barbituric acid fragment. Eur J Med Chem 2023; 258:115604. [PMID: 37399710 DOI: 10.1016/j.ejmech.2023.115604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/25/2023] [Accepted: 06/25/2023] [Indexed: 07/05/2023]
Abstract
Uracil DNA glycosylase (UDG or Ung) is a key enzyme involved in uracil excision from the DNA as a repair mechanism. Designing Ung inhibitors is thus a promising strategy to treat different cancers and infectious diseases. The uracil ring and its derivatives have been shown to inhibit Mycobacterium tuberculosis Ung (MtUng), resulting from specific and strong binding with the uracil-binding pocket (UBP). To design novel MtUng inhibitors, we screened several non-uracil ring fragments hypothesised to occupy MtUng UBP due to their high similarity to the uracil structural motif. These efforts have resulted in the discovery of novel MtUng ring inhibitors. Here we report the co-crystallised poses of these fragments, confirming their binding within the UBP, thus providing a robust structural framework for the design of novel lead compounds. We selected the barbituric acid (BA) ring as a case study for further derivatisation and SAR analysis. The modelling studies predicted the BA ring of the designed analogues to interact with the MtUng UBP much like the uracil ring. The synthesised compounds were screened in vitro using radioactivity and a fluorescence-based assay. These studies led to a novel BA-based MtUng inhibitor 18a (IC50 = 300 μM) displaying ∼24-fold potency over the uracil ring.
Collapse
Affiliation(s)
- Sharyu Kesharwani
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Prateek Raj
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Anju Paul
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Koyel Roy
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Amritansh Bhanot
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Avani Mehta
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Aiswarya Gopal
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India; Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | | | - Sandeep Sundriyal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India.
| |
Collapse
|
47
|
Röhrig UF, Goullieux M, Bugnon M, Zoete V. Attracting Cavities 2.0: Improving the Flexibility and Robustness for Small-Molecule Docking. J Chem Inf Model 2023; 63:3925-3940. [PMID: 37285197 PMCID: PMC10305763 DOI: 10.1021/acs.jcim.3c00054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Indexed: 06/08/2023]
Abstract
Molecular docking is a computational approach for predicting the most probable position of a ligand in the binding site of a target macromolecule. Our docking algorithm Attracting Cavities (AC) has been shown to compare favorably to other widely used docking algorithms [Zoete, V.; et al. J. Comput. Chem. 2016, 37, 437]. Here we describe several improvements of AC, making the sampling more robust and providing more flexibility for either fast or high-accuracy docking. We benchmark the performance of AC 2.0 using the 285 complexes of the PDBbind Core set, version 2016. For redocking from randomized ligand conformations, AC 2.0 reaches a success rate of 73.3%, compared to 63.9% for GOLD and 58.0% for AutoDock Vina. Due to its force-field-based scoring function and its thorough sampling procedure, AC 2.0 also performs well for blind docking on the entire receptor surface. The accuracy of its scoring function allows for the detection of problematic experimental structures in the benchmark set. For cross-docking, the AC 2.0 success rate is about 30% lower than for redocking (42.5%), similar to GOLD (42.8%) and better than AutoDock Vina (33.1%), and it can be improved by an informed choice of flexible protein residues. For selected targets with a high success rate in cross-docking, AC 2.0 also achieves good enrichment factors in virtual screening.
Collapse
Affiliation(s)
- Ute F. Röhrig
- Molecular
Modeling Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Mathilde Goullieux
- Molecular
Modeling Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Marine Bugnon
- Molecular
Modeling Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Vincent Zoete
- Molecular
Modeling Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
- Department
of Oncology UNIL-CHUV, Lausanne University,
Ludwig Institute for Cancer Research Lausanne Branch, CH-1066 Epalinges, Switzerland
| |
Collapse
|
48
|
Manville RW, Hogenkamp D, Abbott GW. Ancient medicinal plant rosemary contains a highly efficacious and isoform-selective KCNQ potassium channel opener. Commun Biol 2023; 6:644. [PMID: 37322081 PMCID: PMC10272180 DOI: 10.1038/s42003-023-05021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023] Open
Abstract
Voltage-gated potassium (Kv) channels in the KCNQ subfamily serve essential roles in the nervous system, heart, muscle and epithelia. Different heteromeric KCNQ complexes likely serve distinct functions in the brain but heteromer subtype-specific small molecules for research or therapy are lacking. Rosemary (Salvia rosmarinus) is an evergreen plant used medicinally for millennia for neurological and other disorders. Here, we report that rosemary extract is a highly efficacious opener of heteromeric KCNQ3/5 channels, with weak effects on KCNQ2/3. Using functional screening we find that carnosic acid, a phenolic diterpene from rosemary, is a potent, highly efficacious, PIP2 depletion-resistant KCNQ3 opener with lesser effects on KCNQ5 and none on KCNQ1 or KCNQ2. Carnosic acid is also highly selective for KCNQ3/5 over KCNQ2/3 heteromers. Medicinal chemistry, in silico docking, and mutagenesis reveal that carboxylate-guanidinium ionic bonding with an S4-5 linker arginine underlies the KCNQ3 opening proficiency of carnosic acid, the effects of which on KCNQ3/5 suggest unique therapeutic potential and a molecular basis for ancient neurotherapeutic use of rosemary.
Collapse
Affiliation(s)
- Rían W Manville
- Bioelectricity Laboratory, Dept. of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Derk Hogenkamp
- Bioelectricity Laboratory, Dept. of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Dept. of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA.
| |
Collapse
|
49
|
Dascalu D, Isvoran A, Ianovici N. Predictions of the Biological Effects of Several Acyclic Monoterpenes as Chemical Constituents of Essential Oils Extracted from Plants. Molecules 2023; 28:4640. [PMID: 37375196 DOI: 10.3390/molecules28124640] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Acyclic terpenes are biologically active natural products having applicability in medicine, pharmacy, cosmetics and other practices. Consequently, humans are exposed to these chemicals, and it is necessary to assess their pharmacokinetics profiles and possible toxicity. The present study considers a computational approach to predict both the biological and toxicological effects of nine acyclic monoterpenes: beta-myrcene, beta-ocimene, citronellal, citrolellol, citronellyl acetate, geranial, geraniol, linalool and linalyl acetate. The outcomes of the study emphasize that the investigated compounds are usually safe for humans, they do not lead to hepatotoxicity, cardiotoxicity, mutagenicity, carcinogenicity and endocrine disruption, and usually do not have an inhibitory potential against the cytochromes involved in the metabolism of xenobiotics, excepting CYP2B6. The inhibition of CYP2B6 should be further analyzed as this enzyme is involved in both the metabolism of several common drugs and in the activation of some procarcinogens. Skin and eye irritation, toxicity through respiration and skin-sensitization potential are the possible harmful effects revealed by the investigated compounds. These outcomes underline the necessity of in vivo studies regarding the pharmacokinetics and toxicological properties of acyclic monoterpenes so as to better establish the clinical relevance of their use.
Collapse
Affiliation(s)
- Daniela Dascalu
- Department of Biology Chemistry, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania
- Advanced Environmental Research Laboratories, West University of Timisoara, 4 Oituz, 300086 Timisoara, Romania
| | - Adriana Isvoran
- Department of Biology Chemistry, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania
- Advanced Environmental Research Laboratories, West University of Timisoara, 4 Oituz, 300086 Timisoara, Romania
| | - Nicoleta Ianovici
- Department of Biology Chemistry, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania
- Environmental Biology and Biomonitoring Research Center, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania
| |
Collapse
|
50
|
Manville RW, Alfredo Freites J, Sidlow R, Tobias DJ, Abbott GW. Native American ataxia medicines rescue ataxia-linked mutant potassium channel activity via binding to the voltage sensing domain. Nat Commun 2023; 14:3281. [PMID: 37280215 DOI: 10.1038/s41467-023-38834-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 05/17/2023] [Indexed: 06/08/2023] Open
Abstract
There are currently no drugs known to rescue the function of Kv1.1 voltage-gated potassium channels carrying loss-of-function sequence variants underlying the inherited movement disorder, Episodic Ataxia 1 (EA1). The Kwakwaka'wakw First Nations of the Pacific Northwest Coast used Fucus gardneri (bladderwrack kelp), Physocarpus capitatus (Pacific ninebark) and Urtica dioica (common nettle) to treat locomotor ataxia. Here, we show that extracts of these plants enhance wild-type Kv1.1 current, especially at subthreshold potentials. Screening of their constituents revealed that gallic acid and tannic acid similarly augment wild-type Kv1.1 current, with submicromolar potency. Crucially, the extracts and their constituents also enhance activity of Kv1.1 channels containing EA1-linked sequence variants. Molecular dynamics simulations reveal that gallic acid augments Kv1.1 activity via a small-molecule binding site in the extracellular S1-S2 linker. Thus, traditional Native American ataxia treatments utilize a molecular mechanistic foundation that can inform small-molecule approaches to therapeutically correcting EA1 and potentially other Kv1.1-linked channelopathies.
Collapse
Affiliation(s)
- Rían W Manville
- Bioelectricity Laboratory, Dept. of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | | | | | - Douglas J Tobias
- Department of Chemistry, University of California, Irvine, CA, USA
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Dept. of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA.
| |
Collapse
|