1
|
Yang Y, Zhang H, He J, Ju Y, Wang M, Wu L, Jiang J. Rapid Determination of Acylcarnitine Metabolic Diseases by Trifluoroacetic Acid-Doped Extraction Coupled with Nanoelectrospray Ionization Mass Spectrometry. Anal Chem 2025; 97:1395-1401. [PMID: 39789788 DOI: 10.1021/acs.analchem.4c05972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Newborn screening for acylcarnitine-related inherited metabolic diseases (IMDs) is a critical test after birth. Conventional extraction methods require shaking with heating, centrifugation, nitrogen blowing, redissolution, etc., and the total time is more than 1 h. Herein, a small amount of trifluoroacetic acid (TFA)-doped extraction method for acylcarnitines coupled with nanoelectrospray ionization mass spectrometry was developed. This simplified approach successfully quantified 21 acylcarnitines in both serum and dried blood spot samples through a fast, three-step process requiring only 7 min, achieving nearly 1-2 orders of magnitude in sensitivity enhancement compared with conventional methods. The performance was further verified by the recommended liquid chromatography-tandem mass spectrometry procedure. Furthermore, the TFA-doped extraction technique was tested on serum and whole blood samples from six healthy individuals. Mechanistic studies using inductively coupled plasma mass spectrometry, ultraviolet-visible spectroscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy showed that TFA promotes the coprecipitation of proteins and inorganic salts. These findings suggest that TFA-doped extraction with nanoelectrospray ionization mass spectrometry is a rapid, sensitive alternative for acylcarnitine screening, highlighting its considerable potential for clinical newborn IMD screening applications.
Collapse
Affiliation(s)
- Yali Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang150090, P. R. China
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, P. R. China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang150090, P. R. China
| | - Hong Zhang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, P. R. China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang150090, P. R. China
| | - Jing He
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, P. R. China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang150090, P. R. China
| | - Yun Ju
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, P. R. China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang150090, P. R. China
| | - Mingyi Wang
- Department of Central Lab, Department of Medical Equipment, Weihai Municipal Hospital, Weihai, Shandong264200, P. R. China
| | - Lishun Wu
- Department of Central Lab, Department of Medical Equipment, Weihai Municipal Hospital, Weihai, Shandong264200, P. R. China
| | - Jie Jiang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang150090, P. R. China
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, P. R. China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang150090, P. R. China
| |
Collapse
|
2
|
Mansoor S, Qamar R, Azam M. Inborn errors of metabolism: Historical perspectives to contemporary management. Clin Chim Acta 2024; 562:119883. [PMID: 39084485 DOI: 10.1016/j.cca.2024.119883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024]
Abstract
There are many different genetic diseases called inborn errors of metabolism (IEM) which result from defective enzymes in the metabolic pathway. As a result, these defects either cause a harmful accumulation of substances or lead to a lack of certain types of molecule. The present review traces the origin and development of IEMs from Sir Archibald Garrod's theory in the early 20th century to current diagnostic and therapeutic approaches. It also involves a systematic literature review complying with PRISMA which included studies sourced from PubMed, Scopus, Web of Science and Google Scholar. It points out that high rates of consanguinity are associated with high prevalence rates for IEMs especially in the Eastern Mediterranean area. IEMS are classified as energy deficiency disorders, intoxication disorders, and storage disorders. Each category has a variety of clinical manifestations. This study incorporates different diagnostic methods ranging from simple biochemical tests to tandem mass spectrometry and next generation sequencing; while management approaches such as dietary modifications, enzyme replacement therapy and gene therapy were assessed for their efficacy. Specific attention is paid to Pakistan where there exists considerable consanguinity among people coupled with inadequate health care services which have seriously affected delivery of health care services thereby leading to numerous challenges for the country healthcare system during service provision.
Collapse
Affiliation(s)
- Sumreena Mansoor
- Translational Genomics Laboratory, COMSATS University Islamabad, Islamabad, Pakistan; Department of Biochemistry, Shifa College of Medicine, Shifa Tameer-e-Millat University, Islamabad, Pakistan; Translational Genomics Laboratory, Taramri Chock, COMSATS University, Park Road, Islamabad, Islamabad 45550, Pakistan.
| | - Raheel Qamar
- Science and Technology Sector, ICESCO, Rabat 10104, Morocco; Pakistan Academy of Sciences, Islamabad, Pakistan; Translational Genomics Laboratory, Taramri Chock, COMSATS University, Park Road, Islamabad, Islamabad 45550, Pakistan
| | - Maleeha Azam
- Translational Genomics Laboratory, COMSATS University Islamabad, Islamabad, Pakistan; Translational Genomics Laboratory, Taramri Chock, COMSATS University, Park Road, Islamabad, Islamabad 45550, Pakistan.
| |
Collapse
|
3
|
Wang D, Zhang J, Yang R, Zhang D, Wang M, Yu C, Yang J, Huang W, Liu S, Tang S, He X. Disease spectrum, prevalence, genetic characteristics of inborn errors of metabolism in 21,840 hospitalized infants in Chongqing, China, 2017-2022. Front Genet 2024; 15:1395988. [PMID: 38863445 PMCID: PMC11165094 DOI: 10.3389/fgene.2024.1395988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/08/2024] [Indexed: 06/13/2024] Open
Abstract
Inborn errors of metabolism (IEMs) are uncommon. Although some studies have explored the distribution and characteristics of IEMs in newborns, the impact of these disorders on hospitalized newborns remains unclear. In this study, we gathered data from 21,840 newborn patients admitted for various medical conditions at the Children's Hospital of Chongqing Medical University from January 2017 and December 2022. Liquid chromatography-tandem mass spectrometry (LC-MS/MS), gas chromatography-mass spectrometry (GC-MS/MS), and genetic analysis were used to elucidate the disease spectrum, incidence rate, and genetic characteristics of IEMs in hospitalized newborns. The results revealed that the incidence of IEMs in hospitalized newborns was 1/377 (58/21,840), with a higher incidence in full-term infants (1/428) than in premature infants (1/3,120). Among the diagnosed genetic metabolic diseases, organic acid metabolism disorders (1/662), amino acid metabolism disorders (1/950), and fatty acid oxidation disorders (1/10,920) were the most prevalent. Methylmalonic acidemia (MMA), especially the isolated form, emerged as the most common IEM, while neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) and ornithine transcarbamylase deficiency (OTCD) were prevalent in premature infants. Of the 58 confirmed cases of IEMs, 72 variants were identified, of which 31.94% (23/72) had not been reported previously. This study contributes to understanding the incidence and clinical features of IEMs in hospitalized newborns, offering more efficient strategies for screening and diagnosing these disorders.
Collapse
Affiliation(s)
- Dongjuan Wang
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Juan Zhang
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Yang
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Dayong Zhang
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Ming Wang
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Chaowen Yu
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Jingli Yang
- Department of Neonatology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Wenxia Huang
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Shan Liu
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Shi Tang
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyan He
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Yang Y, Jiang J, Jiang Y, Ju Y, He J, Yu K, Kan G, Zhang H. Determination of amino acid metabolic diseases from dried blood spots with a rapid extraction method coupled with nanoelectrospray ionization mass spectrometry. Talanta 2024; 272:125768. [PMID: 38340394 DOI: 10.1016/j.talanta.2024.125768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
In this work, a rapid extraction method of methanol/water (95:5 v/v) with 0.1% formic acid was developed for extraction of amino acids from dried blood spots (DBS) for inherited metabolic diseases (IMDs). The combination of this extraction procedure with nanoelectrospray ionization mass spectrometry (nESI-MS) was used for the rapid analysis of amino acids. This approach with eliminating the chromatographic separation required only 2 min for the extraction of amino acids from DBS, which simplified the configuration and improved the timeliness. Dependence of the sensitivity on the operating parameters was systematically investigated. The LOD of 91.2-262.5 nmol/L and LOQ of 304-875 nmol/L which were lower than the cut-off values were obtained for amino acids within DBS. The accuracy was determined to be 93.82%-103.07% and the precision was determined to be less than 8.30%. The effectiveness of this method was also compared with the gold standard method (e.g., LC-MS/MS). The desalination mechanism was explored with interference mainly originated from the blood. These findings indicated that the rapid extraction procedure coupled with nESI-MS is capable of screening indicators for IMDs in complex biological samples.
Collapse
Affiliation(s)
- Yali Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China
| | - Jie Jiang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China
| | - Yanxiao Jiang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China
| | - Yun Ju
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China
| | - Jing He
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China
| | - Kai Yu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China
| | - Guangfeng Kan
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China.
| | - Hong Zhang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China.
| |
Collapse
|
5
|
Hao L, Liang L, Gao X, Zhan X, Ji W, Chen T, Xu F, Qiu W, Zhang H, Gu X, Han L. Screening of 1.17 million newborns for inborn errors of metabolism using tandem mass spectrometry in Shanghai, China: A 19-year report. Mol Genet Metab 2024; 141:108098. [PMID: 38061323 DOI: 10.1016/j.ymgme.2023.108098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/20/2023] [Accepted: 11/26/2023] [Indexed: 01/21/2024]
Abstract
BACKGROUND Inborn errors of metabolism (IEMs) frequently result in progressive and irreversible clinical consequences if not be diagnosed or treated timely. The tandem mass spectrometry (MS/MS)-based newborn screening (NBS) facilitates early diagnosis and treatment of IEMs. The aim of this study was to determine the characteristics of IEMs and the successful deployment and application of MS/MS screening over a 19-year time period in Shanghai, China, to inform national NBS policy. METHODS The amino acids and acylcarnitines in dried blood spots from 1,176,073 newborns were assessed for IEMs by MS/MS. The diagnosis of IEMs was made through a comprehensive consideration of clinical features, biochemical performance and genetic testing results. The levels of MS/MS testing parameters were compared between various IEM subtypes and genotypes. RESULTS A total of 392 newborns were diagnosed with IEMs from January 2003 to June 2022. There were 196 newborns with amino acid disorders (50.00%, 1: 5910), 115 newborns with organic acid disorders (29.59%, 1: 10,139), and 81 newborns with fatty acid oxidation disorders (20.41%; 1:14,701). Phenylalanine hydroxylase deficiency, methylmalonic acidemia and primary carnitine deficiency were the three most common disorders. Some hotspot variations in eight IEM genes (PAH, SLC22A5, MMACHC, MMUT, MAT1A, MCCC2, ACADM, ACAD8), 35 novel variants and some genotype-biochemical phenotype associations were identified. CONCLUSIONS A total of 28 types of IEMs were identified, with an overall incidence of 1: 3000 in Shanghai, China. Our study offered clinical guidance for the implementation of MS/MS-based NBS and genetic counseling for IEMs in this city.
Collapse
Affiliation(s)
- Lili Hao
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Lili Liang
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Xiaolan Gao
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Xia Zhan
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Wenjun Ji
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Ting Chen
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Feng Xu
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Wenjuan Qiu
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Huiwen Zhang
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Xuefan Gu
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Lianshu Han
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
6
|
He X, Kuang J, Lai J, Huang J, Wang Y, Lan G, Xie Y, Shi X. A retrospective analysis of MS/MS screening for IEM in high-risk areas. BMC Med Genomics 2023; 16:57. [PMID: 36927542 PMCID: PMC10021976 DOI: 10.1186/s12920-023-01483-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Inborn errors of metabolism (IEM) can lead to severe motor and neurological developmental disorders and even disability and death in children due to untimely treatment. In this study, we used tandem mass spectrometry (MS/MS) for primary screening and recall of those with positive primary screening for rescreening. Further diagnosis was based on biochemical tests, imaging and clinical presentation as well as accurate genetic testing using multi-gene panel with high-throughput sequencing of 130 IEM-related genes. The screening population was 16,207 newborns born between July 1, 2019, and December 31, 2021. Based on the results, 8 newborns were diagnosed with IEM, constituting a detection rate of 1:2,026. Phenylketonuria was the most common form of IEM. In addition, seven genes associated with IEM were detected in these eight patients. All eight patients received standardized treatment starting in the neonatal period, and the follow-up results showed good growth and development. Therefore, our study suggests that MS/MS rescreening for IEM pathogenic variants in high-risk areas, combined with a sequencing validation strategy, can be highly effective in the early detection of affected children. This strategy, combined with early intervention, can be effective in preventing neonatal morbidity and improving population quality.
Collapse
Affiliation(s)
- Xiao He
- Department of Pediatrics, The Second Nanning People's Hospital, Nanning, 530031, Guangxi, China
| | - Juan Kuang
- Department of Pediatrics, The Second Nanning People's Hospital, Nanning, 530031, Guangxi, China
| | - Jiahong Lai
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Jingxiong Huang
- Department of Pediatrics, The Second Nanning People's Hospital, Nanning, 530031, Guangxi, China
| | - Yijin Wang
- Department of Pediatrics, The Second Nanning People's Hospital, Nanning, 530031, Guangxi, China
| | - Guofeng Lan
- Department of Pediatrics, The Second Nanning People's Hospital, Nanning, 530031, Guangxi, China
| | - Yingjun Xie
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China.
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China.
| | - Xuekai Shi
- Department of Pediatrics, The Second Nanning People's Hospital, Nanning, 530031, Guangxi, China.
| |
Collapse
|
7
|
Patial A, Saini AG, Kaur R, Kapoor S, Sharda S, Kumar P, Singhi S, Singhi P, Dwivedi I, Malik VS, Tageja M, Didwal G, Kaur G, Varughese B, Attri SV. Detection of IEMs by Mass Spectrometry Techniques in High-Risk Children: A Pilot Study. Indian J Pediatr 2022; 89:885-893. [PMID: 35713767 DOI: 10.1007/s12098-022-04207-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 02/16/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To determine the incidence and types of inborn errors of metabolism (IEMs) in high-risk children using mass spectrometry techniques. METHODS Children considered high-risk for IEM were screened for metabolic diseases during a 3-y period. Dried blood spots and urine samples were analyzed by tandem mass spectrometry (LC-MS/MS) and gas chromatograph-mass spectrometry (GCMS). Samples with abnormal amino acids were confirmed by high-performance liquid chromatography (HPLC). RESULTS Eight hundred and twenty-two suspected cases were evaluated; of which, 87 possible cases of IEMs were identified. Homocystinuria (n = 51) was the most common IEM detected followed by biotinidase deficiency (n = 7), glutaric aciduria type 1 (n = 7), and carnitine uptake defect (n = 6). Overall, there were 45 (51.7%) cases of organic acidemia, 31 cases (35.6%) of amino acid defect, 9 (10.3%) cases of fatty-acid oxidation disorders, and 2 (2.3%) cases of probable mitochondrial disorder. CONCLUSION IEMs are common in India, with a hospital-based incidence of 1 in approximately 6642 among high-risk children. Screening of high-risk children by mass spectrometry techniques is a valuable strategy for early diagnosis of IEMs where universal newborn screening is not yet available.
Collapse
Affiliation(s)
- Ajay Patial
- Pediatric Biochemistry Unit, Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Arushi Gahlot Saini
- Pediatric Neurology Unit, Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajdeep Kaur
- Pediatric Biochemistry Unit, Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Seema Kapoor
- Division of Genetics, Genetic & Metabolic Lab, Lok Nayak Hospital & Maulana Azad Medical College, New Delhi, India
| | | | - Praveen Kumar
- Department of Pediatrics, Neonatal Unit, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sunit Singhi
- Pediatric Neurology and Neurodevelopment, Medanta, The Medicity, Haryana, Gurgaon, India
| | - Pratibha Singhi
- Pediatric Neurology and Neurodevelopment, Medanta, The Medicity, Haryana, Gurgaon, India
| | - Isha Dwivedi
- Pediatric Biochemistry Unit, Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Vivek Singh Malik
- Pediatric Biochemistry Unit, Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Mini Tageja
- Pediatric Biochemistry Unit, Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Gunjan Didwal
- Pediatric Biochemistry Unit, Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Gursimran Kaur
- Pediatric Biochemistry Unit, Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Bijo Varughese
- Division of Genetics, Genetic & Metabolic Lab, Lok Nayak Hospital & Maulana Azad Medical College, New Delhi, India
| | - Savita Verma Attri
- Pediatric Biochemistry Unit, Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| |
Collapse
|
8
|
Wang Z, Cryar A, Lemke O, Tober-Lau P, Ludwig D, Helbig ET, Hippenstiel S, Sander LE, Blake D, Lane CS, Sayers RL, Mueller C, Zeiser J, Townsend S, Demichev V, Mülleder M, Kurth F, Sirka E, Hartl J, Ralser M. A multiplex protein panel assay for severity prediction and outcome prognosis in patients with COVID-19: An observational multi-cohort study. EClinicalMedicine 2022; 49:101495. [PMID: 35702332 PMCID: PMC9181834 DOI: 10.1016/j.eclinm.2022.101495] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 12/15/2022] Open
Abstract
Background Global healthcare systems continue to be challenged by the COVID-19 pandemic, and there is a need for clinical assays that can help optimise resource allocation, support treatment decisions, and accelerate the development and evaluation of new therapies. Methods We developed a multiplexed proteomics assay for determining disease severity and prognosis in COVID-19. The assay quantifies up to 50 peptides, derived from 30 known and newly introduced COVID-19-related protein markers, in a single measurement using routine-lab compatible analytical flow rate liquid chromatography and multiple reaction monitoring (LC-MRM). We conducted two observational studies in patients with COVID-19 hospitalised at Charité - Universitätsmedizin Berlin, Germany before (from March 1 to 26, 2020, n=30) and after (from April 4 to November 19, 2020, n=164) dexamethasone became standard of care. The study is registered in the German and the WHO International Clinical Trials Registry (DRKS00021688). Findings The assay produces reproducible (median inter-batch CV of 10.9%) absolute quantification of 47 peptides with high sensitivity (median LLOQ of 143 ng/ml) and accuracy (median 96.8%). In both studies, the assay reproducibly captured hallmarks of COVID-19 infection and severity, as it distinguished healthy individuals, mild, moderate, and severe COVID-19. In the post-dexamethasone cohort, the assay predicted survival with an accuracy of 0.83 (108/130), and death with an accuracy of 0.76 (26/34) in the median 2.5 weeks before the outcome, thereby outperforming compound clinical risk assessments such as SOFA, APACHE II, and ABCS scores. Interpretation Disease severity and clinical outcomes of patients with COVID-19 can be stratified and predicted by the routine-applicable panel assay that combines known and novel COVID-19 biomarkers. The prognostic value of this assay should be prospectively assessed in larger patient cohorts for future support of clinical decisions, including evaluation of sample flow in routine setting. The possibility to objectively classify COVID-19 severity can be helpful for monitoring of novel therapies, especially in early clinical trials. Funding This research was funded in part by the European Research Council (ERC) under grant agreement ERC-SyG-2020 951475 (to M.R) and by the Wellcome Trust (IA 200829/Z/16/Z to M.R.). The work was further supported by the Ministry of Education and Research (BMBF) as part of the National Research Node 'Mass Spectrometry in Systems Medicine (MSCoresys)', under grant agreements 031L0220 and 161L0221. J.H. was supported by a Swiss National Science Foundation (SNSF) Postdoc Mobility fellowship (project number 191052). This study was further supported by the BMBF grant NaFoUniMedCOVID-19 - NUM-NAPKON, FKZ: 01KX2021. The study was co-funded by the UK's innovation agency, Innovate UK, under project numbers 75594 and 56328.
Collapse
Affiliation(s)
- Ziyue Wang
- Department of Biochemistry, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Am Chariteplatz 1, 10117 Berlin, Germany
| | - Adam Cryar
- Inoviv, Mappin House, 4 Winsley St, London, United Kingdom
| | - Oliver Lemke
- Department of Biochemistry, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Am Chariteplatz 1, 10117 Berlin, Germany
| | - Pinkus Tober-Lau
- Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Daniela Ludwig
- Department of Biochemistry, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Am Chariteplatz 1, 10117 Berlin, Germany
| | - Elisa Theresa Helbig
- Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Stefan Hippenstiel
- Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Leif-Erik Sander
- Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health at the Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | - Christoph Mueller
- Agilent Technologies Sales & Services GmbH & Co. KG, Waldbronn, Germany
| | - Johannes Zeiser
- Agilent Technologies Sales & Services GmbH & Co. KG, Waldbronn, Germany
| | - StJohn Townsend
- Department of Biochemistry, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Am Chariteplatz 1, 10117 Berlin, Germany
| | - Vadim Demichev
- Department of Biochemistry, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Am Chariteplatz 1, 10117 Berlin, Germany
| | - Michael Mülleder
- Core Facility – High-Throughput Mass Spectrometry, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Am Chariteplatz 1, 10117 Berlin, Germany
| | - Florian Kurth
- Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine, and Department of Medicine I, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Ernestas Sirka
- Inoviv, Mappin House, 4 Winsley St, London, United Kingdom
| | - Johannes Hartl
- Department of Biochemistry, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Am Chariteplatz 1, 10117 Berlin, Germany
| | - Markus Ralser
- Department of Biochemistry, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Am Chariteplatz 1, 10117 Berlin, Germany
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
9
|
Chandran J, Bellad A, Ramarajan MG, Rangiah K. Applications of quantitative metabolomics to revolutionize early diagnosis of inborn errors of metabolism in India. ANALYTICAL SCIENCE ADVANCES 2021; 2:546-563. [PMID: 38715861 PMCID: PMC10989570 DOI: 10.1002/ansa.202100010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/05/2021] [Accepted: 05/08/2021] [Indexed: 11/17/2024]
Abstract
Inborn errors of metabolism (IEMs) are a group of disorders caused by disruption of metabolic pathways, which leads to accumulation, decreased circulating levels, or increased excretion of metabolites as a consequence of the underlying genetic defects. These heterogeneous groups of disorders cause significant neonatal and infant mortality across the whole world and it is of utmost concern for developing countries like India owing to lack of awareness and standard preventive strategies like newborn screening (NBS). Though the predictive cumulative incidence of IEMs is said to be ∼1:800 newborns, data pertaining to the true prevalence of individual IEMs is not available in the context of Indian population. There is a need for a large population-based study to get a clear picture of the prevalence of different IEMs. One of the best ways to screen for IEMs is by applying advanced liquid chromatography-mass spectrometry (LC-MS) technology using a quantitative metabolomics approaches such as selected or multiple reaction monitoring (SRM or MRM). Recent developments in LC-MS/MRM based quantification of marker metabolites in newborns have opened a novel opportunity to screen multiple disorders simultaneously from a minuscule volume of biological fluids. In this review article, we have highlighted how LC-MS/MRM based metabolomics approach with its high sensitivity and diagnostic capability can make an impact on the nation's public health through NBS programs.
Collapse
Affiliation(s)
| | - Anikha Bellad
- Institute of BioinformaticsBangaloreKarnatakaIndia
- Manipal Academy of Higher EducationManipalKarnatakaIndia
| | - Madan Gopal Ramarajan
- Institute of BioinformaticsBangaloreKarnatakaIndia
- Manipal Academy of Higher EducationManipalKarnatakaIndia
| | - Kannan Rangiah
- Institute of BioinformaticsBangaloreKarnatakaIndia
- Manipal Academy of Higher EducationManipalKarnatakaIndia
| |
Collapse
|
10
|
Jin L, Han X, He F, Zhang C. Prevalence of methylmalonic acidemia among newborns and the clinical-suspected population: a meta-analyse. J Matern Fetal Neonatal Med 2021; 35:8952-8967. [PMID: 34847798 DOI: 10.1080/14767058.2021.2008351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
IMPORTANCE Knowing the scale of rare inborn errors is important for screening and resource allocation. Evidence on the prevalence of methylmalonic acidemia (MMA) among newborns and the clinical-suspected population from large-scale screening programs needs to be systematically synthesized. OBJECTIVE To estimate the worldwide prevalence of MMA for newborns and the clinical-suspected population and explore the differences in different regions, periods, and diagnostic technologies. DATA SOURCES MEDLINE, Embase, CRD, Cochrane Library, Scopus, CINAHL, and PROSPERO. Study Selection: All studies reporting the epidemiology characteristics of MMA were selected. DATA EXTRACTION AND SYNTHESIS Characteristics of study, subjects, and epidemiology were extracted, random-effect models were used for meta-analyses. MAIN OUTCOME AND MEASURE Pooled prevalence of MMA. RESULTS This study included 111 studies. The pooled prevalence of MMA worldwide was 1.14 per 100,000 newborns (1516/190,229,777 newborns, 95% CI: 0.99-1.29) and 652.11 per 100,000 clinical-suspected patients (1360/4,805,665 clinical-suspected individuals, CI: 544.14-760.07). Asia and Africa got a higher pooled prevalence of MMA. The prevalence of MMA in newborns increased through the years, while that in the clinical-suspected population decreased. Collecting blood ≥ 72 h after birth had a higher pooled prevalence of MMA than collecting during 24 h-72 h after birth. The combining-use of MS/MS and GC/MS had a higher pooled prevalence than the single-use of MS/MS or GC/MS. Prevalence of cbl C, mut, cbl B, cbl A, isolated MMA, combined MMA and homocystinuria, vitamin B12-responsive MMA was synthesized. CONCLUSIONS AND RELEVANCE Prevalence of MMA among newborns was extremely low, but considerably high in the clinical-suspected population, indicating the need for more efficient newborn screening strategies and closer monitoring of the high-risk population for the early signs of MMA. Asia and Africa should attach importance to the high prevalence of MMA. Further diagnostic tests were recommended for the combining-use vs single-use of MS/MS and GC/MS and for collecting blood after 72 h vs during 24-72 h after birth.
Collapse
Affiliation(s)
- Lizi Jin
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, P. R. China.,Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Xueyan Han
- Department of Medical Statistics, Peking University First Hospital, Beijing, P. R. China
| | - Falin He
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, P. R. China.,Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Chuanbao Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, P. R. China.,Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| |
Collapse
|
11
|
Magdy RM, Abd-Elkhalek HS, Bakheet MA, Mohamed MM. Selective screening for inborn errors of metabolism by tandem mass spectrometry at Sohag University Hospital, Egypt. Arch Pediatr 2021; 29:36-43. [PMID: 34848132 DOI: 10.1016/j.arcped.2021.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/03/2021] [Accepted: 11/06/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Inborn errors of metabolism (IEMs) comprise a group of inherited diseases that can have devastating consequences and cause irreversible damage to different body systems and even lead to death. Newborn screening helps in the presymptomatic diagnosis of many medical disorders including IEMs. Early diagnosis and management of IEMs helps reduce morbidity and mortality. OBJECTIVE This study aimed to estimate the prevalence of IEMs among at-risk children and contribute toward early diagnosis and management in order to minimize morbidity and mortality. METHODS This prospective study was conducted at the Pediatrics and Neonatology Department, Sohag University Hospital, Egypt. The study enrolled 308 participants suspected of having IEMs. Cases were included based on the presence of any of the following: unexplained convulsions, persistent metabolic acidosis, persistent hypoglycemia, disturbed consciousness, delayed milestones, or family history of previous sibling death with IEMs or sibling death with a history suggestive of IEMs. All participants in the study were subjected to metabolic screening by tandem mass spectrometry (MS/MS). RESULTS Out of 308 neonates, 93 (30.2%) were diagnosed with IEMs. The most common diagnosis was phenylketonuria, followed by glutaric aciduria type 1 and maple syrup urine disease (43%, 19.4%, and 14%, respectively). Five patients had Canavan disease, four had medium-chain acyl CoA dehydrogenase deficiency, three had congenital lactic acidosis, two had methylmalonic acidemia, and two had primary carnitine deficiency. Propionic acidemia, isovaleric acidemia, homocystinuria, short-chain acyl CoA dehydrogenase deficiency, B-ketothiolase deficiency, and ketone body utilization defect were diagnosed in one patient each. Most patients improved (73.1%) following proper specific management. CONCLUSION We recommend newborn screening for IEMs using MS/MS, which may help with the early diagnosis and management of this group of disorders.
Collapse
Affiliation(s)
- Rofaida M Magdy
- Metabolic and Genetics Unit, Department of Pediatrics, Faculty of Medicine, Sohag University, Sohag, Egypt.
| | - Heba S Abd-Elkhalek
- Medical Genetics Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed A Bakheet
- Pediatric Cardiology Unit, Department of Pediatrics, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Montaser M Mohamed
- Pediatric Neurology Unit, Department of Pediatrics, Faculty of Medicine, Sohag University, Sohag, Egypt
| |
Collapse
|
12
|
Yu Y, Shuai R, Liang L, Qiu W, Shen L, Wu S, Wei H, Chen Y, Yang C, Xu P, Chen X, Zou H, Feng J, Niu T, Hu H, Ye J, Zhang H, Lu D, Gong Z, Zhan X, Ji W, Gu X, Han L. Different mutations in the MMUT gene are associated with the effect of vitamin B12 in a cohort of 266 Chinese patients with mut-type methylmalonic acidemia: A retrospective study. Mol Genet Genomic Med 2021; 9:e1822. [PMID: 34668645 PMCID: PMC8606212 DOI: 10.1002/mgg3.1822] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND To summarize the relationship between different MMUT gene mutations and the response to vitamin B12 in MMA. METHODS This was a retrospective study of patients diagnosed with mut-type MMA. All patients with mut-type MMA were tested for responsiveness to vitamin B12. RESULTS There were 81, 27, and 158 patients in the completely responsive, partially responsive, and nonresponsive groups, respectively, and the proportions of symptom occurrence were 30/81 (37.0%), 21/27 (77.8%), and 131/158 (82.9%), respectively (p < .001). The median levels of posttreatment propionyl carnitine (C3), C3/acetyl carnitine (C2) ratio in the blood, and methylmalonic acid in the urine were all lower than pretreatment, and the median level of C3/C2 ratio in the completely responsive group was within the normal range. In 266 patients, 144 different mutations in the MMUT gene were identified. Patients with the mutations of c.1663G>A, c.2080C>T, c.1880A>G, c.1208G>A, etc. were completely responsive and with the mutations of c.1741C>T, c.1630_1631GG>TA, c.599T>C, etc. were partially responsive. The proportions of healthy/developmental delay outcomes in the three groups were 63.0%/23.5%, 33.3%/40.7%, and 13.3%/60.1%, respectively (p < .001). CONCLUSION Different mutations in the MMUT gene are associated with the effect of vitamin B12 treatment.
Collapse
Affiliation(s)
- Yue Yu
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ruixue Shuai
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lili Liang
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenjuan Qiu
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Linghua Shen
- Department of Pediatric Endocrinology and Genetics, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Shengnan Wu
- Department of Pediatric Endocrinology and Genetics, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Haiyan Wei
- Department of Pediatric Endocrinology and Genetics, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yongxing Chen
- Department of Pediatric Endocrinology and Genetics, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Chiju Yang
- Center of Neonatal Disease Screening, Jining Maternal and Child Health Care Hospital, Jining, China
| | - Peng Xu
- Center of Neonatal Disease Screening, Jining Maternal and Child Health Care Hospital, Jining, China
| | - Xigui Chen
- Center of Neonatal Disease Screening, Jining Maternal and Child Health Care Hospital, Jining, China
| | - Hui Zou
- Center of Neonatal Disease Screening, Jinan Maternal and Child Health Care Hospital, Jinan, China
| | - Jizhen Feng
- Center of Neonatal Disease Screening, Shijiazhuang Maternal and Child Health Care Hospital, Shijiazhuang, China
| | - Tingting Niu
- Center of Neonatal Disease Screening, Shandong Maternal and Child Health Care Hospital, Jinan, China
| | - Haili Hu
- Center of Neonatal Disease Screening, Hefei Maternal and Child Health Care Hospital, Hefei, China
| | - Jun Ye
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Huiwen Zhang
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Deyun Lu
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhuwen Gong
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xia Zhan
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenjun Ji
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xuefan Gu
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lianshu Han
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Zhang R, Qiang R, Song C, Ma X, Zhang Y, Li F, Wang R, Yu W, Feng M, Yang L, Wang X, Cai N. Spectrum analysis of inborn errors of metabolism for expanded newborn screening in a northwestern Chinese population. Sci Rep 2021; 11:2699. [PMID: 33514801 PMCID: PMC7846761 DOI: 10.1038/s41598-021-81897-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023] Open
Abstract
Expanded newborn screening facilitates early identification and intervention of patients with inborn errors of metabolism (IEMs), There is a lack of disease spectrum data for many areas in China. To determine the disease spectrum and genetic characteristics of IEMs in Xi'an city of Shaanxi province in northwest China, 146152 newborns were screening by MSMS from January 2014 to December 2019 and 61 patients were referred to genetic analysis by next generation sequencing (NGS) and validated by Sanger sequencing. Seventy-five newborns and two mothers were diagnosed with IEMs, with an overall incidence of 1:1898 (1:1949 without mothers). There were 35 newborns with amino acidemias (45.45%, 1:4176), 28 newborns with organic acidurias (36.36%, 1:5220), and 12 newborns and two mothers with FAO disorders (18.18%; 1:10439 or 1:12179 without mothers). Phenylketonuria and methylmalonic acidemia were the two most common disorders, accounting for 65.33% (49/75) of all confirmed newborn. Some hotspot mutations were observed for several IEMs, including PAH gene c.728G>A for phenylketonuria; MMACHC gene c.609G>A and c.567dupT, MMUT gene c.323G>A for methylmalonic acidemia and SLC25A13 gene c.852_855del for citrin deficiency. Our study provides effective clinical guidance for the popularization and application of expanded newborn screening, genetic screening, and genetic counseling of IEMs in this region.
Collapse
Affiliation(s)
- Ruixue Zhang
- Center of Neonatal Disease Screening, Department of Clinical Genetics, Northwest Women's and Children's Hospital, 1616 Yanxiang Road, Xi'an, Shaanxi Province, China
| | - Rong Qiang
- Center of Neonatal Disease Screening, Department of Clinical Genetics, Northwest Women's and Children's Hospital, 1616 Yanxiang Road, Xi'an, Shaanxi Province, China.
| | - Chengrong Song
- Center of Neonatal Disease Screening, Department of Clinical Genetics, Northwest Women's and Children's Hospital, 1616 Yanxiang Road, Xi'an, Shaanxi Province, China
| | - Xiaoping Ma
- Center of Neonatal Disease Screening, Department of Clinical Genetics, Northwest Women's and Children's Hospital, 1616 Yanxiang Road, Xi'an, Shaanxi Province, China
| | - Yan Zhang
- Center of Neonatal Disease Screening, Department of Clinical Genetics, Northwest Women's and Children's Hospital, 1616 Yanxiang Road, Xi'an, Shaanxi Province, China
| | - Fengxia Li
- Department of Pediatrics, Northwest Women's and Children's Hospital, 1616 Yanxiang Road, Xi'an, Shaanxi Province, China
| | - Rui Wang
- Center of Neonatal Disease Screening, Department of Clinical Genetics, Northwest Women's and Children's Hospital, 1616 Yanxiang Road, Xi'an, Shaanxi Province, China
| | - Wenwen Yu
- Center of Neonatal Disease Screening, Department of Clinical Genetics, Northwest Women's and Children's Hospital, 1616 Yanxiang Road, Xi'an, Shaanxi Province, China
| | - Mei Feng
- Department of Child Healthcare, Northwest Women's and Children's Hospital, 1616 Yanxiang Road, Xi'an, Shaanxi Province, China
| | - Lihui Yang
- Center of Neonatal Disease Screening, Department of Clinical Genetics, Northwest Women's and Children's Hospital, 1616 Yanxiang Road, Xi'an, Shaanxi Province, China
| | - Xiaobin Wang
- Center of Neonatal Disease Screening, Department of Clinical Genetics, Northwest Women's and Children's Hospital, 1616 Yanxiang Road, Xi'an, Shaanxi Province, China
| | - Na Cai
- Center of Neonatal Disease Screening, Department of Clinical Genetics, Northwest Women's and Children's Hospital, 1616 Yanxiang Road, Xi'an, Shaanxi Province, China
| |
Collapse
|
14
|
Diagnosis, genetic characterization and clinical follow up of mitochondrial fatty acid oxidation disorders in the new era of expanded newborn screening: A single centre experience. Mol Genet Metab Rep 2020; 24:100632. [PMID: 32793418 PMCID: PMC7414009 DOI: 10.1016/j.ymgmr.2020.100632] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023] Open
Abstract
Introduction Mitochondrial fatty acid oxidation disorders (FAODs) are a heterogeneous group of hereditary autosomal recessive diseases included in newborn screening (NBS) program in Italy. The aim of this study was to analyse FAODs cases, identified either clinically or by NBS,for clinical and genetic characterization and to evaluate a five years' experience of NBS, in the attempt to figure out the complexity of genotype-phenotype correlation and to confirm the clinical impact of NBS in our centre experience. Materials and methods We analysed FAODs patients diagnosed either by NBS or clinically, followed since February 2014 to April 2019 at the Regional Screening Centre and Inherited Metabolic Diseases Unit of Verona. Diagnosis was confirmed by plasma acylcarnitines, urinary organic acids, enzymatic and genetic testing. For not clear genotypes due to the presence of variants of uncertain significance, in silico predictive tools have been used as well as enzymatic activity assays. Patients underwent clinical, nutritional and biochemical follow up. Results We diagnosed 30 patients with FAODs. 20 by NBS: 3 CUD, 6 SCADD, 5 MCADD, 4 VLCADD, 2 MADD. Overall incidence of FAODs diagnosed by NBS was 1:4316 newborns. No one reported complications during the follow up period. 10 patients were diagnosed clinically: 2 CUD, 2 CPT2D, 1 VLCADD, 5 MADD. Mean age at diagnosis was 29.3 years. Within this group, complications or symptoms were reported at diagnosis, but not during follow-up. 12 mutations not previously reported in literature were found, all predicted as pathogenic or likely pathogenic. Discussion and conclusions Our study highlighted the great phenotypic variability and molecular heterogeneity of FAODs and confirmed the importance of a tailored follow up and treatment. Despite the short duration of follow up, early identification by NBS prevented diseases related complications and resulted in normal growth and psycho-motor development as well. Early identification by newborn screening prevents disease related complications. Newborn screening is changing prevalence clinical and molecular heterogeneity of FAODs. Genotype-phenotype correlation helps to achieve personalized follow-up and treatment. Enzymatic assay may be pivotal in predicting phenotype and symptoms severity. Diagnosis on clinical grounds is anyway important to change disease course.
Collapse
Key Words
- ALT, Alanine aminotransferase
- AST, Aspartate aminotransferase
- CACTD, carnitine-acylcarnitine translocase deficiency
- CK, creatine kinase
- CPT1/2 D, carnitine palmitoyl-CoA transferase 1/2 deficiency
- CUD, carnitine uptake defect
- DBS, dried blood spots
- DNA, Deoxyribonucleic acid
- Enzymatic activity
- Expanded newborn screening
- FAODs, fatty acid oxidation disorders
- Fatty acid oxidation defects
- Hypoglycaemia
- LCHADD, Long chain 3-hydroxyacyl-CoA dehydrogenase deficiency
- MADD, multiple acyl-CoA dehydrogenase deficiency
- MCADD, medium-chain acyl-CoA dehydrogenase deficiency
- Myopathy
- NBS, newborn screening
- NGS, next generation sequencing
- PCR, polymerase chain reaction
- SCADD, short chain acyl-CoA dehydrogenase deficiency
- Synergistic heterozygosity
- TFPD, trifunctional protein deficiency
- TMS, tandem mass spectrometry
- VLCADD, very-long-chain acyl-CoA dehydrogenase deficiency
Collapse
|
15
|
Hu Z, Yang J, Lin Y, Wang J, Hu L, Zhang C, Zhang Y, Huang X. Determination of methylmalonic acid, 2-methylcitric acid, and total homocysteine in dried blood spots by liquid chromatography-tandem mass spectrometry: A reliable follow-up method for propionylcarnitine-related disorders in newborn screening. J Med Screen 2020; 28:93-99. [PMID: 32615850 DOI: 10.1177/0969141320937725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Determination of methylmalonic acid, 2-methylcitric acid, and total homocysteine in dried blood spots by liquid chromatography-tandem mass spectrometry has usually been used as a second-tier test to improve performance of newborn screening for propionylcarnitine-related disorders. However, factors that potentially affect its detection results have not been investigated, and we aimed to evaluate these influencing factors and explore their potential utility in newborn screening and initial follow-up for propionylcarnitine-related disorders. METHODS This study comprised a prospective group (1998 healthy infants, to establish cutoff values and investigate the influencing factors) and a retrospective group (804 suspected positive cases screened from 381, 399 newborns for propionylcarnitine-related disorders by tandem mass spectrometry, to evaluate the performance of newborn screening and initial follow-up). RESULTS Cutoff values for methylmalonic acid, 2-methylcitric acid, and total homocysteine were 2.12, 0.70, and 10.05 µmol/l, respectively. Concentration of methylmalonic acid, 2-methylcitric acid, and total homocysteine in dried blood spots is not impacted by sex, age, birth weight, gestational age, or dried blood spot storage time. A total of 75 of 804 cases were screened positive by combined tandem mass spectrometry and liquid chromatography-tandem mass spectrometry, thus eliminating 90% of the false positives without compromising sensitivity. Eighteen propionylcarnitine-related disorders were successfully identified, including one CblX case missed in the initial follow-up by tandem mass spectrometry. CONCLUSIONS Methylmalonic acid, 2-methylcitric acid, and total homocysteine detected in dried blood spots by liquid chromatography-tandem mass spectrometry is a reliable, specific, and sensitive approach for identifying propionylcarnitine-related disorders. We recommend this assay should be performed rather than tandem mass spectrometry in follow-up for propionylcarnitine-related disorders besides second-tier tests in newborn screening.
Collapse
Affiliation(s)
- Zhenzhen Hu
- Department of Genetics and Metabolism, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jianbin Yang
- Department of Genetics and Metabolism, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yiming Lin
- Neonatal Disease Screening Center, Quanzhou Maternity and Children's Hospital, Quanzhou, China
| | - Junjuan Wang
- Department of Epidemiology and Bio-Statistics, 535300Zhejiang University School of Public Health, Hangzhou, China.,Zhejiang BiosanBiochemical Technologies Co. Ltd, Hangzhou, China
| | - Lingwei Hu
- Department of Genetics and Metabolism, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Chao Zhang
- Department of Genetics and Metabolism, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yu Zhang
- Zhejiang BiosanBiochemical Technologies Co. Ltd, Hangzhou, China
| | - Xinwen Huang
- Department of Genetics and Metabolism, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
16
|
Ma S, Guo Q, Zhang Z, He Z, Yue A, Song Z, Zhao Q, Wang X, Sun R. Expanded newborn screening for inborn errors of metabolism by tandem mass spectrometry in newborns from Xinxiang city in China. J Clin Lab Anal 2020; 34:e23159. [PMID: 31916308 PMCID: PMC7246475 DOI: 10.1002/jcla.23159] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/17/2019] [Accepted: 11/22/2019] [Indexed: 12/27/2022] Open
Abstract
Background Tandem mass spectrometry is a powerful technology available in China over the last 15 years. The development of tandem mass spectrometry had made it possible to rapidly screen newborns for inborn errors of metabolism. The aim of this study was to determine the birth incidence of inborn errors of metabolism through expanded screening of newborns by tandem mass spectrometry in Xinxiang area. Methods Dried blood spots from 50 112 newborns were assessed for inborn errors of metabolism by tandem mass spectrometry. The diagnoses were confirmed based on the clinical features, conventional laboratory tests, and the organic acid levels tested in urine by gas chromatography‐mass spectrometry. Results The study findings revealed that 31 newborns were diagnosed with inborn errors of metabolism. The total incidence rate of inborn errors of metabolism was 1/1617, and these included 16 cases of amino acid disorders (51.6%), nine cases of organic acid disorders (29.0%), and 6 (19.4%) cases of fatty acid beta‐oxidation disorders. Conclusions The screening for the incidence of inborn errors of metabolism in Xinxiang area showed that the rate was higher than previously reported. This study provides valuable data which may be useful in facilitating improvements in the expansion of screening to enable early diagnosis and treatment of inborn errors of metabolism before the onset of symptoms.
Collapse
Affiliation(s)
- Shujun Ma
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Qinghe Guo
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Zhongxin Zhang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Zhian He
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Aizhi Yue
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Zhishan Song
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Qingwei Zhao
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Xia Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Ruili Sun
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|